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Abstract

This article reviews the broad range of recent statistical work in social network models,
with particular emphasis on computational aspects of these methods.
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1 Introduction

A typical statistical data frame includes sampling units, which may be considered individuals, and
analysis often focuses on some property of these units. Loosely speaking, social networks arise
whenever the “property” of interest involves interactions between multiple sampling units, rather
than the units themselves. We do not limit ourselves to the case in which the sampling units are
actually human beings, though this is by far the most common application that has appeared in
the literature on social network models.

There is a long history of work that may be characterized as related to social networks—as
Carrington and Scott| (2011]) point out, it is difficult to pinpoint the genesis of this field but its roots
may be traced at least as far back as the 1930s—though we do not focus on this development here,
both because there already exist numerous treatises on networks in general and social networks in
particular, and because for the audience of JCGS, we wish to focus on computational questions.
However, we can at least give a partial list of survey-type references for readers interested in

delving into the subject of social networks more deeply: Though almost two decades old, the
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classic book by Wasserman and Faust| (1994) is still considered a comprehensive introduction to
the important quantitative concepts of social network analysis. As to statistical analysis for social
networks, more recent works include the survey article by |Goldenberg et al.| (2009)) and the book-
length treatment of various network-related statistical topics by Kolaczyk (2009), both of which
give numerous references. Finally, we recommend the other network-related articles in this issue.

The current article highlights some current topics in social network modeling, with special
emphasis on computational aspects. In Section [2] we introduce a classic dataset, which, though
extremely small especially by modern standards, serves to illustrate some of these computational
techniques even if it does not demonstrate the state-of-the-art in computational techniques de-
signed for massive social networks. To keep the article to a manageable length, in Section [3] we
merely highlight many important topics illustrating the range of statistical work on social network
applications, citing recent references to enable interested readers to learn more. The topics that
we describe in more detail in Sections {4 and [5| share a common feature: they focus on complete
networks that are cross-sectional, which means that they observed at only one point in time. The
distinction between the techniques in Section [4] and those in Section [5] is that the former covers
network models whose dependence structure does not have a clear hierarchy, typically expressed
as a joint distribution of edge variables, and often focused on modeling global network features
and social forces; whereas the latter covers network models that are hierarchical in nature, where
the edge variable distributions are parameterized in terms of latent variables, and are focused on
identifying individual nodes’ roles and positions. We conclude in Section [6] with a discussion of
some future challenges. Our hope throughout is to stimulate interest among the readership of

JCGS to delve into the rapidly expanding field of statistical modeling of social networks.

2 Data and notation

We introduce some notation used throughout the article and then discuss a classic social network

data set, which we use as an illustrative example throughout the paper.



2.1 Notation

Let N be the set of nodes in the network of interest, indexed {1,...,n}. The relationships in
the network may be directed (e.g., friendship nominations, messages) or undirected (e.g., sexual
partnerships, conversations). In the former case, we define the set of dyads (here used to refer
to potential relationships) Y to be a subset of N x N, the set of ordered pairs of nodes; in the
latter case, it is a subset of {{7,j} : (4,j) € N x N}, the unordered pairs of nodes. (We will also
use u(Y) to refer to an “unordered” version of Y, i.e., u(Y) = {{i,5} : (4,j) € Y}.) Usually, Y is
further constrained in that in most social networks studied, a node cannot have a relationship of
interest with itself, excluding pairs of the form (i, ).

For binary networks, in which the relationship of interest must be either present or absent,
we use Y C 2¥, the set of subsets of Y, to refer to the set of possible networks of interest, which
may be further constrained (that is, ) may be a proper subset of 2¥). We will use Y to refer to
network random variables and y € ) to refer to their realizations, and y; ; be an 0-1 indicator of

whether a relationship of interest is present between ¢ and j in a binary network context.

2.2 Data

The data set collected by Sampson| (1968) and described by |Batagelj and Mrvar| (2003) is a classic
data set in social network analysis. The data set summarizes relationships, observed at three
distinct time points, among 18 monks who were about to enter a monastery when a conflict
erupted. We use here the directed network where y; ; = 1 denotes that monk 4 liked monk j at
any of the three time points and y; ; = 0 otherwise. The directed network is shown in Figure ,
where circles represent monks and directed edges are oriented from ¢ to 7 whenever y; ; = 1. The

monks are divided by Sampson into three groups: Loyal Opposition, Turks, and Outcasts.

3 Range of social network models

The range of statistical modeling techniques for social networks is too broad to address adequately

in a single article. We have chosen to focus in some depth in Sections {4 and [5| on cross-sectional
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Figure 1: Monk social network dataset of Sampson (1968), where circles represent monks and

directed edges represent liking relationships.

(i.e., observed once only), completely observed networks. The current section, by contrast, seeks to
illuminate the myriad other applications by describing several additional important recent trends

in social network modeling for which we do not have space for a lengthier exposition.

3.1 Dynamic Markovian models of networks

The modeling of social network dynamics—i.e., changes over time—has attracted much attention,

starting with the groundbreaking work of Holland and Leinhardt] (1977alb) and [Wasserman| (1977,

11979, [1980). Holland and Leinhardt| argued that continuous-time Markov processes with state
space Y are natural models of social network dynamics. [Wassermans work, later sharpened

by [Leenders (1995)), studied maximum likelihood estimation for continuous-time Markov process

models based on the assumptions that dyad processes are independent and stationary.

This early work was expanded by |Snijders|(2001)), who introduced parameterizations of continuous-

time Markov processes that allow dyad processes to be dependent and relaxed the restrictive sta-

tionarity assumption provided two or more discrete-time observations of the process are available.

Motivated by the work of McFadden! (1974)) on random utility models, Snijders’ parameterizations

have the advantage that the Markov process can be interpreted as “actor-driven”, i.e., driven



by nodes who maximize random utility functions of the network. More importantly from the
standpoint of statistical computing, |Snijders| (2001) also adapted the method of simulated mo-
ments (McFadden, 1989) to method of moments estimation of continuous-time Markov models,
implemented by stochastic approximation (Robbins and Monro|, [1951; Pflug) [1996). Some com-
putational improvements were discussed by Schweinberger and Snijders (2007)), and maximum
likelihood and Bayesian estimation were proposed by Snijders et al.| (2010) and Koskinen and
Snijders (2007), respectively. These computational methods are based on non-standard (Markov
chain) Monte Carlo data-augmentation methods and are implemented in the Windows-based pro-
gram Siena (Snijders et al., [2010a)) and the platform-independent R package RSiena (Ripley and
Snijders, 2011)).

More recently, discrete-time Markov models have been explored as alternatives to continuous-
time Markov models. [Hanneke et al. (2010)) explored discrete-time Markov models in which the
transition probabilities are expressed by ERGMs. |Krivitsky and Handcock| (2012a) proposed sep-
arable parameterizations of discrete-time Markov models, where one process governs the addition
of edges and the other process governs the deletion of edges at each time step; their estimation
methods, which extend the (Markov chain) Monte Carlo maximum likelihood methods of |Geyer

and Thompson| (1992)), are implemented in the R package ergm package (Handcock et al., 2012).

3.2 Dynamic non-Markovian models of networks

Several non-Markovian models for changing networks, including loglinear models and models in
which changes are selected uniformly conditional on the degree structure of the network, are
discussed briefly by [Frank| (1991), who cites multiple references. A more recent method is the
random-effects model suggested by |Westveld and Hoff| (2011]), which may be adapted to network
data that are either binary or in which edges between nodes have normally distributed weights.
One recent trend in the non-Markovian vein in which computation plays an increasingly im-
portant role is the application of survival analysis to continuously collected network data (Butts,
2008; Brandes et all [2009), an increasingly common paradigm with internet-based and other

computer-generated network datasets. If an “event” is the formation of a new edge, then we



attach a counting process either to every node or to every pair of nodes. Vu et al| (2011) refer
to these as the “egocentric” and “relational” models, respectively. The analysis of large datasets
(with thousands of nodes and tens of thousands of edges) based on these counting processes is

demonstrated in the egocentric case by [Vu et al. (2011)) and in the relational case by Vu et al.

(2011) and [Perry and Wolfe| (2011)).

3.3 Joint models of networks and other outcome variables

There is a growing literature in which statistical models for the edges in a network are only one
part of a larger joint model. Computing plays a huge role in this area, as simulations of these
joint models are vital; yet statistical inference is a relatively recent addition to the computational
mix. Snijders et al. (2007), for instance, model jointly a dynamically evolving network along
with behavior measured on the nodes in that network; parameter estimation for such models
given longitudinally observed data is implemented in SIENA (Snijders et al., 2010a; [Ripley and
Snijders, 2011). |Fellows and Handcock! (2012) demonstrate the computational viability of models
in which covariates on the nodes in a network are considered random variables. An important
subclass of these joint models are models in which a social network is modeled together with some
other process of interest that takes place among the nodes in the network, as in the study of
infectious diseases. For instance, Britton and O’Neill (2002), whose models were later extended
and applied by (Groendyke et al| (2011, 2012)), use an MCMC-based Bayesian approach to infer
model parameters for a contact network underlying an outbreak of an infectious disease when
certain information is available about the outbreak, even in cases where none of the contact

network edges is actually observed.

3.4 Measurement error models and partially sampled networks

Accuracy of network data may be suspect for a number of reasons. A vast sociological literature
on the question of how reliable respondents’ reports might be has failed to resolve the question;
yet even if it is not quite true that “[self-report] data about communication cannot be used as

a proxy for behavioral data” (Bernard et al., |1979), the statistical community will certainly not



be surprised to learn that noise in data collection, along with missing data, can pose significant
problems in data analysis. Butts (2003)) explores this theme from a statistical point of view,
advancing a hierarchical Bayesian framework for simultaneously analyzing network structure along
with respondent accuracy. Wyatt et al.| (2008) report promising results inferring parameters for
a network model from noisy data using a stochastic gradient ascent algorithm to optimize the
computationally intractable likelihood function.

An important subcategory of models for which data are imperfectly observed are those in which
some (known) portion of the network observations is missing. Both maximum likelihood (Gile and
Handcock|, 2010) and Bayesian (Koskinen et al., 2010) approaches to this missing-data problem
have been proposed and demonstrated to be viable, though each relies heavily on computational
techniques: Both use MCMC to help approximate an intractable likelihood, while the latter also

uses Bayesian data augmentation.

4 Exponential-family random graph models: global net-
work characteristics

In this section, we discuss models represented in terms of the joint distribution of all edges, as
opposed to a series of conditional distributions of a hierarchical model as described in Section [5
The most popular framework for these joint models is the class of exponential-family random
graph models (ERGMs). Originally proposed by Holland and Leinhardt| (1981)) to model individual
heterogeneity of nodes and reciprocity of their edges (called the p; model), the framework was
generalized by |Frank and Strauss| (1986)), Wasserman and Pattison (1996) (who called it the p*
model), and Snijders et al. (2006). It takes the form of a (curved) exponential family on the

sample space V:

_ exp{n(0) 'g(y)}
k()

where 0 is a g-vector of model parameters, which are mapped to a p-vector of natural parameters

Po(Y = y) , Yy e, (1)

by n(-); and g(-) is a p-vector of sufficient statistics, which capture network features of interest,

its postulated dependence structure, or both. We present some examples of ERGM statistics in



Edges Mutual dyads Transitive triads

a(y) Z Yi,j Z Yi,jYj,i Yi,j Z YikYk,j

(i,5)€Y (i,5)€u(Y) (i)Y keN\{i,j}

Ai;9(y) 1 Yj.i Z (YikYr,j + YikYik T Yr,iYn,j)
keN\{i,j}

Table 1: Well-known network statistics, where circles represent nodes and directed lines represent
directed edges between nodes. The first two of these statistics are used in the model of Section [4.4]
whereas the last is replaced in the models by a statistic that is less prone to the degeneracy problem

discussed in Section [4.3]

Table[1} Lastly, to make all probabilities sum to one,
k() =) exp{n(6) gy}
y'ey

Notably, this differs from the “textbook” exponential family formula, in that it omits an “h(y)”
factor, which, together with ), controls the “reference measure” for the model, the distribution
of networks when n(€) = 0. While usually omitted in binary ERGMs, it gains a great deal of
importance when using exponential families to model valued networks ties (Krivitsky, [2012).

Exponential families for networks can be derived by postulating a substantively relevant condi-
tional dependence structure, and, based on this structure, approaches like the Hammersley-Clifford
Theorem (Besag, (1974) can be used to derive sufficient statistics associated with the model. Frank
and Strauss| (1986 derive a set of statistics under the “Markovian” assumption that the states of
two relationships are, conditional on the rest of the network, stochastically dependent only if they
have at least one node in common. Other examples of this approach include the work of |Pattison
and Wasserman, (1999) on multivariate relations, [Robins et al. (1999) on polytomous relations,

and the realization-dependent conditional independence of |Snijders et al.| (2006). At the same
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time, choice of statistics can be driven by beliefs about the factors that influence the underlying
social process, without regard for dependence structure (Morris et al. 2008; Krivitsky, 2012]).
For each dyad, one can derive its conditional distribution given the rest of the network, i.e.,

Zﬁzgg o ii %ﬁ exp {n(0)"Aig(y)},

with A, ;9(y) =gy U{(i,75)}) —g(y\{(¢,7)}), the change in the sufficient statistic vector asso-

Oddsg(Yi; = 1Y —(i,7) =y—(3,5)) =

ciated with adding an edge at (i,j). These “change statistics” (Hunter and Handcockl 2006) or
“change scores” (Snijders et al., 2006)) facilitate “local” interpretation of ERGMs. For example,
consider the mutual dyads statistic in Table [I[} 6., associated with this statistic can be said to
increase the conditional odds of an edge (i, 7) by exp{0.} if there is already a tie from j to i.
When A, ;g(y) does not depend on y, the model is dyad-independent, and can be decomposed

into logistic regression for each edge.

4.1 Simulation methods

Many applications of these models, including all of the Monte Carlo-based methods for finding a
maximum likelihood estimator (MLE) as well as Bayesian methods, require making draws from
the ERGM.

Because evaluating the conditional probability of an edge given the rest of the network is often
relatively inexpensive, it is straightforward to simulate network realizations even from intractable
ERGMs using a Metropolis-Hastings sampling procedure: given a proposal g from density ¢(y | y),
accept with probability

By Iy S S (n(6) (9(4) - 9(0)}

or 1, whichever is smaller. Supposmg that ¢(¢ | y) > 0 only if Z (i)Y I(y;,; # v.;) equals one—

i.e., the proposed network is constructed by toggling a single edge, say (i, 7)—then g(y) — g(y)
reduces to £A,; ;g(y), with the sign depending on the direction of the toggle, facilitating a fast
Gibbs sampling algorithm. [Morris et al.| (2008) further optimize it for large, sparse networks by
implementing an asymmetric proposal.

The rate of convergence for this Gibbs procedure was studied by Bhamidi et al.| (2008). There

is also some work in progress on exact sampling (Butts|, 2012).
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4.2 Inference methods

The major challenge associated with applying these models is the intractability of the normalizing

constant x(0) in the likelihood. Here, we describe the methods used to address this challenge.

4.2.1 Pseudo-likelihood estimation

An approximate approach to maximum likelihood estimation is based on the so-called pseudo-

likelihood function (Strauss and Ikedal 1990), defined as

1

~ Py(Y =1vy).
I +exp{—0TA;;g(y)} o y)

[T Po(¥es = v IY\{G) =0\G)}) = ]

(4,9)eY (4,9)eY

In other words, for each potential edge in the network, its conditional probability given the state of
the rest of the network is evaluated, and the product of those probabilities is used to approximate
the likelihood. Maximizing the pseudo-likelihood results in a maximum pseudo-likelihood estima-
tor (MPLE), which, computationally, reduces to logistic regression (Strauss and lkeda, |1990)). van
Duijn et al.|(2009) and others show that the MPLE is often biased and far less efficient than the
MLE, particularly when the social process modeled has strong dyadic dependence, and is particu-
larly vulnerable to the “degeneracy” issues discussed below. van Duijn et al.| (2009) also propose

a maximum bias-corrected pseudolikelihood estimator (MBLE).

4.2.2 Maximum likelihood estimation: stochastic approximation

In the case of linear ERGMs, the maximum likelihood estimator of 8 solves

Volog Po(Y =y) = g(y) —Ee(g(Y)) =0, (2)

where Vg log Pg(Y = y) denotes the gradient of the log likelihood function log Pp(Y = y) with
respect to 6. [Snijders| (2002)) proposes solving equation (2)) using stochastic approximation (Rob-
bins and Monro| [1951; [Pflug, 1996)). Starting with an initial guess, the stochastic approximation

method updates 8* to @' at iteration t + 1 as follows:

0 =0' —a, D (g(Yor) — g(y)),
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where D; ! is an approximation of the gradient Vg Eg(g(Y)) in the neighborhood of 8¢, a; is a
sequence of numbers which tends sufficiently slowly to 0 as ¢ increases, and Yjyt is a network sample
from the ERGM with parameter 8° by Markov chain Monte Carlo (MCMC) methods. |(Okabayashi
and Geyer| (2012) propose a linear search algorithm along similar lines, while|Jin and Liang| (2012)

develop yet another stochastic approximation algorithm.

4.2.3 Maximum likelihood estimation: Monte Carlo maximization

An alternative approach to maximum likelihood estimation is based on Monte Carlo approxima-
tions of the likelihood function . The MCMC MLE approach of (Geyer and Thompson| (1992)
was first adapted by Handcock! (2003) to ERGMs and extended by [Hunter and Handcock! (2006)).
Both the stochastic approximation algorithm of [Snijders| (2002)) described in Section and the
MCMC MLE approach of Hunter and Handcock! (2006) rely on MCMC simulations of networks,
but the MCMC MLE approach has the advantage that it makes more efficient use of MCMC
samples, as pointed out by |Geyer and Thompson| (1992, Section 1.3).

Starting with an initial guess 0, which is often taken to be the easy-to-calculate MPLE, the

ratio of intractable normalizing constants is approximated as

K(6") : T exp{n(6) "g(y)}
@) = 2o @) —n(0) gly) | =

yey

— Ey (exp {(77(9/) - 77(9)>T9(Y>}> ’

with the last expectation approximated by a sample of sufficient statistics under 6, allowing the
likelihood to be maximized as a function of @’.

In practice, the accuracy of the estimate decreases as @’ moves farther from @; in particular, if
a guess @ is so far from the MLE that the interior of the convex hull of a sample under @ does not
contain the observed sufficient statistic, the maximized 6’ does not exist (Hummel et al., 2012).
Thus, practical implementation such as that of Handcock et al.[(2012) involves several iterations of
refining the guess and sampling from it. The MPLE is often used for the purpose, and |(Okabayashi
and Geyer| (2012) suggest using their linear search algorithm for the purpose, while Hummel et al.

(2012) propose an adaptive method to attenuate the change in 6'.
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Publicly available implementations of ERGM MLE and MPLE include the ergm package
(Hunter et al., 2008; Handcock et al.; 2012) from the Statnet suite of R packages and PNet (Wang
et al., 2009).

4.2.4 Bayesian methods

Bayesian inference is based on the posterior distribution of 8 given y:

p(6 | y) = p;f;)’) _ p(y]‘)f;)p“’) x ply | ) p(6).

where p(y) = [p(y | 8)p(0)d 0 is the marginal probability of y, p(y | 8) = Ps(Y = y) is the
conditional probability of y given 8, p(@) is the prior probability density of 8, and p(0 | y) is the
posterior density of @ given y. The posterior density p(€ | y) is typically intractable, because its
normalizing constant p(y) is intractable.

Standard MCMC methods, e.g., the Metropolis-Hastings algorithm, can deal with intractable
normalizing constants of a posterior density as long as the posterior density in question is known
up to a constant. The problem is that the posterior density is not known up to a constant, because
the normalizing constant () of the likelihood function p(y | @) is intractable. Since the posterior
density p(@ | y) of complex ERGMs includes two intractable normalizing constants, p(y) on the
one hand and x(€) on the other hand, the posterior density is doubly intractable (Murray et al.|
20006)).

To demonstrate that standard MCMC methods cannot sample from doubly intractable pos-
terior densities, suppose that we want to construct a Markov chain with stationary distribution
p(@ | y) by a Metropolis-Hastings algorithm. If @ denotes the current value of the parameter
and 6 denotes a proposal of the parameter generated from a proposal density ¢(. | €), then 0 is

accepted with probability min(1,a), where
a=—"——"" (3)

The problem is that acceptance probability () is intractable, because p(y | 8) and p(y | 8) involve

’

the normalizing constants x(0) and (@), respectively.
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A naive approach would be to replace the intractable likelihood ratio by an approximation,
either deterministic or stochastic. A deterministic approximation could be based on variational
approximations of the log-normalizing constants, while stochastic approximations could be based
on MCMC estimators of the ratio of normalizing constants such as the importance sampling
estimator used in maximum likelihood estimation (e.g., Murray, 2007). However, the stationary
distribution of the resulting Markov chains may not be the desired target distribution, i.e., the
posterior density of interest (Murray, 2007)).

The problematic nature of the naive approach has led to the development of a body of MCMC
methods that by design generate samples from doubly intractable posterior density’s. Most of
them are based on augmenting the posterior density so that the augmented posterior probability
distribution is easy to sample from. We discuss here one of the simplest and most appealing
auxiliary-variable MCMC methods, following Murray et al.| (2006 and Caimo and Friel (2011).
Other auxiliary-variable approaches are discussed by [Mgller et al. (2006) and |Koskinen et al.
(2010); an alternative approach, inspired by the Monte Carlo maximum likelihood algorithm of
Geyer and Thompson| (1992)), was proposed by |Atchadé et al.| (2012).

The basic idea can be described as follows. The data y are augmented by an auxiliary random
graph Y and an auxiliary parameter vector 6. Suppose the joint density of 6,Y, é, Y is of the

form

p(6,y,6.9) = p(0)p(y | 0) (6 | 6,y) p(y | 6), (4)
where q(0 | 0,y) is an auxiliary density and p(y | 0) is the conditional probability of 4 given 6,
which is of the same exponential-family form as Y, implying the same reference measure and the

same sufficient statistics. The augmented posterior density is of the form

p(0.0,9 | y) < p(6,y,0,9) < p(0)p(y | 0)q(0 | 6,y)p(y | ). (5)

The posterior density of interest, p(@ | y), is the marginal distribution of the augmented
posterior density, p(H,é,y | y). A simple Metropolis-Hastings algorithm to sample from the
augmented posterior density, which has been called the ezchange algorithm (Murray et al.| 2006;

Caimo and Friel, 2011)), operates as follows:
(1) Sample 6 | 8,y ~ ¢(. | 8,y) and then sample Y | @ ~ p(. | 6).

13



(2) Propose to swap the values of 8 and 6 and accept the proposal with probability min(1, a),

where
p(0)p(y|6)a(®]6.y)p(y | 0)
p(0)p(y | 0)q(6]6,y)p(y|6)

a =

(6)

’

Simple calculation shows that the intractable normalizing constants x(6) and x(6) cancel from
the acceptance probability @, so the Metropolis-Hastings algorithm operating on the augmented
state space is tractable. Sampling Y requires exact sampling, which is typically infeasible. |Caimo
and Friel (2011)) proposed to sample Y instead by MCMC methods, as described in Section .
The work of |Liang| (2010) on double Metropolis-Hastings algorithms provides some justification for
doing so. Last, to reduce model degeneracy of conventional ERGMs, Schweinberger and Handcock
(2011)) proposed hierarchical ERGMs with local dependence and extended the exchange algorithm
to hierarchical ERGMs.

4.3 ERGM degeneracy

In addition to the intractable normalizing constant, a major difficulty in modeling complex social
processes using ERGMs is a phenomenon referred to as “degeneracy,” which arises for example
when attempting to model processes exhibiting individual heterogeneity in activity level using
2-star statistics and triad closure using triangle counts as suggested in |[Frank and Strauss| (1986)).
In a contemporaneous publication, Strauss| (1986 noted that the Markov graph models Frank and
Strauss (1986) had proposed tend to, as the network size increases, concentrate an increasingly
large probability mass on an increasingly small fraction of possible networks. |Jonasson| (1999))
and |[Haggstrom and Jonasson (1999) studied the asymptotics of the so-called triangle model,
corresponding to the ERGM with the number of edges and triangles as sufficient statistics, and
showed that as the network size increases, the parameter space tends to be divided between
configurations that exhibit little triadic closure—typically less than observed—and configurations
that are degenerate, in that almost all of the probability mass is concentrated on a single (complete)
network. Handcock (2003]) and [Rinaldo et al. (2009)), among others, mapped the shape of the region
of the parameter space in which this degeneracy occurred, and Schweinberger| (2011)) showed that

some statistics, including triangle and k-star counts, induce this behavior asymptotically.
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It can be argued that this degeneracy is merely a symptom of a broader problem of model
misspecification. In their development of curved ERGMs, |Snijders et al| (2006) used change
statistics to show that models with positive coefficients on triangles and/or k-stars induced strong
positive dependence among dyad values: edges beget more edges, leading to what the authors
called an “avalanche” toward a complete graph. In another realization, the avalanche might not
take place, leading to a sparse network. Thus, the model with such positive dependence can induce
a bimodal distribution of networks, and, at the MLE, however it is found, the observed network
would be between the modes. A bimodal distribution, with little mass between the modes, is
difficult for MCMC sampling to explore, which can cause any simulation-based method to fail,
whether maximum likelihood or Bayesian.

Indeed, Krivitsky| (2012), in developing ERGM statistics for networks with weighted edges that
are unbounded counts, reports that a statistic analogous to the count of 2-stars induced a bimodal
distribution of networks, with neither mode being degenerate (i.e., concentrated) itself. Thus, a
fruitful approach to degeneracy may be to model network phenomena using statistics less prone

to result in model degeneracy, such as those of Snijders et al.| (2006)) and |Krivitsky| (2012).

4.4 Application

We demonstrate the three methods of estimation by applying them to Sampson’s network dataset
and the ERGM with the three statistics of Table [If except that the transitive triad statistic is

replaced by the less degeneracy-prone transitive edges statistic given by

Y;; Mmax Y; xYk
(UZ);Y 7 keN\{ij} ’

(Snijders et al., [2010b)). This statistic resembles the transitive triad count in Table [1| except the
summation over k is replaced by a maximum over k.

Table [2] shows various point estimates of the edges, mutual edges, and transitive edges pa-
rameters. Although there is some question as to the validity of ERGM standard errors due to
questionable asymptotics (Hunter and Handcockl, 2006, for example), the standard errors in this
case seem to agree closely with the posterior standard deviations, suggesting that they may be

valid in practice. The marginal posterior densities are shown in Figure [2] along with the MCMC
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MPLE (S.E.

MCMC MLE (S.

Posterior mean (.

edges
mutual edges

transitive edges

—1.6981 (0.2502)
2.3277 (0.2940)
—0.0503 (0.1335)

—1.9468 (0.3672
2.3093 (0.4195
0.1328 (0.2210

E)
)
)
)

D.)
—1.9216 (0.3535)
2.2732 (0.4273)
0.1309 (0.2135)

Table 2

posterior mean and standard deviation.
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Marginal posterior densities of canonical edges, mutual edges, and transitive edges

parameter; the red lines indicate the MCMC MLE. Transitive edges should not be confused with

the transitive triads of Table [1l

MLE. It is evident that the MCMC MLE is close to the posterior mode. Example code to obtain

the results shown here using the R packages ergm and Bergm can be found in the appendix (in

both R packages, the transitive edges statistic is called transitiveties).

Hunter et al.| (2008) argue that assessing the goodness-of-fit of models is important, not least

due to the model degeneracy problem discussed in Section [6, We show posterior predictions of

the sufficient statistics in Figure |3l The posterior predictions are centered at the observed data,

which is encouraging.

16



edges mutual edges transitive edges

500
|
500
|
350
|

1
]

150 200 250 300
L L L L

100
I

r T T T T 1 r T T T 1 r T T T T T 1
40 60 80 100 120 140 10 20 30 40 50 20 40 60 80 100 120 140

Figure 3: Posterior predictions of number of edges, mutual edges, and transitive edges; red line
indicates observed value. Transitive edges should not be confused with the transitive triads of
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5 Models based on independence conditional on latent
variables

While ERGMs are useful for modeling global network characteristics, models based on conditional
independence (given latent variables) are useful for multiple reasons. First, ERGMs are not well-
understood and sometimes possess undesirable properties, e.g., model degeneracy. Second, the
likelihood function of ERGMs is intractable, complicating statistical computing. Third, there
may be unobserved heterogeneity or unobserved structure.

For these reasons, models building on conditional independence (given latent variables) have
attracted much attention. At least three streams of latent variables can be distinguished: random
effects models and mixed effects models and extensions; stochastic block models and extensions,
including mixed membership models; and latent space models and extensions. All of these latent
variable models, with the exception of Wyatt et al.| (2008)), [Koskinen| (2009), and Schweinberger
and Handcock (2011), assume conditional independence of dyads: if Z denotes generic latent
variables, which may be node-bound or dyad-bound and discrete or continuous, then the models

assume that dyads (distinct unordered pairs of nodes) (Y;;,Y;;) are independent conditional
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on Z:

Po(Y=y|Z=2)= ][] Po(Yij=91;,Yii=uji|l Z=2z)
(i.)€u(Y)
In the case of directed networks, conditional independence of dyads (Y;;,Y;;) does not imply
conditional independence of edges Y;; and Y ;: even conditional on Z, edges Y;; and Y;; may
be dependent due to reciprocity. However, with the notable exception of the p, model (van Duijn,
1995; van Duijn et al., |2004)), most latent variable models make the more restrictive assumption

that edges Y; ; are independent conditional on Z:

P(Y=yl|Z=2z)= ] Po(Yij=wi;| Z =2). (7)

(i,5)eY

Three aspects of these models are worth noting. First, conditional independence does not
imply that latent variable models cannot capture network dependencies of interest. Indeed, some
of the more advanced latent variables (notably latent space models) make clever use of latent
variables to capture such dependence structure, including mutuality and transitivity. Second, the
conditional independence of edges implies that model degeneracy is not an issue, which facilitates
the construction of models. Third, the conditional independence of edges has computational
advantages in that standard MCMC methods can be used.

We discuss random effects and mixed effects models very briefly in Section[5.1]and then describe
two classic latent variable models in more detail: stochastic block models in Section [5.2] and latent

space models in Section [5.3]

5.1 Random effects and mixed effects models

The earliest latent variable model, the random effects model of van Duijn (1995), was motivated
by the lack of model parsimony of the so-called p; model of Holland and Leinhardt| (1981)—which
is an ERGM of the form with the in-degrees, out-degrees, and mutual edges as sufficient
statistics—and the fact that the p; model ignores covariates. Since it can be considered a random
effects version of p;, the model of van Duijn (1995) is known as the p, model. To estimate its
parameters, van Duijn| (1995)) and van Duijn et al.| (2004)) exploit the fact that the p; model can be

represented as a generalized linear model and the ps model as a generalized linear mixed model and
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develop an iterative generalized least squares procedure. Zijlstra et al.| (2009) develops Bayesian
MCMC methods for the ps model.

Hoff| (2003, 2005| [2009) introduces multiple generalizations of generalized linear mixed models,
along with Bayesian MCMC methods. Some of these computational methods are implemented in
the R package eigenmodel (Hoff, 2012). Krivitsky et al. (2009)) extend the latent cluster models

of Section [£.3] to include random effects.

5.2 Stochastic block models

Stochastic block models of networks, which are related to finite mixture models, were explored by
Snijders and Nowicki (1997)) and extended by |[Nowicki and Snijders| (2001)). These models partition
the set of nodes is partitioned into subsets, called blocks, where conditional on block memberships,
edges are independent and the probability of an edge between two blocks depends on the blocks
to which the nodes belong. [Tallberg| (2005) describes an extension that incorporates covariates to
predict block memberships. |Airoldi et al.| (2008) propose more advanced stochastic block models,
called mixed membership models, that allow the block memberships of nodes to depend on the
pair of nodes, i.e., the block to which you belong depends with whom you interact.

Yet we focus here on the basic stochastic block model of Nowicki and Snijders| (2001), which
is based on two fundamental assumptions. First, the set of nodes is partitioned into K blocks,

where K is fixed and known. Let
Z;|m,... ,7rKi'ri<51' Multinomial(1; 7y, ..., 7). (8)

Second, equation (7)) holds, with Pp(Y;; = 1 | Z; = 2, Z; = z;) = 0.z, where 0y, is the
probability that a given actor in group k has a tie to a given actor in group I.

The Bayesian MCMC algorithm is simple: given conjugate priors, the posterior can be sampled
by Gibbs sampling. In particular, if the priors for = and 3 are independent and given by Dirichlet
and beta, respectively, then the full conditional distributions of 7w and 3 are also Dirichlet and
beta. The parameters of stochastic block models are not identifiable in that the likelihood function

is invariant to the labeling of the blocks and Bayesian MCMC samples may therefore show evidence

of label-switching. [Snijders and Nowicki| (1997) and Nowicki and Snijders (2001) deal with the
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label-switching problem either by imposing order restrictions on parameters or restricting attention
to functions that are invariant to the labeling of the blocks, e.g., an indicator of whether two nodes
belong to the same block. An alternative is given by the Bayesian decision-theoretic approach of
Stephens| (2000)), which relabels the Bayesian MCMC sample. The first approach is implemented
in the Windows-based program BLOCKS (Snijders and Nowicki, 2007) and the second approach
is implemented in the R package hergm (Schweinberger| 2012).

The variational methods of Section provide an alternative to MCMC-based estimation.
They are approximate but fast and feasible, and they can be applied to networks with more than

100,000 nodes and 10 billion dyads.

5.3 Latent space models

Hoff et al.| (2002) proposed latent space models based on the assumption that nodes are embedded
in a latent, metric space. Latent space models come in two basic flavors: One that assumes
the metric space is Euclidean (Hoff et al., 2002)), and another that assumes the metric space is
ultrametric (Schweinberger and Snijders|, [2003). In either case, equation ([7]) is assumed to hold
with

logit(Ps(Y;; =1|Z =2;,Z = z;)) =By + :L'Ijﬁ + d(zi, z;),

where «; ; is a ¢g-vector of covariates for dyad (i, 7), Bp is a parameter which controls the density
of the network, and d(.,.) is a distance function. Two examples of distance functions are given
by d(zi, z;) = —||z; — ;|| for a Euclidean latent effect and d(z;, z;) = z;' z; for an inner-product
effect.

The likelihood function, which is equivalent to the likelihood function of nonlinear logistic
regression models, can be maximized to obtain maximum likelihood estimates. An alternative is
a Bayesian approach, specifying a prior distribution for 3 and Z and using the Gibbs sampler to
sample from the posterior distribution of 3 and Z. If the posterior distribution is approximated
by Bayesian MCMC methods, then a nonidentifiability problem arises, in that the likelihood
is invariant to rotation and reflection of latent positions about the origin and, for Euclidean

latent space models, it is also invariant to translation. |Hoff et al.| (2002) address this problem
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by using a Procrustes transformation to rotate and reflect these posterior draws to be as close
as possible to a reference configuration. Shortreed et al.| (2006) further address this problem via
a Minimum Kullback-Leibler divergence (MKL) estimate to summarize the posterior positions,
finding a configuration (Bwkr, Zukr) that induces a distribution of dyad values closest to their
posterior predictive distribution. That is, given two parameter configurations 8 = (3, z) and
0’ = (3, 2'), and letting Yy be a random network variable induced by 6, so that P(Yy = y) =
Po(Y = y), the divergence is given by

Po(Y =Y’
KL(Yp,Ys) = Ey1jor (log M) ,

Po(Y =Y7)

with the estimate minimizing its expectation under the posterior 8 | Yops = Yobs:
OMKL = arg mln EO,‘YObs:yobs (KL(‘Y.QI ) Yé)) °
0

Shortreed et al. (2006) show that the estimate could be obtained easily for an exponential fam-
ily, and for binary networks in particular, by evaluating the posterior predictive expectation
Ey /v, .=yo.. (Y') and maximizing
arg min H Po(Y;; = 1)EY/‘Yobs:yobs(Y-;vj)P0(-}fid = ())1_EY’|Yob5:yobs(Y2,j)’
(1,9)€Y
the binomial PMF evaluated up to proportion.
This model is further extended by [Hoff (2005) to add node-specific random sender () and

receiver (7) effects, i.e.,
IOglt(Pﬁ(}f%] =1 | Z = Zi, Z = Zj)) = ,30 + ZB;D,@ -+ d(zi, Zj) + 6@ + Yis

with  and « having a normal distribution, and by Handcock et al. (2007) to model the latent

positions as a mixture of K spherical Gaussian clusters, i.e.,

K
ZS " e MVN (p,0%1)
k=1
allowing a soft clustering of the nodes in the network to be produced. This leads to another

nonidentifiability problem, in that the prior for the latent positions is invariant to permutation of

cluster labels, which is resolved using the relabeling algorithm of |Stephens) (2000).
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Alternative computational approaches to approximating the likelihood function include the
case-control sampling idea of Raftery et al. (2011) and the variational approach of Salter-Townshend

and Murphy] (2010). The latter is described in Section [5.4]

5.4 Variational methods

Bayesian MCMC methods, which represent the gold standard and dominate the practice of latent
variable modeling, tend to be slow and cannot be applied to large networks with hundreds of
nodes. Variational methods have emerged as a fast and feasible though approximate alternative
to Bayesian MCMC methods. Approximate maximum likelihood estimation of stochastic block
models based on variational methods was introduced by Daudin et al.| (2008), who presented a
variational EM algorithm and applied it to more than 600 nodes. Online versions of Daudin et al.
(2008)) were considered by Zanghi et al.| (2010) and applied to more than 12,000 nodes. |Airoldi et al.
(2008)) applied a variational EM algorithm to mixed membership models. A generalized variational
EM algorithm, which exploits an MM algorithm (Hunter and Lange| [2004) to implement the E-
step, was proposed by Vu et al.| (2012) and applied to more than 131,000 nodes. The consistency
of approximate maximum likelihood estimators was established by |Celisse et al.| (2011), who
considered the stochastic block models of Nowicki and Snijders (2001). Approximate Bayesian
estimation of stochastic block models can be found using methods in Schweinberger et al.| (2011)
and Vu et al.| (2012)). Approximate Bayesian estimation of latent space models was discussed by
Salter-Townshend and Murphy| (2010)) and applied to more than 80 nodes.

We focus here on approximate Bayesian estimation of latent variable models based on varia-
tional methods. To keep the discussion manageable, we let u represent the vector of unknowns—
which includes all latent variables and all parameters.

The key obstacle to Bayesian model estimation and model selection is the marginal likelihood
p(y), which can be expressed as

) = [P o 9)du 9
where ¢(u | 9¥) is a distribution with support U, the space of u, parameterized by a vector of

auxiliary parameters 9. The idea of variational methods is to translate the intractable integration
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problem @ into a tractable optimization problem by bounding log p(y) below using a bound that

is as tight as possible. To this end, we maximize the right-hand side of

logp(y) > / {log %] q(u | V) du. (10)

with respect to . It can be shown that the difference between the left- and right-hand side of
is equal to the Kullback-Leibler divergence from the auxiliary distribution g(u | 1) parameterized
by 9 to the posterior distribution p(u | y):

q(u | 9)
p(u|y)
Thus, maximizing the lower bound is equivalent to minimizing the Kullback-Leibler diver-

gence .

To make the optimization problem tractable, it is common to choose fully factorized auxiliary

KL (o | 9)iplu|9) = [ [1og ]q<u|ﬁ>du. (11)

distributions of the form

q(u | V) Hquz|19 (12)

where u; denotes the ith element of the vector of unknowns uw and ¢(u; | ;) denotes the marginal
auxiliary distribution of u;, parameterized by a vector of auxiliary parameters ;.

A variational EM algorithm to maximize the lower bound can be sketched as follows. Let
LB(ﬁ(Zt),’ﬂg)) be the lower bound (10), where ¥z denotes the vector of auxiliary parameters
corresponding to the latent variables, with value 19(Zt) at iteration ¢, and 1¥¢ denotes the vector of

auxiliary parameters corresponding to the parameters @, with value 19(; ) at iteration t.
E-STEP: Let 19(t+ ) be the maximizer of LB(Vz, 19 ?) ) with respect to 9.
M-STEP: Let 19 U+ he the maximizer of LB(’(9 (1) ,¥g) with respect to Jg.

By construction, iteration ¢ + 1 increases the lower bound LB(¥z, ¥):

LB(9Y,9y) < LBWL,9Y) (13)
< LB@G, 95, (14)

Implementation details are discussed in the cited literature.
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A variational approach to Bayesian inference approximates the marginal likelihood p(y) and
the posterior distribution p(w | y) and thus tackles both Bayesian model estimation and model
selection.

In practice, the most important problem with variational methods is that it is impossible to
assess how tight the lower bound is. In the case of fully factorized auxiliary distributions of the
form , the Kullback-Leibler divergence , and thus the tightness of the lower bound , is
determined by the posterior dependence of the unknowns. In the absence of posterior dependence,
equality can be achieved in ([10]), though in general this is not possible. However, as long as the
posterior dependence is weak, the variational approximation of the posterior distribution and the
log marginal likelihood may be useful, at least as a starting point of Bayesian MCMC algorithms

and when Bayesian MCMC algorithms are too slow.

5.5 Application

To illustrate latent variable models, we apply the stochastic block model of Nowicki and Snijders
(2001) and the latent space models of Handcock et al| (2007) and Krivitsky et al| (2009)) to
Sampson’s monk data.

We obtained a Bayesian posterior MCMC sample from the Nowicki and Snijders| (2001) model
using the Windows-based program BLOCKS (Snijders and Nowicki, [2007)). Because BLOCKS
returns summaries of the posterior distribution rather than a sample from it, we modified the
Delphi source code of BLOCKS to obtain an MCMC sample. We handled the label-switching
in the posterior sample using a stochastic label-switching algorithm described by Schweinberger
and Handcock (2011) and implemented in the R package hergm (Schweinberger, 2012). MCMC
samples from the posterior distributions of the latent space models of Handcock et al.| (2007
and Krivitsky et al.|(2009) were obtained by the R package latentnet (Krivitsky and Handcockl,
2008)), for which the code can be found in the appendix.

Figure [4] shows the clustering of Sampson’s monks by the three models, where we use both
two and three dimensions for the |[Krivitsky et al. (2009) model. It is evident that the clustering

is almost the same with all three approaches and agrees with the ground truth—the three-group

24



5 e
% @ A0 ®
7 o go 7 .‘ :
(] % N ® ® -’
v : .
.J 3 2 1 0 1 2 3 *‘3 2 1 0 1 2 3
(a) [Nowicki and Snijders| (2001) (b) Handcock et al.| (2007) (c) Krivitsky et al.| (2009))

(d) [Krivitsky et al.| (2009)

Figure 4: Clustering of Sampson’s monks by (a) stochastic block model of Nowicki and Snijders|

(2001); (b) latent space model of [Handcock et al. (2007); and latent space model of
(2009)) in (c) two dimensions and (d) three dimensions.
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partition of the monks into Loyal Opposition, Turks, and Outcasts. In fact, there is hardly any

uncertainty about the clustering.

6 Discussion

As we have tried to show, applications that combine computational statistics and social network
modeling are already very broad, but research combining is still quite young relative to these two
separate fields. As such, numerous challenges remain.

First, there are myriad open questions regarding theoretical statistics in network modeling.
Research in this area is too broad to summarize adequately in a single paragraph, though we may
highlight some computational issues related to this theory. There are several recent articles that
extend exponential family theory to network models, with particular emphasis on cases in which
maximum likelihood estimators may not exist. Geyer| (2009)) shows how exact linear programming
algorithms, implemented in the R package rcdd (Geyer, |2012), may be used to analyze such cases.
There is very little asymptotic theory about the use of ERGMs—indeed, Shalizi and Rinaldo| (2011))
point out that maximum likelihood estimators for certain such models may be shown not even
to be consistent as the number of nodes grows without bound—which means that computational
techniques for finite-sample statistical inference and for Bayesian inference become important.
Monte Carlo-based testing (Krivitsky, 2012, for example) is an obvious possibility here, though
there exists little work to date on practical implementation of valid inferential techniques in general.

Beyond the theoretical questions, however, perhaps the most important computational issue
looming for statistical analysis of social network data is the high-dimensional nature of more and
more network datasets. Since the number of edge variables in a network of n nodes scales like
O(n?), mere storage of large networks becomes problematic. Often, social networks are sparse
in the sense that many more edge variables are zero (indicating absence of an edge) than one,
which means that computational techniques for sparse matrices become relevant. Though software
implementing such techniques already exists for many common matrix operations, novel statistical
analyses might require novel matrix operations and therefore new algorithms. Furthermore, it

is increasingly the case that n itself is quite large—when data are collected automatically by

26



electronic devices from a large population, for example—so algorithms that scale no better than
O(n?) are problematic.

We feel that the interplay of statistical theory and computing in social network modeling
applications will also prove to be fertile ground for researchers in statistics to make advances. As
a single example, consider testing a null hypothesis against an alternative hypothesis. Standard
tests based on the Wald or likelihood ratio test statistics require maximizing the likelihood function
under the alternative hypothesis, which may be infeasible or, at the very least, may be more time-
consuming than maximizing the likelihood function under the null hypothesis. Thus, score tests,
which only require to maximizing the likelihood function under the null hypothesis, may present
an attractive alternative provided clever methods are used to evaluate the score function under
the null hypothesis. In the case of dynamic network models of the form [Snijders| (2001)); Snijders
et al.| (2007)), frequentist score-type tests (Schweinberger, 2012) have become popular and are
widely used. For exponentially-parameterized stochastic block models, Bayesian score-type tests
are explored by Schweinberger et al.| (2011)).

With regard to degeneracy, as discussed in Section dependence creates multimodality for
degenerate models, which in turn creates issues for computational algorithms that depend on
MCMC. Solving these computational issues will not make degeneracy go away; it can help to cure
the symptom, but fails to address the root of the problem. In any case, goodness-of-fit measures

are indispensable to diagnose degeneracy where it occurs (Hunter et al., 2008)).
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Example code

ERGM MCMC MLE

library(ergm)
data(sampson)
monks.ergm.mle <- ergm(samplike”edges+mutual+transitiveties)

summary (monks.ergm.mle)

ERGM MPLE

library(ergm)
data(sampson)
monks.ergm.mple <- ergm(samplike~edges+mutual+transitiveties,estimate="MPLE")

summary (monks.ergm.mple)

Two-dimensional Euclidean latent space model with three clusters and

random receiver effects

library(latentnet)

data(sampson)

monks.d2G3r <- ergmm(samplike~euclidean(d=2,G=3)+rreceiver)

Z <- plot(monks.d2G3r, rand.eff="receiver", pie=TRUE, vertex.cex=2)

text(Z, label=1:nrow(Z))

Three-dimensional Euclidean latent space model with three clusters

and random receiver effects

library(latentnet)
data(sampson)

monks.d3G3r <- ergmm(samplike~euclidean(d=3,G=3)+rreceiver)
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plot (monks.d3G3r, rand.eff="receiver", use.rgl=TRUE, labels=TRUE)

Bayesian ERGM

library(Bergm)

data(sampson)

mcmc<-bergm(samplike ~ edges + mutual + transitiveties,
burn.in=20000, #Number of burn-in iterations
main.iter=100000, #Number of post-burn-in iterations
aux.iter=10000, #Auxiliary network: number of iterations
mprior=rep.int(0.0,3), #Prior: means of Gaussian
sdprior=rep.int(5.0,3), #Prior: standard deviations of Gaussian

nchains=1 #Number of Markov chains

)
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