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Abstract

This research presents a more complete flexibleeintm the Motorised Momentum
Exchange Tether (MMET) concept. In order to anatixevibration aspect of the problem
the tether is modelled as a string governed bygbaifferential equations of motion, with
specific static and dynamic boundary conditions #ral tether sub-span is flexible and
elastic, thereby allowing three dimensional dispiaents of the motorised tether. The
boundary conditions lead to a specific frequencyatign and the Eigenvalues from this
provide the natural frequencies of the orbitingxitde motorised tether when static,
accelerating in spin, and at terminal angular vigjod@ he rotation matrix is utilized to get
the position vectors of the system’s componentaninnertial frame. The spatio-temporal
coordinatesau(x,t), v(x,t) and w(x,t) are transformed to modal coordinates before apglyin
Lagrange’s equations and the pre-selected lineatema@re included in generating the
equations of motion. The equations of motion contaértial nonlinearities of cubic order,

and these show the potential for intricate interat@dupling effects.

The study of planar and non-planar motions has bagmed out and the differences in the
modal responses in both motions between the rigddyband flexible model are
highlighted and discussed. The dynamics and stabdi the flexible MMET is
investigated using the dynamical analysis toolgépresenting the behaviour of the tether
system. The study is also includes the engineesithg of the MMET by investigating the
power requirements of an electric motor locatedhi central facility of the Motorised
Momentum Exchange Tether (MMET). A simulation was using a specially written
computer program to obtain the required minimum @ofer a typical duty cycle, and also
to study the responses for three different opegationditions; before payload release,
torque-off and reverse torques conditions for bt propulsion and outrigger system on
both circular and elliptical orbits. The differesscm the responses when using rigid body
and flexible models of MMET are highlighted and atdissed in order to look at the
sensitivity of the model to the power budget catiohs. The study then continues with a
comparative study between the MMET and conventigmapulsion systems in terms of
the energy used specifically for an Earth-Moon nretonission for circular and elliptical
orbits.
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Nomenclature

a non-planar angle
B(X) mode shape function for lateral vibration
y angular displacement of motor torque axis abowd thther's

longitudinal axis

X, 0,z Cartesian component of virtual displacement

W virtual work

&, strain due to axial extension

& total strain due to axial extension and centalp@rce

n discreet quantity measuring last perigee passiing { the onset of

tether tumbling.

6 true anomaly

H Earth’s gravitational constant

&(X) mode shape function for transverse vibration

P density

o stress

7 motor torque

¢(X) mode shape function for axial vibration

7] angular displacement of tether within the orbitajle
v, angular displacement at perigee within the atlaihgle
7/ angular velocity of tether

w argument of perigee

@, frequency for fixed-attached mass boundary conditio
Q, frequency for the static boundary condition

A cross sectional area

a semimajor axis for ecliptic orbit
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ds

x''yrlz
fml
fm2
fre

9

Q
a, (t)
0s(t)

d, (1)

displaced element

modulus elasticity

total energy

orbit eccentricity

Cartesian component of the force £L
frequency massless tether 1

frequency of massless tether 2

frequency of a rigid body tether
gravity constant of 9.81 nf/s
mass moment of inertia
specific impulse

the inclination of the orbit
tether sub-span

mass of central facility
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Chapter 1

Introduction

1.1 Motivations

The evolution of space transportation has createtendeas and advances concepts for
space exploration and the rapid development ofespaploration activities accentuates the
general needs for efficient space transportatione Evolution based on two main
objectives; first is to obtain huge saving in theemtional cost and the second is to
increase mission reliability and crew safety (Hamhol999). The achievement of low
operating cost is dependent on large scale chaimgéise way vehicles are designed,
developed, managed, contracted, and operated.pEue sether is one of the concepts that

have real potential to fulfil the objective of efnt space transportation.

braided
propulsion
tether-tube #1 and #2

Payload
Mass #2 T

braided /
outrigger
tether-tube #1 and #2

Figure 1.1 : Symmetrical Motorised Momentum Exchang

Ziegler & Cartmell (2001)

_/;) i
=~ AU

-
Payload
Mass #1

Launcher Motor
(Rotor)

Launcher Motor
(Stator)

e Tethers after Cartmell (1998),

A space tether is defined as a high strength, lewsidy cable that connects satellites,

probes or the space station to each other in spdue.cables are typically very long

structures ranging from a few hundred meters toersg¢vkilometres, and they have

relatively small diameters, possibly being onlyesv fmillimetres thick. Space Tethers are

mainly found in two categories; the electrodynateither and the momentum exchange

tether. There have been extensive studies conddetedifferent models of momentum

exchange space tethers, and so this thesis willystbe dynamics for the Motorised
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Momentum Exchange Tether (MMET) as proposed byr@attin 1996. The MMET is
symmetrical system that has tether connected thi@g to the central facility and power
up by motor to spin up the tether to generate adit4V. Figure 1.1 shows the schematic
for a double ended motorized tether concept, sugddy Cartmell (1998) and Ziegler and
Cartmell (2001).

1.2 Research Aims and Objectives

The previous study by Ziegler (2003) modelled thMBT as a rigid body and Chen
(2009) added axial flexibility to study the contrhd performance of the MMET. The
rigid body model provided a good basis for the gtafitether dynamics. The objective of
this research is to study the MMET with more realisnodel in order to have a precise
motion for the tether’s operation in space. Thiglgtaims to develop the tether’'s model to
include flexibility and investigates the flexurdfext to the global motion of the tether that
significantly affects the tether's performance. &h®on the objective of this study, this

thesis will focus on:

I. Develop the mathematical model of the MMET thatomporating the flexibility in

two and three dimension by using Langrage Equation.

II. Explores the global and local dynamics of the thitethers and the relationship

between them.
lll. Compares the performance of the flexible tetheh¢origid body tether.

IV. Study the influence of boundary conditions appltedthe tether in deriving the

equation of motion.

V. Investigates the flexible tether libration motidink to the onset spin and the routes

to the chaos and relation of tether’s flexibilioythe unstable motion.

VI. Calculate the power requirement for MMET’s Earthdiamission and compares the
energy requirement of flexible model to the rigiddg model of the tether. The
comparative study is also conducted between coioraitsystems to the tether

system.
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All the flexible models of MMET in this thesis weogiginally developed by the author in
order to study the dynamics and performance ofMMET. The studies of this flexible
model are summarised in Ismail and Cartmell (2008jail and Cartmell (2010a), and
Ismail and Cartmell (2010b).

1.3 Thesis Overview

Chapter 2 presents the critical review of literatuof space tether concept, the history, the
mission and the dynamics of the space tether.

Chapter 3 derives the equations of motions andyaeabf the dynamics of two
dimensional flexible tether model. The differendedween the rigid body and flexible
models are compared, and the impact of tether)ahiléy to the global motion of the
tether is investigated.

Chapter 4 investigates the three dimensional dycaiwii the MMET for both rigid body
and flexible models. The main objective is to urerthe relationships between planar and
non planar motions, and the effect of the coupletween these two parameters on the
circular and elliptical orbits.

Chapter 5 presents a more complete continuum mtbdelincludes appropriate dynamic
boundary conditions, which provides further fidgiih the representation of the dynamics
which may not otherwise be seen. This chapter tigetes the MMET responses for two
different dynamic boundary conditions: the fixethahed mass condition, and when both
ends are attached to masses. The differences imdtigal responses when applying the
dynamic and static boundary conditions are higtéighand discussed, providing more

insight into the subtleties of the dynamics of niisted orbiting space tethers.

Chapter 6 presents the dynamical analysis of ttieitevhich includes the libration/spin
and regular/chaos motion using the dynamical arsatgsls.

Chapter 7 explores the minimum torque and poweuirement for the MMET in various
operation conditions for the rigid body and flexildody model. This study will proceed
with the reassessment of the system equationsdah®loon transfers and will study of
the behaviour of the flexible tether for both apgtions.

Chapter 8 concludes this PhD research and sughesp®tential future works.
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Literature Review of Space Tethers

2.1 Background History

Konstantin Tsiolkovsky, the father of rocketry asdribed by Beletsky and Levin (1993),
was the first to come up with the idea of havirgjracture reaching all the way into space,
this having been inspired by his visit to the Hiffewer. In his book, entitled “Dream of

Earth and Sky” published in 1885, he described asia tower built on the surface of the
Earth, extending up to geostationary orbit at glmeof 36,000 km, on the top of which is a
celestial castle that could be reached by elevatbe centrifugal force acting on the
system would counteract the pull of gravity; theref the tower would be supported in

tension

Building a free-standing tower that is more tham tieousand kilometres high would be
impossible. However, in 1960 Yuri Artsutanov propods more practical concept, making
it possible to build the space elevator. The ideas vio use a satellite, placed at
geosynchronous orbit. A cable would be lowered ddvam the satellite towards the
surface of the Earth, and a counterweight wouleéxXtended away from the Earth, to the
satellite, simultaneously, keeping the centre ofssnaemaining at stationary point.
However, Artsutanov pointed out that a materiabrsgr enough to realise this idea was
unlikely to exist in the 1960s. Earlier than thatthe 1950s, John McCarthy in the United
States was also thinking of building a space eteyditut had to abandon the idea, due to
the same problem of the material requirement. | &ieinvented the rotating skyhook. The
arm of the skyhook was long enough to collect thglgads at the Earth’s surface to be
transported into space. McCarthy’s contributionglen®an Pelt (20093onsider him the
father of the momentum exchange tether. Accordin@larke (1981), Isaaet al. (1966)
had discovered the same concept, but were unavsatethie idea was the same as
Artsutanov’s and McCarthy’s. This concept was fartbtudied for its feasibility, and Isaac
et al (1966) duly found that the strength needed byt#tleer was twice what was then
available.

As the forces on the cable are not the same evempytrtsutanov considered using a

tapered cross section cable. The parts of the ¢hbterequire higher strength are thicker,
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and the parts where the forces are applied arerlawe therefore require a thinner and

lighter cable. The idea of this concept can besitlted, as in Figure 2.1:

Countermass

Tapered tethe _
satellite

GEO
orbit

Figure 2.1: The tapered cable for the skyhook conce pt by Arsutanov (1960) and Pearson

(1975)

The use of a tapered cable was studied in detdfdayson (1975), who discovered that the
concept of an orbital tower can be realised by cwaing the problems of buckling,
strength, and dynamic stability. The buckling camlercome by having a tower extended
from geostationary orbit, and make it experienceupward force which balances the
downward force due to the compressive stress ab#éise. Theoretically, the calculated
altitude needed to obtain a balanced tower was showe 144,000 km. Pearson (1975)
introduced the ratio between the thickest and kivenest part of the tapered cable, and
showed that this taper ratio should be more theeetn order to provide a stable tower for
the inclusion of the perturbation force of lunates in the calculation. For the required
strength to weight ratio, the material that wasilabée at that time was the perfect crystal
whiskers of graphite. The tower could also be usegrinciple for a linear induction
propulsion system, as suggested by Thornton (19A&)efore launching the payload from
geostationary orbit to a higher orbit by utilisittee energy from the Earth’s rotation. It
could also be used as a radioactive waste dispyséém, where the payload containing
the waste could be fired to a higher orbit nednerSun, and then released into the sun. A
number of applications have been proposed by Peaesul he extended the skyhook

concept to the lunar application in work reportedPearson (1979).

Colombo et al. (1974) proposed a “Shuttle Borne Skyhook” for lmsbital altitude
research, which was claimed by Kumar (2006) and Fah (2009) to have marked the
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beginning of the Tethered Satellite System (TS&g 3kyhook system was composed of a
subsatellite attached to a long wire on a reel, sl the gravity gradient and atmospheric
drag to keep the tether almost vertical and initensand to unreel the tether. This tether
could be lowered down, reaching a lower altitude/aich all the experiments with regards
to this region could be conducted continuously.edvrtoncept for the orbital skyhook was
proposed by Moravec (1977). This was in the frohaigotating tether with the central
facility as the centre of the mass, and attachell syimmetrical arms. This orbital skyhook
would rotate with a tether velocity equal to théital velocity so that the tether tip might
periodically touch down on the planet’s surface.

Colomboet al. (1982), Bekey (1983), and Bekey and Penzo (198&)ied the use of
momentum exchange tethers for payload orbital tean8ekey (1983) summarised the
principal of momentum exchange and electrodynantethers, and discussed the
application of cryogenic propellant storage andngfar, two dimensional tethered
constellations, passive stable platform connectedethers, payload orbit lowering and
raising, and a two-piece-tether elevator that fiemssa payload from LEO to GEO. Caroll
(1986) has also given a general overview of tethsiory and applications, and discussed
shuttle payload boosting and electrodynamics bogsturthermore, he remarked of his
concern about the low number of practical, as opgde the theoretical studies that have
been conducted and the requirement for advanceliestmainly in tether control in order

to make applications possible.

It can be seen here that research on space tdthsra very long history, and is truly
international. These previous studies on tethex® Haid the theoretical basis for more
advanced studies of tethers in the future. Sometipah experiments have been carried
out, and various applications for tethers have be#roduced, and more advanced
concepts, such as the tether elevator, space wdlmany more, are beginning to receive

serious attention.

2.2 Space Tethers: Concepts and Applications

Generally, modern tethers are categorised into woihee and non-conductive
applications. The conductive tether permits inteéom with the Earth’s magnetic field,
and is known as an electrodynamic tether; whilstrtbn-conductive tether category refers
to gravity gradient stabilised tethers and libergtand spinning momentum exchange
tethers. McKenzie (2010) described rotating tetlasrshose that have logical progression,
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which he referred to as Momentum Exchange Tethéailstvnon-rotating tethers tend to

denote gravity gradient and electrodynamic tethers.

2.2.1 Gravity Gradient Stabilisation

The basic principle of gravity gradient stabilisatiis to use the balance of the Earth’'s
gravity and the centrifugal force to keep spacéabdned in the desired orientation. For
two masses connected by a tether, the mass thktsisr to the Earth experiences a larger
gravitational force than centrifugal force; whitse mass at the other tether tip, which is
further from the Earth, has a higher centrifugatéothan gravitational force. The lower
end mass experiences a net force pointing to thid Eand the net force of the upper mass,
which is directed away from the Earth, puts théhdetinto tension, establishing an
equilibrium to the system, which then gives a stal@rtical configuration for the tether.
According to Cosmo and Lorenzini (1997), the gmuitnal and centrifugal forces are
equal and balanced at the system’s centre of gramwity, and the system is constrained to
the Earth orbit with the same angular velocity las tentre of gravity, and the masses
experience the tension of the tether as artifigiavity. Without the other forces that
perturb the tether, it will remain aligned to thagty vector, and this configuration is also
called a ‘hanging tether’ (Ziegler, 2003). In (Mobs and Cartmell, 2006), Cartmell has
given a formal treatment to the hanging tether wtibe altitude of gain and loss has been

derived for the payload raising and lowering apgtliimn.

This concept was first successfully demonstrateihduhe Gemini 12 mission in 1966.
The many potential applications for gravity gradistabilisation and artificial gravity have
been discussed by Beletsky and Levin (1993), CosmabLorenzini (1997), and Van Pelt
(2009). According to Beletsky and Levin (1993), dikovky was the first to introduce
artificial gravity based on a tethered pair, anid thas first experimented with during the
Gemini 11 mission in September 1966. Van Pelt (208@lined the applications of
artificial gravity, which enables astronauts tcelimore normally, and protects them from
the effects of psychological change, especiallytbe ISS. He also mentioned that
microgravity is useful for combustion experimentslaaccording to Beletsky and Levin
(1993), Bekey (1983) proposed the use of microgydwom gravity gradient stabilisation
for refuelling a spacecraft in orbit. The technigoiesupplying the propellant using a
gravity gradient stabilised tether was discusseddépth by Kroll (1985), where he
remarked that for the case of tether swinging ibitpthe length of the tether increases

gradually with the increasing swing angle.
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2.2.2 Electrodynamic Tether

An electrodynamic tether is a long conducting wiigich can be used for producing low
thrust and generating electrical power, and is ewseful for aerobraking. The wire or
cable is made from conductive material, and thdepable design is to have a high
electrical conductivity and low mass. The electrayic tether operates on a similar
principle to a generator or motor where it convéiteetic energy to electrical energy, or
vice versa. The motion of a deployed conductiveeleticross the Earth’s magnetic field
induces voltages along the length of the tethee Vditage along the tether will attract the
free, negatively charged electrons at its posiivdlarged end, this being the anode. The
electrons then will moves to the other end, nantleéy plasma contactor or cathode, and
generate a closed loop electrical circuit, enabtimgflow of electrical current. According
to Van Pelt (2009), an uninsulated tether can teel iisstead of using the large, spherical
and metallic anode to collect the electrons. Thiscept is called the ‘bare tether’ and can
prevent the electrons from piling up in the smadlaa thus increasing the efficiency of the
tether. He also mentioned that a 20-km-long wireaitow Earth orbit can potentially
produce up to 40 kW of power. Samantha Rowl. (1992) have shown in their study that
the combination of bare tethers with a contractan csignificantly improve the

performance of the tether.

The interaction of the induced current flow withetltarth’s magnetic field causes a
Lorentz Force that is always in the opposite dicgctto the motion of the wire in a

magnetic field, thus causing the tether to dectderghis ‘electromagnetic drag’ can be
utilised to lower the orbit of the satellite, oreev de-orbit it into the atmosphere. In
addition, reversing the operation will cause therelndz Force to work in the other

direction, and boost the spacecraft instead of isigut down. In this case, electrical power
supplied by the solar panels will be used to dtiheecurrent through the tether. Making the
current flow in the opposite direction from the \poms electromagnetic drag’s

configuration causes the Lorentz Force to workhe other direction, thus pushing the
spacecraft. The configurations of both the elegtnaghics drag and the propulsion tether

are shown in Figure 2.2.

The study by Estegt al. (2000) shows that a conceptual design of bareetgtifor
electrodynamic spacecraft propulsion is capablaetif’ering 0.5-0.8 N of thrust to the ISS
using a 10-km-long aluminium tether, by utilizing BW of space station power, and could

save propellant requirements for station reboostr @ 10-year lifetime. An experiment
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testing this bare electrodynamic tether was coreglad 2000 for the ProSeds mission.
Furthermore, the study by Vas al. (2000) has shown that using an electrodynami@teth
instead of using flights to deliver propellant teetstation, with a tether force of 0.43N
(5kW) to reboost the ISS, could give a saving ofrenthhan one billion dollars over the
ISS’s lifetime; and for a higher reboost value pfto 0.7N (10kW), would give twice the

saving.

Satellite Orbital
Velocity

B ——
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<=| Electron Emitter
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¥lectrons \Electrons

Plasma Contactor =
Electron Emitter \
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Electrodynamic drag tether Electrodynamic propulsion tether

Figure 2.2 : Configuration of Electrodynamic dragt  ether and Electrodynamic propulsion
tether (Van Pelt, 2009)

The other interesting application for an electraawic tether is to use it to remove charged
particles from the Earth’s orbit. The idea is tongran electrodynamic tether into the Van
Allen belts, and charge it to a very high voltagevel, in order to generate an

electromagnetic field that can scatter the radmparticles, and, over time, send them out
from the radiation belt, thus lowering the overalfiation levels.

The use of an electrodynamic tether for space gdebmoval has also been discussed by
Ishigeet al. (2004). In that study they proposed an operatioreinove space debris in six

phases, as shown in Figure 2.3. The sequence ddtap®s is: 1) The service satellite tether

approaches the debris by transferring its orbjtTHe service satellite tether retrieves the
tether and uses thrusters for rendezvous; Ill) s target is attached to the end of the
service satellite, it re-deploys the tether at dlescent (using electromagnetic drag tether
concept); IV) When it reaches an orbit with a lifet of less than 25 years, the debris is

released, and the tether is fully deployed; V) @kbris descends, and will eventually burn
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out in the atmosphere, and the service satellith @perate as an electrodynamic
propulsive tether and will gain its altitude; VIih& service satellite will precisely control

its orbit to head for the next target debris.

Altitude

' f : : i :
Debris H H . Next Debris

Y

Phase

Figure 2.3 : Debris removal process by electrodynam ic tether, by Ishige et al. (2004)

2.2.3 Momentum Exchange Tether

A momentum exchange tether is a long thin line usezbnnect two bodies in space. This
enables momentum and energy to be transferred bettiem. The two tethered bodies
usually orbit a source of gravity in space at thmmmon centre of mass and orbital
angular velocity, and align themselves along a llogatical due to gravity gradient
stabilisation, with the upper end mass having #raesangular velocity but greater linear
velocity, and lower end also having the same amguédocity with lower tangential
translational velocity. Due to the difference iragty at different orbital altitudes on both
bodies, the velocity along the tangent to the adajuired for the lower mass to stay at the
same orbit is greater than its current linear vigfoi€ it released at this point, whilst the

upper payload requires less than its current limebocity.

Figure 2.4 shows that the upper mass is released fine tether into an elliptical orbit,
because the payload carries more velocity tharegsiired to stay in that orbit but not
enough to escape the influence of the Earth. Thkoad release point is at the perigee of
that elliptical orbit. On the release of the upp®rss, the lower mass does not have enough
velocity to stay in the orbit, so it goes into diipécal orbit, with the release point at the

apogee. Half an orbit later, the upper mass reaith@pogee, furthest from the Earth, and

10
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the lower mass reaches its perigee, closer to #nth BBy adding prograde swing or spin,
one can increase the velocity to the upper massaluodsubtract it from the lower mass.
Conversely, a retrograde swing will act on the uppmss and the lower mass in an

opposite manner to the prograde swing.

upper mass

I()=TIperigee

lower mass

source

of ‘X
gravity

circular orbit of COM
prior to release

path of lower mass

and tether after release r

7 = Tapogee

s
path of payload

after release

Figure 2.4: Orbital path of a payload released abov e the tether's COM on circular orbit
(Ziegler, 2003)

According to Ziegler (2003), this format payloadsiag and lowering was first proposed
by Colomboet al (1982). Later on, a single stage payload trarfséen a Low Earth Orbit
(LEO) into a Geostationary Orbit (GEO) was suggdsty Bekey and Penzo (1986). This
utilized a spinning tether for picking up the paads and tossing them into the desired
orbit. Earlier than that, Bekey (1983) introduchi tform of payload raising and lowering
for delivering a Shuttle External Tank (ET). Hecatemarked that the separation half an
orbit after release will be 7 times the tether tanfgr a hanging release, up to 14 times for
a librating release and more than 14 times in #se ©f a spinning release. These estimates
were also mentioned by Caroll (1986), Cosmo ancehnini (1997), and Lorenzirgt al.
(2000) but Bekey (1983) also stated that the séiparafter half orbit could be more than

25 times the tethers length for a spinning release.
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A rotovator is a rotating orbiting momentum exchangther, with a retrograde motion of
the tip, and is designed in such a way that theet&t tip touches the planet’s surface to
capture a payload and release it to a new trajecidris concept was first introduced by
Artsutanov (1967), and reinvented by Moravec (19DUring the contact between the
tether’s tip and the planet’s surface, the tethestation is selected so that the tether tip’s
velocity cancels the orbital velocity thus pernmigfithe payload to be transferred, or
‘grabbed’ by a capture mechanism from the tethethéoplanet, or vice versa. Moravec
(1997) proposed a tapered and orbiting rotavataclwhe called a skyhook. This skyhook
could be used on a lunar orbit, so it is also kn@asra Lunavator. Moravec (1997) found
that the mass can be minimised by having an argtheequal to one-sixth of the diameter
of the moon so that each of the two arms can toletsurface three times per orbit. This
Lunavator concept was studied in detail by Hoyt aighoff (2000) for their Cislunar
Tether Transport System which they devised to prarispayloads between LEO to the
surface of the moon. Their study shows that thtum#s tether transport system would
require less than 28 times of on-orbit mass tosfpart many payloads, as compared with a
conventional rocket system which would consumeapg@itant mass equal to 16 times the
mass of the payload for each mission. Therefoeecitslunar tether transport system could

greatly reduce the round-trip travel time betwe&®OLand the surface of the moon.

Momentum exchange tethers can also be used as $tinthrowing payloads into another
orbit. This concept was mentioned by Caroll (198&),catapulting rocks from the moon’s
surface. Puig-Suaret al. (1995) also proposed a tapered tether sling foarduand
interplanetary payload transfer, and they were fitet to introduce the application of
external torque to spin up a tether. The torque geserated by a solar-powered electric
motor, and a detailed calculation of the power neoient was presented in that paper. An
additional counter rotating tether has been prapose Puig-Suariet al. (1995) to
overcome the problem with the higher spin ratehgyrhotor’s stator due to the application

of a resistive torque for the motor stator to cantitate.

The advanced concept of using a tether sling tasprart humans between the Earth and
Mars was presented by Jokic and Longuski (2002, #wey focused on the study of
trajectory design and tether material. The studynshthat the mass required for the tether
sling is 10 times more than the propellant massirement. But, the capability of multiple

launches by the tether sling gives an enormousctexfuin the operational cost.
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Cartmell (1998) also proposed a Motorised Momenixuohange Tether, which became
known as the MMET based on work presented to ESAL996. The MMET is a
symmetrical momentum exchange system with a ma&drspin up and a counter inertia.
The inclusion of a motor, powered by electricitgrfr a solar panel or a fuel cell, gives the
opportunity for generating additionAaV. Later on, Cartmell and Ziegler (1999) proposed
a symmetrically laden momentum exchange tether ndéale the application of a
continuous two-way interplanetary payload exchanfee tether system consists of a
central facility for locating the motor and powenpgly, two symmetrical propulsion
tethers with payloads at the end of the tetheransp and two outrigger tethers with
dummy payloads at those tether tips to provide tdnertia to the motor torque.
McKenzie and Cartmell (2004) demonstrated a misgyamansfer a payload from LEO to
Lunar Capture using the MMET. The study shows thatpayload can be launched at a
rate of once per month throughout the life of thission by using the Weak Stability

Boundary method.

2.2.4 Other applications

A space tether could also be used for probe towaspecially for upper atmosphere
exploration, where the altitude cannot be reachedrbaircraft, and to which a sounding
rocket could only travel for a very short periodla#ge satellite or a space shuttle in higher
orbit could deploy a long tether that connects \thin probe through the upper atmosphere.
The aerodynamic drag on the probe and tether walold down the satellite, which could
then be compensated by means of a rocket engimentioi et al. (1990) studied the
configuration and dynamics of a tethered probehim dense atmosphere of Mars. This
study shows that the tethered probe can operata fong operational time at a 90 km
altitude. Control of a tethered probe has beeniatiudy Biswell and Puig-Suari (1998),
and they have shown that the use of a hypersdtiiglibody could give effective control
of the probe’s altitude.

A constellation of satellites that are physicatiyerconnected by tethers could in principle
be built in order to replace a very large spaceéckédn Pelt (2009) gives an example of
replacing a large antenna with a series of smalfgennas on smaller spacecrafts in a
constellation. The spacecrafts are connected tatether to keep the position of each

spacecraft accurate.

13
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More advanced concepts have been developed recevitlgning the applications of
tethers in space. The concepts of tethered satethistellations and formation flying have
expanded, resulting in a new concept in which gdastructure called a space-web is
deployed. The idea of the space-web was originajetlakasukeet al. (2001), and was
applied to the Furoshiki satellite. An experimentdeploy a space-web was successfully
achieved and the results were discussed in NakatuKa(2006). Cartmell and McKenzie
(2006) have also proposed a space-web structusbich robots move over the surface of
the web. McKenzie (2010) studied the dynamics aabilgy of the space web and the

robots crawler in considerable depth.

A new concept of a Tethered Solar Power Satellisgthered-SPS) was proposed by Sasaki
et al. (2007). The Tethered-SPS is potentially composed 400m x 95m sub-panel,
tethered by four wires connected to a bus systeth, thve capability of generating power
up to a maximum of 490 Watts. This concept, howeweeds further studies to confirm its

technical feasibility.

Most the tether applications are dependent on tileagth of the selected material for the
tether. Advanced studies in materials for spacdiGgimns are required in order to put all
the tether application concepts into reality. Txtnsection will discuss principal tether

missions/experiments up to this year.

2.3 The Tether Missions

Bekey (1983), Beletsky and Levin (1993), and Vait E2009) all state that Gemini 11
which consisted of two spacecrafts: Agena and Gemis the first real tether mission to
be flown in space, and this was launched on 12e8@ptr 1966. This manned spaceflight
mission carried out two experiments: the first v@agravity-gradient test; and the second
was to induce rotation, making the two spacecratfaite around the common centre of
mass. In the first experiment, Gemini 11 encouwntergroblem in deploying the tether,
where both spacecrafts experienced a jerk and moswdrds each other, making it
difficult to align Gemini and Agena vertically witthe Earth. Due to complicated motions
of the tether which affected the stability of theasecraft, this experiment was then
abandoned. In the second experiment the tetherrwede skip-rope motion during the
transient phase, but continued to be stable whencémtripetal force pulled the tether
straight, and finally rotated at 38 degrees perutenn this station-keeping mode. When
the spin rate was increased the tether experieacgmcalled “big sling-shot effect”, and
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the crew switched on the control thrusters to shaposcillation, and managed to achieve
nearly 1 deg per second. This experiment produded éevel of artificial gravity, but this
could not be felt by the crew. Due to the failufatee first experiment, Gemini 12, which
was launched on November 11, 1966, conducted anaptaity-gradient experiment.
During that experiment the tether deployed smoolhiyonly tautened occasionally. The
Gemini managed to stabilise with a small differen€ayravity between both spacecrafts
which stayed at slightly different orbital attitedleAccording to Van Pelt (2009), both
missions managed to demonstrate tether rotatioraffisficial gravity, and have shown
some level of gravity gradient affects, but mor& tgere needed to understand completely

the complex dynamics involved.

Fourteen years after the first tether mission #&cspa joint project at the Institute of Space
and Astronautical Sciences (ISAS) in Japan andQéetre for Atmospheric and Space
Science at Utah State University, named the Teth&ayload Experiment (TPE), was
launched in a series of five missions, as showraiple 2.1. The TPE was launched, not to
orbit, but to very high altitude using a soundirggket. The mission was to deploy a
daughter payload from the main mother payload, éasure inside and outside the charged
gasses after the ejection of electrons from thkebioito the atmosphere.

o Tether Length of

Missions Launch date
length (km) deployment (km)

TPE-1 16 January 1980 0.4 0.038
TPE-2 29 January 1981 0.4 0.065
TPE-3 /CHARGES-1 8 August 1983 0.418 0.418
CHARGES-2 14 December 1985 0.426 0.426
CHARGES-2B 1992 0.4 0.4

Table 2.1 : Joint US and Japanese Mission for the T  ethered Payload Experiment from 1980

to 1992.

TPE-1 and TPE-2 failed to deploy the tether fullgd the electron beam also didn’t work.
The third flight, TPE-3, or CHARGES, was redesigned minimize friction during

deployment, and managed to deploy to its full landput it still had problems with the
electron beam.

Finally, in the next mission named CHARGES-2, bibih deployment of the tether and the

ejection of the electrons successfully worked, eredexperimental results were presented
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by Kawashimaet al. (1988). The experiment was continued in the nexssion,
CHARGES-2B with similar equipment, but at this tirttee electromagnetic wave was
generated and measured. According to Van Pelt (200fs mission also worked
according to plan. On February 8, 1988, the othéosbital flight, named ECHO-7, was
launched in order to study the artificial electtweam propagated along the magnetic field
lines in space. Unfortunately, this experiment efdildue to problems with onboard

equipment.

A mission using a sounding rocket in the form ofMEUS A (Observation of Electric-
Field Distribution in the lonospheric Plasma), vilasvn on 30 January 1989 on a Black
Brant X, a three-stage sounding rocket. OEDIPUS mission was to make a passive
observation of the aurora ionosphere, by measwieak electric fields in the plasma of
the aurora. The tethered payload consisted of pigg masses connected with a 958 m
tether, and, according to Cosmo and Lorenzini (19 Van Pelt (2009) it was the
longest electrodynamic tether to have been flowthat time. The second flight of this
experiment was OEDIPUS C, which was launched onofelhber 1995 with similar
scientific objectives. OEDIPUS C flew up to a higladtitude than the previous mission,
up to 843 km, and deployed a longer tether witbrgyth of 1174 m.

The experiment conducted at the higher altitudeegagood basis for tether deployment in
microgravity, and after Gemini 12, there were merperiment conducted at the lower
Earth orbit. The Tethered Satellite System (TSS} wee next mission and involved

deploying and retrieving a payload from the Spabati® connected by the tether. The
deployment of a satellite with a long gravity geai stabilised tether provided a facility
for space environment research. TSS-1 was launohe&d July 1992 on the STS-46 space
shuttle. The TSS-1 experiments discussed by Cosmb Lorenzini (1997) have

demonstrated the feasibility of deploying a satllio long distances using a tether,
allowing for experiments to fulfil the scientifibectives of the mission, even though they
faced difficulties at the beginning. According t@r@ll and Oldson (1995) a late design
change caused a fault in the deployment mechanisichwesulted in only 250 m of the 20

km of available tether being deployed. Howevers firioblem led to the discovery that the
deployment of short tethers could be more stabén tBxpected. Another flight was

launched in February 1996 on STS-75, named TSS-itR tlwe mission objective to

conduct exploratory experiments in space plasmaipfyDuring the mission the tether
suddenly broke after being nearly fully deployed.@i7 km, and an investigation showed
that the prevailing electric current had in factltee the tether. Although the experiment
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failed much scientific data was collected, and aalysis was undertaken by Stoeteal.
(1999), which concluded that the results were exélg encouraging for the study of
electrodynamics tether application, and led an owpment in understanding tether

dynamics.

The first orbital tether experiment was the Smaib&ndable Deployer Systems (SEDS-1),
which was launched on 29 March 1993, and then SEDBS8-9 March 1994. The idea of
these experiments was to send the satellite tolected orbit using a rocket, and
autonomously to deploy and retrieve the tether fradme satellite. Caroll (1993)
summarised that SEDS-1 had a full deployment witlaoy problems, the received data all
made sense, the unexpected transverse vibrati@edawo problem for the tether motion,
and the pause in the deployment did not induceeteftbuling. The vibrations were also
damped very effectively, but the brake law needslback for a controlled stop. SEDS-2
had an improved braking system to ensure that akellise stopped flying out when the
whole tether was deployed, and also to prevent @iagn According to Van Pelt (2009)
this mission proved that a tether might be acciyateployed to a stable position in orbit

by feedback control and a simple frictional brake.

On 26 June 1993 the Plasma Motor Generator (PM@gréenent was launched and
consisted of a far-end package connected to a DieB&cond Stage by a 0.5-km-long
tether. The PMG demonstrated the configurationnoélactrodynamic tether that could be
used to generate electric current, or for orbit dmg. As mentioned in Cosmo and
Lorenzini (1997), the experiment lasted 7 hoursl tim batteries expired.

A simple experiment named TiPS (Tether Physic amwi$ability) was designed to study
tether motion over a long time, and to show howauld survive in a region of orbital
debris. TiPS consisted of two satellites connettgd 4-km-long tether and placed in a
circular orbit at an altitude of 1022 km, and waariched on May 12, 1996. The tether
system was observed using satellite laser ranghghastopped functioning in 1995 while
the tether was still intact. After 10 years of aggem, the tether was broken, and so this

mission proved that tethers can potentially be meadee survivable.

The Advanced Tether Experiment, or ATeX, contintlezlchallenge of undertaking tether
dynamics experiments. It was launched from a paspatecraft, called STeX, on October
3, 1998. The two end-mass satellites of ATeX wesanected by a 6.2 km tether of

polyethylene tape with three strands of Spectraekdt The upper end mass was to be
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deployed, while the lower end mass was attachdbegarent spacecraft. Unfortunately,
the deployment of ATeX was stopped at a tether aj@pént length of 22 m because
sensors had detected that the tether had moved aivay angle and this triggered the
automatic safety system, making both spacecraft$irace to orbit on a short piece of
tether. The analysis verified that thermal expamdiad contributed to the failure of the

deployment.

The first Young Engineer’s Satellite (YES) miss&tarted in 2002, and was developed by
the space research and system engineering divasiBmbedded instruments and Systems
S.L under joint sponsoring by ESA and the Dutclosgace development agency NIVR. It
was launched together with TORI (Tethered Orbietteble) which was connected to YES
by a 35 km tether. YES’s primary objective was riweistigate dumbbell dynamics, and
tether deployment in Geostationary Transfer OrGiT Q). Due to the change in launch
time, YES potentially had a longer than expectduitak lifetime, and the Space Debris
Committee determined that the collision risk waghhitherefore, the tether was not
allowed to deploy. Without deployment of the tetklee main mission objective was not

achievable.

A tether application for formation flying was a miisn involving two miniature satellites
developed by the Aerospace Corporation, PicosatdlRacosat-2 launched in January 26,
2000. The two picosats were designed to perforrmdtion flying and were connected
with a 30 m tether to ensure they would stay ctoseach other. This mission performed a
basic test of a Micro Electro-Mechanical System W8 radio frequency switch. After
the success of this mission, the experiment wasatep by Picosat-7 and -8 in July of the
same year. MEPSI-1A was a larger set of tethertasllisas developed by the Aerospace
Corporation which was launched on December 2, 202 a mass of about 1 kg for 2
cubic masses which were connected by a 15 m tether.

Small tethered satellites continued to be develp@edl students from the Technical
University of Denmark developed DTUsat-1 and lawttht in 2003, with a mission to
deploy a 450 m copper wire tether. Unfortunatelyg thission failed due to a failure in the
communication system of the satellite. In Japansthall CUTE 1.7 (Cubical Tokyo Tech
Engineering Satellite) was launched on February 2206, based on the previous
development of CUTE-1, the first CubeSat in the ldjoas documented by Ashids al.

(2010). In addition to the primary mission to dersibate microsatellite technology CUTE
1.7 was also designed to test deorbit technologyguen electrodynamic tether. However,
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the deployment of this tether was unsuccessful tdua defect in the communication

system.

Tethers Unlimited, Inc (TUI) and Stanford Univeysitogether developed the MAST
(Multi-Application Survivable tether) experiment calaunched it in April 2007. This
experiment consisted of three picosatellites, nafffedl”, “Ralph”, and “Gadget”. The
experiment was to have Ted and Ralph deploy a h®0&nhgth of tether from the satellite,
and then Gadget was to crawl along Ted and Ralpis @&xperiment used the patented
‘Hoytether’ to increase the tether's lifetime. Neheless communication was only
established between the ground base and Gadgenhodbuwith the other picosatellites,
resulting in only a few metres of tether being ®sstully deployed. Later, on September
14, 2007, the 32 kg YES-2 experiment was launched Isoyuz rocket as part of the
Foton-M3 microgravity research capsule and as diragation of the YES-1 mission. At
this time Kruijff and Van der Heide (2009) statéattthe tether managed to deploy in the
downward direction of a 37.1 km long tether conaddb a small capsule named Fotino on
September 25, 2007. In the post deployment phasastreported that the tether system
behaved as a pendulum, and swung back towardsettieal equilibrium position, and
then the tether was cut to release the MASS ané&dkiao. The braking plan at the end of
deployment failed, resulting in the tether expesieg a shock which made the Fotino
unable to fly on the exact planned re-entry trajgctThe Space Surveillance Network was
unable to detect the Fotino, and the team beli¢vatit entered the atmosphere, or that the
radio system may have been damaged.

The latest tether mission was JAXA’s Tether TechgglRocket Experiment (T-REX),
launched on August 31, 2010, from a sounding rodigpe S-250-25. This mission
successfully conducted basic experiments on anretBmamic tether in the ionosphere. It
consisted of the deployment of the tether, a qudgktion test of the hollow cathode
system, and a demonstration of the operation ofetbetrodynamic tether system, while

making a sub-orbital flight for about 10 minutegéach a maximum altitude of 300 km.

2.4 Tether dynamics

The vast amount of literature covering the dynanoicthe space tether, and an excellent
monograph by Beletsky and Levin (1993), offer coemgnsive analysex various aspects

of the dynamics of space tether systems. The togissussed cover the dynamics and
stability of the tether of the Newtonian field, atspheric probes, electrodynamic tethers,
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libration and rotation, deployment and retrievahddunar anchored and satellite ring
systems. Misra and Modi (1986) reviewed the dynan@nd control of Shuttle-borne
tethered satellite systems, and presented a dyabmmalysis on the three body space-
station based tethered system. The review concltidgdhere was a requirement for more
ground experiments to verify the efficiency of w@tldeployment and retrieval, and that
further works were needed to understand the dyremfcthe tethered space station.
Furthermore, past and recent studies of the sgdicerthave been summarised in excellent
review articles by Kumar (2006), and Cartmell anckédnzie (2008).

The dynamics of tethers are mainly studied in thoperational phases; station keeping,
deployment, and the retrieval phase. In the stdte®ping phase, the stability of the tether
is of most concern. Liaw and Abed (1990) studieel skabilisation control of rigid and
massless tethers during station keeping, wherealalistng controller was constructed
using linear and quadratic feedback. No and Coclii&95) showed in their study of
tethered flight vehicles that aerodynamic contmild be an alternative to reaction control
for station keeping. The deployment and retrievedges are the most critical in which the
application of a length rate control law is demahderevious flown missions have shown
that the instability of tether deployments, whicavé frequently contributed to mission
failure, were due to unexpected phenomena, sutdttees slackness. Misra & Modi (1982)
remarked that the control gains for tether deplaymand retrieval should be carefully
chosen as the gains that damp out the swing coldd eesult in large vibration
displacements. They also mentioned that the demaymwill be stable as long as the
commanded length rate in the control law is smidle work of Kokubun & Fujii (1996)
on tether retrieval under elastic effects showed the use of large-deflection theory can

avoid the incorrect assumption that tethers wilslaek during deploymermair retrieval.

The discovery of the so-called ‘weird phenomenonthe crews during the experiments of
Gemini 11 and 12, proved that the tether dynamieyewmore complicated and
problematic than the theory had predicted. Thisdvphenomenon was actually the ‘skip-
rope’ motion of the tether which Chapel and Flasdé@©93) have studied in detail in the
TSS-1 mission. They indicated that this skip-ropetion occurred due to the current
flowing in the electrodynamic tether. Chapel andniélers (1993) also examined libration,
plunge, and pendulous motion, and the string dyosuwi a tethered satellite system based
on the dynamic data from the TSS-1 mission. Thst fhiree motions: libration, the plunge
mode, and the pendulous mode are mentioned asitiogal vibration modes that involve
rigid body motions of the spacecraft. The plungelen where the tether behaves more a
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like spring-mass system involving tether contrattend extension; and the pendulous
mode is where the tether rotates rather than atessland the frequency depends on the
tether's tension. Chapel and Flanders (1993) h&wesvis that libration motion depends
upon the ratio of tether length rate to tether fenduring the deployment and retrieval
phases. Ziegler and Cartmell (2001) investigateogmade libration performances for
payload raising and lowering. They showed thataggade librating tether that has a large
maximum libration angle, and is orbiting near te tBarth, performs the best during
payload raising; whilst a prograde librating tethgth a maximum libration angle, but
moving far from the Earth, performed the best faylpad lowering. This showed the
advantages of a librating tether for payload inaetgain, as compared to the hanging
tether, but the spinning tether is known to give liest performance. A study by Takeichi
et al. (2001) clarified that the divergence of libratitor tethered systems subjected to
atmospheric drag was determined by the drag areg, abefficient, orbital altitude, and
eccentricity. The study also showed that the latigermass of sub-satellite, the smaller the
tether’s cross-sectional; and the longer the tetier more it contributes to the instability

of tether libration, and vice versa.

The spinning motion of a tether also has a sigamficimpact on tether dynamics and
stability, and the Gemini 11 and 12 missions wée first to involve a tether spinning
around the centre of mass, and to use this fofoetdteeping and generating artifial
gravity. The earliest study of a spinning tetheswanducted by DeCou (1989). That study
investigated the three-dimensional motion of a iipig TSS with several configurations
including a dumbbell, a carousel and a trianglds Thork showed that the rotation rate of
a triangular tether is constant, but this is na tdase for a dumbbell tether. Lo al.
(1996) studied a stretched tether spinning abautomgitudinal axis, and presented the
exact solution for a nonlinear damped and undantegter. The dynamical analysis for
this model was carried out for a linear and nomim@aodel, and the results showed that the
resonant motion for undamped vibration is alwayablst, whilst the damped forced
vibration is unstable. Min, Misra, and Modi (1999udied a nonlinear spinning tether in
depth, and found that the model has the potental skip-rope motion about the
longitudinal axis. The research also found thatstieady transverse vibration has a mono-
frequency characteristic. In the work done by Tyd &lan (2001) it was found that tether
root bending could play a major role in the dynayo€ a spinning tethered vehicle. The
work of Luoet al. (L996), Minet al. (1999), and Tyc and Han (2001) all considered the
tether spinning about a nominal axis where the spgenerated by the end body for spin

stabilization. The tether which spins about an axisnal to the nominal axis was studied
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by Puig-Suariet al. (1995), where the concept of a tether sling wadieg for payload
transportation. An investigation of a payload tfanssystem, using two stages of a
spinning tether, was conducted by Lorenahial. (2000). Ziegler and Cartmell (2001)
studied the dynamics of the Motorised Momentum Bxge Tether (MMET), which
included the tether spinning for the applicatiorpafload transfer. The spinning tether was
also investigated by Lorenzini (2004), who worked tbe configuration of the capture

mechanism and the rendezvous dynamics of a spiteihgr for payload transfer to GTO.

The other option on which to model a tether, othan as a rigid dumbbell, is to model it
as a string-like flexible tether. A string-like Xible tether will experience string dynamics
in which the elasticity of the tether contributesthe displacement in the transverse or
longitudinal directions, and, in the three dimensiocase, the tether will display motion in
two transverse directions and a longitudinal dicect Misra et al. (1986) investigated
three-dimensional transverse and longitudinal vibrs of tethers connecting a sub-
satellite to the shuttle. That work showed that thensverse vibration frequency is
dependent on the orbital frequency, but that thegitadinal vibration is not. They also
mentioned that the transverse vibrations have dl sfiact on the rotation. Misra (2008)
conducted an analytical study on elastic tethemd, @resented an exact solution for the
longitudinal vibration. In studying the dampinghet, He and Powell (1990) damped the
longitudinal and transverse vibrations in the skipe mode by means of manipulated
material properties. The decay time was prolongethb damping mechanism which was
based on longitudinal stretching, which was indugcgdateral motion.

This literature survey on the dynamics of a flegibtther is continued in the next chapter
where it focuses more on tether modelling. Thediigre that has been summarised in this
chapter laid the fundamentals for tether studiesgives a good understanding in order to

explore more interesting dynamical phenomena.
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Dynamics of the Two Dimensional Flexible Tether
Model

3.1 Introduction

This chapter presents a more complete flexural méatethe Motorised Momentum
Exchange Tether (MMET). A continuous string-likdosgspan model is taken in which the
sub-span is flexible and elastic, thereby allowihgee dimensional displacements of the
motorised tether. The differences between the rigatly and flexible models are
compared, and the impact of the tether’s flexipibih the global motion of the tether is
investigated. However, this chapter focuses on dizreamics of the two dimensional
flexible tether only, in order to give a basis fioe study of planar motion of the MMET.

3.2 Tether Modelling

A tether should be modelled based on the objectivebe achieved, and the desired
analysis to be conducted. A simple model will rexlube complexity but will maybe

introduce a lack of accuracy since some importdrgnpmena will not be taken into
account. Generally, tether models can be categbinde three types, these being the rigid

rod, the sequence of elements approach, and thimgom model.

The simplest model describing rigid body motiotmased on a massless rigid rod in which
bending and stretching are negligible. This moda$ wsed by Bainum and Kumar (1980)
to develop a control law for the operation of theule-Tethered-Sub satellite system.
Liaw and Abed (1990) used the same model to stheystabilization of tethered satellites
during station keeping through a nonlinear consiydtem. Netzer and Kane (1993) also
assumed the tether as a massless straight objegtitoise a control law for deployment
and retrieval of the tether. Studies by Metlial (1981), Puig-Suari and Longuski (1991),
and Ziegler and Cartmell (2001) have all employlkd &ssumption of the tether as a
massive rigid rod. The benefit of including thenats mass is to generate accurate data for
where quantitative analysis is required. A studyMydi et al. (1981) showed that the
simple point mass model provided useful informafi@ndeveloping a control strategy for
retrieval operation of the Space Shuttle basedetethsystem. Netzer and Kane (1993)
also showed the optimal solution for tether contigihg a simple model may be applicable

to a more realistic model. In order to include #ftect of the first longitudinal stretch
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mode to the system, Fujii and Ishijima (1989) emeanthe tether model to be an

extensible, massless rod.

The next category is represented by a sequenctemieats which allows some form of
flexibility in the model. Banerjee (1990) studiedllanped mass model connected by
massless springs, and proposed a deployment rateoktaw for the system. The lumped
mass and massless spring element model was stbgiddo and Cochran (1995) to
develop aerodynamic control thought to be viablestation keeping and manoeuvrings.
Netzer and Kane (1995) represented the tetherdiyt @extensible rigid massive rods in
order to describe the analysis during the statieepkng phase. They also mentioned that
the sequence element model is often used to sienthat behaviour of such systems, but
not for the controller. Puig-Suaet al. (1995) extended the previous work of Puig-Seéari
al. (1992) to study the possibility of applying tetb@rspacecraft to perform aerobracking
maneuvers at any atmosphere bearing planet in oler system. Their latter work
enhanced the tether model where flexibility effegte included by considered the tether
as a chain of linked rigid rods with spring dampteranodel the elastic behaviour. The
result for a Mars aerocapture maneuver demonstthtgdhe flexible system behaves like
the rigid one then changes when it enters the giheye due to the tether’'s bending which
creates a large force, resulting in an unacceptableoeuvre. This confirmed the previous
assumption by Puig-Suaet al. (1993) that the requirement to minimize the norfoate

in a rigid rod model is essential to create an piad#e manoeuvre.

Biswell et al. (1998) used a different model to demonstrate lflexibehaviour for
aerobraking tethers. The tether is modelled asedimgyid bodies connected with massless
springs and dampers. The strength of this modei iss ability to model precisely the
aerodynamics and gravitational forces, and the mnmbmeith a limited numbers of

elements which may in turn give a reduction in¢benputational cost.

Danilin et al. (1999) studied the dynamics of an elastic deplpyather in the gravitational
field using a tether model by No and Cochran (199&) with different variables and
approach. The tether is modelled as a series afales masses connected by massless
elements and with internal viscous damping. Theagqn of motion was obtained by
using the finite element model. Danilet al. (1999) also studied two examples of the
motion, the swinging of a cable and the plane nmotiba space vehicle with a deploying
tether system on orbit to verify the mathematicaldel and computer code, and also to

estimate the accuracy of calculation. Cartmell &hcKenzie (2008) remarked on the
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important point made by Daniliet al. (1999) that tether element forces cannot be
compressive, so conditions within the numericaliBoh algorithm have to be set up to

accommodate the consequential effect of this.

Netzer and Kane (1995) and Kumar (2006) suggesisdiie more elements that are used
the more accurate the tether model will be, andhibee closely it represents a continuous
system. In fact, Vadali and Kim (1995) showed tlead model has the advantage of
capturing most of the phenomena of the problem ampmarison with the more

computationally expensive continuum model.

The other category for tether modelling is the sardus massive tether. Such a model can
be elastic or inextensible. This approach is inegaihconsidered to be a way to model the
tether, and is found in most of the nonlinear éitare. Modi and Misra (1979) studied
three dimensional motions for a massive continutiler during the deployment and
retrieval phases for a tether connected to two bsytems. This study showed that
transverse vibration can increase due to the Germtcitation, even when there is no
initial deformation. The initial out-of-plane motiocalso decays during deployment but
builds up when the terminal phase is reached dwetodynamic forces and small initial
librations, and vibrations are also increased dunatrieval. Misra and Modi (1986)
revisited this continuous model of the tether mgused on the dynamics during retrieval
by taking into account the nonlinearity in the strdisplacement relationship, where this
particular geometric linearity was found to havenaiceable stiffening effect against

lateral vibration.

Beletskii and Levin (1985) treat a tether whichytlvensider as an Orbital Cable System
(OCS), as a heavy, extensible, and flexible stiingrder to study stationary and periodical
system motions in the atmosphere. The cable shavas/a-like configuration in stationary

motion and may produce a destabilizing effect ddpah on the cable diameter and

altitude.

Discretisation is required to obtain the solution the partial differential equations which
constitute the equations of motion for a flexibledaextensible tether. Miet al. (1999)
stated that discretisation procedures can be caregointo two classes; analytical
procedures such as Galerkin methods, and physisaletisation procedures such as the
finite element method, and these authors chosesdoan assumed-mode method to solve

their non-linear continuum tether model. Steiatal. (1995) used both the Galerkin and
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finite element methods to calculate large amplitodsions for a two satellite continuous

tether system. The result shows that the finitenel® approach can be applied in both the
formulation of the equations of motion in rotatiagd non-rotating coordinate frames, and
more straightforwardly in comparison with the Gklermethod which can be only used in

a rotating coordinate frame. The Galerkin or Asstinfvkode method was also used by
Keshmiriet al. (1996) and Lucet al. (1996) to reduce the nonlinear model of a spinning
tether to a linear and nonlinear coupled systerd, this was also used by Tyc and Han

(2001) in conjunction with Lagrange’s equationsdapinning tether.

3.3 Modelling of the Flexible Model of the MMET

The modelling strategy for the MMET, to date, hasimly been to use rigid body
modelling in order to keep the resulting analyticeddels as tractable as possible. This was
based on the fair and reasonable justification ¢eatripetal stiffening eliminates some of
the flexural response, and that much of the enshetgviour will therefore be similar to
that of a rigid body. The three dimensional mathizabhmodels by Ziegler (2003) were
used to explain successfully many of the fundamemtations possible for an MMET.
However, the previous model strategies by Cartn@e898) and Ziegler (2003) both
discount the flexural characteristics of the tetlselb-spans, and so some important
phenomena may not be captured because of thisrtAefudevelopment, by Chen and
Cartmell (2007) has shown that incorporating limhiféexibility, in the form of an axial
stretch coordinate, shows that significant axiallzgions can be uncovered, with obvious
relevance to payload release and capture scenahshis thesis, a continuous flexible
model has been chosen for modelling the MMET ineotd study the dynamics of the
tether more preciselyMiathematic&” software has been used for deriving and integyatin
the equations of motion together with the applaatof the equation solver NDSolve

find a numerical solution to these ordinary diffeti@l equations.

3.3.1 String model

In modelling the flexible MMET, the tether is asseohto be a string which is connected to
the masses at both ends. Figure 3.1 shows an diefmte tether associated with the three
dimensional displacement given hyxt),v(x,t)and w(x,t). The position vector of a
displaced elementsis as shown in unpublished notes by Cartmell (1998)ich were

based on a discussion originally given by Nayfeth ook (1979), is given by,
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Fue = (1+U) +v' T +w Kldx (3.1)

r
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A

Figure 3.1 : Displaced element of a flexible tether

where the prime denotes differentiation with resgex. Therefore, the scalar length of

the deformed elemerds,is given by,
d e — N2 2 2 }é
s=Ir =| (1+u')" +v* +w? | dx (3.2)

The strain due to axial extension of the element is

_ds—dx _ds_
¢ dx dx

£ 1 (3.3)

Therefore, substitution of (3.2) into (3.3) gives,
—_ r\2 2 2 /]'/2
£, _[(1+u) +V'2 +W ] -1 (3.4)

The strain expression can be re-stated using theniial series,

(L+2)° :io(:jz :1+®z+@z2 o (3.5)

Therefore,

(1+2)% :1+%z—%22+1—1623.... (3.6)
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The strain expression in terms of,v',w is given by equation (3.4) for which the

2

expansion foi(1+u')’ is included,

£, = [1+ 2u' +u'? +V'2+V\/2]}/2 -1 (3.7)

The evaluation of the strain expression using th@oiBial Series from equation (3.6),

wherez = 2u'+u'?+v'*+w?, and usingMathematic&”, leads to,
22 =4u%+ AU+ U+ AU VA 20° VA OV AU w20 WA 2V v W

Z2=8uU+12U%+ 6U°+ U°+ 1207 %+ 1203 P+ 3U*'V+ 6uv+ I W 'V
+1202W2 + 1203 W2+ 34 WP+ 12092 WA+ 6L2 V2 WA+ 3V WA Blu'wH 3V vk v
(3.8)

Evaluation up to and including fourth order termads to the following approximation,

(1+Z)}é :1+1u12+u1+1\/12+1v\/2 _1u12 _EUIS_EUI4_lurVIZ_EUIZVIZ_}VI4
2 2 2 2 2 8 2 4 8

_lurv\/Z _EU'ZV\/Z _EV’ZV\/Z _lvvl4 +1u13 +§ur4 +§u12V12 +§u12vvl2
2 4 4 8 2 4 4 4

(3.9)

Simplification, and subsequent substitution of equmi(3.9) into (3.7) gives,

e

£ =u +%(v’2 +V\/2)—%u'(v'2 +vv'2)+%u'2(v'2 +V\/2)—%(V'2 +V\/2)2 +gu'4.... (3.10)

Expanding to gmez,again using computer algebra, with evaluation u@rid including

fourth order terms gives,
g’ =u"? +u'(v'2 +w’2)—u'2(v'2 +w’2)+%(v'2 +V\/2)2 (3.11)

This strain squared expression will be used latéhe derivation of the potential energy of

the tether in equation (3.72).
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3.3.2 Flexible Tether on Orbit

The inertial coordinate system for the tether isegi by an assumed inertiad,Y,Z
coordinate frame, with the origin at the centréhef Earth, as shown in Figure 3.2. The
axis is pointing towards the Earth’'s North Pole #imelX axis towards the vernal equinox
point.

VA
A _
Perigee
R
0
Descending no
Orbital Plan
Phe W S R A
Earth Equatori
Plane
Q .
Ascending node
X Node Line
Vernal
point

Figure 3.2 : Orbital elements for a geocentric iner  tial co-ordinate system

The orbital motion of the tether is described by dubital elements in whicR is defined

as the distance from the central facility to thetoe of the Earth. The angle from the
direction of perigee of the orbit to the centrentdss is given by the true anomalyand

the inclination of the orbit is denoted byThe three dimensional system in Figure 3.2 has
been reduced to the two dimensional system whiglven by the local coordinates shown
in Figure 3.3, in order to reduce the complexitytlod system and to be a basis for the
flexible tether motion on orbit. Furthermore, orbiclination is not considered in this
study. The tether's centre of mass is at the oriwfirthe relative rotating co-ordinate
system X,-Y,. TheX-Y plane and th&,-Y, plane lie within the orbital plane. Theéaxis is
aligned to the direction of the perigee of the pbamd theX, axis aligned to the position
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vector of length R. The angle from the directionpeirigee of the orbit to the centre of
mass is given by the true anomaly,The in-plane angle/ is the angle from th¥, axis to
the position of the tether on the plane. The payloassesMp; andMp, are connected to

the central facility,M ,, by the tether sub-span of lendth

YO Xl 11:\\\
X
@,
v L
7/
Y Y,
A
Mm
T T T T T T T T T T T | L
| R |
|
- OV
6 |
|
' > X
E Perigee
Centre of
the Earth

Figure 3.3 : Local co-ordinate system for the two d  imensional flexible model of the MMET

Y
\

Figure 3.4 : Position of point P’ on the deformed tether
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The X-Y co-ordinate system for a deformed tether is shmwFigure 3.4, and the position
of an arbitrary point on the deformed tether isegivby pointP’. The longitudinal
deformation of the arbitrary point on the tetherdenoted byu(x,t) and the transverse
deformation is given by(x,t). The distance of the poiit from the central facility in the
undeformed configuration is given ky

3.3.3 Cartesian components

As shown in Ziegler and Cartmell (2001), the Castesomponents for the payload and

the central facility when considered for planar imiot are given by,

Xp; = Rcos@ + Lcosfy +6) (3.12)
Yp, = RsiNG + Lsin@ +6) (3.13)
Xp, = Rcosd — L cos( +6) (3.14)
Ve, = RSING - LSIiNW +6) (3.15)

and the coordinates of the central facility are,

Xm = RCOSH (3.16)

Yom = RSING (3.17)

and in this flexible model the position of poftalong the tether with respect to the centre
of the Earth, as in Figure 3.4, is given by théofwing Cartesian components,

Xy, = Rcosf +(u+x)cos( +6) —vsin +6)

(3.18)
Yu, = Rsing+ (u+x)sin@ +6) +vcos +06) (3.19)
X, = RCOSA (U +X)COS( + 6) +Vsin +6) (3.20)
Yiz, = RSING = (U+X)Sing + ) —vcos( +6) (3.21)
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3.3.4 Separation of variables

The elastic displacements(x,t) and v(x,t) are functions dependent both on space and

time and can be separated in the usual mannercbynge to the Bubnov-Galerkin method,
n n

Ut =3 @090 (1) vOet) =D & (%) ay (1); (3.22)
i=1 i=1

where theg X and ¢ & )are spatial linear mode shape functions apd an(d)q, ¢ )are

time dependent modal coordinates.

Therefore, first mode approximations are given by,
u(xt) =@x) qu(t); vixt)=¢(x) g, ); (3.23)

where ¢ & Jand & ) can be taken to represent the relevant fundamergde shapes, and

g,(t) andqg,(t) represent the generalised coordinates associatiedhose modes.

The equation for forced lateral vibration for afonmn strong is as in equation (3.24) taken
from Rao (2007) and Meirovitch (2001), where thesten is constant,

d2v(x,t)
dt?

(3.24)

2
T—d v(>2<,t) +f(xt)=p
dx

Considering the free vibration case, for whidfx,t) =0, the equation reduces to,

2 2
T dv(xt) =,0d V(X,1)

3.25
dx? dt? (3.25)
or,
d’v d%v
dv_dv 3.26
dx*> dt? ( )
where
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¥
o= (Ij (3.27)

Substitution of the second member of equations3{3I@ the displacement gives,

C_zdzgi :idz%i

3.28
f, d g, dt? (3.28)

As expected, the left hand side of the equatiatefgendent or, and the right hand side is
dependent oh therefore each side must be a constant whiclibbeatenoted by,

c¢®d?* _ 1 d’g,
f, dx* q, dt?

- a (3.29)

from which two ordinary differential equations da@ obtained,

d?¢, a
Zq )
dtZZI -ag, =0 (3.31)

by setting seta = -w?, equations (3.30) and (3.31) become,

d2& o
L+ Y s =0 3.32
NI $ (3.32)
2
d_dgzi +aq, =0 (3.33)

with the general solutions,
E(x)zAisin%x+Blcos%x (3.34)

g, (t) = C, cosat + D, sinat (3.35)
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Assuming initially that the payload and centralilifcare so massive that the tether sub-
spans experience them as being equivalent to ibugtds, then the tether motion has

displacement boundary conditions as follows,
v(0) =v(L)=0 (3.36)

Substituting (3.36) in (3.34) and (3.35) and salvihe linear homogeneous equation, gives

the mode shapes in the form of,
E(x) = Alsin? i=1,2... (3.37)

This approach for the boundary conditions is echimethe work of Luoet al. (1996),
where the same assumption of fixed end boundargitons is used to get the mode shape
functions thereby simplifying the derivation of tleguations of motion for a stretched

spinning tether.

The axial vibration of the string can be assumeddotreatable similarly to the axial
vibration of a thin rod which is governed by thengaboundary conditions as for the

transverse vibration of the string. Therefore,tfos case the boundary condition is,
u@)=u(L)=0 (3.38)

This gives a mode shape for axial vibration whglessentially the same as for transverse

vibration,
AX) = A, sin? ; i=1,2... (3.39)

where A ,and A, are arbitrary constants dependent on the bouratatynitial conditions.

In this study, only the fundamental mode is con&de Restricting the analysis to the
fundamental mode in each case simplifies the stumtymay still give a good basis for the
dynamics of the flexible tether for future studyoid simplification is applied to equation

(3.39) in normalizing the modes by settidg and A, to 1, to give the mode shapes as,
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@A) = sinlﬁ; E(X) = sinlﬁ : (3.40)
Therefore, the longitudinal and transverse disptear@s can be written as,
u(x.t) = sinl—”x q(t); v(xt) = sinl—”x 0, (t) (3.41)

3.3.5 Kinetic Energy

The kinetic energy for the system takes into actdamslational and rotational motions,

and for overall two dimensional translational matis,

1 . . 1 . . 1 . .
Ttrans =E'VlPl(XI\Z/Ipl + yl%/lpl) -'-EI\/lPZ(XI\Z/Ip2 + yl%/lpz) -'-El\/lm(xl\zllm + yl%/lm)

1 . . 1 . .
+ PALGE + 92 )+~ oLl + ) (3.42)
and the rotation kinetic energy is given by,
1
T, = 5 l.w (3.43)

wherel; is the mass moment inerti@, is the angular velocity, andrefers to the chosen
rotation axis. In the case of the MMET system thgudar velocities due to rotation about

the X, Y andZ axes are given by,

o = (" (3.44)
o = (a) (3.45)
o = +6)° (3.46)
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Figure 3.5 : Cylindrical shape of MMET components

The mass moments of inertia in equation (3.43)lmawlerived on the assumption that all

components are cylindrical in shape as shown inr€i.5, and so the mass moment of

inertia for rotation about th¥ axis is,

M P1(3r§ + hpz)
IXMPl iM (3r2+h 2)
'z | (12000 3.47
M xam | = iMM(3r§+hm2) (3.47)
l 12 1
M1,
| X1z ]2- P1't
“Mpor?
2 P2't
The mass moment of inertia for rotation aboutYtais is,
1 2
- +h
12 ( p )
Iy 1
MP1 el 3r + h 2
IYMpz 12 ( P )
| =1 ( 32 4 hmz (3.48)

YMm
12

IYu

IYIZ
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and finally the mass moment of inertia for rotatadout theZ axis is,

'\/IF’lr2

p
—M p2r
M, r? 49)

ZMp2

1
2
I Zyp1 1
2
1
Zym -

2
> L oaL(arz +12)

I Zu

I Zi2

1—12 PAL(3r2 +12)

Adding equations (3.42) and (3.43) and considettir@gMp1=Mp, = Mp, the kinetic energy
for the payloads and the central facility as gibgrCartmell (1998) and Ziegler (2003) is,

T, = M -2 )R R [ 2M oM Mt

+[MPL2+%Mmr,ﬁ+%Mpr§j(92+w2) (3.50)

Furthermore, the kinetic energy associated withdiation and rotation of the tether is

given by,
<1

T = [SPAGE, + ¥, o+ j SPACG, + Y5, A+ | (@ +6)° (3.51)
0

The tether is assumed for this model to be in tienfof a solid circular cross-sectional

line of radiusr;, areaA, and densityp, for which the mass moment of inertia is given by,
I, = 1—12 PAL(3r2 +12) (3.52)

Using the separated variables for displacemarandv in (3.41), the first time derivative

of the quantities in equations (3.18) to (3.21) @xen by,
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%, =Rcos- R6'?sin6?+sin%q1 C05(9+¢/)—Sin%q2 sin(6+)

- sin% (9 +(//)q2 cod@+y)- [x +0q, sin%)(@ +(//)sin(9 +) (3.53)

V., = Rsing+ Récos@+sin%qlsin(6?+z//)+ sin% A, cod8 +y)

- sin% (9 +(//)q2 sin(@+y)+ (x +q, sin%)(é? + z//)cos(é? +y) (3.54)

X, =Rcos- Résine—sin% A, COS(H+(//)+Sin% q,sin(+y)

+ sin% (9 + zﬂ)q2 cod@+y)+ (x +q, sin%)(@ +t//)sin(6 +) (3.55)

Vis, = Rsing + Ré?cosé?—sin%qlsin(é’ﬂ,lz)—sin%q2 codd+y)

+ Sin%(9+w)q2 sin(9+w)—(x+ qlsin%j(é?w/)cos(é?w/) (3.56)
Substituting equations (3.53) to (3.56) into (3.8iljes the final form off; ,

T = PAL(G2 +a2)+ pALR? + pALR?6? + (pAL(qlqz = Ga0) + ;pALZqzj(ﬁ +y)
+ (g oAl + 2 patzg + pAL(g? + qzz)’f%PAUfj(g )
T
v (1—52 AL + 2 palZ, +%pAL(q12 - QS)+%PAUTZJ(92 +7) (3.57)
7T

3.3.6 Potential Energy

The previous work of Ziegler and Cartmell (2001 psidered the potential energy for the

system, consisting of gravitational potential eyagiyen by,
Ug=Uy+tU,+U +U,;+U, (3.58)

whereU ,, U .U, U,andU,, are,

m2
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U =- My (3.59)
JR? + 2 + 2LRcosp

Uy =- M (3.60)
JR? +? - 2LRcosp

Uy = -£0 (3.61)

L 1
U, = —/,szj(R2 +12 + 2RIcogy) 2dl
0

R+ cosy)
L + Rcosy ++/R® + L2 + 2RLcosy (3.62)

= UpAln

1

L -
U, = —,uij(Rz +12 - 2RIcosy) 2dl
0

R@+ cosy)
L + Rcosy ++/R? + L2 - 2RLcosy

= HPAIn (3.63)

It was mentioned by Ziegler (2003) and proved bei€f2009) that equations (3.62) and
(3.63) can generate a numerical singularity o= 7 for any non-zero constants value.
Therefore, when numerically integrating the equajo the following discrete

approximations as proposed by Ziegler (2003) canubed for the two sub-span

contributions,

Uy ==Y _ ”/ZAL _ (3.64)
=N \/R2+[(2|2—N1)L} . 2(2|2—N1)RLCO »
u, = —i HpAL (3.65)
T R +[(z —1)LT 22 —1)RLCOS¢/
2N 2N

Ziegler (2003) showed that in genehiE 10 to 15 is a sufficiently fine discretisatiorr fo
accurate representation of the potential enerdgli@tub-span.

In this flexible model, the tether has additionaktgntial energy due to its own elastic

effects. The elastic potential energy is,
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|
U =% j EAs, “dx (3.66)
0

where &; is the total strain. The tension, T for the stisgiven by
T =T, +EAs, (3.67)

where T, is the tension when the string is in the nomimatfiguration and this would
normally come from the centripetal load in the MMEand EAg, is the tension due to

elemental stretchl is defined by,
L

T, :(M p|_+ijxdszp2 (3.68)
0

wherey is the angular velocity of the system.

A simple stress-strain relationship is assumedheraxially loaded MMET,

o=-—=Ee, (3.69)

>|T

where the cross-sectional arég,is considered to remain constant during and afxéal

extension of the element, and fokedor this case is the tensioR,
Substitution of equation (3.67) into (3.68) givks strain function as,

T +EAs T
& =——F =—°+£e (3.70)
EA EA

Therefore, substitution of equation (3.70) into6@. gives the potential energy in this

form,
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| 2
= % | {TE—A +2T 6, + EAsez]dx
0

| 2
= 1% +Te, +1EAS? dx (3.71)
)| 2 EA 2

and substitution of the strain expressions (3.1@) ¢8.11) into (3.71) gives the elastic
potential energy for the tether in the followingrfg

Ueies =IFT02 +To(u'+%(vlz)‘iu'(vﬂ)+%u'z(v'z)—é(v’)“ +gu'4J
0

2 EA 2
+%EA(U'2 +u'(v’z)—u’z(v’2)+%(v')4ﬂdx (3.72)

Substituting equation (3.41) into equation (3.729 applying the integration from 0 to

gives the potential energy as,

U =tTo, AET’q; | Tomdy _3AEm'afa; |, 3T,7r'grd; , 3AETG,
SEOAE 2L 2L 8L 8L° 32L°

L15T 'y | 3Tty
3213 3213

(3.73)

3.3.7 Total Kinetic Energy and Potential Energy

Adding equations (3.50) and (3.57) gives the tkita¢tic energy for the system,

T, :%pAL(qlz +q22)+[pAL+%MM +MPJR2 +%(|v|M +2M,, + 2pAL)R?G?

+ [gpALs +ﬂpAL2ql + /OAL(qlz + q§)+%,oALrT2 + (2L2 + rpz)M o +%M " r,ﬁj(é? )
T

20AL2

20AL° . 5
+( ,07T O,

&, + pAL(q,q, - qqu)](mw) +(M oL? +1—2pAL3 +

#PALG +0,7) + M+ M +§pAerj(92 +y?) (3.74)
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Substituting the various constituent part into eque(3.58), and adding equation (3.73) to
this gives the total potential energy for the syste

U.=- MM P1 _ LM P2 _ ,UM m

P

JR?+1> +2LRcosp R?+L?-2LRcosp R

_i HOAL ‘ZN: LOAL

- +[(2i —1)LT , 2 —1)RLCOS4/ =R +{(z —1)LT 22 —1)RLCOS¢

2N 2N 2N 2N

LT AETa) | T,rq,  3AET'grq, |, 3T.M'apq, | 3AETG, |

AE 2L 2L 8L 8L 32°

18Ty | ST,

3.75
3213 3213 ( )

3.4 Equations of Motion

The equations of motions are derived using Lagamgiynamics. Lagrange’s equation is

given in the common undamped form as follows,

d(aTj_aT RIS (3.76)

dtlad, ) g, aq,

Previously, the damped system of MMET has beeniedudy Gandara (2009), where
damping in the system due to the bearings in théomand transmission and general
frictional heat dissipation was included in theidation of the equations of motion. In this
study the flexibility of the tether has alreadyrattuced great complexity into the system,
therefore damping was abandoned not to make thitersy even more complex. The
previous model by Ziegler (2003) also did not imgithe damping of the system in order
for a comparison to be made between the flexibteragid models.

In this current system, the generalised coordinatesgiven by{q,} ={¢,6,R,q,q,} and

in the unmotorised case there is obviously no eslefiorce acting on the MMET system

so the generalised force in equation (3.76) is ketpuaero. This means that the MMET

motor drive is not actuated in this instance, hettve tether dynamics are entirely
dependent on the initial conditions. However, teaayalised force terms are clearly non-
zero for the motorised case.
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Starting with generalised coordingte. Operating on equation (3.74) gives,

oT
" = 7
ou 0 (3.77)

Then, we obtain,

2. 2
g—; = pAL(qy0, - a,6) + ﬂ;qz * [g PAL +ﬂﬂqu + PALG] + pAquzj(é" )

+(2|_2|v| o +% M_r2+M.r2 +%pALrT2j(9+zp) (3.78)

From which, we get,

d(aT

4 . . P 2 .
at j = ( ,0AL2q1 +2pALaq, + szquqzj(e +Y) + Z_TpAquz

) \m
... (5 4 L
+ PAL(q,8, - g,4,) + (g PAL’ + - PAL*q, + PALG + pALGS +j(9 +¢)

(2|_2|v| o +%|v| TZ+Mr? +% pALrsz(é +)) (3.79)

Finally from equation (3.75) we obtain,

U _ M LRusinyg B M ,LRusinyg _
0¥ (> +R?-2LRcost)? (L2 +R?+2LRcoxy) 2
N HPAL*R(2i - 1)siny

i=1 : 212 . %
2N2(R2+(2| 1)2L (@ 1)RLCOS¢/J
4N N

i LOALPR(2 - Dsing (3.80)

i=1 P _1)\2] 2 - %
oN? R + (2 1)2 L N (2 1)RLCOS/I
4N N
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Inserting equations (3.77) to (3.80) into Lagrasgequation, as stated in equation (3.76),

gives,

(gpAB +7£T,0AL2ql + pALQG? + pALQS +2L°M ,, +% M r2+M.r2

+§pALr$j(é )+ (% PALZG, +20ALgyq, + 2pALq2q2j(e' )

M ,LRusin M LRusin .
P R,U w 9/ - . Rll [/I ;/ +pALOu.q2
(L> + R —2LRcosy)’?  (L* + R? + 2LRcogy)’2
N ’R(2i - Dsi
_pALq2q1+ ,0AL2q2 Z_ ,Um (2| )Sln[// %
= L@ (2-DRL
2N ( AN? N cos//j
& HOAL*R(2i — Dsing -0
i=1 2 i — %
oN ( L@ 1)2 L, (@ 1)RLCO$0J
4N N (3.81)
Next, for generalised coordinatg
9T _p (3.82)
06
2
T~ (M, +2M, +208L)R20+| 2 paLs + AL Gy o) (g2 +q2) +
06 6 T
2
2L°M +;M r2+Mpr2+= ,aALr j(9+¢/)+2,aAL A, + PAL(QG, —0,G)
T
(3.83)

g[ggj (M, +2M, +2pAL)R?G +(2M,, +4M , + 4pAL)RRE +

2

2

20AL

4pAL? ]
[ : I8 %+ 20ALq0, + 2pALq2qzj(9+¢') PAL(CG, — 0,0h) + G,

(3.84)
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Finally, we note that,

N _, (3.85)
26

Inserting equations (3.82) to (3.8&)propriately into Lagrange’s equation, leads to,

(M,, +2M, +20AL)R?G +(2M,, +4M,, +4pAL)RRO+

2
(gpAB ML pAL(GE +GE) + 2L M +Mpr§+5pAerj(é+w)

20AL*
( A - G opaLg, + 2pALq2qu(e+w) PAL(q,d, 0, 8,) + pﬂ d, =0
g8)
In the case of generalised coordinBtine following differentiations apply,
LIS (M,, +2M, +20AL)RE? (3.87)
g; (M, +2M, +2pAL)R (3.88)
d(oT
My +2M, +20AL 3.89
dt( aRj (My, PAL)R (3.89)
U _ MMy, _ Mpu(Lcogg+R)  Mpp(lcogy+R)
R R (RR+12-2RLcow)? (R +L2+2RLcowy)”
(2 1)L cosy
I G i
e . 3
i= (@ -D’L* (2 -D)RL
2N co
( 4N? N ¥
(2i —1)Lcosy
\ /JpAL(ZR+N
-y - (3.90)

= 2 (o %
=1 ,@-D7C  (2-DRL
2N ( AN N COSI/IJ
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Substituting equations (3.87) to (3.90) as requiinéal Lagrange’s equation, leads to,

(M, +2M, +2pAL)R-(M,, +2M , + 2pAL)RE? +%

Mou(Lcosy +R) . Mu(Lcosy +R)
(R? +12-2RLcosy)?  (R?+L2 +2RLcosy)”

(2i-2u coswj
N ,u,oAL(ZR N

= 2 (o %
=1 ,@-D°C _(2-DRL
2N ( PING N cos://J

,u,oAL(ZR + (ZI_]')LCOS‘/IJ
N

= 2 (oi _ %
ZN[ L@-D%2 (@ 1)RLCOS//J

N

=0

2
4N N (3.91)

Then for generalised modal coordingte

(%T = (pAqu )(9+¢/) +(73T PAL? + pAquj(Qz +?) +[% PAL? + 2,0ALO&)9¢/ (3.92)

1

aT :

R = pALG, - PALQ,0 - pALGY (3.93)
1

d(oT e _

dt( o J PALG, - PALG, (0 + )~ pALg, (6 +) (8)9

oU _EAT 3 T

= = T -E 3 3.95

o, L (4|_3 ]( Ao + 8|_3 & (3.99)

Taking equations (3.92) to (3.95) and substituthmgm into Lagrange’s equation, gives the
following,

2
PALG, ~20ALG, (0 +4)) - (ZpﬁL +pALqLJ(02+w) ( pAL2+2pALq]9w
el (3 .
+=7q, ( 4L3J(T EAGA + - pALG,(6+¢) =0 (3.96)
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Finally, for generalised modal coordinaig,

g—T = —pALG; 0~ PALGY + PALG,E7 + PALG* +20ALa, 0 (3.97)
d>

I _ AL, + (3 PAL® + pALq](éw) (3.98)
0dq, Vg

d(adT N 2 2 P ./

—| — |= PpALG, +| — pAL" + pALq, (@ +¢) + pALG, (B +¢) (3.99)
dt\ aq, s

U T I —emala, + T (EA-T, ) (3.100)

dq, L EATE 8L°

Following the same process takes us to,

y : . T 3
PALG, — PALG, (8% +¢*) - 2pALQ, 04 + BRAVELE EAa;d,
377-4 3 2 2 A N o _
+ E (EA-T,)q, + 7—7,0AL +pALq [(@+) +2pALg,(@+¢) =0 (3.101)

Dividing equations (3.81), (3.86), (3.91), (3.96)da(3.101) by AL gives second order
ordinary differential equations of motion for thgstem in reasonably standard form, thus
MX(t) + cx(t) + kx(t) = F, where the force on the right hand side is giverth®y applied

torque from the motor in the central facility,

5 4 1 1 1 .
(gm+;qu+qf+q§+—pAL(zL2Mp oM M Jo e (@)

M LRusing
OAL(L2 + R? - 2LRcogy)

4 . ) .
. (; La, +20,0, + 2q2q2j(0+w) .

M, LRusin . L2
- p_H v 3 + 04, —Q9,4;, +— qu
PAL(L? + R? + 2LRcosp) 2 m
R MLR(2i — Dsiny
3
=1 @i-1%L®> (2i-1)RL %
2N2(R2 + e N cosy
N o
B MLR(2 — Dsiny - _, (3.102
i=1 i _1)2] 2 H 2
ZN{RZ .\ (2|4N1)2 L*, (2 Nl)RLCOSwJ
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( w +2M, +2pAL)R 29+i(ZMM +4M, + 4pAL)RRE +

PAL

5 4q 1 1 1 s
(g 1+<q1+q2>+—pAL[zL2MP+5Mmrnﬁ+Mpr§j+5rfj<e+w>

[ S 209, + 2q2q2j(3+¢/) (a4, — d,0,) +—q2 =0 (3.103)

i(MM +2M, +2pAL)F'e—i(|v|M +2M, +2pAL)RE? + ”MMZ
PAL PAL PALR

Mpu(Lcosy +R) N Mpu(Lcosy +R)
PAL(R? + L2 - 2RLcosy)?  pAL(R? + L2 + 2RLcosy ) 2

_i_ }J(ZR—(Zi —1)I\I|_cos¢/j

= 2 o %
i=1 (2| -1D%L _(@-DRL
2N [ AN? N cos//j

N /J(ZR+( |—1)Lcos¢/j
- - N =0 (3.104)

= 2 (o %
=1 ,@-D°C  (2-DRL
2N ( NG N COSI//]

b, — 9, (0 + ) —(2—;+ qu(éz +?) ~20,(6 +¢) —[4—;+ 2q1j9w

| EAT 37 157, 7
T &7 (410A|_4j( EAqQ; + 80AL g =0 (3.105)

Lo (L ,

d, + (—qulj(gﬂl/) 0, (8% +¢?) + 26,0 +¢) — 20,6y

Tn2 37 377
p e 8 oAL (EA-T,)a; + 4ML4(F EAg/q, =0 (3.106)

3.5 Tether Simulation

Four operating conditions have been consideredis dtudy of the tether's motion on

orbit. The conditions are as follows,

i.  Circular orbit, unmotorised (no torque is appliedthe system). Initial conditions

only are driving this version of the model.
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ii.  Circular orbit, motorised. The torque is applied gmedominates the motion of the

system.

iii.  Elliptical orbit, unmotorised (no torque is applisdthe system). Initial conditions

only are driving this version of the model.

iv.  Elliptical orbit, motorised. The torque is appliadd predominates the motion of

the system.

The angular velocity is the main parameter to deitee the requiredAV in payload
transfer. The best practice is to release the paylehen the tether is aligned exactly along
the gravity vector at perigee. However, ZieglerQ20discussed the case when the tether is
not released perigee, showing that the displacemkthe tether from the perigee will
reduce the tangential velocity of the released gyl and will cause a change in the
orbital elements of the released payload due toAWesector not being aligned with the
tangential orbital velocity vector. Therefore, tpayload transfer process should be

designed so that the transfer happens only atgeerig

Unless stated otherwise all the results were gé&brasing the following parameters,
largely in common with other planar studies in Z&egand Cartmell (2001), Ziegler
(2003), and Chen and Cartmell (2007) where theetethaterial data is based on the

manufacturer’s specification for Spectra 2000.

Parameters Value Unit
L 10 000 m
M, 1000 kg
M, 5000 kg
A 62.83 x 10 m’
P 970 kg m®
[ 0.5 m
o 0.5 m
E 113 GPa
H 3.9877848 x 11 m’s?
R/R, 6 728 000 m

Table 3.1 : Parameters for tether simulations
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3.5.1 Circular orbit, unmotorised.

The results in Figure 3.6 and 3.7 were obtaineduyerically integrating equation (3.102)
to (3.106) with no application of torque, and se thotion of the tether is based on the

following initial conditions,
¢ (0)=-0.9 rady(0) =0 rad/s,u(0) =v(0) =0 m,u(0) =v(0) = Om/s (3.107)
andT, is set to zero.

The angular velocity of the tether centre of massibit is given by,

- | K
9_\/; (3.108)

The responses of the unmotorised tether in Figue(8 and (b) show the steady state
oscillations for both models which equate to limatof the tether in the circular orbit.

A phase shift is noticeable in which the rigid bomyher lags the flexible tether. The
differences in the responses can clearly be sdentat first five orbits. These differences
increase within the integration time and are shawirigure 3.6 (c) and (d). Figure 3.7
shows the longitudinal and transverse vibrationthe flexible tether. The longitudinal
displacements are periodic but non-harmonic, withmaximum displacement of
approximately 0.005 m. The transverse displacerabat shows periodicity, but with an

amplitude of approximately +/- 45 m.
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Figure 3.6 : Unmotorised tether responses for the f  lexible model (line) and the rigid body
(dashed) on a circular orbit, and the difference be  tween the responses of the two models

over ten orbits.
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Figure 3.7 : Longitudinal and transverse vibration of the unmotorised flexible tether on a

circular orbit, with time.
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3.5.2 Circular Orbit, motorised.

For the condition in which the motorised tetheoperating in the circular orbit, equations
(3.102) (3.106) were again numerically integratetl dn applied torque of 250 kNm used
in equation (3.102), and the initial conditions eadopted again from equations (3.107).

Number of Orbits Numbe of Orbits
0
o 2 4 6 8 10 .4
15000 05
o 0.4f
T 10000 =
= So3
= 5000 -3 0.2
0.1
Qb 0.0- ‘ ‘ ‘ ‘ ‘
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
time(s) time ()

Figure 3.8 : Angular displacement and angular veloc ity of the motorised tether on a circular
orbit, with time. (line = flexible tether, dashed = rigid body tether).

The motor torque causes both tether models to spinas shown in Figure 3.8. The
flexible model increases its angular displacemeutt @ngular velocity at a slightly slower
rate as compared to that of the rigid body modéhiw the integration time. However the
differences are small, and only appear after twoiter The differences between the

responses of the flexible and rigid body tether et®@dre shown in Figure 3.9 below.
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Figure 3.9 : The difference in the angular displace  ment and the angular velocity between the

Flexible model and the Rigid body model, with time

Unlike the unmotorised flexible tether, the apgica of torque and the effect of

centripetal load both cause the longitudinal disptaent of the tether to increase
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significantly within the integration time, as shown Figure 3.10. Conversely, the

transverse vibration has shown a qualitativelyedédht response, in which the vibration
decays with time. However this is not an obvioutibsipative effect and this phenomenon
is connected to the stiffening effect due to thetigpetal load experienced by the spinning
tether. The centripetal load in the longitudinakdtion increases the displacement, whilst

the lateral stiffening effect reduces the amplitodl&ibration in the transverse and lateral

directions.
Number of Orbits Number of Orbits
0 2 4 6 8 10 0 2 4 6 8 10
1500
= g
€ 100 =
E 8
50+ —10F
0’ | | | | . -20t - L L L L
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

time(s) tme(s)

Figure 3.10 : Longitudinal and transverse vibration of the motorised flexible tether, with time

3.5.3 Elliptical orbit, unmotorised.

Equations (3.102) to (3.106) have also been num@éricmtegrated for the tether moving
on an elliptical orbit with the following parameseand initial conditions:

e = 0.25, u(0) =v(0) =0m, u(0)=v(0)=0m/s, ¢(0)= 0 rad, ¢(0)= 0.00873 rad/s,
6 =0rad, 8 = 0.00146rad/s

where R is the perigee of the ellipse ards the orbital eccentricity. The applied torque

and andT, is set to zero.

Figure 3.11 shows the angular displacement andlangalocity of the flexible and rigid
body tethers on the chosen elliptical orbit. Thgahconditions initiate the response of the
tethers. The angular displacements have monotdnicatreased, but the angular
velocities of both models are periodic. The diffeves between the responses of the
flexible and rigid body tethers are too small todignificant practically, but Figure 3.12

shows these differences. Figure 3.13 shows theiposif the tether on the elliptical orbit,
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and the true anomaly of the orbit within the intgmn time. The simulation starts at

perigee and the highest peak in (a) is referrintpéoapogee of the elliptical orbit.

The longitudinal and transverse displacements efflixible tether are shown in Figure
3.14. The maximum displacement in the longitudidiaéction is approximately 0.11 m
whilst the transverse displacement has an amplibdfid@proximately +/- 60 m.
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Figure 3.11 : Angular displacement and angular velo  city of the unmotorised tether  on the
elliptical orbit, with time, at e = 0.25 (line =fl  exible tether, dashed = rigid body tether).
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Figure 3.12 : Difference in the angular displacemen t and the angular velocity between the

flexible model and the rigid body model, with time, ate =0.25.
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Figure 3.13 : The radius and true anomaly of the te  ther on the elliptical orbit, with time, at e =
0.25
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Figure 3.14 : Longitudinal and Transverse vibration of the flexible tether, with time, at e =
0.25

3.5.4 Elliptical orbit, motorised.

For the condition of the motorised tether on armpedial orbit, 250 KNm of torque is

applied for both the flexible and the rigid body dets. The results are as shown in Figure
3.15.

Both of the tether models are in the spin-up comadjtand the flexible tether shows an
increase in the angular displacement and angulacig at a slower rate as compared to

that of the rigid body model within the integratibme. The differences are shown in
Figure 3.16.
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Figure 3.15 : Angular displacement and angular velo  city of the motorised tether on the

elliptical orbit, with time. (line = flexible tethe  r, dashed = rigid body tether).
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Figure 3.16 : Difference in the angular displacemen t and the angular velocity between the

motorised flexible model and the rigid body model o n elliptical orbit, with time.

The longitudinal displacement of the flexible tethe an elliptical orbit periodically
increases, as shown in Figure 3.17. The displacemeat a maximum of 104.6 m when
the tether has reached th® @rbit. Figure 3.18 shows that the flexible tetieeoscillating
in the transverse direction with a maximum transamnplitude at =50 m. In addition, the
tether demonstrates decaying oscillation in thastrarse direction within the integration

time.
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Figure 3.17: Longitudinal vibration of the motorise d flexible tether on an elliptical orbit, with

time.
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Figure 3.18 : Transverse vibration of the motorised flexible tether in an elliptical orbit, with

time.

3.5.5 Energy Consideration

The effect of treating the tether as flexible amtensible is also shown in the energy
expressions for the tether. The kinetic energy @sgion in equation (3.74) can be depicted
as in Figure 3.19. The Figure shows that both ripdy and flexible models have almost
the same amounts of energy when simulated in theotorised condition. The additional
energy contributed by the elasticity in the potanginergy is extremely small, and virtually
insignificant against the total amount of energytha tether. This is shown in Figure 3.20
for the untorqued condition and Figure 3.21 fortitrgued condition. In one orbital period

the maximum elastic energy is about 120 J in thtergned condition and has reached 80
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KJ in the torqued condition as compared to thel fgdéential energy which is nearly 500
GJ.
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Figure 3.19 : Kinetic and Potential energy of the r  igid body and flexible models
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Figure 3.20 : The elastic and gravitational potenti  al energy for an unmotorised flexible tether

on an elliptical orbit with e = 0.25
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Figure 3.21 : The elastic and gravitational potenti  al energy for an motorised flexible tether

on an elliptical orbit with e = 0.25

3.6 Conclusions

The equations of motions have been derived for @ dunensional tether modelled as a
string. The tether equations of motion are nonlinelifferential equations with
nonlinearities included up to cubic order, andsitclear that they show coupling terms
between the longitudinal, transverse and lateratations. A comparative studetween
the flexible model and the former rigid body modefshe tether shows that the flexible
tether has slower response in comparison with tgidy tether for all conditions reported
in this chapter. The difference is due to the epdegel in the flexible tether which is
generally higher than that of the rigid body tetdee to the inclusion of elastic potential
energy. The existence of centripetal force in ghi@rsng condition reduces the transverse
displacement due to the stiffening effect. Therefdhe flexural effect of the tether has
been seen to make a significant impact on the gloloéion of the tether in the long term.
The study of the deformations of the flexible tetakso provides a good estimation of the
tether response. These deformations should nedgdsartaken into account, particularly

when precise motions predictions are needed.

59



Chapter 4

Dynamics of Three Dimensional Rigid Body and
Flexible Motorised Tethers

4.1 Introduction

This chapter considers the three dimensional dyoswii the MMET for both rigid body
and flexible models. The main objective is to urerothe relationships between planar and
non-planar motions, and the effect of the couplegween these two parameters on the

circular and elliptical orbits.

4.2 Three Dimensional Model of Rigid Body

~
>N

)
S
o

> X

Figure 4.1 : Geometry of a Motorised Momentum Excha  nge Tether (Ziegler,2003).

In the previous study by Ziegler (2003) the dynamad three dimensional rigid body
motion of a massive tether were not examined dutagéocomplexity of the equations of
motions and the need for very long computation simkEhe simple dumbbell model has
been used by Ziegler (2003) to allow the dynamikcthe tether system to be efficiently
explored without added complexity of the flexibkether dynamics. In this study, with
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some advancement in computational technology 2068, the derivation and simulation
of this three body model is accomplishable at a esshat lower cost and greatly

accelerated time.

Figure 4.1 shows the geometry of the motorisedetetiiscussed by Ziegler (2003). The
details of the coordinate system have been disdusséheprevious chapter. The planar

motion of the tether as mentioned in grevious chapter is described by andlesd ¢,

whilst the non-planar motion is defined by angle

4.2.1 Position Vectors

The Cartesian components of the central facilitgf Hre payloads in the inertial reference
frameX, Y,are shown in the previous chapter in the form afadigns (3.12) to (3.17). For
the three dimensional case based on the ineraahdiX,Y,Z the components in th&

direction are given below,

Zp, =Lsina (4.1)
Zp, = —Lsina (4.2)
Zom =0 (4.3)

From Figure 4.1 taking the centre of mass for dtker at_/2 leads to the following tether

coordinates,

Xy = Rcos¢9+%cosa cos{ +6) a%.
L

X, = Rcosg —Ecosa cos +0) (4.5)
L

Yu = Reosd + = cosa cos +96) (4.6)
L

Yio = Rcosﬁ—Ecosacos(ll +0) 4.7)

L .
Zy :Esma (4.8)
L .
Z, = —Esma (4.9)
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4.2.2 Generalised Force

By applying the theory of virtual work defined asdléws,

N =F, &+F,0+F,& (4.10)

and considering the work done by all the non-corstere forces through appropriate
virtual displacements, equations (4.11) and (4at8)shown to apply,

M, =Q,d @)1
AN, =Q,dr (4.12)

The generalized forces with respect to the gerssm@licoordinates andy are given by,

)¢ oy 0z
Q, —FX£+ Fy£+FZ£ (4.13)

0x oy 0z
=F,—+F 2 +F
Q =F oy Yoy oy

(4.14)

Figure 4.2 : Components of forces, after (Ziegler,

2003).
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The components of force in the x, y and z dirediare,

F, =—F cosysing — F sinysina cosy (4.16)
F, = F cosycosy - Fsinysina cosy (4.17)
F, = Fsinycosa (4.18)

and so partially differentiating the Cartesian comgnt of the end mass with respect
toa and ¢, and substituting from equation (4.16), (4.17) a/d.8) into (4.13) and (4.14)

gives the generalised forces as (Ziegler, 2003),

Q, =1 cosycosa (4.19)
Q, =7siny (4.20)

4.3 Kinetic Energy of the Rigid Body Model

The Kinetic energy for translational motion of tiheee dimensional system is given as,

1 ) ) .2 1 .2 ) .2
Tirans _EMPl(XMpl *YMp +ZMpl)+§MP2(XMp2 *Ymp, +ZMp2)

1 . . . 1 . . . 1 . . .
b M, + V8, + 2, ) 45 LG + 98+ 22)+2 pALlS + 55 + 22) 4.21)

and the rotational kinetic energy is given in pnevious chapter by equation (3.43).

Substitution of equations (3.44) to (3.49) into &iipn (3.43) gives the rotational kinetic

energy for the system as,

1 o 1
= — + + + + + — + +
Trot 2 (l XMpl | XMpZ | XMm | Xi1 I Xt2 )(y ) 2 (I YMpl IYMp2

. 1 .
I + v + |\42)(02)+§(|sz1 1 2n 2y 1z * 12, )@ +6)° (4.22)

Adding together equations (4.22) and (4.21) givestotal kinetic energy of the system for

which the kinetic energy expression details cafobead in Appendix A (i).
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4.4 Potential Energy of the Rigid Body Model

In deriving the potential energy for the rigid boapdel of the tether only the gravitational
potential energy is considered, as mentioned inpievious chapter. The equation is
obtained by adding equation (3.59), (3.60), (3.63.)64) and (3.65) and generates the total

potential energy as,

Up=- HM g, _ MM 5, _ MM,
JRZ+12+2LRcosacosp +R?+L%-2LRcosacosp R
R UPARL
— . 2 .
N R? + (2 -1L N (2 1)RLcosaco s
2N 2N
-3 HPARL (4.23)
o . 2 -
NJRe [ @-DLT _@-DRL
2N 2N

In the case of the symmetrical MMEM ,, = M,,. Therefore, the mass payload will be
denoted adM, from here on. The potential energy equation issshm full in Appendix

A (ii).

4.5 Equations of Motion for the Rigid Body Model

The equations of motions are derived using Lagrangeuation. The generalized

coordinates are given bfg,} ={¢.6.a,R,y} and the generalized forces from equations

(4.19) and (4.20) for the system are,

Q, T COSy COSa

Q, rsiny

Q |~ 0 (4.24)
Qr 0

Q, 0

The equations of motions for the rigid body modelsated in full in Appendix A (iii).
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4.6 Simulation of the Rigid Body Model

Unless stated otherwise all the results were gesebnaith the default parameters for the
MMET which can be found in Ziegler and Cartmell @20, Ziegler (2003), and Chen and
Cartmell (2007).

4.6.1 Circular orbit

Simulations are carried out with initial conditiong (0) =-09rad, ¢/(0) =O0rad/s,
a(0) =-001rad, anda'(0) =Orad/sfor a tether on a circular orbithe planar and non-

planar motions have been compared between the esadsther and the rigid
body tether in Figure 4.3. The motions result frplacing the tether on a circular orbit and

without applying any torque to the tether.

The massless tether model has been simulated todiffierent conditions, first with the
equations of motiorbased onthe study by Ziegler (2003) where only the tratista
motion of the tether's components is considerednadieriving the kinetic energy and this
approach named here as the massless tether 1edtwedscondition refers to equations of
motion of the rigid model tether which includedatdnal motion of the payload and the
central facility in deriving the kinetic energy &s equation (4.21) and is named the

massless tether. Zable 4.1 shows the difference between the madsdd for this tether’s

simulation.
Conditions Massless 1 Massless 2 Rigid Body
Tether mass No No Yes
Translational kinetic energy Yes Yes Yes
Rotational kinetic energy No Yes Yes

Table 4.1 : The difference of the conditions betwee  n massless tether 1, massless tether 2

and rigid body model.

Figure 4.3 shows that the in-plane responses ohadlels are very similar but a significant
difference is shown in the non-planar motion, dafirbyincluding anglea. The planar
steady state motion isdistinguishablebetween the three models by simulating over a
smaller range of time, as in Figure 4.4, in whicé difference betweethe massless tether

1 and the rigid body model, and the massle®er2 is less than 0.000001 rad.
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From Figure 4.3(d), it is clearlghown that the inclusion of rotational kinetic emehas

increased the frequency of non-planar motion. Thesgiess tether without rotational
motion has the lowest natural frequency, but adsevhigher amplitude as compared with
the other two models. For these twoodels, for which rotational motion has been
considered, the rigid body model has a lower fregyeof non-planar motion as compared

with the massless tether.
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Figure 4.3 : Planar and non-planar motions of Massl  ess tether 1 (dashed), Massless tether 2

(gray) and Rigid Body tether (red) on a circular or  bit with zero torque.

For the motorised tether an application of 2.5 Mbiiniorque to both models results in the
responses of Figure 4.5. The rigid body tetherigufe 4.5 (a) and Figure 4.5 (b) shows an
increase in the angular displacement and angulacig at a slower rate as compared to
that of the massless tether within the same intiegraime. Both types of massless tethers
have shown an identical response for planar motlmvertheless, all models demonstrate
decaying oscillations for non-planar motion. Thessilass tether 1 model decays the
fastest, followed by the rigid body tether, andsaduently the massless tether 2 model.
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4.6.2 Elliptical orbit

Simulation was carried out for the tether on aiptdal orbit with its perigee at 6278 km

and an orbital eccentricity of 0.25. The chosehahconditions were:

¢(0)=0rad, ¢(0)=0.0873rad/s, a(0)=-001rad, a(0)=0rad/s, 8(0)=0rad and
6(0) =0.00146ad/s

The simulation was carried out for torqued condisiovith an applied torque of 2.5 MNm.

Simulation results are shown in Figure 4.6.

On the elliptical orbit, Figures 4.6(a) and (b) shglanar motion for the torqued conditions
where the rigid body tether has a slower resposseompared with the massless tether.
There is no change in the orbital elements withusations of different models for which

the results depicted in Figures 4.6(e) and (f) rrédethe radius and true anomaly of the
selected orbit.In Figure 4.6 (el) and (f1) bothitatbparameters have shown small
differences between these three condition in smadlege of simulation time. The rigid

body tether obviously show that the radius of thatds different with other two models.

This suggested that with increasing of the massopitid alter the orbital parameters of
tether. Similar to tether motion on a circulabigrthe non-planar motion for a tether on
an elliptical orbit also shows a decaying respamisle frequency with the massless tether 2
model being the highest, followed by the rigid baether, and finally the massless tether 1

model.

For both the circular and elliptical orbits in thpplied torque case the rigid body model
shows a slower response as compared with otherInamdpglanar motion. In comparison
to the non-planar responses, it is shown that fre< fm2 Wherefy1is the frequency of the
massless tether 1, antkgis the frequency of the rigid body tether, dndrefers to the

massless tether 2
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Figure 4.6 : Planar and non-planar motions of Massl  ess tether 1 (dashed), Massless tether 2

(gray) and Rigid Body tether (red) on an elliptical orbit with 2.5 MNm torque.
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4.6.3 Comparison between the 2D and 3D Rigid Body M odels.

In order to validate the flexible 3D model it haseb compared with the 2D model,
simulation results are shown in Figure 4.7 and Bigure 4.7 (a) and (b) show that the in-
plane motions are visually indistinguishable famefiorbits. Therefore, the difference of the
responses between these two models are shownuneHg6 (al) and (b1) with very small

differences shown between both models, whilst tifferénce increases with simulation

time.
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Figure 4.7 : (a) & (b) - Comparison of response bet ween 2D (line) and 3D (dashed) model in
rigid body model. (al) & (b1) - Difference between 2D and 3D models of rigid body MMET.

Figure 4.8 (c1) and (d1) shows the difference i dinbital parameters between the two
models and suggests that the presence of the laoarpvariable ¢) in the equations of
motion of the 3D model, for planar motion, has #igant influence on the planar motion
of the tether. The change in the orbital radius #redtrue anomaly may affect the payload
transfer process whereby the wrong prediction gfqaal position may occur. This could

fail the payload transfer process, or would fairétease the payload to its desired orbit.
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Therefore, an additional system to correct the tmwsiwould be required, which would

increase the mass and the cost of the payload.
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Figure 4.8 : Comparison of orbital parameters betwe  en 2D (line) and 3D (dashed) models of
a rigid body MMET

4.7 Dynamics of a Three Dimensional Flexible MMET

4.7.1 Initial positions

Figure 4.9 shows the motions of a three dimensifiegible model of an MMET on orbit.
The components of flexibility of the MMET have beeescribed by the displacements of
tether length in the axial and transverse diresti@as explained in the previous chapter and
given byu andv. In this three dimensional case, the additionalhef displacement in the
lateral direction is presented, and this is denbted. The local position of a point maBs

is transformed to inertial coordinates by rotatamgl translating the position vector.
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(The Earth)

Figure 4.9 : Three dimensional flexible model of an MMET on orbit

4.8 Coordinate transformation

z,/7,/2
0 A 2

(The Earth)

Figure 4.10 : Translation of the central facility w ithin an inertial coordinate system.
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The position of the central facilitil,, is translated through distané® then rotated
through angle, as in Figure 4.10. The system is further rotataauathe Z; axis through

angle ¢ and these rotations can be stated in a rotatiomixm#enoted byR,, wheren

refer to the axis of rotation, ardis the rotation angle. Therefore, the rotation gtanar

movementR, ,., is given by,

cos@+w) -sin(@+y) 0
Ry .0 =| Sin(@+y) codé+y) O (4.25)
0 0 1

Finally, the system is rotated about tige axis through angle: to give the non-planar

motion of the MMET, as in Figure 4.11. It shouldrmged here that a rotation of the Z axis
was not applied in any previous study of the rigidly model. However, McKenzie (2010)
has derived the equations of motion for MMET onratiined orbit using the same rotation
system to determine the position of the tethersiponent. He also studied in detail the

rotation sequence which influences the derivatmfitbe equations of motion.

(The Earth)

Figure 4.11 : Rotation of the MMET system.
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The rotation matrix is given by,

cos@) 0 -sin(a)
R,=| 0 1 0 (4.26)
sinl@) 0 coda)

Therefore the complete rotation matrix from locabinates to the inertial coordinates is

defined as,

cosacos@+y) -sin(@+y) -sinacos@+y)
Ry =Ry y.0-R., =| cosasin(@+y) cos@+y) —sinasin@+y) (4.27)
sina 0 cosa

4.8.1 New Coordinate Positions

The initial coordinates of the payloads with redptr the local origin are given by
equations (3.12) to (3.17) in Chapter 3 and eqnati(}.1) to (4.3) in section 4.2.1.
Applying equation (4.27) for the position of thdirary pointP along the tether gives the

new position coordinates in terms of thg,zcomponents, for non-planar motion,

X = Rcosd + (U + x) cosa cod@ + ) - vsin(@ +¢) - wsina cod8 + ) (4.28)
Xno = RC0OSA + (U + x) cosa cod@ + ) + vsin(@ + ) + wsina cod8 + ) (4.29)
Yo = RSING + (U + X) cosa sin(@+ ) +vcod@ + ) - wsina sin(0 + ) (4.30)
Yoz = RSING + (U + X) cosa sin(@ + ) - vecod@ + ) + wsina'sin(6 + ) (4.31)
Z,q = wcosa(u+ x)sina (4.32)
Z» = —Wcosa(u+ Xx)sina (4.33)

4.9 Energy Expression

The kinetic energy of the payloads and centralifgare the same as in equations (4.21)
and (4.22), and the translational kinetic energytfe tether sub-span are obtained by
substituting equations (4.28) to (4.33) into equai4.36) as follows and integrating along
the sub-span length,
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1 . . . 1 . . . 1 . . .
Ttrans = E M Pl(Xgl + ygl + Zlgl) + E M P2 (ng + ygz + 252) + E M m(Xr?qm + yrim + Zrim)
01 01
+ [ 5P + Vina + Zna)AXH [ ZPAGKE + Vi + 2 )X (4.36)
0 0
The total kinetic energy for this flexible model tdther is given by the summation of

equation (4.36) and equation (4.22) is presented in full in Appendix B (i).

In the previous study of the 2D model, the contiiou of the elastic potential energy due

to the flexibility of the tether leads to the topaltential energy for the system,

U MM M, _ MM
° \/R2 +L* + 2LRcosa cosg \/R2 +L*-2LRcosacosp R
_i UPARL
L . 2 .
. +{(2. 1)|_} LEDRL o
2N 2N
_i UOARL
= . 2 -
* e +{(2. 1)|_} C@-DRL o cosy
2N 2N

+|£[2EA bt ewe)-Zulem ew e Sy e we)- gl ewf

8 ”‘J A{ 'v'2 +w ) U'Z(V'2 +W'2)+%(V'2 +W'2)2de

(4.37)

where T,is the centripetal force as defined in the 2D mopgetviously. The complete

equation for the potential energy is shown in illAppendix B (ii).

4.10 Mode Shape Function for the Static Boundary
Condition

The displacements in the axial and transverse tibrediave been written as separated
variable functions in the previous chapter in emuest (3.40). Therefore, in the three

dimensional case the additionaleral displacement is written as,
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w(xt) =3 (X (0 (439

where S(x) are the chosen mode shape functions. The derivatioditions for these mode

shapes have been discussed in previous studiée dlekible 2D tether model. The mode
shape functions have been derived from the assamghat the tether has fixed-end

boundary conditions, and is given by,
. TK
Ax) =¢(X) = B(X) = Sin-~ (4.39)

It has been noted that these mode shape functiens also used by Luet al. (1996) in
the transverse and lateral directions for theirlinear mechanical model of a spinning

tether in three dimensional space.

4.11 Derivation of the Equations of Motion (EOM)

The equations of motion have been derived by switisiy and differentiating the energy
equations for use in Lagrange’s Equation. Thereeaght generalized coordinates given
by,

(qk): (1/1,0’,5,}/, R1q11Q21Q3)T (4.40)

where the first four refer to the rotational motiand the rest define the translational
motion of the system. The generalized forces aeesthime as those stated in equation
(4.24). The derived equations of motion are presegit Appendix C

4.12 Simulation of Flexible Model of MMET

Simulations were carried using the same tethernpeters and initial condition as in
section 4.6. The simulation results for the flegibhodel have been compared with those

for the rigid body model for circular and elliptiaabits.

4.12.1 Circular Orbit

Figure 4.12 shows the responses of the flexibleetetnodel in comparison with the rigid
body model, both on a circular orbit. Both moddisws a very similar response for planar

motion, and minor differences are only obvious with smaller range of simulation time,
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as in Figure 4.13. However, a significant differerdmetween both models is shown for
non-planar motion, in Figure 4.12, where the fléxilmodel oscillates at a lower frequency

and reaches higher amplitude as compared to thheafgid body model.
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Figure 4.12 : Planar and non-planar motions of ari  gid body tether (dashed) and a flexible

tether (line) on a circular orbit with zero torque.

Number of Orbits

0.020
0.018:

0.016¢

Y[t] (rag

0.014;

001218
1000 1001 1002 1003 1004 1005
time(s)

Figure 4.13 : Angular displacement of a rigid body tether (dashed) and a flexible tether (line)
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With the application of 2.5MNm torque, both modedach thespin-up condition, and the

rigid body model shows a higher rate of planar oroths compared to that of the flexible
body, as shown in Figure 4.14. As in tlnletorqued condition, a significant difference is
shown in the non-planar motion between both modeisnot in the torque condition. Both
models show decaying responses, but the rigid bodglel has a higher frequency and

amplitude for the first eight orbits as comparedthiose of the flexible model.
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Figure 4.14 : Planar and non-planar motions of ari  gid body tether (red) and a flexible tether

on a circular orbit with 2.5MNm torque.

The three dimensional displacements in the longialdlateral and transverse directions
are shown in Figure 4.15. Figure 4.15 comparesdibplacement in the free vibration
condition and in the torqued condition. The londital, transverse and lateral
displacements are oscillating with peak amplituoe8.008, 45 and 40 metres for the first
condition. With the application of 2.5 MNm of tomuthe longitudinal displacement
increases monotonically, whilst the transverse &atdral displacements experience

amplitudes decaying over time.
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without torque with 2.5 MNm torque
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Figure 4.15 : Displacements of the 3D Flexible mode | of an MMET on a circular orbit.
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4.12.2 Elliptical orbit

Simulations were carried out for an elliptical anwith the following orbital elements,

f,= 7 000 000me = 0.1 (4.41)

wherer, is the perigee of the elliptical orbit, amdis the orbit eccentricity. The tether
simulation starts at perigee with initial conditson

Y(0)=-0575rad, ¢ (0) =0 rad/s,a(0) = -001rad, ¢(0) =0 rad/s,8(0) =0 rad
6(0) = 0.001131rad/s, y(0) = —001 rad, j(0) = 0 rad/s

The result is shown in Figure 4.16, with the angulsplacements of both tethers being
almost identical for the first five orbits but theéhe rigid body model lags behind the
flexible model until the 10 orbit. The difference in the angular displacemamd angular

velocity of both models are clearly shown in thealler range of simulation time between

0 to 1000 s, where the differences are increasitigmthe integration time.
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The simulation has also shown that the flexibibfythe tether has influenced the orbital
parameters, where the radius and true anomalgxibie tether shows the difference along
the integration time, as in Figure 4.17. In theecanon-planar motion in Figure 4.18, the
flexible tether oscillates with what appears to @estrongly random motion at lower
frequency, but with generally higher amplitudescampared to those of the rigid body

model. Both models did not achieve steady statditons in the first 10 orbits.
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In comparison to the responses for the tether attapplied torque, as shown in Figure
4.19, the difference in planar motion has shown the rigid body model moves at a
higher rate when compared with the flexible mod&lt then again, the difference is
smaller in comparison to the non-planar motionsre&tiee motions in the first orbit show
that both models experience decaying motion, Withftexible tether motion decaying at a
lower frequency, but with generally higher amplgudVith a longer simulation time the
amplitude of the flexible model decreases andwselathan that of the rigid body model, as

shown in Figure 4.19(c1).
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Figure 4.19 : Planar and non planar motions of ari  gid body tether (dashed) and a flexible

tether (line) on an elliptical orbit with 2.5MNmto  rque.
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Figure 4.20 : Orbital parameters for 3D motion of a  rigid body tether (dashed) and a flexible

tether (line) on an elliptical orbit with 2.5MNmto  rque.

The difference of the orbital elements betweenilfliexand rigid body motion of tether in
Figure 4.20 (d) and (e) are indistinguishable deager period of simulation. Figure 4.20
(d1) and (el) shown that a very small differenceuce between these two models. This

suggests that the flexibility of the tether will keaa small alteration of tether’s orbit.

The three dimensional displacement for a tetheamrelliptical orbit is shown in Figure
4.21. The untorqued condition results in the téxitether oscillating in all directions,
with longitudinal, transverse and lateral vibratsimowing the highest amplitudes of 0.45
m, 600m and 400 m for tether a length of 10 km.

With application of torque the displacement in kbregitudinal direction increases but both
the transverse and lateral displacements redusb@sn in Figure 4.21. As mentioned in
the previous chapter, this phenomenon is conneitetthe stiffening effect due to the
centripetal load experienced by the spinning tethibe centripetal load in the longitudinal
direction increases the axial displacement, wthilist lateral stiffening effect reduces the

vibration in the transverse and lateral directions.
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without torque with 2.5 MNm torque
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Figure 4.21 : Displacements of the 3D Flexible mode | of the MMET on an elliptical orbit.

4.12.3 Comparison between the 2D and 3D Flexible Mo dels.

The responses for two dimensional (2D) and threeedsional (3D) motion of the flexible
model are shown in Figures 4.22 to 4.24. The 2D 3Ddnodels show an almost similar
response in Figure 4.22 (a) and (b). However, satmg the differences in angular

displacement and angular velocities between thesenodels shows that a difference
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occurs and even though it is relatively smallsitstill significant to the global motion of

the tether.
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Figure 4.22 : Comparison of the response between th
models of the MMET on an elliptical orbit.

e 2D (line) and 3D (dashed) flexible

The existence of the non-planar variabi¢ i the equations of motion of the 3D model
alters the orbit of the tether, but at a smaltades It is shown, in Figure 4.23 (c1) that the
maximum difference within the simulation time 9014 meter and the difference of the

true anomaly is insignificant and within the ramged x 10 rad, as shown in 4.23 (d1).

The local displacement of the tether, Figure 4stgws that both models displaying the
same trend, where the longitudinal displacementinisreasing and the transverse

displacement is decaying, with the increase of &fran time due to the stiffening effect
cause by centripetal force.
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Figure 4.23 : The difference in orbital parameters

MMET on an elliptical orbit.

(©
Number of Orbits
0 2 4 6
100F ‘ ‘ ‘
80r
E 60 3
7 g
20-
0 ,_M I I I
0 10000 20000 30000 4000C
time(s)

Figure 4.24 : Longitudinal and transverse displacem

model of the MMET on an elliptical orbit.

Chapter 4

()]
Number of Orbits
2 4

0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.000Z
0.000

Differenceof R(m)

10000 20000 30000 40000
time(s)

0

@D
Number of Orbits
2 4

8.x 10711 0
6.x 10711+
4.x 10111
2.x 1011}

i

—4.x1011}
0

o

10000 20000 30000 40000
time(s)

between 2D and 3D flexible model of

(B)
Number of Orbits

20
10§
0§
w0}

20}
0

10000 20000 30000 40000
time(s)

ent of 2D (line) and 3D (dashed) flexible

86



Chapter 4

The longitudinal displacement in Figure 4.24 (exjpear to have unbounded exponential
growth as compared to the transverse vibratioroth BD and 3D model. This phenomena
is only occurs when torque applied to the tethdris phenomenon can be explained by
taking the relationship between the force and stfai a uniform cross section of a string

as given in equation below,

(4.42)

Where ¢, is the axial strain and define by the axial disptaent;ﬂ. In the case of
X

spinning tether, the source of force comes fromce@ripetal force. Therefore, substitute
the displacement in axial direction to equatiord?3.gives the relationship between the

force to the displacement as equation below,

F=gadl (4.45)
dx

Therefore, when the torque is applied, the centigerce is increased and for a constant

Modulus ElasticityE and tether’s cross sectidy the displacement will be increased too.

4.13 Conclusions

The study of the 3D rigid body model of an MMET ltasnpared the response of the rigid
body model with a massless tether model. The d@sivaf the EOM for the rigid body
model has included rotational kinetic energy, hattin the massless tether model, and this
leads to differences in the simulation results.sTétomparative study between the three
dimensional flexible model and the former rigid padodels shows that flexible model
has lower response as compared with that of thé bigdy model. This study shows the
influence of mass in tether's motion. The applwmatiof torque has increased the
longitudinal displacement but the transverse dptaent shows the decaying phenomena
due to the stiffening effect of rotating tether.idtstudy also shows that relationship
between planar and non-planar motion is found tsigeificant for the global motion of
the tether.
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Dynamic Boundary Conditions

5.1 Introduction

This chapter presents a more complete continuumetrodvhich transverse flexibility is
accommodated within the tether model; and the madeldes appropriate dynamic
boundary conditions, which provides further fidglim the representation of the dynamics
which may not otherwise be seen. The boundary tiondi lead to a specific frequency
equation, and the Eigenvalues from this provide rthtural frequencies of the orbiting
flexible motorised tether when static, acceleratmgpin, and at terminal angular velocity.
A parametric study of the nonlinear dynamical modietusing on transverse vibration,
shows the relationships between the angular veglotite natural frequencies, and the
predicted linear mode shapes of the system. Thidyshvestigates the MMET responses
for two different dynamic boundary conditions: theed-attached mass condition, and
when both ends are attached to masses. The dafimitof these two conditions are
explained in the section 5.2 and 5.3. The diffeesna the modal responses when applying
the dynamic and static boundary conditions arellggted and discussed, providing more

insight into the subtleties of the dynamics of mised orbiting space tethers.

5.2 Fixed-Attached Mass Boundary Condition

The study starts with the derivation of the equai@f motions for a flexible tether,

governed by a fixed-attached boundary conditioni{dgtch, 2001) and (Rao,2007). This
boundary condition is based on the assumption tthatcentral facility is so massive as
compared with the payload that the tether sub-spapseriences the equivalent of built-in
ends at the connection with the central facilitygufe 5.1 shows the configuration of
MMET in (a) and the assumed configuration of thermtary conditions for this case taken

from configuration of MMET is shows in Figure 54)(
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(b)

Mmyg L Mil/MpZ

Figure 5.1 : (a) Configuration of MMET (b) Schemati ¢ diagram of masses connected to the

tether sub-span with fixed-attached mass boundary ¢ ondition.

Therefore, the displacement boundary condition heg tixed end wherex=0 in the

transverse direction is given by,
v(0) =0 (5.1)

In the case of transverse displacement, the arfgtkeftection in transverse direction as

shown in Figure 5.2 is given by,

ov .

— =sind (5.2)
oX

ZorY
T
Tsinf
(o}
> X
I Tcost

Figure 5.2 : The deflection angle of the string

where T refers to the force acting on the string. ReferdagFigure 5.1, the boundary

condition atx=L is given by,
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ov
T
) ()4

=-M,V ®.3

x=L
x=L
The nth mode of vibration is represented by means oémamation of variables in the

transverse direction, and is given by equation3Bi2 Chapter 3. The general solutions for

the spatial and temporal parts are given by equsiid.34) and (3.35) leading to

v(x,t) = (AV sin® x + B, cos™ XJ(CV cosw,t + D, sina,t) (5.4)
c c

where the subscripVt” refers to the value in the transverse direction.

Equations (5.1) and the spatial part of (5.4) asguation (3.34) give,
B,=0, 1P

and hence equation (5.4) reduces to
) .
v(x,t) = (AV sin— XJ(CV cosw,t + D, sina,t) (5.6)
c

Equation (5.6) gives, after differentiation wittspect to time,

% =A %cos% (C, cosa,t + D, sinet) (5.7)
2
% =-A W’ sin%(Cv cosw,t + D, sina,t) (5.8)

Substituting equation (5.7) and (5.8) into (5.3)4sL gives,

\

L . .
T()A, %cos% (C, cosw,t + D, sina,t) = M p A @, ” sin ac

(5.9)
(C, cosayt + D, sinyt)

and equation (5.9) can be reduced to,
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L
=tan “ (5.10)
M w,C c

Equation (5.10) can be rewritten as a transcenbeqtetion, given by,

a,tana, = g (5.11)

where,

a,=%" and p=T- (5.12).(5.13)
C M _c

p

Knowing that from equation (3.27():\/f, and substituting this into equation (5.13),
Yo,

leads to
L
e l\% (5.14)

Equation (5.11) is a frequency equation which haganite number of roots. For the nth

root, the equation can be written as,

w,=—~ n=1,23... (5.15)

Taking the first mode of vibration, the mode shapeesponding to the natural frequency

w,, is given by,
E(X) = A, sin%x (5.16)

Applying a simple normalisation in the form & =1, the mode shape for the transverse

vibration becomes,

&(xX) = sin%x (5.17)
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Using the default tether’'s parameters value definesection 3.5, and a constant angular

velocity of 0.2 rad/s, the first five roots for edion (5.11) are given as in Table 5.1 below,

Roots Value of a,,
1st 1.571
2nd 1.742
3rd 4,719
4th 7.857
5th 11.000

Table 5.1 : Roots of equation (5.11)

The roots in Table 5.1 were substituted into equiab.15) and generate the modes shape
as shown in Figure 5.3. The plotted mode shapégigyhdependent on the end mass in

which in the tether case, the end masses refeetpdyload masses.

o 1st Mod: 1.0 2nd Modk 1.0 3rd Modt
0.6 0.5 O.SV\ /
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2000 4000 6000800010 00C
05 05
2000 4000 6000 800GL0 00C— 1.0 1.0
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2000M000 6000 800810 00C 2000 4040 6004, 800610000
—0.5f -0.5}
_10 _10

Figure 5.3 : Modes shape for the transverse vibrati on governed by the fixed-attached

2000 4080 6000 800010000

boundary condition

5.2.1 Equations of motion

Substituting equation (5.17) into the kinetic aramtemtial equations given by equations
(3.74) and (3.75) in Chapter 3, and applying thegrange’s equation gives the equations
of motion derived for transverse vibration in onemeénsions for two translational

generalised coordinatié and g, and two rotational generalised coordinagesind 6 .
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2 .
2pALQ,q, + M 49,4, Sin L —’OACOqusin 2wl G+ )+ §,oA|_3+1|\/| r2
212 p TH2H2 6 o Vmlm
Cc 1) c

LY pAcq . (2wL) 1 }
2M Jq; sin( (‘; j - Pzw% sin( CV J+§,0ALrT2 +pALQ; +2M JL* + M prpzj(ﬁ +z//')
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J
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~7=0 (5.18)

M LRy cosy
(L? - 2L cosyR + R?) 2

M, +2(pLA+M )R+ ”'I;/'Zm ~(M,, + LA+ M ))RE? -

M LRucosy MM R MM R
(L2 + 2L cosyR+ RZ)/ (L2 - 2L cosyR + RZ)/ (L2 + 2L cogyR+ R?) 2

,upAL( (2 o 1) Lcosy + ZRJ

i=1 i —1)2] 2 - %
2n((2' 1)2L _(2.n 1) LRcosz//+R2J

4n?

. ,u,oAL[ (2 l) Lcogy + ZRJ
- =0 (5.19)

-y CoaN2p2 - %
2n[(2' DL @1 LRcoszsz
4n n

(g,oAf +2pALR? + M R? +2M L% +2M R’ +%M N +%,0ALrT2)9
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+ (2R(2,0AL +M, +2M p))R6?+ (,oAqu2 - pg;:)qj sin ZLCwV +2M g2 sin’ wé"j(é +[/])

v

+(2,0ALq2q2 _PACGY, G 2AL |y 20,0, sin ZwVLj(é?Hﬂ)
w c c

2
+(gpAL3 +2M 12 +2M 12 +%|v| A2 +%pALrT2j¢] +([2M L+ 2P Jsinwvl' -
Cc

Vv

¢, =0 (6)2
()] C

Vv

L
2pALc o w, J..z

PAL — PAC sin—— 2oL +M —ZwVL]qz +(12wVL +8csin 2L +csin ZwVLJ
2w ¢ c c c
a)(AE-T,) q + T (aﬁ(Zch, +csin2%Lqu +
32¢* 2 2w, c 2
PA 2w, L 2 20, L
-2w,L |—2M o+
(2w(csm ; @, o Sin? ; ( gl/)
(ZLsinwVL _2pALe o wb 2,0A2<:2 sinwVLJ(é +gZJ) =0 (5.21)
c @, c c

5.2.2 Tether Simulations

The default data for the MMET have been used to si@ule motion for the tether on a
circular and an elliptical orbit. The initial conidihs used by for simulation on the circular

orbit are as follows:

¢(0)=-0.9rad,y(0) =0.2rad/s,v(0) =0 rad,v(0) = Qad/s (5.22)

The zero or near to zero initial condition for arguvelocity has shown generation of
infinite expression when integrating equations §%.10 (5.21) using equation solver
NDSolvein Mathematica. Therefore, larger values have been used for thialimibgular

velocity and the initial condition for angular digpement taken from Ziegler (2003).
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5.2.2.1 Circular Orbit, unmotorised

The motions for the untorqued condition are showrkFigure 5.4. The non-zero initial
condition of ¢[0] contributes to the monotonic increase of the té&hemngular

displacement, but not the angular velocity in whilca response is still in the oscillation
condition in both boundary conditions. These restdis the fixed-attached boundary

condition are compared with the results from thedehousing the static boundary

condition.
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Figure 5.4 : Responses for the tether on a circular orbit with the fixed-attached boundary
(red) condition and the static boundary condition ( blue)

Figure 5.4 shows the comparison in the responsegeba these two models. The angular
velocities for fixed-attached boundary conditiondaband static boundary condition are
both oscillating, but the fixed-attached boundasgdition model suggests a lower natural

frequency but achieved a higher value for the maxrmnangular velocity as compared with
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the static boundary condition. The significant défece in the transverse displacement
shows that the amplitude achieved by the fixedchttd boundary condition is higher, with

a maximum value of +/-30 m whilst the static bourydaondition is +/-0.03 m.

5.2.2.2 Elliptical orbit, unmotorised

The differences between the responses of the tiethdifferent boundary conditions on an

elliptical orbit have been simulated, and are showrRigure 5.5.
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Figure 5.5 : Responses for tether on an elliptical orbit with e=0.25 for fixed-attached

boundary condition (red) and static boundary condit ion (blue)
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The angular displacement shows similar respons#tettether on a circular orbit, but the
angular velocity of the tether with fixed-attacheolundary condition shows a significant
difference. The maximum angular velocity achievedhy model is marginally higher, as
compared to the static boundary condition model. ffhesverse vibration also gives a
similar response to the tether model on a circatait, in which the maximum amplitude
for fixed-attached boundary condition is +/- 40 mdahe static boundary condition is

around +/- 0.02 m.

5.2.2.3 Circular Orbit, motorised

For the condition in which the motorised tetheoperating on the circular orbit, equations
(5.18) to (5.21) were numerically integrated with applied torque of 2.5 MNm, and the
initial conditions were adopted as shown in equefn22). The result for the integration is
given in Figure 5.6. The angular displacement arglikan velocity for both models show

growth within the integration time, achieving theirsup condition, and the difference
between both models can be captured from the Figugan which the static boundary
condition case reached a higher angular velocitythat end of the simulation time,

compared with the tether with a fixed-attached ntaasdary condition. This shows that
the choice of boundary condition could influence gdiobal motion of the tether system.
The transverse vibrations in both models undergayleg phenomena similar to the
simulation results presented in Chapter 3 and @nagptfor the motorised condition.

Despite having higher amplitude of the displacemeahe fixed-attached boundary
condition model decays faster than static boundanglition case.

5.2.2.4 Elliptical orbit, motorised

The responses of the tether with the fixed-attad@ahdary condition on an elliptical

orbit are shown in Figure 5.7. The expected resmoase portrayed in which the decaying
phenomenon occurs in the transverse direction.rdstidg phenomena in transverse
displacement is discovered where the displacengemdreasing (in global motion the

trend is decreasing) every time the tether mowssitds perigee. However, the differences
between the angular displacement and angular ¥gloéithe fixed-attached boundary
condition case with the static boundary conditioadel are inconsequential, with both
models achieving spin-up conditions with the amilan of the torque. The difference in
the angular velocity is shown in Figure 5.8.
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Figure 5.8 : Difference between the angular velocit vy for the tether with a fixed-attached mass

boundary condition and static boundary condition

5.2.3 Comparative study of the natural frequency

The different boundary condition cases give diffefeaquency responses of the model.

The frequency equation for the static boundary dwrdis given by,

=N |—s, n=1,2,3... (5.23)

and for the fixed-attached mass boundary condition, the frequne/given by equation

(5.15).

Based on these two equations, it shows that for the first rfiedg, the value ofQ, is
higher thanw, in the calculation for the same parameter values of the MMET. Figare 5
shows the frequency values for both models in the unmotoriselitiom and it shows that

Q,> w,.
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Figure 5.9 : Natural frequency for the first mode s hape for the tether with a fixed-attached

boundary condition model (red) and a static boundar y condition model (blue)
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5.3 Boundary Conditions where Both Ends of the Sub
span terminate in Masses.

The derivation of this boundary condition is based on d&am of string model by
Cartmell (1999).

<

Figure 5.10 : Schematic Diagram of masses connected to the tether sub-span

Based on Figure 5.10, the boundary conditions for the tethspane in the transverse

direction are given by,

(5.24)

m |x=rm

ov
T(rm)&

X=In

T(L—rp)% (5.25)

v
P lx=l —Tp

x=-r,

T refers to the tension from the centripetal force acting on the tether.c@&htral
facility, M, feels an outward pull due to the reaction of the centripetal load, ashére
tension of the tether at the connectiorMpis almost zero. From Figure 5.10, the position
of an arbitrary point along the length of the tether is givenr, layd at the connection ké,
the position is actually given dy— r, wherer,, is the radius of the payload. Therefore, the

tether tension at = rp andx = L —rgiven by,
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T(ry,) =(L—rm)w2[w+l\/lpj (5.26)

and

T(L_rp) :(L_L+rp)¢/2(pA(L_L+rp) +ij

2
PAr
:rpwz(T’prj (5.27)
Equations (5.26) and (5.27) give the boundary conditiotisartransverse direction for the
tether as,
(L-r ) M+Mp Ll p——v—y (5.28)
2 ox| _ Xm
of PAT, ov .
N7/} [T+ M, &X:._, =-M pvle_rp (5.29)

The general solution for the free vibration of a string are given bgteops (3.34) and
(3.35) in Chapter 3, and the first and second derivatives of the geo&rabn are given
by equations (5.7) and (5.8). Substitutions of (5.7) int®4)band equation (5.8) into (5.25)

give the boundary conditions &t r,, in the transverse direction as,
T~ =M,@B, (5.30)

and atx = L-r,

T(L- rp)( A, cos&(L =r,) _Bay sinﬂ(L - rp)j =
C C C C

(5.31)
2 . W, w,
M @, (AV smT(L -r,)+B, cos?(L - rp)j

Substituting equations (5.26) into (5.30), and (5.27) i(8®31), and rearranging the
equations, lead to the following equations for the transverse directio
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R(L—fm)wz(w“\/' pj%—Bvawf =0 1)

Ar w,(L-r w,(L-r
Av[rpz/xz[—p p+ijﬂcos—v( p)—Mpa)vzsin—V( p)J—

2 (o C c
(5.33)
Ar L- L-r
Bv[rp 2[/02‘3 +ijﬂ . p)+Mpa)vzcosMJ:O
c C c

Equations (5.32) and (5.33) represent a systenwof gairs of homogenous algebraic
equations in the two unknown constafisand B,. These equations can be rewritten in

matrix form as;

(L_rm)l//Z(pA(L_rm) +M pjﬂ
2 (o
(rpz// (,oArp +M jw os—w"(L_rp) -M af sin—w"(L_rp)]
2 c c c
-M_ &t A 0
_(rpr(ﬂ + M pjﬂsinw + M a) COSQJ { } {0}
2 c C C v

(5.34)

Equations (5.34) have the same determinant of dleéficient matrix, and this is set equal

to zero for a nontrivial solution &, andB, to obtain the frequency equation as,

c

(1 - o PAL-T1,) @, PAr, @ cq,(L—r)
D o

oo ae[ {2, o

c

-M a{,zsm @t —r)j 0

(5.35)

Solving equation (5.35) by using typical data toe MMET will give theEigenvalues, and

hence the natural frequencies corresponding tothmal modes aepresented by (X).

Equations (5.32) and (5.33) are two homogeneolealirequations that can be used to
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determine the constarg andB, in equation (3.34). These equations can be regechas

below:
A, =¢,B, and A, =¢c,B, (5.36),(5.37)
where
M _af
C = ,oA(rIi —Vr ) (5.38)
(L—rm)w{ , Mp]g
and

{rpr(pArp +M pj%SinQM +M pa)\f COM]

2 c c c
C " Ar (L-r.) (L-r.) (5:39)
? P00 oM [ BcosB Ty e sin ST
. 2 "¢ c P c

Computer algebra is used to verify that=c, as implied in equations (5.36) and (5.37)

under the conditions explored here. Therefores isufficient to only solve one of the
eqguations, either (5.38) or (5.39), in order toanbthe mode shape functions. Rearranging

leads to an equation for the modes, this can bitenras,
&(x) = B{cosﬂx+ Y, sinﬂ x} (5.40)
c c

where y, is defined as,

M 0, (5.41)
(L _ rm)t/,z(,OA(LZ— Mm) +M pja’v

V.=

c

5.3.1 Relationship between the angular tether spin velocity and
the natural frequency

A parametric study of the nonlinear dynamical magletovers a relationship between the
angular spin velocity of the tether; the naturabjffxencies in free, undamped vibration; and
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the specific chosen mode shape of the system.rél@gonship is defined by the following

equation,
l//2
B, = o A (5.42)

wherek is a constant given by

2

k =
L['OAL+M j%
2 ] c

(5.43)

From equation (5.42) it can be shown thatgor 0, B, is equal to zero and consequently
A, become infinity as zero value ¢f divided with zero value 0B, . This also leads to a

natural frequency equation from (5.35) which beceme

! sin(—LjM wM, =0 (5.44)
for which c = \/fand the tensioil is given by,
P

T =(L—rp)¢/2(w+lvlpj (5.45)

For ¢ =0, the value ot and thereforequation (5.45) are equal to zero. In order tcsBati
equation (5.35), the frequenayhas to be zero, as the valuecoh that equation is zero.
Therefore, equation (3.34) is satisfied whgr=0 and gived3, = Q A, is in infinity, and

w, =0, for which the mode shape functiog$x) are equal to zero.
Unless stated otherwise, all the results were geée@rusing the default data. The linear

relationship between the angular velocity and taeiral lateral and transverse oscillation

frequency is plotted in Figure 5.11 using equa(®35).
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w, (rad/s)

002 004 006 008 0.10

——————_y(rags)

Figure 5.11 : Relationship between transverse oscil  lation frequency and angular velocity

5.3.2 Mode shapes

The vibration frequencies of two geometrical casdsere the tether length is expressed as

(L-r,) as defined in section 5@nd then as) are then compared with the vibration

frequencies of the tether with both ends fixed.l&@&h2 shows the first to the fifth natural
frequency for each condition, and the five modepskafor these three conditions are
plotted in Figure 5.12. The term “static BCs” inbl@ 5.2 and Figure 5.12 refers to the

static boundary conditions.

L (L-rp) Diff 1 Static BCs

Parameters 1 4 1 Diff 2 (%)
(s9) (s7) (%) (s9)
w1 0.0001823 0.0002062 13.12 0.0003644 99.90
2 0.0005468 0.0005558 1.64 0.0007287 33.26
3 0.0009114 0.0009168 0.60 0.0010931 19.94
a4 0.0012759 0.0012798 0.30 0.0014574 14.23
ws 0.0016404 0.0016435 0.18 0.0018217 11.05

Table 5.2 : Natural frequencies of three different  conditions (Diff 1 is the percentage

difference between the case of L and (L-r,) and Diff 2 between the cases of L and static

boundary condition)

The natural frequencies calculated for the tethiégh fixed ends are given by equation
(5.23). In comparison, the natural frequenciestiier static boundary condition are higher

than those for the dynamic boundary condition cése¢he dynamic boundary condition
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case, the use ¢f. —r,) increased the natural frequency of the systempagpared to the

calculation using the full length of the sub-spaveg byL. This conforms intuitively to
the physics of the tether, where the shorter tetlasra higher natural frequency than the

longer tether with the same load applied for both.

‘ ‘ ‘ 8= | (m)
2000 4000 6000 8000 10000

3 L (m)
G009 8000 10000

-0.5}

Te,

Figure 5.12 : The first five mode shapes forthe L (red,line), (L-rp) (blue,dashed) and fixed
end conditions (black, dotted).

5.3.3 Third order derivative of psi (@)

Equations (5.40) and (5.41) have been substituterthe energy equations to derive the

equations of motion for the system.
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The equations of motion for a circular orbit haveeb derived for two generalised
coordinates: defining the angular displacememt and the transverse displacement
denoted byq,. The routine differentiation of the angular velgcitenoted byy, in the

kinetic and potential energy equations, and thetnéu differentiation with respect to time

in Langrage’s equation, gives a third order derixeadf ¢, in the equations of motions for

the system with dynamic boundary condition, asigufe 5.10.

The study established that the third order demeats just ing/, and not in one of the

actual generalised coordinates defining the vibratof the tether. This third order

derivative ofy physically refers to a jerk in the system, whitlowld clearly be spurious
for this tether problem. Thereforg;, should in the case be considered as a constant or

very slowly varying quantity and not as a geneealisoordinate.

5.3.3.1 Constant Value for Angular Velocity

When ¢ is removed as a generalised coordinate, by subsgta constant value for
angular velocityy, into the Lagragian model for transverse vibratithnis appropriately

reduces the complexity of the equation of motioime Tource of excitation is now from the

angular velocity, and the response is given bwtheation modes.

Figure 5.13 shows the responses of the tetherdtaudt values of th&MET parameters
with ¢ = 0.01 rad/s and = 0.0126 rad/s for a simulation time uptte 3000 sec. The

results show that the tether undergoes steady ssailation in the transverse direction
with a maximum amplitude of 40 m. In a longer pdraf simulation time, the amplitude

remains unchanged, as shown in Figure 5.14.

The simulation results also show that the systermads sensitive to small changes
(9,(0)<1) in initial conditions Figure 5.15 shows the tether's responses at thwlini
condition g, (0) =0.01, 0.1, and 1.0 metres and the difference aignificant. But, for the
different value of g,(0)as shown in Figure 5.16, the responses show afisemti
difference in each of the initial condition withgeire 5.16(c) and 5.16(d) perhaps showing
fewer higher harmonics when compared to the fist igures, 5.16(a) and 5.16(b). This

shows that the tether needs a larger value of nit&li condition of g,(0)to have a

significant impact on the tether response.
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Figure 5.13 : Tether's response for (/' = 0.01 rad/s, w=0.0126 rad/s over 5000 sec
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Figure 5.14 : Tether's response for (/' = 0.01 rad/s, w=0.0126 rad/s over 50000 sec
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Figure 5.15 : Tether's responses with initial condi  tion of g, at (a) 0.01 (b) 0.1 (c) 1.0 metre
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Figure 5.16 : Tether's responses with initial condi  tion of (,=0.01 and at (a) 0.01 (b) 0.1 (c)
1.0 (d) 1.1 metres

By using a constant value for the angular velocibg complexity of the equation of
motion has been reduced, and a simulation to getether’s response ran smoothly. This
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means that the tether needs to be set to a degtedity for the payload transfer from the
start of the operation time and maintained at tbiathe duration of the simulation time (as
compared to the normal operation of the tether, resnthe angular velocity will be

increased gradually from zero to the desired vgjpand then the payload is released).

For the default value of thBIMET, with the angular velocity at 0.062 rad/s, rihen

releasing the payload to the desired orbit thestethsponse is as shown in Figure 5.17.

o o12f
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400; l ,
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~400- M
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time(t)

Figure 5.17 : Tether’s response for an angular velo  city of 0.062 rad/s

In order to get a better result, one needs to asmehe working precision of the calculation
of Mathematica' simulation. The lower working precision is likelg have a round-off

error in the calculations. For this study, the wiogkprecision is set to 20.

5.4 Mode Shape Equation for Axial vibration

The study continues with investigation of longitali vibration with both selected

boundary conditions.
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5.4.1 Case 1 : Fixed-Attached Mass Boundary conditi  on

From Figure 5.18, the forces in longitudinal direstacting on the tether is given by

following free body diagram,

§%v
— Mp? (L,t)

v T (LY

Figure 5.18 : Free body diagram of forces action in longitudinal direction.

Based on Figure 5.18, the boundary conditions fgedF attached mass boundary

condition in longitudinal direction a&=0 is given by,
u(0,t)=0 (5.46)
and atx=L, the boundary condition is

du du
T(-r,)—+EA—
( p)ax ox

=-M U

Py o -
x=l o

43)

x=l ~Ip

Noting that,% in the first equation on the right hand side refer angle made by the
X

deflected string with thg axis. From Figure 5.2 the angle of deflectionxrabdirection is

given by,
ou cosd (5.48)
0X

and for smalb, cosé is equal to 1. Therefore, equation (5.47) becomes,

T(-r,)+ EA% SEVN: (5.49)

x=l ~p

x=l-ry
Furthermore, the second equation on the right sl in equation (5.49) represents the

tensile force and that expression which relateseostress, longitudinal rigidity and strain

tensor in axial direction is given by,
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P =0A = EAs(X) (5.50)
. : : u
Where ¢ & )is the strain tensor and defined %y (Fung ,1994).
X

The nth mode of vibration presented as separatiofamables in theu direction given by
equation (3.22) and for the first mode approxinrategiven by equation (3.23) in Chapter
3. Rewriting the general solution given by equaidB.34) and (3.35) and the general
solution for axial direction is given by equatidmsow,

Ax) = A, sin%x+ B, cos%x (5.51)
g,(t) =C, cosw,t + D, sina,t (5.52)

and leading to the similar equation (5.3) but egpirgg in axial direction gives,

_ Wy W, :
u(x,t) =| A,sin . X+ B, cosTx (C, cosw,t + D, sina,t) (5.53)
Equation (5.46) reduces equation (5.53) to the¥alhg equation,

u(xt) = (AJ sin% xj(Cu cosw,t + D, sina,t) (5.54)

and derivative of equation (5.54) gives,

% = A, “ucos™¥ (c, cosw,t + D, sinayt) (5.55)
X c c

92u ) . WX .

ek -A,®, smT(Cu cosat + D, sinay,t) (5.56)
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Substituting equation (5.55) and (5.56) into (5.4@=L-r, gives,

L —
T(L-rp)+ EA{AJ &COSM(CU cosw,t+ D, sina)ut)J =
¢ ¢ (5.57)

2 . wu(l—_rp) .
- AW, smf(cu cosw,t + D, sina,t)

Equation (5.57) has four unknowns which could netsolved with one equation only.
Therefore, equation (5.52) has been simplified &gucing it into a harmonic solution

(Rao, 2007) as the following equation,
g, (t) =sina,t (5.58)

Rewritten equation (5.54) accordingly, gives
- e :
u(xt) = Ajsme sina,t (5.59)

and the derivatives of equation (5.59) are,

ou w, w, .

ax (AJ—C cos?xjsma)ut (5.60)
0°u

Fi =-Adf sm— x(sinay,t) (5.61)

Substituting equations (5.60), (5.61) and (5.26) eguation (5.49) at=L-r, gives,

ol ( LY ]+E{&—cosw]smwut

! (LC_ ") (sinayt)

(5.62)
=M Al sin——=
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Rearranging equation (5.62) gives,

PAr
pwz[ P

smwut( A(A, COSQJJ +M  af sin

|
5.63
@, (L-rp) o9
C

Substituting equation (5.63) into equation (5.5@sents the mode shape function as,

PAT,
pl//( 5 +M J
Ax) == - — sin%x (5.64)
smwut[ {&COMDWMQ”M

5.4.2 Case 2 : Boundary condition when both ends of sub-span
terminate in masses

In this case, the free body diagram is given byfdlewing figure:

P4+Tir ¢ !
M, ——» +___|;_m_j|_ ———————— 4 s S S B Mp
! P+ -r,).0)
I
-— ' S ——
Ay A
" aee P

Figure 5.19 : Free body diagram of acting forces in axial direction for mass-mass boundary

condition
T(r.)+EAY =M, _ (5.65)
ox _— X=Tp
ou
T(-ry)+EA—= U 5.66
(1=rp) +EA_- M (5.66)

Substitution of equations (5.55) and (5.57) andrgeetal force equation in equation (5.27)
into equations (5.65) and (5.66) gives,

115



Chapter 5

c C C

(I-r)y [’CA(IZ )+M j+EA&[AJ cosﬂrm—Bu sinﬁrmjsina)ut:

M, sincut(A, sinﬂrm +B, cos™ rmj (5.67)
c c

c

rp w,(-ry) @ (-r))
r(//[ +M J+EAT(A, Sf B,s —Jsma}ut:

+ B co

u

C Cc

(5.68)

M &’ sinax(AJ sinM SM]

Rearranged equation (5.67) and (5.68) gives,

. W o)
A, smax[ EA—"cos—r, - M, w,’° sm—”rmj
c c c

. w, . W w | -
-B, S'nwut(EA—”sm—“rm + M, cos rmj+(| 1 ["L‘( ') j 0
C

c c
(5.69)
&Sinm(EA%)cosw M & smw(I . )j Blsma{EA—smw(l ;rp)
+Mma72 co C'xl c—:rp)j+rp¢/2(pA2rp +|\/|pj:0 (570)

The arbitrary constant of\,and B, are solved by using special function nansaivein

Mathematicd" as given in Appendix D. Substitution of the resuiftto mode shape

function in equation 5.51 and applying the simpétion gives,

d(x) = (cCscm(ZM f,(l —rp)cwsina + M , (Al (2E cosa + dewsina -
2Ar_(Ecosa + dewsing) + pAcar 2 sina — 2r, (EAcosp + cwsin B) +
PA(EAIZ cosa - EAr, cosa (21 +1,,) - (EACOsf + M cawsin B)r 2))y?)/

(2 EAEASING - M jcavcosa) + M caXEAcosa - M cwsing))) (5.71)
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where

-L _
c=\/§,a=% andﬁ=M (5.72, 5.73, and4.7

Both cases of boundary conditions presented here peoduced a very complex mode
shape equation inclusive with functions with regaad time term. The example of the
mode shapes using equations (5.64) and (5.7Ghenen in Figure 5.20 below using the
default data with constant angular velocity givgnyb= 0.2rad/s ande = 0. 000072ad/s

for equation (5.64) angy = (Q&d/s andw = 0004ad/s for equation (5.70) &tl s.

#(X) (X%
120- (@ 4000} (b)
100F
[ 2000r
80r
60; “\“‘\“\“‘\“‘\L(m)
40: 2000 4000 6000 8000 10000
i ~2000-
200
L 1 1 1 1 Lm _ [
2000 4000 6000 8000 10000 (M -4000

Figure 5.20 : Mode shape for : (a) fixed-attach mas s boundary condition, (b) both end of

sub-span terminate in masses boundary condition for L = 10000 metre

5.5 Discussions

The equations of motions for the flexible tethevegm by the boundary conditions in both
conditions in equations (5.46), (5.47), (5.65) &®6) are long and complex. Due to the
complexity of the mode shape function, the deroratf equations of motion need a very
long computation time and also a powerful computeterm of its memory to execute
integrations of the nonlinear ordinary differenggjuations. The equations of motions were
integrated inMathematica" using a special computer server that has 20GBAN Rout

failed to execute after 10 hours of simulation tueeported low memory errors.

The equation of motion for fixed-mass boundary dtowl is given in Appendix EThe
mode shape function for boundary condition wherin lemds of the sub-span terminate in
masses as in equation (5.70) is more complex thaat®n (5.63) makes the computation
inexecutable with the current single unit compugerspecification. A test run was
conducted and the integrations were terminated tduasufficient memory of a unit

computer.
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In order to overcome the problem, it is suggestestidy the longitudinal vibration of the
flexible tether by using the simplest model in eptanas presented by the author in
Chapter 2. The other option is to develop a pdratiemputing method where a number of
computers will work together to form a bigger meyntw run these complex equations.
But, this option is subjected to the availabiliytbe software and hardware to set up the

parallel system.

A numbers of literatures up to author's knowledge asing simple boundary conditions
and some of them abandon the spinning phenomederiving the equations of motions.
The study by Misrat al. (1986) in three dimensional vibration of tethesadellite system
were using static boundary condition for transverdg®ation, and fixed-attached mass
boundary condition for analysis of the longitudingbration. However, the model was
only including the aerodynamics force and the dquatof motion derived for non-
spinning tether. The derivation of equations of ioroty Misraet al. (1986) were using
variational formula and the results of tether’s imtion have shown that the longitudinal
strain was dependent on the transverse displacethemigh the nonlinear term in the
equations of motion. Luongo and Vestroni (1994)k#tmun and Fujii (1996) and Misra
and Cohen (2009) all applied fixed-attached massntiary condition in deriving the
equations of motion for their non-spinning tethesd®l. The study of spinning tether by
Min et al. (1999) has different spinning axis as comparetthéomodel used in this thesis.
In that study, Miret al. (1999) model’'s was assumed to spin about thertettie and they
found that the longitudinal modes have higher fesguy than the transverse mode and not

significantly affected by variation of the nominahsion.

The study of longitudinal vibration for the rod,rl@ beam that spin around the centre of
mass are a good basis in studying the longitudii@étion of the tether. A study by Shum
and Entwistle (2006) on the whirling rod that hassaof rotation as in Figure 5.21, has
proposed that the tensile force is equal to theripetal force derived from the physical

law similar to equation (5.50) , given by,
L
EAs(X) = j PA(X+U)Q%dz (5.75)

where €  )is the strain tensor and is the angular velocity.
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Figure 5.21 : Geometric configuration of a statical  ly rotating about the axis of rotation,
(Shum and Entwistle, 2006)

In this current study, a quantitative analysis bagn carried out to look for relations
between the centripetal force and the tensile fofbe calculations are made by using the
default tether data witly = Q:&d/s. Table 5.3 shows the comparison of the caticul’'s

results for the force acting on the tether usingagigns (5.26), (5.27) and (5.50).

Centripetal Force

Positions (m) Tensile Force (N)
(N)
X=Tph 130465 N -130454 N
X=1-r, 5.00008 N -7.96144 N
Table 5.3 : Total Centripetal force and tensile for ceat X=r, and X=1— o

The results show that both forces are having alniostsame values but in different
direction (indicated by negative sign). This sudgedhlat the tensile force is the reaction
force to the centripetal force which agrees withuampn (5.75) given by Shum and
Entwistle (2006). Therefore, applying the relatioipsbetween centripetal force and tensile
force in equation (5.75) on the fixed-mass boundarydition for longitudinal vibration at

x=1-r,, gives,

=—M (5.76)

p = -
x=l-rg

ou
T -1 )—
( p)ax

x=-r,
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and using the same procedure in deriving the mddes as in section 5.5 gives,

rpwz[pz Sy p]
@ (x) = — sind x (5.77)
Mo sin?(sina)lt) ¢

The derived equations of motion that substitutedrnttode shape function of equation 5.77
are also long and complex. The integration of #usiation of motion using available
computer is almost impossible as the program waraihated due to insufficient memory

to execute the job. Therefore, this approach has Bbandoned.

5.6 Conclusions

The selection of mode shapes and boundary conditiane significant influences on the
global motion of the tether. This study shows meszahie differences between the natural
frequencies of the system with static boundary twmns, and dynamic boundary
conditions. The physical parameters also contribaitdhe changes in the response of the
tether. In this study, it has been found that therter length of the tether denoted by

(I'=r,) has a higher natural frequency as compared tdefeult length of the tether given

by l. In addition, the natural frequency for the stiimndary condition is higher than that

for the dynamic boundary conditions.

The third order time derivative @¢ appeared due to the differentiation of the modgsh

function in the kinetic energy equation and themrapon within Lagrange’s equations,
which contributed adversely to the complexity oé thquations of motion. Th¢ has
since been taken as a constant, in order to rerttev¢hird order derivative ofy . The
tether's response has been studied, and the resfuttee simulation show potential for
steady state oscillation in the transverse diractamd that the tether has less sensitivity to
small changes in the initial condition gb. The mode shape function of longitudinal
vibration is more complex as compared to the trarsgvibration. The study shows that
the derived equations of motions were inexecutabl@ need higher memory to run the
task. Therefore, it is suggested to study the tognal vibration with the simplest model.
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Dynamical System Analysis

6.1 Introduction

In this chapter, an analysis of the non-linear b&ha of a flexible tether has been
conducted using dynamical system tools for the utaton of bifurcations, Poincaré
mapping, and phase space phenomena, as startemugihgvby Ziegler (2003) for
representing the behaviour of the dumbbell tetlgstesn, and in this thesis for the flexible
tether model. The influence of orbital parameterd the flexibility of the tether in the
orbital motion have been investigated by explotting boundaries between libration and
tumbling, and therefore also the boundaries betwegualar and chaotic motion. This
chapter also includes an analysis of the capalufithe tether in generating useful velocity
increments through orbit-spin coupling. Finallye thynamics of coupled motion between
the out-of-plane and orbital parameters are alsowered. All the analyses are compared
with those for the dumbbell tether to show the digance of the flexural effect on the

tether motion.

6.2 Equations of Motions for Dynamical System Analy  sis

Ziegler (2003) showed an alternative method forresging the equations of motion of
MMET by expressing the dependent variables as etifum of the orbit’s true anomaly,
with the assumption that the tether remain in al&&mn orbit. The transformations from

the time domain to the true anomaly Rra,¢, 01, g2, andqgz, as based on the work of

Ziegler (2003) are given by,

=L oy (6.1)

g=dad6_ 4 (6.2)
dé dt

6= 2 - ay 63)

da, =%% - &, (6.4)
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) dg, d¢ _ .,
=—=_" = 6.5
% =40 dt a; (6.5)

where the prime here denotes differentiation wabpect to the true anomaly and the first

derivative of the true anomaly is,

. |ull+ecosd
6= /—( RE) ) (6.6)

Therefore, the second derivatives of equations) (8.Herived using the product rule of
derivatives that gives,

_d (s,
Y= (o)
-orf¥ +¢'B‘£ (6.7)
dt dt
where,
d_yj':d_wﬂzgzw" and %:%ﬁ:gg’gﬂ'
dt dgé dt dt d& dt (6.8), (6.9)

Substituting equation (6.8) and (6.9) into equat{6ry) gives the second derivatives of
equation (6.1) as,

w=slow)=0y+ o0y (610

Applying the same procedures in deriving equat@®i@) to equations (6.2) to (6.5) give
the second derivatives with respect to the truerahyp as,

e %(&r) = %" + 00’ (6.11)
.. d S 2 I 0"~
h IE(HG’)IH q1+89q1 (6-12)
--_d'l_'2" AN AT
, _E(HG)_Q o + 60 (6.13)
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d, :%(e'a'): g’ + 60, (6.14)
g :%(9) = 66 (6.15)

The prime denotes differentiation with respecthe true anomaly andk(6) and & are

given by,
R, (1+e)
R)=—"—— = 6.16
( ) 1+eco<d ( )
- 7] .
g'=-2e W(l"‘ eCOSH)S|n6 (617)

Wheree refers to orbit eccentricity anR®, refers to radius at perigee. Equation (6.16) is

the trajectory equations derived from Kepler’'s Flraw and relates the position and true

anomaly and equation (6.17) refers to radial rgteagon from Vallado (2004).

Substitution of equations (6.1) to (6.17), with #heeption of equations (6.5) and (6.14),
into equations (3.102), (3.105) and (3.106) givesdystem of planar equations of motion
for the in-plane angle, and the axial and tran®vefisplacement with respect to true

anomaly as,

M, LRusiny . M LRusiny
(L2 +R® +2LRcosp) 2 (L% - R? + 2LRcogy) 2

+ (5 PAL +2 paLq,
6 T
PALGY + pALq; +2M L2 + % M2 +M r? +%pALrT2j((6'? y)+ Gy +6%"))
4 ’ ! 4 e r ] I 1 | A
+ (Z_TIOALqu + ZIOAL(qlql + qzqz) + I—T,OALzequlﬂ + 2pAL(q1q1 + q2q2)lﬂ jez
A ~! A2 1 2 2 V)~ A2 1
- PALG, (60'c; + &%)+ (7—7 PAL" + pALouJ(Hé?qz + 675 )+

N (2i - 1)ppAL?Rsiny

=1 s 1\22 . %
2N2[R2+(2| D22 (2 1)RLCOSwJ

4N N
i (2i - 1)ypAL*Rsiny

=1 o m\212 . %
2N2(R2+(2| 1)2L (@ 1)RLCOS¢/]
4N N

=T

(6.18)
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pALGE G + 6+ AR o+ S P [ig (T, - AEo)quqS -
L 8L aL
2
pALq (67 - 26%y) - ( PALq + %)(ézw"z)— PAL(2q,67 +q,00 ) - (6.19)

(4"2"2 — 20ALd, jw'éz - pALg, (00w + &%) =0

,0AL(6" 'q, + ézqg)+ T‘fz

g, + (8—i3n“(AEO T, )jqi’ - pALa, (67 +26%")

I 3 20AL?
- PALQ,B%Y"? +(E”A (T, - AEo)jqfqz +[ P -

+ ,oAqujé’@' (6.20)

2

2 0AL
Vi

+2pALag; (9 + 9(//’) + ( + pAquj(éé'(//’ + 92(//") =0

The equations of motion with respect to the truenaaly for tethers in a three dimensional
for five generalized coordinates given I@yk): (z//,a,y, ql,qz,qg)T are lengthy and are

shown in Appendix F.

6.3 Numerical Methods

The equations of motions for the flexible model &e more complicated than the
equations of motion for the rigid body tether, aar@ largely responsible for the high
computational run-time. The dynamical analysis wasied out using special code written
in Mathematic&@'. As the errors may arise during long computatiores, the results were
obtained by applying the Explicit Runge Kutta methaithin NDSolve,Mathematica@"s

differential equation package.

6.3.1 Poincaré Map

The Poincaré map is named after Henri Poincaré4183.2) who developed it as a tool to

visualize the flows in a phase space of more thhandimensions. The Poincaré map can
be described asdiscretedynamicalsystem which turns a continuous dynamical system
into a discrete one by numerically integrating teverning equations of motions and

periodically sampling the state variable. The maganstructed by sectioning the spiral

orbits at a regular time interval and then projegthe point of intersections of the orbits at

the sectionx—xon the plane. As such the intersected point, idstd#athe curves, are

shown on the phase plane in a stroboscopic viewllussrated in Figure 6.1, and the
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system always has the same time span betweenedtierss which is very useful for

qualitative analysis. (Thomsen, 2003).

Figure 6.1 : A Poincaré section with an intersectin g orbit. (Thomsen, 2003)

However, the Poincaré maps in this chapter santeangular displacements and the
velocity of the tether model everys2 of the true anomaly. Ziegler (2003) gave a
justification for the selected method in which therigee represents the point on the orbit
in an orbital transfer application where the tettedeases the payload. Therefore, the map
gives information on the practicality of transfagia payload at the perigee of an elliptical
orbit. The Poincaré map can easily distinguish ketwperiodic and non-periodic motions,
and can assist in the definition of chaotic motiéor a system that is oscillating at a single
frequency it will periodically return to the sameimt in the phase space, and in the
Poincaré map this will be as a single point. Ifréhare two points, it is indicating period-2
motion and therefore periadmotion generally shows up agoints in the Poincaré map.
Quasiperiodic motion manifests itself as infinitehany points filling up a closed curve,
and only occurs when the ratio between the frequefdhe system oscillation and the
sampling frequency is irrational. Chaotic motionaals itself as infinite number of orderly
distributed points as the chaotic orbits visitpalts of the phase space.

6.3.2 Bifurcation

Qualitative changes in system behaviour may ocdwenathe parameters of a system are
varied. These changes can be shown by a bifurcdiagram. In this study, the bifurcation
diagram is produced by sampling a point of theetiigjry in the same way as for producing
the Poincaré map, and the angular velocity is edbttvith respect to the orbital
eccentricity, with the same initial conditions. Alifurcation diagrams presented in this
section are sampling the angular displacement vetfards to the orbit eccentricity and

integrated over 60 orbits. A shorter simulationdiia due to the restriction of the available
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computer capabilities to run integrations of thenptex equations of motion. In order to
avoid sudden truncations during simulation, thegration of the equations of motion have
been discretised into a few segments, and eachesgguom on a single computer. At the
end of simulation time all the results were colectfrom each computer and the data

processed and analysed.

6.4 Transition from Libration to Spin

The dynamics of the tether are affected by thectiele of the tether’s physical properties,

and also the orbital parameters. Ziegler (2003)dhasvn that the initial true anomaly has
no significant influence on the long term stabilityundary between libration and the spin
of the dumbbell tether on an elliptical orbit. ludying the influence of eccentricity over

the stability of the tether, Ziegler (2003) has wiated the dumbbell tether model over 30
orbits and observed the transition from libratiord &pin, and found that the tether may
continuously liberate after the Brbit at certain eccentricities or commence tungli

even after completing numerous orbits.

In this study, the same methods are implemented/&stigate the influence of eccentricity
on the motion of a flexible tether. The result megrating equations (6.18) over 35 orbits
is shown in Figure 6.2, where the tether is comtiraly in libration with an eccentricity of
0.1. The tether may or may not continue to libfatean indefinite period of time, and thus
maybe dependent on the initial conditions, and tdececcentricity, as shown in Figure 7.2
where Ziegler (2003) has also shown that the duthbit@er starts to spin after the™0
orbit with an eccentricity of 0.32. However, théher does not spin continuously and starts
to liberate again when it reaches 25 orbits. Th&ult is compared with the massive and
flexible tether models in Figure 6.3 to show th#uence of mass variation and tether
flexibility in the long term stability.

In Figure 6.3, the dumbbell tether shows it has gleted approximately 10 orbits before it
starts to spin-up and this dumbbell tether hadahgest libration period as compared with
massive rigid tether model and the flexible tetfdre flexible tether is shows that it has
completed less than five orbits before the spinmmajion is taken over and the massive
tether model is in the libration phase for appraatiety 5 orbits. Therefore, it is shows

here, the flexibility and the variation of masdueiced the tether's motion.
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Figure 6.2 : Time history of angular displacementf  or the flexible model over 35 orbits with

e=0.1and ¢ (0) =0rad, and ¢ (0) = Orad’s.
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Figure 6.3 : Time history of angular displacementf  or the flexible model (blue,thick), the
dumbbell tether (red, dashed) and the massive tethe  r model (orange,thin) over 30 orbits with
e=0.32and ¢ (0) =0rad, and ¢ (0) = 0O rad’s.

Ziegler (2003) was plotted the long term boundagyween libration and spin, and this
type of plot was first been shown by Modi and Brene(1966). The same approach is
applied in this study to find the long term bournydaetween libration and spin for the
flexible model. This plot is constructed by intetjrg equation (6.18) for a duration of 20
orbits for the given initial conditions and eccéeity. The tether simulation was set to start
at perigee and Ziegler (2003) proved that the erfee of the initial position on the tether
dynamics was subsequently insignificant. When tbther reached the ®Operigee
crossing the tether's angular displacement couldebaluated. According to Ziegler
(2003), if the magnitude of the displacement isnMeenn £ 72/2then the tether could be
considered to be librating, and if not then théeeis in spinning motion. This algorithm is
implemented by starting from zero eccentricity utiie boundary between libration and
spin is found for a given initial angular displacam The process is repeated for the value
of ¢ (0) betweenz 71/2. For the study of the flexible tether model thentwers of orbits
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taken for simulation are lower than those of Zieg003) due to the complexity of the
equations and the fact that it takes a longer cdatiom time. Therefore, the numerical
integrations are run for 20 orbits for both thadignd the flexible bodies. The boundary
between libration and spin is shown in Figure 6k the plot for the flexible model is

compared with the rigid body model.
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Figure 6.4 : Comparison of the effect of initial an  gular displacement on the long term

stability boundary between the flexible tether (blu e) and the rigid body tether (red) on an
elliptical orbit. 300 points in the interval betwee  n = 71/2</(0) < 71/2and integrating for 20

perigee passings.

The areas below the boundary plots refer to a regibere tether has long-term stable
motion. The largest stable region for the flexilviedel is for eccentricities between 0.28 to
0.29 and for the rigid body tether it is betweeB10to 0.32, where the regions are where
the onset of spin occurs. Once the angular displaoé moves from the local vertical, the

tether eccentricity reduced with the increase ialnangular displacement, and this makes

the curves appear to be symmetrical about the lgréical.

The curves also have visible physical features Zwgler (2003) named as “horns” for
which in both models these occur near + 0.5 rad“Andchps” nearx 71/2rad. However,
the exact location of the horns in the flexible reloare different as compared with those of
the rigid body model as shown in Figure 6.4 (a)(®)and (d). Even though the curves are
generally symmetrical, the horns in Figure 6.4¢@) &) are not a mirror image of (a) and
(b). The difference can clearly be seen also imtlagnified image of the humps shown in
Figure 6.5 on the left hand side, and in Figuredh@he right hand side, in the libration-

spin curve for the flexible tether. The area arotivleft hump in Figure 6.5 uncovers the
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discontinuous boundary points and the peaks andygain a complex manner, and the

points do not form a smooth and continuous linfoag/ (0) > —1.4rad.

-15 -14 -1.3 -1.2 -1.1
¥[0] rad

Figure 6.5 : Effect of initial angular displacement on the long-term stability boundary on an
elliptical orbit for the flexible model. 500 point  in the interval between —157<¢/(0)<-11

rad and integrating for 20 perigee passings.

The right hand side hump as magnified in Figuregwiiently shows no a mirror image of
Figure 6.5 but the same features of discrete jurppaks and valleys which form the

discontinuous boundary betweel6< ¢/ (0) < 145 as compared with smooth lines for
¢ (0) >16. Hence, these two Figures show that the detah@fibration-spin boundary is

not perfectly symmetrical. Therefore, the initialgalar displacement is observed to have
significant influence on the long term stability usalary. In addition, the difference
between the results obtained between the flexihtk ragid body tethers in Figure 6.3
shows that the flexibility of the tether has alsmantitatively influenced the long term

stability boundary.
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Figure 6.6 : Effect of initial angular displacement on the long-term stability boundary on an
elliptical orbit for the flexible model. 500 points in the interval between 157<¢/(0) <11

rad and integrating for 20 perigee passings.
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The analysis continues with an investigation ofstability boundary of the flexible tether
during first completed orbit in order to find the&istence of the stability boundary for
greater eccentricities than for those shown in fedgu4. The same algorithms were used in
producing Figure 6.4 to 6.6, and were rerun withitlation to a single orbit between
157<¢(0) < 157. The obtained results are plotted in Figure 6 iams shown that the
stability boundary is not as symmetrical as in Fg®.4, and that the spin-libration
boundary does exist for a higher eccentricity. Figure shows a gradual increase of the
boundary curve betweeh57< ¢ (0) < 058 rad indicates that the system is still in stable
condition with the increase of initial conditionsdathe eccentricities. However, between

032<¢(0) < 075 the boundary curve is showing a declined trend aspared with
previous region and then goes to a steep peak ertWE5< ¢ (0) <llrad. A slump
between11<¢(0) < 157 indicates that the single orbit motions of theitdée are more

sensitive to the change of initial angular disphaeats higher than 1.0 rad.
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Figure 6.7 : Onset tether spin for the flexible mod el during first orbit between

—7n12<(0) < 11/2 with a step size e of 0.001

In general, the boundary curve represents theskestdy-state tether libration, and the
regions covered under the curve as mentioned byleti€2003), can be either where the
steady-state libration, or transient libration aced. Figure 6.7 is qualitatively agrees with
the results obtained by Ziegler (2003) shows inufeégs.8 where both of the models shared
the same trend of the boundary curve. In comparitiom difference is only depicted
betweerl.1< ¢ (0) <13 in Figure 6.7 and betweeb4 <¢/(0) < 157 in Figure 6.8 where

the sudden increase and decrease in the eccentraturs in difference region of both

models.
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Figure 6.8 : Onset tether spin for rigid body model during first orbit between
—7n12<(0) < 11/2 with a step size e of 0.001

The other observation that can be made to studydimamics between stability the
boundary and the onset spin of the tether is bgidening how many orbits are completed
by the tether before it starts to spin. This obasgon was first made by Crellin and Jassens
(1996) and then carried out by Ziegler (2003) oa ttumbbell model. The number of
completed orbits by the flexible tether before treset of spin occurred for long term
behaviour is presented in Figure 6.9. The Figure w@nstructed by integrating equation
(6.18) with ¢/(0) =0rad between028<e< 04for 30 orbits. Each of the plots was

examined to look for the perigee where the spindeggin. The number of orbits from the

initial simulation time until the last perigee befothe spin started was recorded as the
quantity n for each eccentricity. Thereforg,in Figure 6.9 is represents the number of
completed orbits in which the tether in libratioeftre the spin taken place given by the

whole number ag =1,2,3....

From the same simulation procedures that produdgard-6.2, the results show that the
flexible tether started to spin at e = 0.282. Daecomputing limitations, Figure 6.9
produced in order to show the tether in a neargrspg condition in order to look for the
required numbers of orbit for the tether to starspin. The drawback of this approach is
the region of steady-state libration which cannet differentiated from the transient
librational motion. However, Figure 6.9 consistdieé distinct plateaux aj = 7,5,4,3, and

2 showing that the tether is in libration motiomeTplateau fop = 2 suggests that within
the region of e = 0.37 to 0.40, less orbit is regghifor the tether to spin, as compared with
the rigid body tether where between e = 0.375384it is found that the tether tumbles as

show by the scattered dots that clearly distingthghregion. These scattered dots suggest
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that the tether is sensitive to the variation ofesdricities between those regions. In the
example, tether with e = 0.317 is librating urttié 8" orbit before the onset spin but when
increasing the eccentricity to 0.318 the numbeuorbft for tether in libration has increased
to 15 and increasing more to e = 0.319 the numberlat for tether to start to spin is

reduced to 5. Therefore, it shows that the vamatibeccentricities strongly influences the
tether motion through from libration to tumblingad differences of the values produced

between the flexible model and the rigid body mddelthe same range of eccentricities

suggest that the flexibility of tether also infloees the motion.

20—
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e

Figure 6.9 : Number of orbit passings before the te  ther begins to spin for  {/(0) = Orad, and

¢ (0) =0 rad/s. 400 points between 0.28 and 0.40. Blue = fl exible model; grey = Rigid body

model.

6.5 Transition from Regular to Chaotic Motion

Dynamic systems sometimes enter regions of highjyredictable and chaotic behaviour
resulting in impossible future behaviour predictioVhen the developed standard general
method to solve nonlinear equations of motion faifel does not generate analytical
solutions, then one explanation is that the motonld have become chaotic. Chaotic
motion refers to motion in a system which has asii®e dependence to its initial

conditions. In this study, the initial conditionsayninfluence the motion of the tether¢gn

and also ina for the three dimensional case, where a chandeeimitial conditions could
lead to irregularities in the trajectories in thogmiables seen when it depicted in a
bifurcation diagram or a Poincaré map. This cltab&haviour is actually exhibited not
only in the solution of the mathematical model blso in the actual physical system and
modification of the outrigger tether and other &gth parameter can be used to control the
chaos. Figure 6.10 shows the motion of the flextbtaer entering the chaotic region for
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orbit eccentricities approximately more than 0i28jcated by the dispersed points for e >
0.28.

50/
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Figure 6.10 : Bifurcation Diagram of the angular di  splacement with respect to the orbit
eccentricity with initial conditions  ¢/(0) = Orad, and ¢/ (0) = 0O rad/s and a step size of e =
0.01.

The region between 0 &< 0.3 has been magnified in Figure 6.11 and shbesonical
shape of a bifurcation diagram. The structure efdlagram shows periodic windows and
bands of points that represent the behaviour ofsgrsgem both in regular and chaotic
motion. From Figure 6.11, the system is clearlynseestart chaotic motion at e = 0.28.
Period three motion is also visually distinguishwithin the regular motion region. The
bifurcation diagram for the flexible model is comga with the bifurcation diagram of

rigid body model in Figure 6.12.
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Figure 6.11 : Bifurcation Diagram of the angular di  splacement of the flexible model with
respect to the orbit eccentricity with initial cond itions ¢/ (0) =0rad, and ¢ (0) =0 rad/s and

a step size of e = 0.0005.
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Figure 6.12 : Bifurcation Diagram of the angular di  splacement of the rigid body model with
respect to the orbit eccentricity with initial cond itions ¢/ (0) =0rad, and ¢ (0) =0 rad/s and

a step size of e = 0.0005.

Both Figures agree with the finding by Karasopatsuand Richardson (1992), Fujii and
Ichiki (1996) and Ziegler (2003) where Fujii andhikd (1996) found that chaotic motion
occurred approximately at e > 0.28 for elasticeethith longitudinal rigidity is 1ON/m
and Karasopoloulos and Richardson (1992) and Zi€g(&03) showed that the rigid body
tether should start to spin up at e > 0.314.

The initial state of the bifurcation diagram fogid body tether is a period one per orbit,
but on sampling the point at e = 0 for flexible rabthe Poincaré map in Figure 6.13
shows that the flexible model is not displaying teriod one motion but the Figure
suggests that the motion has crossed the zerofpoimjuite a number of orbits.
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Figure 6.13 : Phase portrait and Poincaré Map for f  lexible tether motion at e = 0 with initial

conditions ¢/ (0) =0rad, and ¢ (0) = Orad/s
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In comparison between Figures 6.11 and 6.12, petoee occurs in different regions
whereby period three motion of the flexible tetleapproximately at e = 0.1654 and for
the rigid body model it is at 0.28. Integrating atjon (6.18) for 200 orbits leads to Figure
6.14 which represents the Poincaré map for pehoeetmotion of the flexible tether.
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Figure 6.14 : Poincaré map for the flexible tether, sampling at each perigee crossing for 200

orbits with e = 0.1654

Sampling the points for 200 orbits of the rigid padodel, the Poincaré map shows that
the tether is displaying the period three motioh the precise position is drifting quasi-

periodically, as shown in Figure 6.15.
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Figure 6.15 : Poincaré map for the rigid body tethe  r, sampling at each perigee crossing for

200 orbits with e = 0.2479

On sampling the point at e = 0.05 for 200 orbitdrafigure 6.16, it is showed that the

motion is stable and periodic.
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Figure 6.16: Poincaré map for the flexible tether s  ampling at each perigee crossing for 200
orbits with e = 0.05

Motion of period 5 appears at e = 0.26 for theiblextether as shown in Figure 6.17 for
the sample of points over 30 orbits. By integrateyuation (6.18) for a longer period
Figure 6.18 shows the same phenomenon as in Féglise in which the tether’s position is
drifting quasi-periodically. Therefore, it is sugted here that the lower sampling period

may mislead the prediction of the tether motiothia long term.
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Figure 6.17: Poincaré map for the flexible tether, sampling at each perigee crossing for 30
orbits with e = 0.26
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Figure 6.18 : Poincaré Map for the flexible tether, = sampling at each perigee crossing for 150
orbits with e = 0.26
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Integrating the equations of motion for rigid botsther with similar eccentricity and
initial condition, the rigid body tether shows tlkfferent dynamic conditions when
integrated over 150 orbits. Quasi-periodic moti@s lappeared, depicted by the closed
curve seen in the Poincaré map in Figure 6.19,itaisdshown here that the flexibility of

the tether is strongly influencing the tether’skglbmotion.

~010 005 000 005
Yl

Figure 6.19 : Poincaré map for the rigid body tethe  r, sampling at each perigee crossing for
150 orbits with e = 0.26

In the case of initial conditions of/(0) = 0.5rad and ¢ (0) =0rad/s, the bifurcation
diagrams for the flexible and rigid body tethers ba seen in Figures 6.20 and 6.21.
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Figure 6.20 : Bifurcation Diagram of the angular di ~ splacement of the flexible model with

respect to the orbit eccentricity with initial cond itions ¢/ (0) = 05 rad, and ¢ (0) =0 rad/s

and a step size of e = 0.0005.
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Figure 6.21 : Bifurcation Diagram of the angular di ~ splacement of the rigid body model with
respect to the orbit eccentricity with initial cond itions ¢/ (0) = 05 rad, and ¢ (0) =0 rad/s

and a step size of e = 0.0005.

The points at which the tether commences to vikitegions reduce from e = 0.28 to e =
0.11 and it seen that the initial angular velotias a significant influence on the start of
the chaotic motion. In comparison between the fiexand rigid body models, the region
of chaos starts at e = 0.14 for the rigid bodyedetiConsequently, the flexibility of the

tether is seen, in addition to the eccentricity amiull conditions, to have an influence on

the onset of chaos.

The initial conditions are then changedyd0) = -05rad, ¢/ (0) = -0 rad/s to observe the

motion of the tether with negative initial conditgy and the bifurcation diagram is shown
in Figure 6.22. In general, the bifurcation diagramtigure 6.22 is seen to have a nearly
similar shape to Figure 6.20. However, the diffeeenan be seen from the region where
the chaos just starts to begin at approximagsty0.12. The diagram shows the points in

Figure 6.20 and 6.22 dispersed in different trajees when entering the chaotic region.
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Figure 6.22 : Bifurcation Diagram of the angular di ~ splacement of the flexible model with
respect to the orbit eccentricity between 0.1< e < 0.2with initial conditions

¢ (0) =-05rad, and ¢ (0) = -0 rad/s for a step size of e = 0.0005.

Figure 6.23 sampling the points with the same dcicgty to show the difference motion

between the different initial conditions.
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Figure 6.23 : Poincaré map for the flexible tether  with initial condition a) ¢/ (0) = —05rad

and b) ¢ (0) = 0.5rad at e = 0.15 for 30 orbits.

6.6 Comparison between the Onset of Spin and Chaos

The route to chaos for planar motion is investiddig observing the dynamic transitions
of the flexible tether between e = 0.28 to e = 0B Figures 6.23 to 6.28 show the tether
motion in six different orbits for e = 0.28, 0.28128189, 0.281895, 0.28191 and 0.28195,
from zero initial conditions for 30 orbits. Thathge of eccentricities consists of motion
from steady state libration through to chaos. Fegus.24 and 6.25 show that the tether
motion is in steady-state libration where the go@sodic motion has taken place, shown
by the Poincaré map and the phase plane. Wherr tethees with an orbital eccentricity
of e = 0.28189 as shown in Figure 6.26, some ofpthiats visit the region far from the
initial conditions as seen clearly in the Poinaad, and the frequency spectrum shows an
unusual curve when compared with the one in tHaestegion. However by increasing the

eccentricity of the tether, the motion returns hie fjuasiperiodic motion of Figure 6.27.
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The tether moves from librating to tumbling at €.28191 where from the time history
and the phase plane it is shown that the tethetsstia tumble when it reaches the"®2
orbit, and returns to liberation before startingumble, and these two motions interchange
between the 29 orbit to the 38 orbit. The Poincaré map and the frequency spectnum
Figure 6.28 both suggest that the chaotic regi@tading to arise.
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Figure 6.24 : Time history, phase plane, Poincaré m  ap and power spectrum for the flexible

tether with e =0.28 and ¢/ (0) = Orad, ¢¢'(0) = Orad/s
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Figure 6.25 :Time history, phase Plane, Poincaré ma p and power spectrum for the flexible
tether with e =0.281 and (¢ (0) =0rad, ¢¢'(0) =Orad/s
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Figure 6.26 : Time history, phase plane, Poincaré m  ap and power spectrum for the flexible

tether with e =0.28189 and (/' (0) =0 rad, ¢'(0) =Orad/s
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Figure 6.27 : Time history, phase plane, Poincaré m  ap and power spectrum for the flexible

tether with e = 0.281895 and (/' (0) = Orad, ¢¢'(0) = Orad/s
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Figure 6.28 : Time history, phase plane, Poincaré m  ap and power spectrum for the flexible
tether with e = 0.28191 and (¢ (0) = Orad, ¢¢'(0) = Orad/s
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Figure 6.29 : Time history, phase plane, Poincaré m  ap and power spectrum for the flexible
tether with e = 0.28195 and (¢ (0) = Orad, ¢¢'(0) = Orad/s

The non-zero initial conditions applied in Figur8® and 6.31 depicted that the motion of
flexible tether moves from tumbling to chaotic fram 0.1495 and change to e = 0.1496.

The additional observation made on the tethers ithaally have local displacement in
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longitudinal and transverse direction. The motiafisthose tethers appear to have no

significant change as without initial displacement.
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Figure 6.30 : Time history, phase plane, Poincaré m

ap and power spectrum for the flexible

tether with e = 0.1495 and (¢ (0) = 0.5rad, ¢¢'(0) = Orad/s
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Figure 6.31 : Time history, phase plane, Poincaré m

ap and power spectrum for the flexible

tether with e = 0.1496 and (/' (0) = 0.5rad, ¢'(0) = Orad/s
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6.7 Route to Chaos for a Three Dimensional Flexible
Tether

In the previous analysis of planar motion of a it tether, the computing time required
for a single bifurcation diagram was nearly one ttagomplete. This was by discretisation
of the simulation period into a shorter length gs@® unit of computers with 4GB RAM
for each unit. The non-planar motion is more coraponally complex still and longer
computing times are required. Therefore, the dynaha@nalysis for the three dimensional
model of the flexible tether is limited to the reub chaos and the analysis of the transition

between libration and tumbling has to be abanddmethe time being.

Figure 6.32 shows the bifurcation diagram in thenf@f a conical shape for the nonplanar
motion of the flexible tether with initial conditio ¢ (0) =0rad, ¢'(0) =Orad/s and

a(0) = 0.1rad for 0.1<e< 0.3. From Figure 6.32, chaos is found, starting apipnakely
at e= 028 in which it is similar inform to the planar motiar Figure 6.11. This agrees

with Figure 4.19 in Chapter 4 where it is stateat the initial displacement af does not
significantly influence the planar motion of flelebtether with the initial condition of

@(0)=0.

Y[ rad

0.41 E :
L R :
4

0.10 0.15 0.20 0.25 0.30

Figure 6.32 : Bifurcation Diagram of the angular di ~ splacement of the rigid body model with

respect to the orbit eccentricity with initial cond itions ¢/ (0) =0 rad, ¢¢'(0) = Orad/s,

a(0) = 0.1rad and a step size of e = 0.00075.
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In comparison with the three dimensional motiorrigid tether, Figure 6.33 samples the
point at e = 0.154(0) =0 rad and¢'(0) =0 rad/s for both models and the results
evidently show the Poincaré Map of the flexible mlodoes not display the same motion
as the rigid body. This again shows that the fléixytof the tether has a significant impact
on the global motion.
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Figure 6.33 : Poincaré map of the tether with initi  al conditions ¢/ (0) =0 rad ¢¢'(0) = Orad/s,

a(0) = O.1rad at e = 0.15 for 230 orbits . (a) Rigid body tet her and (b) flexible tether.

The influence of non-planar motion, and the couplivetween planar and nonplanar
variables to the route to chaos are explored throkigure 6.34 to Figure 6.41. The
observation starts with a circular orbit and zential conditions for the planar angle, and
is followed by an investigation into the ellipticatbit with the paired initial conditions
between the planar and non-planar displacemenesanghe analysis includes the response
of the local displacement in the transverse anditadinal directions in order to observe
the influence of the initial conditions on the ttlilexibility. The influences of non-zero
initial longitudinal and transverse displacememésaso observed.
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For the given initial conditions in Figures 6.34 @36 the flexible tether experiences
librational motion. The motion moves from periotlicquasi-periodic and in Figure 6.34 a
drifted period eight motion is shown on the nompladisplacement, and a quasi-periodic
motion on the planar displacement. Figures 6.356G86 suggest that both the planar and
nonplanar displacements are quasi-periodic. Thguéecy spectrum for those three
Figures shows that the motion is in the stable tmmd The displacements of the tether in
the longitudinal and two transverse conditions @reost similar in those three Figures.
Figures 6.37 and 6.38 agree with Figure 6.22, irclwithe same values of negative and
non-negative initial conditions do not portray arnmi image motion. Figure 6.37 shows
that the tether previously in libration tumblestbe 68" orbit and then returns to libration

an orbit after that. The attitude trajectory of tether shows it moves from one stable point
to the next stable point after tumbling occurs. TReincaré map for non-planar

displacement shows a cloud of dots which represleabtic motion, and this is supported
by the frequency spectrum. In comparison, the motb negative initial conditions is

more chaotic where the tether the tumbles in thegeon of time, and shows in the time
history and the 2D attitude trajectory of the teth&he frequency spectrum of the planar
displacement suggests that the motion is chaotidfzis is supported by the Poincaré map.
In both the motions of the negative and non-negatinitial conditions, the three

dimensional displacement of the tether is unchangeggesting that the influence on the

local displacement is insignificant.

By increasing the initial nonplanar displacemermuire 6.39 shows that chaotic motion has
taken place in planar motion. The flexible tethepe¥ience quasi-periodic motions when
increasing the eccentricity to 0.1 with the giveitial conditions of Figure 6.40. The

frequency spectrum shows that the motion is stableé the phase plane of the local
displacement also shows the stable condition. Teerdricity is then increased to 0.3 in
Figure 6.41. With the given initial conditions, tlether starts to spin up, and the 2D
attitude trajectory shows that the planar displaa@ns higher than for the nonplanar case.
The points in the Poincaré map are scattered ower phase plane of the planar
displacement and for the nonplanar motion. A fewnggomove away from the group of

points, showing that the chaotic motions are takilage in both planes. The longitudinal

and transverse displacements of the stable tetbesh@wn by the bounded phase plane.
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Figure 6.34 : Time history of the tether’s pitch mo
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6.8 Velocity Increment Generation for the Flexible Tether.

The main benefit of the MMET design is the generatof velocity increments by

powering the tether to spin up using an electrioator. However, the tether can self-
achieve spin-up by exploiting the tether and otbg@rameters. Therefore, this section
studies the generation of velocity via spinning imoof the tether that is generated due to

the exploitation of the nonlinear dynamics of anglatether on an elliptical orbit.
The tether’s tip velocity is given by,

av =19 (6.21)
dit

Converting from time to the true anomaly, as disedsby Ziegler (2003), gives a formula

for tether tip velocity as,

av =L |HEre) Ay (6.22)
r dég

Figures 6.42 to 6.45 were obtained by numericallggrated equation (6.18) and applying
equation (6.22). A similar approach was taken bggl&r (2003) but this recent study has
also investigated the influence of the flexibility the tether in generating the velocity
increment by comparing the results for this witltos of the rigid body tether. The
numerical integrations were started at perigeeh wittial conditions ofy'(0) =0 rad/s
and an initial angular displacement betweenn/2<y¢(0)<n/2. The angular
displacement and\V were recorded at each perigee point after the rtétdd completed a
full orbit. The tether was assumed to be in litlatfor the angular displacement between
-nl2<y(6) < nl2. The obtained results may not be as precise a& thiwen by Ziegler

(2003) due to larger step sizes for eccentricitierder to save computing time.

Figure 6.42 and 6.43 shows thig in which refers to the angular displacement atgeeri

and the AV of the flexible tether in comparison with those tbtie rigid body tether,
obtained at perigee, with respect to the orbit emty. The results suggest that the
flexible tether reaches onset of spinning at e46®.as showed by the transition from a
‘near to straight’ line to the curve that is ing®ag for the increasing values of the
eccentricities. The body rigid tether shows thesb$ spin at e = 0.478. Both results agree
with the findings in Figures 6.7 and 6.8. The maximAV reaches by the flexible tether
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during the libration period is at 8.61 m/s with, = -0.31 rad and the maximusV during
the spin condition is 9.046 m/s gt = 2.141 rad. Figures 6.29 and 6.30 suggest that the

flexible model has reached the onset of the turgldpin condition earlier than the rigid
body model. This shows that the flexural effectlué tether may lead to earlier chaotic

motion.
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Figure 6.42 : Comparison of l//p obtained at perigee after a full orbit with respec  tto e for

¢ (0) = Orad with a step size in e of 0.0005. Blue = flexibl e tether, red = rigid body tether.
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Figure 6.43 : Comparison of AV obtained at perigee after a full orbit with respe  ctto e for

¢ (0) = Orad with a step size in e of 0.0005. Blue = flexible tether, red = rigid bod y tether.

Figures 6.44 and 6.45 show the effect of chandueginiitial conditions on the generation
of velocity. The negative initial condition in Figu 6.44 suggest that highekV is

generated during libration as compared to Figu#s.6Figure 6.45 also shows the
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retrograde spinning of the flexible tether with igher AV between e = 0.6 to 0.8 for

positive values of initial conditions.
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Figure 6.44 : AV obtained at perigee after a full orbit with respe  ctto e for ¢/ (0) =-0.3 rad

with a step size in e of 0.0005.
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Figure 6.45 : AV obtained at perigee after a full orbit with respe  ct to e for ((0) = 0.3 rad with a

step size in e of 0.0005.

Interesting results have been shown by Ziegler 32@hd are reproduced here for the
flexible model shown in Figure 6.42. That Figur@gests that with the negative initial
conditions of angular displacement at e = 0.1 téfleer can generate a high®y and this
applies for both models. However, the rigid bodydelois shown to develop a little bit
higher AV as is given by 18.63 m/s as compared with 18.14fonfhe AV of the flexible
model. Even though the difference is seen to bdlsimwill still influence the incoming
trajectory of the payload that will be transferrading the MMET, or may lead to
unsuccessful payload capture. Therefore, the fligyibs again shown to a significant
influence on generating thAV of the tether. This will be explored more in thexine

chapter.
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Figure 6.46 : Comparison of AV obtained at perigee after a full orbit with respe  ctto (¢ (0) for
e = 0.1 with astep sizein (¢ (0) of 72/1000rad . Blue = Flexible tether, Red = Rigid body

tether

6.9 Conclusions

The planar and nonplanar attitude dynamics of xlfle tether on circular and elliptical
orbits have been investigated in this chapter. ©hgit eccentricity and the initial
conditions are found have a strong influence on tdteer libration, and also on the
occurrence of tumbling motion. The tether’s flektiis also has a significant effect on
the tether's motion. The long term boundary betwkigration and spin is found to be
qualitatively similar to the rigid body tether inhigh the symmetrical and asymmetrical
libration/spin boundaries for the long-term orhiidathe first completed orbit have been
uncovered. The eccentricity and initial conditiare also found to influence the onset of
chaos. However, non-zero initial conditions for thengitudinal and transverse
displacements were not shown to have significdiience on the route to chaotic motion.
Finally, the generation of velocity increment upmmpletion of a single orbit is found to
be a function of the initial conditions and ecciitly. The flexibility of the tether was
again found to affect the generation of velocitgdzhon a comparative study between the
flexible and the rigid body tether.
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In-service Power Requirements for the Motorised
Momentum Exchange Tether

7.1 Introduction

The MMET is a symmetrical momentum exchange systsimg motorized spin up against
a substantial counter-inertia termed here the ggern tether system, and is likely to be
driven by a large electric gear-motor consumingveen 100 and 500 kW of power,

possibly a bit more, dependent on key parameteishwiirive the performance of the

MMET. The performance of the tether is influencetlg altitude, payload mass, length of
tether span, area tensile strength and also thsitgeof material of the tether. The

definition of the power requirement of the MMETdsrived from the torque required to
spin up the tether to the required tangential ygtpand the terminal velocity achieved for
the orbital conditions under consideration. Thigatler explores the minimum torque and
power requirement for the MMET in various operatmonditions for the rigid body and

flexible body model.

The MMET has the potential for reducing the operai cost of space transportation.
Therefore, there is the need to study the powelil@nequired for the tether in order to
optimize the cost. The use of the tether for idtaretary missions can be one of the
options in reducing the propellant cost to the missArnold and Thomson (1992) studied
the use of a spinning tether in transporting oxy§@m the Moon to LEO, in which

application of the 100km tether was used to coltket payload from the orbital transfer
vehicle (OTV). In 1999, Cartmell and Ziegler propdsa preliminary design for a mission
architecture for an Earth-Moon payload exchang¢esysising the MMET concept. The
system was then developed further by Cartraell. (2004) and this work underlines the

practical requirements for this system.

7.2 Escape velocity

The inclusion of an electric motor in the tethestsyn can result in additional total
velocity. The potential maximum escape velocitygigen by the sum of the orbital and
tangential velocities which are subsequently abélat the tether tip, and defined by the

following,
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V. =V +AV (7.1)

Total orbit

provided that the tether is aligned normal to #hegent to the orbit, otherwise a component
of the tangential velocity vector is required. Tdr®ital velocityV,; considered for this

study could emanate from orbits which are eithezutar or elliptical, and is given for a

circular orbitby

H
r(:irc:ular (7_2)

Vcircularorbit =

and for an elliptic orbit by,

2u
Veliipticalorbit = -
elliptical (73)

VRN

wherer is the radius of the orbit and is the semi major axis and is the gravitational

constant. The velocity of thieether relative to its centre of rotation is given equation
(6.21).

7.3 Minimum Torque Analysis

Generally, a useful tether response can be cledstiither as an oscillation or a pure spin
condition, dependent on the amount of the applbedue, location, initial conditions, and

prevailing orbital elements. For interplanetary Ipayl injection the response should
ideally be in the form of a monotonic spin, for sominimised value of torque so that the
angular velocity eventually increases to the rexmlievel, in order to achieve escape for

the payload when released.

In this study, the initial work of Ismail (2007) dhe power requirements for the MMET
operating in practice is further developed, andngle tether system model as rigid body
tether as shown Figure 7.1 is considered for tearnsfy payloads to the required orbit. The
payload is assumed to be transported from the Bartthe designated orbit using a

conventional rocket and will be collected by thinée.
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Figure 7.1 : Single staging tether for payload tran  sfer

Certain default material parameters and the demsit$pectra 2000 and tether geometry

are used for the analysis given by:

L= 50km, M ,= 1000 kg,M,, =5000 kg, A= 62.83 x 101, rn=r, = 0.5 m, p = 970 kg
m?, 1 = 3.9877848 x 1§ m¥/s*, E= 113 GPa

7.3.1 Circular orbit

Using the chosen default values mentioned abowe tdther is first driven with a low

torque which is then gradually increased until tether achieves monotonic spin. On
increasing the torque the tether is found to rehehmonotonic spin condition for default
values for the geometrical and mass propertieshefsystem when the torque is 2.94
MNm. Both responses are depicted in Figure 7.2Fagdre 7.3 as follows,

Numbe of Orbits Numbe of Orbits
q §1CE2CZE3C3£4C4§§C 0 5 10 15 2C 25 30 35 40 45 5C
0L [
() w
® =1
= 0. [hiitied) | g IM|H||1‘|
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—05¢}
0 100000 200000 300000 0 100000 200000 300000
time (s) time (s)

Figure 7.2 : Oscillation conditions on a circular o rbit for untorqued tether.
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Figure 7.3 : Pure spin conditions on a circular orb it with application of 2.94 MNm torque

This minimum torque analysis is also influenced twe geometrical and physical
properties of the tether, namely the sub-span leagtl material density of the tether. By
focusing on the influence of the tether length,lgsia shows that the higher the tether
length the greater the required torque. Figure shdws the minimum torque for three
different sub-span lengths: 50 km, 75km and 100akm the time to release the payload.
This is based on the value of escape velocity teakurransfer OrbitV, 1o in the Earth-
Moon mission studied by Cartmell and Ziegler (1998) which the calculate®¥ 1o is
10.78 km/s. It shows that the longer the sub-spanshorter the time required to release
the payload, but the torque has to be increasdttisutly to achieve the monotonic spin

condition.
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Figure 7.4 : Angular velocity for tether sub-span|  engths of 50km, 75km and 100km
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7.3.2 Elliptical orbit

The analysis continues for the tether on an etigbtiorbit using the following orbital

parameters,

r = 7000 km,e=0.1

perigee™

The tether position on this orbit is initially assed to be at perigee, for which the initial

true anomaly and radius are,
6(0) = 0, rad, 8(0) = 0.001131rad/s, R(0) = 7000km, R(0) = 0km/s

and the initial conditions for the angular displaemt and angular velocity are as

established in Ziegler (2003) and given by,
() =-0575rad, ¢ (0) =0rad/s

Figure 7.5 shows the oscillation condition for ttether on the elliptical orbit. The
simulation shows that a minimum torque value ob62MBNm is required for the tether to
reach the spin up condition with the above orhpi@lameters and initial conditions, and

this is shown in Figure 7.6.

% ‘HHIMHH g oo ll H\ “U HH UW “U U~ !H '\\}

Figure 7.5 : Tether in an oscillation condition on an elliptical orbit
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Figure 7.6 : Tether in the pure spin condition with an applied torque of 2.35 MNm on an

elliptical orbit

The orbital parameters for the tether are variegdutdhout the integration time and are

shown in Figure 7.7 below,

Numbe of Orbits Number of Orbits
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Figure 7.7 : Orbital parameters for an elliptical o rbit with a minimum torque of 2.35 MNm
The coupling of the orbital and tether tip velaestion the elliptical orbit advantageously

provides a number of possible payload release titheseby providing possible windows

for release to LTO as in Figure 7.8 and defined byt,,, t,;, andt,,.
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Number of Orbits
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Figure 7.8 : The release payload windows on an elli  ptical orbit

A different tether length is used for the ellipticabit analysis and shows the same result
as for the circular orbit for which a longer sulasspength and torque value are both
necessary to achieve the monotonic spin conditidnrba shorter time to payload release,

as shown in Figure 7.9 and Figure 7.10.
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Figure 7.9 : Angular velocity for the spin up condi tion for a tether on an elliptical orbit.
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Murnbier of Orhits
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Figure 7.10 : Time to release the payload for L=50k m (red), 75km (blue), and 100km (green)

7.4 Comparison of Orbital Performance.

Figure 7.11 shows the differences in angular vefoand time required to release the
payload for the tether located on circular anggdtal orbits.
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Figure 7.11 : Angular velocity for the tetheron ci  rcular and elliptical orbits with the

application of minimum torque.
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With the same length of tether sub-span, the tebimethe circular orbit requires more
torgue to achieve the spin up condition but reguiess time to get to the point where the

payload can be released, as compared with the tthibe elliptical orbit.
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Figure 7.12 : Angular velocity of the tether on cir  cular and elliptical orbits ~ with 2.94 MNm
torque
However, with the same amount of torque it is st the elliptical orbit provides a
higher angular velocity over time than that attbhleaon the circular orbit, as shown in
Figure 7.12. The circular orbit condition reachus tight velocity for payload release later
than the elliptical orbit configuration, which swggs that placing the tether on the
elliptical orbit can reduce the power requirememt the system on the simple basis of

power equating to the product of applied torque amglular velocity.

7.5 Operational conditions

The operational conditions for an MMET over oneydeycle proposed in Ismail (2007),
and in the further study by Gandara and Cartm@0@2 consist of spin-up, torque off and

de-spin conditions.

7.5.1 Spin-up

This is the conditions in which the angular velgationotonically increases and in which
there is coupling with the orbital velocity to aeie escape velocity for payload release.
The examples of tether response in this condittershown in Figure 7.3 and Figure 7.6.

167



Chapter 7
7.5.2 Torque off

The condition approaches when the tether reachagquired tangential velocity and the
payload is released. The torque is switched offaféew second before being reversed to
slow the tether down to zero angular velocity.his study the torque is reduced to zero for
60 seconds. Figure 7.13 and 7.14 show the teteponses in the torque off condition over

60 seconds for both orbits.
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Figure 7.13 : Tether responses in the torque off co  ndition for the circular orbit
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Figure 7.14 : Tether responses in the torque off co  ndition for the elliptical orbit

7.5.3 De-Spin

A reverse torque is applied so that the tether ldesttes to an angular velocity of zero
before starting to spin up in the opposite directidhis analysis provides a better
understanding of the dynamics, and the controltgbdf the MMET system, and is

particular important if there is a tendency fortaislities to occur after payload release.
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Figure 7.15 below shows that the tether reaches aergular velocity for circular and
elliptical orbits and the angular displacementeducing which suggests that the tether is

spinning in the opposite direction.
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Figure 7.15 : The angular velocity of the tether on circular and elliptical orbits in the de-spin

condition.

7.5.4 Complete Profile

The full profiles for one operational cycle for hathe circular and elliptical orbits are
presented in Figure 7.16 and 7.17, noting the miffeminimum applied torques. The time
for payload release for the circular orbit ig a219 901 s, antd= 252 115 s for the tether

on the elliptical orbit.
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Figure 7.16 : Profile of the angular displacementf  or one cycle of the operational conditions
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Figure 7.17 : Profile of the angular velocity for o ne cycle of the operational conditions

7.6 Power Consumption and Energy

The power consumed by the tether is simply caledl&tom,

P=ry (7.4)

wherer is the applied torque and is the angular velocity of the tether. The totadlical

energy demand for the tether is calculated from,

(7.5)

wheret,,,, is the period of operation.

The power profiles for the tether operating on bathits are presented in Figure 7.18. The
tether on the circular orbit consumed a maximumi&s.6 kW to spin up to the required
angular velocity. Also, the energy of the tetherdepicted by the area under the
power/time plots for which 29.67 GJ. The tethertba elliptical orbit used a maximum
power of 135.6 kW to spin up the tether and thal tehergy used by the tether was 25.29
GJ. In comparison, the tether on the ellipticalitogenerally used less than the circular

configuration, with a nominal difference of arouh88 GJ.
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Figure 7.18 : Power profile for the tether on a cir  cular orbit
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Figure 7.19 : Power profile for the tether on an el liptical orbit

7.7 Power Profile of Rigid and Flexible Tether Mode Is

The simple rigid body model discounts all potehfiaiportant flexural characteristics of

the tether sub-spans, and significant phenomenanaape captured as a result of such
simplification. However, power consumption calcidas can be more tractable when
based on rigid body models and so in this sectmmesuseful comparisons are made

between the two modelling paradigms by Ziegler (9Gihd the model proposed by Ismail
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and Cartmell (2009), for a nominal sub-span lerxgtB0 km. The difference of the power

consumed between both models is due to the differefy value.
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Figure 7.20 : The difference in angular velocities between the rigid body model and flexible

model of the tether on a circular orbit
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Figure 7.21 : The difference in angular velocities between the rigid body model and the

flexible model on an elliptical orbit

Figures 7.20 and 7.21 show the differences in amgudlocities predicted by both models
when on circular and elliptical orbits. It showsthhe more flexible the tether the slower
the response. Furthermore, the power consumptiohdth models on the circular orbit is

shown in Figure 7.22 where the total energy usethbyigid body model is 29.67 GJ and
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34.66 GJ for the flexible model, the rigid bodyheat on the elliptical orbit is shown in
Figure 7.23 and uses 25.41 GJ of energy, and ZBJ7fr the flexible tether model. This
indicates that the less tractable flexible modataiyics are actually far more useful in

practice.
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Figure 7.22 : Power profile for the rigid body and flexible models of the tether on a circular
orbit
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Figure 7.23 : Power profile for the rigid body and flexible models of the tether on an

elliptical orbit

173



Chapter 7

7.8 Outrigger system

The outrigger system comprises a pair of tetheiacla¢d to the gear-motor stator and
necessarily spins up in the opposite directiorheogropulsion tether hitherto discussed. In
this study, the outrigger tether sub-span is asdumee be 25 km in length, with
symmetrically positioned end masses, each of 500Mearly each tether experiences an
equal and opposite torque. Figure 7.24 and Figu2é ghow a full cycle profile of the
outrigger system on the circular orbit.
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Figure 7.24 : Responses of the outrigger system on a circular orbit
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Figure 7.25 : Power consumption of the outrigger sy  stem on the circular orbit

Figure 7.26 and Figure 7.27 compare the angularciteds of the outrigger and propulsion
tethers on the circular orbits and shows a residpal of the outrigger system when the
propulsion system has come to absolute rest. Thdgcates that additional energy is

needed to de-spin the whole system to absolute zero
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Figure 7.26 : Angular velocity profile for the prop ulsion and outrigger tethers on a circular

orbit

At payload release a very large proportion of tressnon the propulsion tether side of the
system is removed, and so the associated angulaentam goes with that payload. This

affects the next stage of calculation when theueng to be switched off and then de-spin
initiated. Clearly angular momentum is conservawssthe whole system, as required and
so additional energy is required to de-spin theaiamg propulsion side as well as the

outrigger side. It is also evident from Figure 7tBét the outrigger tether is fully de-spun

at the 78 orbit, and substantial energy is required to aehtkis, nominally 330 GJ.
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Figure 7.27 : Angular velocity profile for the pro  pulsion and outrigger tethers on an

elliptical orbit.
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Ziegler (2003) discussed the design of the outriggystem to meet the requirements, as
the shorter outrigger requires larger end massas the longer propulsion tether, with
obvious reduction in outrigger end-mass requiresiastoutrigger sub-spans are increased.
Recalculating the energy consumed by the outriggetem for an MMET on a circular
orbit until the time reached for full de-spin suggea figure of 286.3 GJ, with a total
cyclical energy requirement of 316 GJ. This is sasally more than 265.5 GJ calculated
for the same system operating on an ellipticaltoxbhich is shown on Figure 7.27 where

the outrigger system is fully de-spun by th& pbit.

7.9 Energy Comparison

The benefit of having a space tether to transpaytgad is to save on total operational
cost. Therefore, a comparative study in term ofgyneonsumed to transport a payload to
desired orbit between the tethers with a conveati@ystem has been carried out. The

conventional system, used for in this study, refers rocket system.

7.9.1 Rocket System

The rocket performance in term of energy is givenhe following equation,
_1 o1 2
KE —Emv2 —Em(lsp.go) (7.6)

Wherelsp is the specific impulse of the rocked, is gravity constant which is 9.81 /s

andm s the fuel mass of the rocket ant refers to velocity of exhaust gases.

The energy comparison between the tether systena amshventional system is based on
earlier work of Cartmelet al. (2006). The study shows that the tot&V for a translunar

rocket approach is 4.5766 km/s, and that for robket alone, 8.76 GJ is required to get
the reducing mass of fuel into translunar injectidbhe energy consumed is higher still

when it includes the payload mass and the massckét structure.

The conventional rocket system is also non-reusabtkit should also be noted that the
electricity required for the gear-motor could paeiby high capacity batteries, backed up
by suitable solar photovoltaics. The energy denamdd also be substantially reduced by
employing a multi-staging tether as described bytr@al and Ziegler (1999) where less

power is required to operate the system.
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7.9.2 Earth-Moon payload Exchange

{ - from EEO 1o LEO e
3 toLTD =
5 - from Earth to LED

Figure 7.28 : Earth-Moon Payload exchange by Cartme Il & Ziegler (1999)

Cartmell and Ziegler (1999) proposed an Earth-Magystem using a pair of staged
MMETs as shown in Figure 7.28, and the data of &bl comes from that source. The
power consumption and required mission energy @ugadbculated using equations (7.5)
and (7.6) appropriately, together with the datanfréable 7.1. The torques applied to the
LEO and EEO tethers are taken as 5 MNm and 2 MNspecively.

In Figure 7.28, the mission starts by transferqpagyload 5 from SEO to the LEO tether
and the EEO tether simultaneously hands over pdylo#& the other end of the LEO

tether, whilst also releasing payload 3 at the samoment. Payload 5 is then ready half an
orbit later to be handed on to the EEO tetheryra8408 s. The power consumption for
this transfer is 21.9 kW. Meanwhile, the EEO tethedergoes one full orbit to meet the
LEO tether again and continue the process, urtipaloads have been moved in both
directions through the system, noting that botheet are only ever fully laden with two

payloads or completely unladen.
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Parameters Tether at LEO Tether at EEO
Angular Velocity (rad/s) W o= 0.00437 Wee0=0.01065
Sub-span length (km) L o= 200 Leeo =75

Semi major axis (km) A gn=7922.57 Ageo = 26159.8
Perigee (km) Do = 6728 MPeeo = 7003
Period (sec) Peo=7017.95 Peo = 42107.7
Velocity tether tip (km/s) Vieorp, = 0.874 Veeorp = 0.798

Table 7.1 : Orbital and tether parameters for the E  arth-Moon Payload Exchange, after
Cartmell & Ziegler, 1999.

Therefore, the total power to transfer the payltsach Sub-Earth Orbit to Lunar Transfer

orbit is 43.2 kW which equates to a total energgnded of 3.63 GJ, not including the

energy associated with the outrigger system. Applyhe default values for the system the
calculation of power consumption and outrigger ggpelemand can be estimated from
numerical integration of the system equation ofiomtleading to prediction of 11.0 GJ

for the LEO system outrigger and 4.89 GJ for th®©HBEther outrigger using the outrigger
data as in Table 7.2. On this basis the total gngegnand is 19.52 GJ.

Outrigger Tether Parameters Tether at LEO TethEEQ
Length (km) Loeo=50 Loeeo=35
Velocity tether tip (km/s) M | eooutrigeer = 0-874 M ecooutiger = 0-798

Table 7.2 : Parameters for the outrigger system

7.9.3 Systems Comparison

The energy usage by single and multi-staging tethistems for payload transfer to Lunar

Transfer Orbit are compared in Table 7.3 below,

Single Tether system Staged system
188.00 GJ 19.52 GJ

Table 7.3 : Energy usage comparison for payload tra  nsfer to the moon
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Apparently, the staged system provides a substaehaimes reduction in the predicted
energy requirement for the lunar transfer missidlso, MMET energy usage may be

reduced even more if the outrigger system propedie manipulated further.

7.10 Conclusions

The power requirements for the MMET have been itigated and a comparison has been
made with a conventional chemical rocket propulsgstem to observe the significance of
the use of the MMET for space transportation. Tin@lysis shows that the power
requirement for single tether is very high when paned with a conventional system but it
should be emphasized that the energy of conventionket system is for one-off use, and
cannot be reused. The energy usage could alsadbee® by implementing multi-staging
tethers to transfer the payload. The energy resolarcthe tether could be generated by a
solar power system and could be virtually contirslpuavailable dependent on the
system'’s location with respect to the sun, whictkesathe MMET is potentially rather

superior to chemical propulsion.
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Conclusions

8.1 Summary and Conclusions

The equations of motion for two dimensional modklées an assumed string have been
derived by applying Lagrange’s equation for théeeton circular and elliptical orbits. The
tether equations of motion are nonlinear diffe@ngquations up to cubic orders of
nonlinearity, and also show coupling terms betwdles longitudinal and transverse
coordinates. This 2D study gives a good basis detstanding how the flexibility changes
the tether’s motion in space. The comparative stigresented in this chapter have shown
that the flexibility changes the global motion béttether in both the torque and untorqued
conditions. The changes, however, are small butbmasignificant in cases where the
precise prediction of motion required. For the casthe MMET, this will impact on the

vital application of payload catching and releas®emwused as a payload exchange system.

The relationships between planar and nonplanaromethave been explored in Chapter 4
and the 3D local displacements have been includdte tether’'s equation of motion. In
the beginning of Chapter 4, different models fahées have been considered and the
different responses between them have been inagstigThe results hawdearly shown
that for the tether with the inclusion of rotatibkénetic energy the frequency of non-
planar motion increase. By introducing flexibilityto the tether, the planar motion shows
insignificant differences from that of the rigid dotether, for both the untorqued and
torqued conditions in circular and elliptical osbiBut, the difference is evident in the
nonplanar motion in both conditions. In comparisath the 2D model, the existence of
the non-planar variablex) in the EOM of the 3D model does not provide digant
influence on the planar motion of the tether. Iis tthapter, the transverse vibration was
again to be found to behave in terms of decayingganawith the application of torque.
With an applied torque the displacement in the ikoigignal direction increases, but both
the transverse and lateral displacements reducis. pifenomenon is connected to the
stiffening effect due to the centripetal load exgered by the spinning tether. The
centripetal load in the longitudinal direction iaaeses the axial displacement, whilst the
lateral stiffening effect reduces the vibrationtlve transverse and lateral directions. The
exponential growth of the longitudinal displacemamttorqued condition suggests the

relationship between the displacement and the fappdied to the tether and in the case of
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spinning tether, the force refers to the centrip&iece. Therefore, the increase of the
applied torque has increased the centripetal farw consequently increases the axial

displacement.

In Chapter 5, new boundary conditions have beeondated for developing the equations
of motion for the flexible tether. This study hdswn that the selection of mode shapes
and boundary conditions have significant influenaeshe global motion of the tether. The
natural frequencies for the static boundary coadgiand dynamic boundary conditions
have shown measureable differences. The frequeneyso found to be affected by the
physical configuration of the tether where the lngether has a lower frequency as
compared to that of the longer tether. The compjexii the mode shape function, derived
by applying dynamic boundary conditions has contgl to the presence of a third order
time derivative in the equation of motion. This ptea also suggests that the longitudinal
mode shape function is more complex than thatiferttansverse direction.

The dynamics of the flexible tether are investidaising the dynamical tools in Chapter 6
to study the links between regular and chaotic amotiThe eccentricity and the initial
conditions have been found to have a strong inflaeon the libration/spin motion, and
also the variation of those parameters we seeontrsibute to the route to chaotic motion.
The flexural effect in the tether has been prowebd significant in a faster route to motion
in tumbling and chaos. In the flexible model, tlegiation of initial conditions in the local
displacement does not alter the total global motbihe tether. The velocity increment
has also found to be affected by the variationrbit@ccentricity and the initial conditions.
The flexibility alters the differences in the totakponse, but at lower value. In the payload
transfer application, th&V requirement needs to be precisely met to endatethe tether

is able to catch the payload and also to delivéo ithe designated orbit. So, even small
differences InAV may affect this transfer process. This small etghce effect was
uncovered in this chapter, when the response battheerigid body tether and the flexible

tether are mutually compared.

Finally, the effect of the flexibility of the tethevas explored further for the payload
transfer application by comparing the power requesat for the MMET using a flexible
and rigid body model. This study shows that the tesctable flexible model dynamics are
actually far more useful in practice. The analyss shown that the power requirement for

a single tether is very high when compared wittbaventional system, but it should be
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emphasized that the energy needed for a convehtiocket system is for one-off use, and

it cannot be reused.

8.2 Future work

The dynamics of the flexible tether can be expldiather by investigating the effect of
flexibility on the tether deployment and retrievdlhese two phases are critical to the
tether’'s dynamics. Therefore, there should be maezesting work to be done to uncover

the connection between tether’s flexibility and Hagiation of tether length.

The simple assumption may provide a good basistiaty, but it is suggested to

include all perturbation factors in developing flexible model of the tether.

* The study of longitudinal vibration with dynamicwualary conditions can also be
further investigated in the future with the availi&p of more advanced computing

software and hardware.

* The route to chaotic motion can be further expldrgdising other dynamical tools
such as Lyapunov exponents and basin of attrattiggnovide more evidence that

the flexibility may affect the tether’'s motion tbawos.

* Finally, further work is suggested on the analydigether strength and material,
with a suggestion for the tether’s structure fogiaaering design so that more in-

depth analysis can be carried to understand thandigs of the flexible tether.
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Appendix A

I. Kinetic Energy
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iii. EOM
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FlexibleTether (3D)

I. Kinetic Energy
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JT
AlL2pq3'[t] o' [t]
+

1
EAqul[t] Sin[2a[t]]ql [t]a [t]+

T

2AL2pCos[at]11%93'[t]a’'[t] ALZ2pCos[2alt]]qg3'[t] o [t]
- +

n 7
%Aqul{t] q3'[t]a'[t]1+ALpCos[alt]]?ql[t] a3 [t] & [t] -
%ALDOOS[ZGU]] ql[t] a3 [t]a’[t] -
ALpCos[a[t]11g3[t]1Sin[af[t]] g3 [t]a [t]+

%AquB[t] Sin[2a[t]1]93"[t] a’[t] +g h? ' [t 1%+
Lza'[t]2+% AL3pa’[t]2+§ AL®pCos[a[t]]?a’[t]?-

AL2pql[t] a’[t]?
+

1
— AL®pCos[2alt]] a'[t]1%+
6 T

2ALZpCos[a[t]1?ql[t]a’'[t]? ALZpCos[2a[t]]ql[t] e [t]?
- +

T T

1 1
ZAqul[t]za’[t]2+E ALpCos[aft]1%ql[t]%2a’[t]?%-

1 1
ZALpOOS[Zcx[t]] ql[t]za’[t]2+z ALpq3[t1%a’ [t]1%+
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AL2pCos[a[t]]q3[t] Sin[a[t]] a'[t]?

1
— ALpCos[2a[t]]q3[t]1%a [t]?-
4 7T

ALpCos[a[t]]1ql[t]qg3[t]Sin[a[t]]a [t]?+
AL2pq3[t]Sin[2a[t]] a’[t]?
+
27

1
> ALpq3[t]1°Sin[a[t]]?a’ [t]%+

1
3 ALpql[t]q3[t]Sin[2a[t]] & [t]1?+L%Cos[a[t]]?M a'[t]?+
L2Cos[o[t] +o[t]112Sin[alt]1]?Ma' [t]%+
1 1
LZSin[a[t]]ZSin[e[t]+<p[t]]2l\/[;,a’[t]2+§ Mnrrzna’[t]2+z Mprja [t]%+
1 3 1 1 1
2 'be-zra'[t]2+z hzx'[t12+§ Mnr%w'[t12+z l\/brf,w’[t]2+z ALpriy[t]1%-

2 AL%pCos[a[t 2’[t1et
ALpCos[a[t]1]1g2[t]1ql [t]1e'[t]+ pCos[altll g2 [t]et]

T
ALpCos[a[t]1]ql[t]g2'[t]e[t]1-ALpg3[t]Sin[alt]]q2'[t]e[t]+
ALpQ2[t]Sin[a[t]1]1 g3 [t]1e[t]+ALpCos[a[t]]q2[t]g3[t]la’'[t]E[t] +
2AL%pQ2[t]1Sin[alt]] a’[t] e [t]

+

JT
ALpql[t]g2[t]Sin[a[t]]a [t]e[t]+L2e [t]?+
ALZpql[t] e [t]?

1 1
—AL%pe[t]1?+— AL®pCos[2a[t]] & [t]?%+ +
6 6 7

AlL2pCos[2a[t]]1ql[t] e [t]?

1
+— ALpql[t]?e[t]%+
7 4

1 1

2 ALpCos[2a[t]] ql[t]ze’[t]2+z ALpqg2[t]1%e [t]1%+

1 1

2 AquS[t]ze’[t]z—Z ALpCos[2a[t]]q3[t]?e [t]1?+ALpR[t]%2e[t]%-

AlL2pq3[t]Sin[2a[t]] e [t]?

1
-5 ALpqgl[t]g3[t]SIin[2a[t]] e [t]%+

T
1 1
> Cos[e[t]1]12R[t 1% Myo'[t ]2+E R[t12Sin[e[t]1]12 Mne' [t 1%+

L2 Cos[a[t]1]12Cos[6[t]+0[t]11°M e [t12+Cos[6[t11°R[t12M & [t]%+
R[t]1?2Sin[e[t]112M e [t12+L2Cos[a[t]]?Sin[e[t] +e[t1]12M e [t]%+

1 1 1
2 M“rﬁqe'[t]zafE |\/br§,e'[t]2+Z Mrie[t]?-

2AL?pCos[aft]]1q27[t] ¢'[t]
ALpCos[alt]]1Q2[t]ql [t] ¢ [t]+ +
T

ALpCos[a[t]1]1ql{t] g2’ [t] ¢ [t]-ALpq3[t]Sinfalt]] g2 [t] ¢ [t]+
ALpq2[t]1Sin[a[t]] g3 [t] ¢ [t]+ALpCos[alt]] q2[t]g3[t] a' [t] @ [t]+
2AL%pq2[t]Sinfalt]] o’ [t] ¢ [t]

+ALpql[t]qg2[t]

JT
1
Sinfat]]a’[t]e[t]1+2L%6[t] e [t] +5 AL3pe'[t]1 ¢ [t]+

2AL2pqlt] &[] ¢'[t]
+

1
— AL3pCos[2a[t]] O [t] e [t]+
3 7

2AL2pCos[2alt]]ql[t]e[t] e [t]

1
+— ALpql[t]1?e[t]e[t]+
x 2

1
EAmestza[tn ql[t12e[t]1 ¢ [t]1+ALpqg2[t]?e [t] e [t]+
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1 1
EAqu3[t]29’[t] @ It] -5 ALpCos[2a[t]]q3[t]?e [t]1e [t]-

2AL2pQq3[t]1Sin[2a[t]]e[t]e[t]

-ALpqgl[t]1g3[t]Sin[2a[t]]
T
e'[t] ¢ [t]+2L%*Cos[a[t]]*Cos[o[t]+o[t1]1°Mye[t] e [t]+

1
2L2Cos[a[t]112Sin[e[t] +o[t11°M 6 [t] w’[t]+5 Mar2 @ [t] @ [t]+

1 1
Myrze[tl] (p’[t]+E Myrze [t]e[t] +L2<p’[t]2+€ AL3po [t]1%+

AL2pql[t] ¢[t]?
+

T

1
p AL®pCos[2alt]] ¢ [t]1%+

AL?2pCos[2alt]1] ql[t] ¢ [t]?

1
+— ALpql[t]? e [t]%+
7 4

1 1
ZALpCOS[Za[t]] ql[t12<p'[t]2+5 ALpq2[t]1% ¢ [t]1%+

1 1
7 Aqu3[t]2¢’[t]2—Z ALpCos[2al[t]] q3[t]%e [t]?-

AL?2pg3[t]Sin[2alt]] ¢ [t]?

1
-5 ALpql[t]q3[t]Sin[2alt]] ¢ [t]%+
T

L2 Cos[a[t]]1?Cos[o[t] +o[t]1]1*M ¢ [t]%+
L2 Cos[a[t]112Sin[e[t] +o[t112M ¢ [t]1%+

1 1 1
" Mnr?nw'[t]%E M)réw'[t]%z M r2e [tl?
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ii. Potential Energy

AEon?ql[t]? 3AEox*ql[t]?q2[t]? 3AEox*q2[t]*
= - +

y -
P 2L 8 L3 3213
3AEon*ql[t]1293[t]? 3AEon*qg2[t]%q3[t]? 3 AEonxn*q3[t]*
+ + -
8 L3 16 L3 3213
1 My u My )
RIt] \/L2—2LOOS[a[t]] Cos[e[t]1] R[t] +R[t ]2
uM LTy 15x*ql[t]1*To
+ + +
AEo 32 L3

'\/L2+2LCOS[cx[t]] Cos[@[t]] R[t] +R[t ]2
mq2[t12Ty 3x%ql[t1292[t1%Ty 3n*q2[t1*Ty =% q3[t]%Tp
+ +

+ -
2L 8 L3 32 L3 2L
3a4ql[t1293[t]1%Ty 37*q2[t12q3[t1%2Ty 3x*q3[t]* T,
8 L3 16 L3 32 L3
i ALup
i=1 n\/ (-1+2i2)2L2 _ (-1+2i) L Cos[aft]] Cos[e[t]] R[t] +R[t ]2
4n n
ALpup

>

i=1 _ iy22 - i
n\/ (-1+20)2L2 | (-1+2i) L Cos[aft]] Cos[e[t]] R[t] +R[t ]2

4 n? n

Appendix B

201



Appendix C

EOM FlexibleTether
i. For o[t]

-t Cos[a[t]] Cos[y[t]] +

1
LuCos[a[t]] R[t] -

(L2-2L Cos[a[t]] Cos[@[t1] R[t] +R[t12)>"

1

2 Sinfe[t]1] M-
(L2 +2 L Cos[a[t]] Cos[e[t1] R[t] +R[t1%)"

n A(-1+2i)L%2upCos[a[t]] R[t]Sin[e[t]]

! . iy2)2 _ ; 3/2
1 on2 (( 1+42r.]2) L2 _ l+2|)LOos[a[tn]]COS[w[t]]R[t] +R[t]2)

i A(-1+2i)L2upCos[a[t]]R[t]Sin[e[t]]

iy2)2 i 3/2
i=12n2 ( (-1+42r|]2) L + (-1+21i) LCOS[a[tn]] Cos[e[t]1] R[t] +R[t ]2)

1
— (12AL7pq2[t]1q2[t] (&'[t] +¢'[t]) -

6
2L (-6 ApCos[aft]] (2L Cos[a[t]]+xCos[a[t]]ql[t] -
7Q3[t]1Sin[aft]]) gl [t]1-3Anpq3[t]®Sin[2a[t]]a’'[t]+6A
pa3[t] (-xSin[a[t]17q3'[t]+Cos[2a[t]] (2L+xql[t]) &' [t]) +
Sin[2a[t]] (3Ap (2L+xql[t]) a3 [t]+ (12ALpql[t]+
3A7rpq1[t]2+2L7r(ALp+3l\/b))a’[t])) (O'[t]+@ [t]) +
6ALp (2L Cos[a[t]] +mCos[a[t]1] gl[t]-nqg3[t]Sin[a[t]]) g2”[t]+
6ALpq2[t] (2xSin[a[t]]ql’ [t]a [t]+2xCos[a[t]] g3 [t]a[t]+
2LCos[a[t]]a' [t]1?+nCos[a[t]] gl[t] a' [t]?-
7q3[t]Sinfa[t]] a[t]?-nCos[a[t]]ql”[t]+nxSin[a[t]]g3"[t]+
nCos[a[t]]1g3[t] a’[t]+2LSin[alt]]a’[t]+
mgl{t]Sin[aft]]a’[t]) +6 ALwpq2([t]? (6”[t]+¢ [t]) +
(6 ALmpCos[alt]]?ql[t]?+6ALnpq3[t]*Sin[alt]]®+
12ALpCos[a[t]]1ql[t] (2L Cos[a[t]]-nq3[t]Sin[a[t]]) -
12AL%pq3[t]Sin[2aft]] +x (2L> (6+ALp+ALpCos[2a[t]]) +
B3Mnr5+3M (4L%Cos[a[t]]1%+2r5+r%))) (67 [t1+¢”[t])) =0
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ii. For e[t]

1
py (6AL7pq3[t] 3" [t]e[t]-6ALmpCos[2alt]]q3[t] 3" [t]e[t] -
T

12AL%2pSin[2at]]1 93 [t]€[t]-6ALmpql[t]Sin[2alt]]

q3'[t]1e[t]1+24ALnpR[t]R[t]e[t]+12xR[t] MyR[t]E[t]+

24 7Rt ] MR[t]6[t]-24AL%2pCos[2alt]] q3[t] ' [t]E'[t] -

12ALnpCos[2alt]]1ql[t]1g3[t]a’[t]1eE[t]-

4ALErpSin[2alt]]la’[t]e[t]-24AL%pql[t]Sin[2a[t]]a’ [t]e[t]-

6ALmpql[t]?®Sin[2at]]a’[t]6[t]+6ALTpq3[t]?

Sinf2a[t]]a[t]1e[t]-12L2xSin[2a[t]] Ma'[t]1e[t]+

6ALmpq3[t] g3 [t] e [t]-6ALnpCos[2alt]]q3[t]q3' [t] ¢ [t]-

12AL%pSin[2alt]1]1 g3 [t]1 @ [t]-6ALmpql[t] Sin[2alt]]

g3'[t]1 @ [t]-24AL%pCos[2alt]] g3[t] ' [t] ¢ [t] -

12ALnpCos[2a[t]]gl[t]g3[t]a [t] e [t]-

AAL nmpSin[2alt]]la’[t] @ [t]-24AL%pql[t]Sin[2alt]] a’[t] e [t]-

6ALmpql[t]?Sin[2a[t]]a’ [t] @ [t]+

6ALmpq3[t]1?Sin[2a[t]]a’ [t] e [t]-

12L27xSin[2alt]] Mo’ [t] e [t]+12ALpCos[alt]]

(2L Cos[a[t]] +nCos[a[t]]1ql[t]-mq3[t]Sin[a[t]])

ql[t] (e [t]+e¢ [t])+12AL%pCos[alt]] g2 [t] +

6 ALnpCos[a[t]]1ql[t]gq2”[t]-6ALmpq3[t]Sin[alt]]gq2”[t]+

6 ALpQ2[t] (27rSi Nlaft]1ql'[t]a’'[t]+2xCos[alt]] g3 [t]a [t] +
2LCos[a[t]] ' [t]12+mCos[a[t]]ql[t] a'[t]2%-
7Q3[t]Sin[aft]la[t]?+2nq2'[t] e [t]+27Q2 [t] @ [t] -
nCos[a[t]]1 9l [t]+xSin[al[t]] 3 [t]+nCos[a[t]]q3[t]a’[t] +
2LSin[aft]la’[t]+xqllt] Sin[alt]]a”[t])+

1212ne”[t]1+2AL3mpe”[t] +2ALSntpCos[2a[t]] & [t] +

12AL%pql[t]e’[t]+12AL2pCos[2at]] ql[t] & [t] +

3ALnpql[t]?e’[t]1+3ALnpCos[2a[t]] gl[t]?e”[t] +

3ALnpq3[t]1%e"[t]1-3ALnpCos[2a[t]] q3[t]12e"[t] +

12ALnpR[t]1%20"[t]-12AL2pq3[t]SiN[2at]] &"[t] -

6ALmpql[t]1g3[t]Sin[2alt]] e [t]+6nxR[t]?>M6"[t]+

6L Mo [t]+6LZnCos[2alt]] Mo [t]+12xR[t]>Me7[t] +

3aMnrze [t]1+6xMrie [t]+3nxMrie [t]1+12L% e [t]+

2AL3 po [t]1+2ALSnpCos[2at]] @' [t]+12AL%pql[t] @ [t] +

12AL2pCos[2at]]1 ql[t] ¢ [t]+3ALnmpql[t]2e”’[t]+

S3ALnpCos[2alt]]ql[t]? e [t]+3ALnpq3[t]2¢ [t] -

3ALnpCos[2alt]]1q3[t]% e [t]-12AL%pQq3[t]Sin[2a[t]] ¢ [t]-

6AL7pQql[t]1q3[t]Sin[2alt]] e [t]+6L2aM o [t]+

6LZnCos[2alt]] Mo [t]1+3nMirde [t]+6xMrie [t]+

B3rMrie [t1+6ALrpq2[t]% (7 [t]1+¢"[t])) =0
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iii. For gl[t]

1
8L3x

(157°q1[t]1°To-2xql[t] (3x"q2[t]? (AE0-To) +3x"q3[t]1? (AE0-To) +

2AL% (-2EB0r®+2L% pa’[t]1?+2 L% pCos[a[t]]1? € [t]?+4L%p
Cos[a[t]1? e [t]1 ¢ [t]+L2p¢ [t]1?+L?pCos[2alt]] ¢ [t]1?)) -
4ALYp (47q3'[t]a[t]+4La’ [t]?+4mCos[alt]] g2 [t]6[t] +

2Le'[t]1?2+2LCos[2a[t]]1 e [t]1°-nq3[t]Sin[2a[t]] e [t]?%+
4nxCos[a[t]]1g2[t] @ [t]+4Le[t]1e[t]+4LCos[2alt]]e [t]@[t]-
2nq3[t]Sin[2a[t]]e[t]¢[t]+2Le [t]1?+2LCos[2at]] ¢ [t]1%-
7q3[t]1Sin[2alt]] ¢ [t]1?-27ql”[t]+27q3[t]a’[t] +
2nCos[aft]]q2[t] e [t]+2xCos[alt]]g2[t] ¢”[t]))

iv. For g2[t ]

(37°q2[t1° (AE0-To) +67°qLl[t1°q2[t] (-AE0+Ty) +
8L3x

7q2[t] (3xq3[t]1? (AE0-Tp) -8 (-L*#® To+AL%p (&'[t] +0'[t])?)) -

8AL*p (2nCos[a[t]1]q3[t]la'[t] e [t]+4LSin[a[t]]a' [t]6[t]+
2nCos[a[t]1]1q3[t]la’ [t] e [t]1+4LSin[a[t]]la[t] e [t]-2
Cos[a[t]1ql'[t] (6'[t]+¢ [t])+2xSin[a[t]]q3'[t] (6'[t]+e [t]) -
nQq2”[t]-2LCos[af[t]] 6”[t]+nq3[t]Sin[a[t]]e”[t]-
2LCos[af[t]1] ¢ [t]1+nq3[t]Sin[a[t]]¢’[t])-8AL*mpql[t]

(2Sin[a[t]]la'[t] (& [t]1+¢ [t])-Cos[alt]] (6”[t]+¢"[t])))

v. For q3[t]

N (3AE0n°q3[t1°+3x°q2[t]1°q3[t] (AE0-To) +8L*x°q3[t] To -

T
3753t 13 To+67°ql[t]1%2q3[t] (-AE0+Ty) +16 AL mpql/[t] ' [t] -
8AL*npq3[t] ' [t]1?+16 AL*npSin[a[t]] g2 [t] & [t] -
4ALnpql3[t]1 e [t]?+4AL* rpCos[2alt]]q3[t] e [t]°%+
8ALSpSIiNn[2at]] e [t]1°+16 AL npSin[alt]] q2'[t] ¢ [t] -
8AL*nmpq3[t]e[t]e[t]+8AL*mrpCos[2alt]]q3[t]1e[t] e [t]+
16 ALSpSin[2a[t]]e[t]1e[t]1-4AL*mpq3[t] @ [t]%+
4AL*mpCos[2alt]1]103[t] @ [t12+8AL pSIiN[2alt]] ¢ [t]%+
8AL*7pq3”[t]+16 AL pa”’[t] +4 AL mrpql[t] (Sin[2a[t]] & [t]%+

2Sin[2aft]]1e[t]1 e [t]1+Sin[2alt]] e [t1?+2a”[t]) +

8AL*7pq2[t]Sinfa[t]] (6”[t]+¢”[t])) =0

vi. For a[t]
-t Sin[y[t]] +
1
L u Cos [o[t 1] RIt ] — -
(L2-2 L Cos[a[t]] Cos[e[t1] R[t]+R[t]2)™
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1

Sinfaft]l M-

(L2+2L Cos[a[t]] Cos[e[t1] Rit] +R[t]12)>

D= (A(-1+2i) L2 upCos e[t 1] RIt] Sin[“[t]])/ [2”2
1

[(-1+2i )2L2  (-1+2i) L Cos[a[t]] Cos[e[t]]R[t] 2]3’2]
- +R[t] -

4 n2 n

n
Z(A(—1+2i)L2upCOS[<p[t]] R[t]Sin[a[t]])/
1

. . 3/2
5 ? [(-1+2|2)2|_2 . (-1+2i)LCos[a[t]] Cos[e[t]1] R[t] +R[t]2] ]+
4n n

4AL%2pql [t] a’[t]

+2ALpql[t]ql [t] e [t] +

T

2ALpQ3[t]1 g3 [t]a[t]+2ALpCos[al[t]]q3[t] g2 [t]e [t] +
4AL2pSin[alt]]1g2'[t]e[t]
+

T
2ALpql[t]Sin[a[t]] g2 [t]e[t]+

2ALZpCos[2alt 3[t1e[t]?
p [alt]lgstt] et +ALpCos[2a[t]]1ql[t]q3[t]e [t]1%+

Tt
ALpCos[a[t]]1ql[t]?Sin[a[t]] e [t]?-

1
ALpCos[a[t]] q3[t]ZSin[a[t]]e’[t]2+§ AL®pSin[2alt]] e [t]%+

2ALZpql[t]Sin[2a[t]] e [t]?

+L2Sin[2a[t]] Me[t]1%+

T
4ALZpSinfalt]] g2 [t] ¢'[t]
+

2ALpCos[alt]1]g3[t] g2 [t] @ [t]+

Tt
4ALZpCos[2aft]]g3[t] e [t] ¢ [t]
+

2ALpql[t]Sin[a[t]]q2'[t] ¢ [t]+

T
2
2ALpCos[2a[t]]1ql[t]g3[t]1 e [t] ¢ [t] *3 AL3pSin[2alt]] e [t]1e [t]+

4AL2pql[t]Sin[2a[t]] e [t] e [t]

+ALpql[t]12Sin[2at]] e [t]e[t] -
T

ALpqQ3[t]?Sin[2alt]] e [t] e [t]+2L2Sin[2a[t]1]Me [t]e [t]+
2AL%pCos[2alt]] g3[t] ¢ [t]?

+ALpCos[2alt]]ql[t]q3([t] ¢ [t]1%+
T

ALpCos[alt]1] ql[t]?Sin[alt]] ¢ [t]*-

ALpCos[alt]1]q3[t]1?Sin[alt]] ¢ [t]*+

2ALZpql[t]Sin[2a[t]] ¢ [t]?
+

1
—AL¥pSin[2at]] @ [t]2+
3 JT
2AL2 pg3” [t
L2Sin[2alt1]1 M ¢ [t]1°-ALpq3[t]ql”[t] + par Bl

JT
2
ALpql[t]1q3”[t]+3h%2a’[t]+2L%2a"[t] +5 AL¥pa’[t] +

AAL2pql[t] [t
pQlt] a”|[ ]+Aqu1[t]2a”[t]+Aqu3[t]2a”[t]+

T
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20 o Loz LRV LRV
2LI\/bcx[t]+4M“rmcx[t]+2l\/brpa[t]+2|\/br-ra[t]+

2AL2pq2[t] Sin[alt]] e[t
ALpCos[a[t]]1g2[t] g3[t]1e [t] + pqz2[t] [aft]] 67[1] .

T
ALpql[t]qg2[t]Sin[alt]]e”[t] +ALpCos[alt]]q2[t]1q3[t]e”[t] +
2AL2pQq2[t]1Sin[alt]] ¢[t]

+ALpql[t]1g2[t]Sin[a[t]] ¢ [t] =0
T

vii. For R[t]

= " +
2

1(2uMy  H(-2LCos[alt]] Cos[el[t]1]+2R[t1) M
R[t]® (L2-2L Cos[a[t]] Cos[e[t]1]R[t]+R[t]12)%?

2p (LCos[a[t]] Cos[e[t]]+R[t]) M

(L2+2L Cos[a[t]] Cos[[t1] Rit] +R[t]1%)>

n -1+2i)LCo t Co t
ZZ—(ALup(—( +2i) LCos[a[t ]] oS [¢[t 1] c2rui))/
i1 n

. [(-1+2i)2L2
4 n?

(-1+2i)LCos[a[t]] Cos[e[t]] R[t] )3/2]
+R[t ]2 -
n

n -1+2i)LCo t Co t
ZZ—(ALup(( +20) L Cos[aft]] S["’[”+2R[t]]]/
i1 n

+

. [(-1+2i)2L2
4 n?

(-1+2i) LCos[a[t]] Cos[e[t]]R[t] 2]3’2]]
+R[t] -
n

R[t] (Mn+2 (ALp+M)) € [t1%+ (Mn+2 (ALp+M))
R'[
t]=0
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Derivation of mode shapefunction

w* X W * X
u[t]=(A1*Sin[ ]+Bl*COS[—])*Sin [wxt];
C C
u' =D[uft], t ]
u" =D[u',t ]

ux' =D[u[lt], x ]

wCos [t w] (51005[%] +A1Sin[%])

L2 Sin(t o] (31003[%] +A18in[%”

AlwCos[**] BlwSin[*"]
Sin[t w] -
c c
(*at X =r, the ux' and u" become =... %)

U = ~a? Sin [t 0] (BlCOS[r:w] + AL Sin [rlcw])

AlwCos[*2¢] Blw Sin [ic“’]]

uxr, = Sin [t w]
c c

oxAx (L-rp)
_—

t1 = (L-rpm) *» ((¢' [t])"2) ( MD)+E0*A*Uer+Mn*Urm

Al w Cos [ | B1w5in[wam]]

AE0oSin[t w]
C C
wr wr
W2 Sint w (51 005[—'“] +ALSI n[—m]) M +
C C

1
M>+5Ap<L—rm> (L-rm o [t]?
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(*»at X =r, the ux' and u" become =... %)

ULory) = -2 Sin [t 0] BlCos[—r)] + Al Sin [—r)]]

UX (L-r,) = Sin [t ]

Aleos[(";cp)"'] Bl w Sin [(L—rcp)w] |
c c

pxAxrp

2 =rp* ((¢' [t])"Z)( >

+Nl>] +EO*A*UX(|__rp) +N'D*U(|__rp)

Alwms[%] B1ws|n[LC”’)]]
AEo Sin[t w] -

W Sint wl BlCos[

1 2
Mo (M:+E Aprp] o [t]

egqn = {t1 =0,12 =0}

{AEo Sin(t w]

Al wCos[“"] BlwSin[“"]
C ) C ]

WSint o (BlOos[ whm ]+A18|n[wrm]) My +
C

c

1
M’*E Ap (L*rm)J (L-rm) @ [t]?=0,

Alw(bs[%] Blem[%]
AEo Sin[t w] . - - ~w?Sin(t w)
w(L-rp) o qw(L-rp)
BlOos[ ]+A1s|n[ ]}M:+rp(M:+—Apr)(p[t]2_0}
C C

Solve [eqn, {Al, Bl}]

(M35 Aprp) o [t]?

rp 2
{{Al S "
w (L-rp) .
Cc

AEowCo S w w (L-
0 s| | singt ]7w28in[tw]8in[%]lvb

C

AEo wSin[t w]Sin[M] , [
_ - w” Cos

AEOwOOS[w} Sint o]

2 Sint wl Sin[f] M:J
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AEo w Cos [—“’ 1 ] Sint o]

~w?Sint w] Sin[

c

AEowCos[“"] Sin[t w]

~w?Sin[t ]Sln[wgm] Mﬂ]

AE0O wSin[t w] sm[M] , [
_ - w* Cos

AEowSin(t w] Sin[~"]

. waOOS[

(L-rp)

AEOwCos[ ]Sin[t w]

C

~w?Sint w) Sin[M] MD]]],

AEo w Cos [— -re) ] Sinft w

Bl - - —wzsin[tw]sin[

c

1
(M:JrEAp (Lfrm)) (L-rm) @,[I]Z*

AEOwCOS[wTrm] Sin[t w]

~w?Sin[t ]Sln[wrm] Mﬂ]
c C

1
o (M:+E Aper (p’[t]zJ/

AEowCos[“"] Sin[t w]

[ ~w?Singt w]Sin[w—rm] Mn]

_AEowSin[ ]s|n[%] _OJZCos[
c

AEo wSin[t w] Sin[%
_ —wZOOS[
C

AEOwCos[ (Lrp) ]Sin[t w]

; w]sm[fw]]}}

(|V|:~+i Aprp) ¢ [t]1?
Al = - +
AEowCos[ ]Sln [t w] p)] b

w (L-r

) .
. -w* Sin [t w] Sin [
AEowSin [t o] Sin [ ] (L-

- 2 -w Cos[—] Sin [t w] Mb

w (L-r

AEow Cos[ 2 &lp) ] Sin [t w]

- w? Sin [t w] Sin [—r)] M

C
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AEow Cos[“’—gm] Sin [t 0]

1
(M>+— Ap (L—rm)] (L-rm) o [t]%-
2 C

_ o orwlm 1
w? Sin [t w] Sin [T] M‘n] lp [M:>+E Aprp) (p'[t]Z]]/

w (L-r

A Eow Cos[ L&) ] Sin [t w]

- »? Sin [t w] Sin [—f)] Me

C

AEow Cos[“’T””] Sin [t 0]

- Sin [t @] Sin [wTrm] Mn]

c
AEowSin [t ] Sin [=E1e ] (L-
- -w Cos[—] Sin [t w] M:]
c
wlm
- C - o Cos[ ] Sin [t w] Mn]
c
AEowCos["’(L Le) ] Sin [t o]

AEow Cos[—"—"' @ )] Sin [t o]
Bl=- :

C

L-r
- w? Sin [t w] Sin [u] MD]
C

1 2
(MD"'E Ap (L'rm)] (L-rm) o' [t]°-

Wl

C

1 2
rp(MD+EADrp]‘P’[t] /

Wwr

-w? Sin [t ] Sin [wTrm] Mn]

C

-w? Sin [t ] Sin [wTrm] Mn]

_AEow Sin [t w] Sin [%] w COS[L—] Sin [t ] M>]

c

AEowSin [t w] Sin [£= Wrm
_ © — _w?Cos|— | Sin [t
w [ . ] [t w] Mqn

C

w (L-r

AEow Cos[ 2 &lp) ] Sin [t w]

- w2 Sin [t w] Sin [w(L—C_rp)] MDJJ;

Cc
phi = AL« Sin [X—Cw] +51*003[%]

AEowCos|[“ " | sin(t w] w (L-Tp)

~W?Sint w]Sin[—C ]MDJ

=

- -w? Sin [t ] Sin [—r)]l\/b]]]
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1
(M:JrEAp (Lfrm)) (L-rm) @,[I]Z*

AEowCos [“"] Sin[t w] Wrm

~w?Sin(t w] Sin[—] Mn]

c

1
Mo (MHE Aprp] w'[t]ZJJ/

AEo wCos [£] Sin[t w]
_ [C ] +wZSin[tw]Sin[w—rm]MnJ

c

c Cc

_AEowSin[t w] Sin[w] _OJZOos[
c

w(L-rp)

AEowSin[t w] Sin[<"]

_ _MZQOS[i]Sin[t w] Mn]

c

AEo w Cos [—“’ e ] Sinft w

c

1 ,
Xuw rp (M+3 Aprp) o [t]2
Sln[—] - - 4
c AEo w Cos [~ (Lc"‘” ]sinit w) w (LT p)
C

c

—w?Sin(t w) Sin[

AEOwSi N[t ] Sin[M]

C

AE0 wCos[“"] Sin[t w]
_ ¢ +w?Sin(t w]Sin[—]Mn

c

7AE0wSi nit w] Si n[_“LCfrp)] » OOS[
C

AEowSin(t w] Sin[“"] Wrm

~w?Cos|—— | Sin[t w] My
) st

C
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AEowOos[%] Sint w]

- wZSin[tw]Sin[M]M:]]]

. w(fL+X+I’p)
c Csc [t w] 2ch|n[—]NE(Lfrm)+
c
~L+x+r -L+Xx+r
[\/b AL 2EOQ)5[u]+c|_pwsin[u]}_
c c
-L+Xx+r -L+x+r
2A EoCos[u]+chwSin[u]]rm+
c c
~L+X+r
ACpcuSin[w< M p>]r§n
c
w (X =Tm) oW (X =Tm)
2(AEOC03[—]+CwSIn[ ]Mn)rp N
c c
w(—L+x+rp) w(—L+x+rp)
Ap AEoLzoos[ ]—ZAEOLCOS[ ]rm+
c c
w(—L+x+rp)
AEoCos[ ]r,znf
c
(AEoOos[ (—rm)]+chin[w( _rm)]Mn)rg (p[t]z]/
c c
“L+rmp+r ~L+rmp+r
2w |AEo AEoSin[w( o p>]—CwCos[w< o p>]|v|:}+
c c
w(fL+rm+rp) . w(—L+rm+rp)
Cc w M AEoCos[ ]+ch|n[ ]Ma
c c

Mode Shape Function :

o [X] =
(cCsc[t w] (2c wSin [a] M (L-T ) +M (AL (2EoCos[a] +CcL pwSin [a]) -

2A (EoCos[a] +CL pwSin [a]) rm+ACpwSin [a] I3 -
2 (AEo0Cos[B] +C wSin [B] My) rp) +
Ap (AE0L?Cos[a] -2AEoLCos[a] rm+AEoCos[a] I -
(AEoCos[B] +Cc wSin [B] Mn) r3)) o' [t1?)/
(2w (AEo (AEOSIin [a] -c w Cos[a] Mp) +C w My, (A Eo Cos[a] +C w Sin [a] Mp)))

where,
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EOM : fixed — massboundary condition (axial vibration)

o ((0° [11)72) (2572 + M)
Ul =

My * (0”2) % Sin [‘”C—lL

(*Introduce Ax,BX,
and Cx in mode shape function for position of Mp and Mm *)

i.For o[t]

egnsl =

Csc[t w]® [—24L3uw2 R[t ] (\/LZ—ZLCOS[q:[t]] R[t]+R[t]2 -

'\/L2+2LCOS[<p[t]] R[t ] +R[t]? ) Sin [t w]1®Sin [e[t1] M -

24 L pw? R[t]3 (\/LZ—ZLCOSW[t]] R[t] +R[t]? -

'\/L2+2LCOS[<p[t]] R[t] +R[t]? ) Sin [t ]®Sin [e[t]1]1 M +

L4'\/L2—2LCOS[<p[t]] R[t] +R[t ] ’\/L2+2LCOS[(p[t]] R[t] + R[t]?

(-24w25in [t w]3Z-(A (-1+2i) L2 upR[t] Sin [(p[t]])/ (an

i=1

[(-1+2i)2L2 (-1+2i)LCos[e[t]]R[t] 2]3/2]
- +R[t] -
4 n2 n

24 w? Sin [t @]® ' (A (-1+2i) L> upR[t] Sin [w[t]])/ [2”2
i:l

[(—1+2i)2L2 (-1+2i)LCos[e[t]]R[t] ]3/2]
+ +R[t 17 -

4n2 n
48 ALUI? pwd Cos[t w] gl[t]% e [t] +24 AclU1?pw?
2L w
Cos[t ] gl [t ]2 Sin [ ]e’[t]+
cl

Lw .
48Ac1LU1prCos[—1]ql[t]Sln [2t w] ©'[t] -
C
. rley
48 Acl?2Ulpwqlft] Sin [—1]Sln [2t w] O'[t] -
C
Lw,2
48 U12 w® Cos[t w] ql[t ]2 M e [t] +48 U1? & COS[—l] Cos[t ]
C
) Lw,2
ql[t 12 M e[t ] - 48 U12 w3 Cos [t w] g1 [t 12 Sin [—1] My o' [t] -
C
. rLley
48 L UL w® ql[t] Sin [—1]Sln [2t w] Mye[t] -
C

Lw Lw
48 AclL U1l prOS[—l] qli[t] e [t] +48A(:1LU1pros[—1]
C C
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L
Cos[t w]2ql'[t] e [t]+48Acl2UlpSin [—1“] qlrt] et -
C

) Lw
48 A c12? Ulp Cos[t w]? Sin [—1] gl [t]1eqt] +
C
48 ALUI? pw?ql[t] Sin [t w]lql’[t]e[t]-
2L
cl

24 AclU12 pwql[t] Sin [ w] Sin [t w] ql'[t]e[t] -

Lw, .
48 AclL Ul prOS[—] Sin [t w]?ql[t]e[t] +
cl
. rLley
48 A c12 Ulp Sin [—1] Sin [t w]2ql[t]et]+
C

o rLw rLoe
48 L U1 w? Sin [—] My ql’[t] e [t] -48L UL w? Cos[t w]? Sin [—]
cl cl
Mgl [t]e[t]+48U1%2w?ql[t] Sin [t w] Myql'[t] e [t] -

Lw,2
48U12w2Cos[—1] qL[t]Sin [t @] Mgl [t]e[t]+
C
Lw,2
48 U12 w2 g1 [t ] Sin [—1] Sin [t w] Myql'[t]e[t] +
C

Loy
48 L U1 &? Sin [—1] Sin [t w]2Mql’[t]e[t] -
C
48 AL U1’ pw® Cos[t w] ql[t]% e [t] +
2L
cl

w
24 A c1 U12 p w? Cos [t w]ql[t]ZSin[ ](p’[t]+
Lw )
48AClLU1prCOS[—1]ql[t]Sln [2t w] @[t ] -
C
. rley
48 Acl2Ulpwqgl[t] Sin [—1]s|n [2t w] @' [t] -
C
Lw-2
48 U12 w® Cos[t w] ql[t ]2 M ¢ [t ] +48 U1? &3 COS[—l] Cos[t w]
C
. Lw 2
ql[t 12 M o' [t ] - 48 U1? w3 Cos [t w] g1 [t 12 Sin [—1] M o' [t ] -
C
Loy
48 L UL w® ql[t] Sin [—1]s|n (2t w] Mo [t] -
C
Lw Lw
48AClLU1prOS[—]ql’[t]<p’[t]+48AClLU1pros[—]
cl cl

L
Cos[t w]2ql'[t] ¢’ [t] +48Acl2Ulp Sin [—1“] qlrt] e qt] -
C

o rLoe
48 A c12? Ulp Cos[t w]? Sin [—1] gl [t] @' [t] +
C
48ALUL? pw?ql[t]Sin [t w] ql'[t] e [t] -
2L w
cl

24AC1U12pwq1[t]Sin[ ]Sin [t w] ql'[t] @ [t] -
Lw
48 AclL Ul prOS[—l] Sin [t w]2ql[t] @ [t] +
C
Lw
48 A c12 Ulp Sin [—1] Sin [t w]2ql[t] @ [t]+
C

Lw Lw
48 L U1 w? Sin [—] My ql’[t] ¢ [t] -48L UL w? Cos[t w]? Sin [—]
cl cl
Mgl [t] e [t]+48U1%2w?ql[t] Sin [t w] Myql'[t] ¢ [t] -

48 U12 2 COS[H]unt] Sin [t ] Myql/[t] ¢ [t] +
cl
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. Lwq2
48 U12 w2 g1 [t ] Sin [_1] Sin [t @] Mygl’[t] @ [t] +
C
. rLlog
48 L Ul &? Sin [—1]Sln [t ]2 Mygl/[t] @ [t] -
C
Lw Lw
48AClLU1prOS[—]ql[t]e”[t]+48AclLU1prOS[—]
cl cl
) Lw
Cos[t w]2ql[t] e [t] +48Acl2Ulpqlft] Sin [—1]6”[t]—
C

o rlLow
48 Acl?Ulp Cos[t w]2ql[t] Sin [—1] e [t] +
C

15AL3 pw?Sin [t w] ' [t]-15AL3 pw? Cos[t w]2Sin [t w] [t ] +
24ALU1? pw?ql[t]?Sin [t w] & [t] -

2L w
cl

12Ac1u12pwq1[t]25in[ ]Sin [t w] ©[t] -

Lw .
48 AclL Ul prOS[—] ql[t] Sin [t w]2e”[t] +

cl

Loy
48 Acl2Ulpqgl[t] Sin [—1] Sin [t w]267[t] +

C
_ o rLow
5AL3 pw?Sin [t w]26”[t]+48LULw?ql[t] Sin [—1] My e [t ] -
C

o rLw
48 LUL w? Cos[t w]2ql[t] Sin [—1] Mo [t] +
C
36 L2 w?Sin [t w] My [t]-36L%w?Cos[t w]?Sin [t w] Mye”[t] +

L 2
24 U12 w2 g1 [t 12 Sin [t w] My " [t ] - 24 U1? w2 Cos[—lw] ql[t 12
C
) ) Lwq2
Sin [t ] My & [t ] +24 U12 w? q1 [t ]2 Sin [—1] Sin [t w] My [t] +
C

L
48 L UL w? ql[t] Sin [—lw] Sin [t w]2 M e”[t] +
C

12L2 w? Sin [t ]3> M, 07 [t] +9 w? Sin [t @] Mymr 2,67 [t ] -

9 w? Cos[t w]?Sin [t w] Mymr 2,07 [t ] +3 w? Sin [t ]2 Mymr2,07[t] +
18 w? Sin [t w] Mpr2e”[t] -18 w? Cos[t w]?Sin [t w] Mprie’[t] +
6 w”Sin [t w]*Mrie”[t]+9ALpw®Sin [t w]lrfe’[t] -
9ALpw? Cos[t w]?Sin [t wlr2e”[t]1+3ALpw?Sin [t w]®

Lw
r2e7[t] —48AclLU1pros[—] qL[t] @/ [t] +
cl
Lw
48 AclL Ul prOS[—l] Cos[t w]2qlt] @’ [t] +
C
o rLoe
48 Acl2Ulpqgl[t] Sin [—] 0 It] -
cl

o rlLow
48 Acl? Ulp Cos[t w]2qgl[t] Sin [—1] OIt] +
C

15AL3 pw?Sin [t w] ¢’ [t]-15AL3pw? Cos[t w]?Sin [t w] ¢ [t] +
24A LU pw? ql[t12Sin [t w] @ [t] -

2L w
cl

12Ac1u12pwq1[t]25in[ ]Sin [t w] @"[t] -
Lw )

48 AclL Ul prOS[—l] gl[t]Sin [t w]2 ¢ [t] +
C

Loy
48 Acl?Ulpql[t] Sin [—1] Sin [t w]? @[t ] +
C
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3 2 1 3 rr 2 1 ﬂ 174 _
S5AL° pw” Sin [t w] @ [t]1+48LULlw ql[t] Sin 1 Mo [t]
C

Lw
48 L UL w? Cos[t w]2ql[t] Sin [—1] Mo [t ] +
C
36 L% w? Sin [t w] My @ [t]-36L2w? Cos[t w]?Sin [t 0] My [t ]+

L 2
24 U12 o g1 [t 12 Sin [t w] My ¢” [t ] - 24 U12? o2 Cos[—lw] ql[t 12
C
) ) Lwq2
Sin [t @] My @ [t ] +24 U12 2 q1 [t ]2 Sin [—1] Sin [t w] Mo [t] +
C

L
48 L UL w? ql[t ] Sin [—1‘"] Sin [t w]2 M@ [t] +
C

12L2 w? Sin [t @13 M @ [t] +9 w? Sin [t @] Myml 2,0 [t ] -

9 w? Cos[t w]?Sin [t @] Maml 2,07 [t ] +3 w? Sin [t ©]3 Mymr 3,07 [t ] +
18 w? Sin [t w] Mpr3 e [t] -18 w? Cos[t w]?Sin [t w] Mprie”[t] +
6 w? Sin [t a)]3|\/|3r,%<p”[t]+9AprZSin [t w]r2e”[t]1-9ALp

w? Cos[t w]?Sin [t w]r%¢”[t]1+3ALpw?Sin [t w]3r%<p"[t]] +

R[t]4\/L2—2LCOS[<p[t]] R[t] +R[t]?

'\/L2+2LCOS[<p[t]] R[t] +R[t ]

[—24w28in [t w]3Z-(A (-1+2i) L2 upR[t] Sin [(p[t]])/ [2n2

i=1

[(-1+2i)2L2 (-1+2i)LCos[e[t]]R[t] ]3/2]
- +R[t ]2 -
4n? n

24 w? Sin [t @]® ' (A (-1+2i) L2 upR[t] Sin [w[t]])/ [2”2
i=1

[(—1+2i)2L2 (-1+2i)LCos[e[t]]R[t] 2]3/2]
+ +R[t] -

4 n2 n
48 ALU1? pw® Cos[t w] ql[t]? e [t]+24AclU1?pw?
2L w
Cos[t ] gl [t ]2 Sin [ ]e’[t]+
cl

Lw )
48AclLU1prCos[—1]ql[t]Sln [2t w] [t ] -
C
. rley
48 Acl2Ulpwqgl[t] Sin [—1]s|n [2t w] O'[t] -
C
Lw-2
48 U12 w® Cos[t w] ql[t ]2 M e [t] +48 U1? &3 COS[—l] Cos[t w]
C
. Lw 2
ql[t ]2 M, &' [t ] - 48 U1? w® Cos [t w] g1 [t ]2 Sin [—1] M o' [t] -
C
Lw
48 L UL w® ql[t] Sin [—1]Sin [2t w] Mpyo'[t] -
C
Lw Lw
48AC1LU1prOS[—]q1’[t]6’[t]+48AC1LU1prOS[—]
cl cl
Lw
Cos[t w]2ql'[t] e [t]+48Acl2Ulp Sin [—1]q1’[t]e’[t]—
C

Lw
48 A c12 Ulp Cos[t w]2 Sin [—1] ql'[t] ety +
C
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48 ALUI? pw?ql[t]Sin [t w]lql’[t]e[t]-
2L w
cl

24AClU12pwq1[t]Sin[ ]Sin [t w] gl [t]e[t] -

Lw, .
48 AclL Ul prOS[—] Sin [t w]2ql [t]e[t] +
cl
Loy
48 A c12 Ul p Sin [—1] Sin [t w]2ql [t]e[t]+
C

Lw Lw
48 L U1 w? Sin [—] My ql’[t] e [t] -48L UL w? Cost w]? Sin [—]
cl cl
Mgl [t]e[t]+48U1%2w?ql[t] Sin [t w] Myql'[t]e[t] -

Lw,2
48U12w2Cos[—1] qL[t]Sin [t @] Mgl [t]e[t]+
C
Lw,2
48 U12 w2 g1 [t ] Sin [—1] Sin [t w] Myql'[t]e[t] +
C

Loy
48 L U1 w? Sin [—1] Sin [t w]2Mql’[t]e[t] -
C
48 ALUI? pwl Cos[t w] ql[t]1% @ [t] +
2L
cl

w
24 A c1U12 p w? Cos [t w]ql[t]ZSin[ ](p’[t]+
Lw .
48Ac1|_u1pw2<:os[—1]q1[t]Sm [2t ] @ [t] -
C
_rLog
48 Acl2Ulpwql[t] Sin [—1]s|n [2t ] @ [t] -
C
Lw,2
48 U12 w® Cos[t w] ql[t ]2 M ¢ [t] +48 U1? &3 COS[—l] Cos[t w]
C
o rLwq2
ql[t 12 M o' [t ] - 48 U1? w3 Cos [t w] g1 [t 12 Sin [—1] M o' [t] -
C
Loy
48 L UL w® ql[t] Sin [—1]s|n 2t w] Mo [t] -
C
Lw Lw
48AClLU1prOS[—]ql’[t]<p’[t]+48AClLU1pros[—]
cl cl

L
Cos[t w]2ql'[t] ¢’ [t] +48Acl2Ulp Sin [—1“] qlrt] et -
C

o rLoe
48 A c12 Ulp Cos[t w]2 Sin [—1] ql'[t] @' [t] +
C
48 ALUI? pw?ql[t]Sin [t w] ql’[t] e [t]-
2L w
cl

24AClU12pwq1[t]Sin[ ]Sin [t w] gl [t] @ [t] -
Lw
48 AclL Ul prOS[—l] Sin [t w]2ql[t] @ [t] +
C
Lw
48 A c12 Ulp Sin [—1] Sin [t w]2ql[t] @ [t] +
C

Lw Lw
48 L U1 w? Sin [—] My ql’[t] ¢ [t] -48L UL w? Cos[t w]? Sin [—]
cl cl
My al'[t] e [t]+48U1%w”ql[t]Sin [t 0] Mql [t] e [t] -

Lw,2
48U12w2Cos[—1] qL[t]Sin [t @] Mgl/[t] e [t]+
C
Lw,2
48 U12 w2 g1 [t ] Sin [—1] Sin [t ] Myql/[t] ¢ [t] +
C

L
48 L U1 w? Sin [—1“’] Sin [t w]2Mql’[t] e [t] -
C

217



Appendix E

Lw Lw
48 AclL Ul prOS[—] qlit]e’[t]+48AclLUlL prOS[—]
cl cl
) Lw
Cos[t w]2ql[t] e [t] +48Acl2Ulpqlft] Sin [—1] o t] -
C

o rlLow
48 Acl?Ulp Cos[t w]2ql[t] Sin [_1] e [t] +
C

15AL3 pw?Sin [t w] ©’[t]-15AL3 pw? Cos[t w]2Sin [t w] ©7[t] +
24ALU1? pw?ql[t]?Sin [t w] &7 [t] -

2L w
cl

12Ac1u12pwq1[t]25in[ ]Sin [t w] ©[t] -

Lw .
48 AclL Ul prOS[—] ql[t] Sin [t w]?e”[t] +

cl

rlLloy
48 Acl?Ulpql[t] Sin [—1] Sin [t w]?2e"[t] +

C
_ o rLow
5AL3pw?Sin [t w]®e”[t]+48LULw?ql[t] Sin [—1] Mo [t] -
C

o rLw
48 LUL w? Cos[t w]2ql[t] Sin [—1] Mo [t ] +
C

36 L2 w? Sin [t w] My [t] -36L?w? Cos[t w]?Sin [t w] My6”[t]+
24 U1% w? q1 [t ]2 Sin [t 0] MyO[t] -

Lw,2 .
24U12w2Cos[—1] ql[t12Sin [t w] Mo [t] +
C
Lwqz
24 U12 w2 g1 [t 12 Sin [—1] Sin [t w] Mo [t]+
C

L
48 L UL w? ql[t] Sin [—lw] Sin [t w]2M e [t] +
C

12L2 w? Sin [t ]3> M, 07 [t] +9 w? Sin [t @] Mymr 2,67 [t ] -

9 w? Cos[t w]?Sin [t w] Mymr 2,07 [t ] +3 w? Sin [t ]2 Mymr2,07[t] +
18 w? Sin [t w] Myr2e”[t] -18 w? Cos[t w]?Sin [t w] Mprie’[t] +
6 w”Sin [t w]*Mrie [t]+9ALpw®Sin [t w]lrfe’[t] -
9ALpw? Cos[t w]?Sin [t wlr2e”[t]1+3ALpw?Sin [t w]®

Lw
r2e7[t] —48AclLU1pros[—] qL[t] @/ [t] +
cl
Lw
48 AclL Ul prOS[—l] Cos[t w]2qlt] @’ [t] +
C
o rLoe
48 Acl?Ulpqlt] Sin [—] oIt ] -
cl

o rlLow
48 Acl? Ulp Cos[t w]2qgl[t] Sin [—1] O] +
C

15AL3 pw?Sin [t w] @’ [t]-15AL3 pw? Cos[t w]2Sin [t w] @ [t] +
24ALU12 pw?ql[t]%Sin [t w] @ [t] -

2L
cl

w
12Ac1u12pwq1[t]25in[ ]Sin [t w] @ [t] -
Lw )
48 AclL Ul prOS[—l] gl[t]Sin [t w]2 e [t] +
C
Lw
48 Acl2Ulpqlt] Sin [—1] Sin [t w]2 e [t] +
C

3 2 1 3 rr 2 1 H 12 _
5AL3pw?Sin [t w]3 ¢ [t]+48LULw?ql[t] Sin - My " [t ]
C

o rLw
48 LUL w? Cos[t w]2ql[t] Sin [—1] Mo [t ] +
C

218



Appendix E

36 L2 w” Sin [t w] My ¢ [t]-36L%w” Cos[t w]?Sin [t w] Mo [t]+
24U1% w? 1 [t 12 Sin [t 0] My @”[t] -

Lw,2 .
24U12w2Cos[—1] ql[t12Sin [t w] My @ [t ] +
C
Leqz
24 U12 w2 g1 [t 12 Sin [—1] Sin [t ] My [t ]+
C

L
48 L UL w? ql[t] Sin [—lw] Sin [t ]2 M @ [t ] +
C

12L2 w? Sin [t @13 M @ [t] +9 w® Sin [t @] Muml 2,0 [t ] -

9 w? Cos[t w]?Sin [t @] Maml 2,07 [t ] +3 w? Sin [t ©]3 Mymr 3,07 [t ] +
18 w? Sin [t w] Myr3 ¢ [t] -18 w? Cos[t w]?Sin [t w] Mpr3 e [t] +
6w Sin [t w]l*Mr3e [t]+9ALpw®Sin [t w]lrfe’[t]1-9ALp

w? Cos[t w]?Sin [t w]r%¢”’[t]1+3ALpw?Sin [t w]?’r%(p"[t]] -

L?R[t]% |2Cos[2 @[t ]] '\/L2—2LCOS[(p[t]] R[t] +R[t ]2

'\/L2+2LCOS[<p[t]] R[t ] +R[t]? [-24 w? Sin [t w]3Z—(A (-1+
i=1
(-1+2i)2L2

2i) L2 upR[t] Sin [(p[t]])/ [Zn2 [—-
4n?

(-1+2i)LCos[e[t]] R[t] ]3/2]
+R[t ]2 -
n

24 w? Sin [t w]3Z(A (-1+2i) L2 upR[t] Sin [(p[t]])/
i=1

[ [(—1+2i)2L2 (-1+2i)LCos[e[t]]R[t]
2 n2 + +

4n2 n

3/2
R[t]z] ]—48ALU12pw3COS[t w] ql[t]12e[t] +

2L w
c

24 A clU12 p w? Cos[t w] gl [t 12 Sin [ -

]e’[t]+

Lw ]
48AClLU1prCOS[—] ql[t]Sin [2t w] & [t] -

cl

Loy
48 Acl2Ulpwqgl[t] Sin [—] Sin [2t w] Ot ] -

cl

Lw
48AclLU1pros[—1] ql'[t]1e[t]+48AclLU1L prOS[

C

Lw ] Lw
—] Cos[t w]2ql'[t] e [t] +48Acl2UlpSin [—] ql'[
cl cl

) Lw
t]16'[t]-48Acl?UlpCos[t w]?Sin [—1] ql [ty eqt] +
Cc
48 ALU1’ pw? g1 [t ] Sin [t @] ql’[t] €' [t] -24AclU1?
2L w
cl

pwa[t]Sin[ ]Sin [t w] gql'[t] € [t]-48AClLULp

Lw, . o rLoe
wCos[—l] Sin [t w]2ql’[t]6[t]+48Acl?UlpSin [—1]
C C
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Sin [t w]?ql’[t]e[t]-48ALUI2 pwdCos[t w] qLl[t]%¢ [t] +
2L
cl

i w
24 A ¢l U12 p w? Cos[t o] q1[t]25m[ ](p’[t]+
Lw ]
48Ac1|_U1pw2c:os[—] ql[t]Sin [2t w] @' [t] -
cl
Loy
48 Acl2Ulpwqgl[t] Sin [—] Sin [2t w] @ [t] -
cl
Lw
48AC1LU1prOS[—1] ql[t] e [t]+48AclLU1L prOS[
C

Lw ) Lw
—] Cos[t w]2ql'[t] ¢ [t] +48Acl?Ulp Sin [—] ql'[
cl cl

Lw
t]1¢ [t]-48Acl?UlpCos[t w]?Sin [—1] ql[t] e [t] +
Cc
48 ALU1I pw? ql[t]Sin [t @] ql’[t] @ [t]-
2L w
cl

24AclU12pwq1[t]Sin[ ]Sin [t w] ql'[t] @' [t] -
Lw )
48AC1LU1prOS[—] Sin [t w]2ql/[t] @ [t]+
cl
. Loy
48 A c12 Ulp Sin [—1] Sin [t w]2ql[t] ¢ [t] -
C
Lw
48AC1LU1prOS[—1] ql{t]e”[t]+48AclLU1L prOS[
C

Lw .
—1] Cos[t w]2ql[t] e [t]+48Acl2Ulpql[t] Sin [
C

Lw ;Lo
—] 6"[t]-48Acl2UlpCos[t w]2ql[t] Sin [—] o It] +
cl cl

15A L% pw?Sin [t w] 8 [t]-15AL% pw? Cos[t w]?Sin [
t w] @ [t]+24ALUI? pw?ql[t]2Sin [t w] &[] -

2L w
cl

12AClU12pwq1[t]28in[ ]Sin [t w] ©[t] -

Lw
48AclLU1pros[—1] ql[t]Sin [t w]?6[t] +48Acl2Ulp
C

L
gl[t] Sin [C—lw] Sin [t w]26”[t]+5AL%pw?Sin [t w]3e7[t] +

9 w? Sin [t w] Mymr 2,07 [t ] -9 w? Cos[t w]?Sin [t @] Mumr2,6" [
t]1+3w?Sin [t wl°Mymr26”[t]1+9ALpw?Sin[tw]lrie’[t]-
9ALpw?Cos[t w]2Sin [t w]r2e”[t]+3ALpw?Sin [t 0]3

Lw
r2e”[t]-48AclLUlL prOS[—l] ql[t] ¢”[t]+48AclLU1
C
Lw .
prOS[—l] Cos[t w]2ql[t] ¢ [t]+48Acl2Ulpql[t] Sin [
C

Lw rLow
—] @ [t]-48Acl2UlpCos[t w]2ql[t] Sin [—] 0 It ] +
cl cl

15A L% pw?Sin [t w] ¢’ [t]-15AL% pw? Cos[t w]?Sin [
t w] ' [t]+24ALUI? pw?ql[t]2Sin [t ] " [t] -

2L
cl

w
12AClU12pwq1[t]28in[ ]Sin [t w] o’ [t] -
Lw )
48AC1LU1prOS[—1] gL[t]Sin [t w]2e” [t] +
C

Loy
48 Acl2Ulpqgl[t] Sin [—1] Sin [t w]2e”[t] +
C
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5AL3 pw?Sin [t w]® e [t] +9w?Sin [t @] Myl 3,0 [t ] -
9 w? Cos[t w]?Sin [t w] Mamf 2,0 [t ] +3 w? Sin [t @13 Mamr 2,07 [
t1+9ALpw?Sin [t w]r3¢’[t]1-9ALpw?Cos[t w]?

Sin [t wlr2e”[t]+3ALpw?Sin [t w]3r%<p"[t]] +

24 w? M (8U1C03[2<p[t]] gl[t] '\/L2—2LCOS[<p[t]] R[t] +R[t ]2

Lw
\/LZ+2L Cos[e[t 1] R[t] +R[t]? Sin [—] Sin |
cl
rlLow
t ] ((—LwCos[t @] + U1 Sin [—] ql’[t]) e[t]+
cl
Lw
(—LwCOS[t w] + U1 Sin [—] ql’[t]) @ [t]+
cl

L Sin [t w] (6" [t] +<p”[t])] +

U1?> Cos[2 @[t 1] g1t ]2’\/L2—2LCOS[(p[t 11 R[t ] + R[t ]?

'\/L2+2LCOS[(p[t]] R[t] +R[t]?
2L w
cl

2L
(Zw(-ZCos[t w]+Cos[(E+t)w]+Cos[ -tw])e’[t]+

2L 2L w
2w (—2Cos[t w] +Cos[(g +t) w] +Cos[ 1 -t w])

. . 2L 2L w
Ot + (ZSm [t w] - Sin [(E»ft) w]+S|n [ — - w])

(6"[t]+<p”[t])) +2Sin [t w]?

(4LU1CIOS[2<p[t]] '\/L2—2LCOS[<p[t]] R[t] +R[t ]2

’\/L2+2LCOS[(p[t]] R[t] + R[t]?

Lw
Sin [—Jat'it1 @ t1veitl) +

1
> Sin [t 0] (—u ('\/LZ—ZLCOS[q)[t]] R[t]+R[t]2 +

'\/L2+2LCOS[<p[t]] R[t]+R[t]2)Sin [2[t]] +

2Cos[2¢[t]] '\/LZ—ZLCOS[(p[t]] R[t] +R[t]?

\/L2+2|—COS[<P[t]] RIt1+R[t]% (2L2+r3) @ [t] +

2Cos[2¢[t]] '\/LZ—ZLCOS[(p[t]] R[t] +R[t]?

'\/L2+2LCOS[<p[t]] R[t] +R[t 12

)/

(24 W’ (L2-2LCos[e[t11R[t]1+R[t1?)%? (L2+2LCos @[t 1] R[t] +

R[t ]2)3/2)
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i. Forql [t]
eqnul = Ul Csc[t w]
2c12 ?
2L w
(Ulesc[t w] ql[t] (A (wz (ZL (Eo-c1%p) w+cl (Eo+cl?p) Sin [ : ]_
c

cl?

2

Lw
2¢12 p Csc [t w]z(—ZLw+clsin[ - ]]]+c12p
C

. 2Lw . 2L w
(—2Lw+clS|n [—1]]6’[t]2+2012p(—2Lw+018m [ - ])
C C

2L w
o' [t] ¢ [t]+cl2p (—2Lw+clSin [—1” <p'[t]2] +
C

2¢12 wCsc[t w]? Sin [2]2 M (@? (3+Cos[2t w]) -
cl

2Sin [t w]2e'[t]12-4Sin [t w]?6'[t] ¢ [t]-2Sin [t w]ztp’[t]z)] -

Lw
(-4 w? Sin [—1] To +2 UL w? Cot [t w] Csc[t w]
C

2L w - rLwiq2 )
— ])+4wS|n [E] I\/b]ql [ti-

2Acl pw?Cot[t w] R[t]Sin [e[t]]e&[t]+

(Ap (2Lw—clSin [

Lw
2Acl prCos[—l] Cot [t w] R[t]Sin [@[t]] &[t] +
C
Lw -2
4Aclpw?Cot[t w] R[t] Sin [—] Sin [e[t]] € [t] -
2cl
Lw
4AclewCos[—l] o' [t]12+2Acl pwCos[e[t]] R[t] O [t]?-
C

Lw )
2Acl pros[E] Cos[e[t]] R[t] & [t]?-

) Lw ;2 ) 5 ] Lw )
4AclpwCos[e[t]] R[t] Sin [H] o' [t12+4Acl?pSin [E]e'[t] +

) Lw Lw
4L w? Sin [—] M)e’[t]z—BAclewCos[—] O [t] @ t] +
cl cl
2AclpwCos[e[t]]R[t]&[t] e [t] -

Lw
2AC1prOS[—1]COS[<p[t]]R[t]e’[t]tp’[t]—
C
Lw 42
4AclpwCos[e[t]] R[t] Sin [—] oIt] @ t] +
2cl
8 A cl2?p Sin [ﬂ]e'n](p'[t]»,SLwZSin [ﬂ]l\/be’[t]q)’[t]—
cl cl
Lw Lw
il S 2 2 =21, 2
4AC1prCOS[C1]<p[t] +4AcCl pSII’][Cl](p[t] +

2 o ﬂ , 2 _ 2 ,r
4L o Sin N Mo [t12-2ALULpw? Csct w] ql7[t] +
C

2L w
AclUlpwCsc[t @] Sin [ — ]ql"[t] -

4Ulw?Csclt w] Sin [ﬂ]z My q17 [t ]]]
cl
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EOM 3D FlexibleTether

i. For ¢[6]
-t Cos[a[e]] Cos[y[O]] +

1
L uCos[ale]] R[e] -

(L2-2L Cos [a[e]] Cos [¢[e]] R[e] +R[e]2)*"?
1 .
2o Sin[e[6e]] M -
(L2 +2L Cos[a[6]] Cos [¢[6]] R[6] + R[€12) ™
n A(-1+2i)L2upCos[a[e]] R[e] Sin[e¢[e]]

‘ - iy2L2? - i 3/2
i=1 2n?2 (( LZLYLE (cLa21) L Goslale]] Oos ple]) Riel +R[e]2)

A(-1+2i)L2upCos[a[e]] R[e] Sin[e[e]]

n

2, *
! . iy2)2 . i 3/2
i1on2 (( 1+42r|]2) L2, X 1+2|)LCos[a[i]]Oos[<p[6]] RLe] +R[e]2)

1
Py (12ALnpq2[e] € q2'[6] (6" +& ¢ [6]) -2L (-6 ApCos[a[6]]
JT

(2L Cos[a[©]] +m Cos [a[6]] ql[6] - wq3[€] Sin[a[6]]) & ql’'[6] -
3Anpq3[e]’Sin[2a[6]] & a'[6] +6 Apq3[6]
(-7 Si nla[e]1?6 q3'[6] + Cos[2 a[O6]] (2L +mql[e]) o' a'[6]) +
Sin[2a[e6]] (3Ap (2L+xql[e]) &' q3'[6] + (12ALpql[e] +
3Anpql[e]?+2Lx (ALp+3l\/b)) 6'0('[6])) (e’ +e’ ¢’'[6]) +
6 ALp (2L Cos[a[6]] + ®Cos[a[6]] ql[6] -7 q3[6] Sin[a[6]])
(6°6 q2'[e] + (6)2 2" [6]) +6 AL pg2[6]
(27 Sinfa[e]] (6')2ql’[6] a’[6] +2 xCos [a[e]] (6)%q3’[6] a’[6] +
2L Cos[a[@]] (&)?a’'[6]1%+n Cos[a[e]] ql[e] (&) a’'[6]%2-mq3[6]
Sin[a[e]] (¢')%a’ [6]? - Cos[a[e]] (& 6 ql'[e] + (6')2 ql-rel) +
nSin[a[e]] (e 6 q3’[e] + (67)?2 g3 [e]) +x Cos [a[6]] q3[6]
(696" a’[6] + (6)?a’[6]) +2L Sin[a[e]] (66 a'[6] + (6")2 ' [6]) +
nql[e] Sin[a[e]] (¢'& a'[6] + (6")2a”[6])) +
6ALrpq2[e]® (66 +e & o' [6] + (6)2 0" [6]) +
(6 AL7pCos[a[6]]1?ql[e]?+6 ALpq3[6]Sin[a[6]]®+
12 ALpCos[a[6]] ql[6] (2L Cos[a[6]] -nq3[6] Sin[a[6]]) -
12AL%?pq3[e] Sin[2a[e]] +x (3Myrz+6 M (2L2Cos[a[e]]?+r?) +
ALp (L (3+2Cos[2a[e]]) +3T1%)))
(006" +o'6 ¢ [6] + (6)% 0 [6])) =0
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ii. For qlle]
1
egnul =
8L3x

8 L3

iv.

8L3x

(15 7° ql[e]°® To-2rql[e] (3x"q2[e]? (AE0-To) +3x" q3[6]1° (AEO-To) +

2AL? (-2Eon®+2 L% pCos[a[6]]% (6')% +

212p (6)2a’'[6]°+4 L2 pCos [a[6]]? (6')2 0 [6] +

L?p ()2 ¢'[0]% +L? p Cos [2 a[6]] (&) % ¢ [6]7)) -

4AL p (2L (0)?+2L Cos[2a[6]] (6')?-nq3[6] Sin[2a[6]] (6')° +

2nCos[a[6]] q2[6] & 6 +4 nCos[a[6]] (6')2 2’ [6] +
47 (0)2q3'[6] a'[6] +4L (8)2a'[8]2+4L ()2 ¢ [6] +
4L Cos[2a[0]] ()29 [6] -2mq3[O6] Sin[2a[6]] (&)? ¢’ [O] +
4 7 Cos [a[6]] (6')2 02’ [6] ¢’ [6] +2L (&) ¢’ [6]% +
2L Cos[2a[e]] (6')? ¢’ [6]°-nq3[6] Sin[2a[6]] (&8')? ¢’ [6]° -
27 (& 6 ql'[e] + (8)2 ql”[e]) +2xq3[e] (& 6 a'[6] + (6)2 a’[e]) +
2 nCos[afe]] q2[e] (6"6 ¢'[6] + (0')% ¢ [6])))

For g2[e]

(37°q2[61° (AE0-To) +6 7°ql[6]1° q2[6] (-AEO0+Tp) +

T
ng2[e] (3n"q3[6]1? (AE0-To) -8 (-L*#® To+AL% p (6" + & ¢’ [6])?)) -
8AL*p (-2L Cos[a[e]] & 6 +nq3[6] Sin[a[e]] & & +
2 nCos[a[6]] q3[e] (&)?a’'[e] +4LSin[a[e]] (&) a’'[O] +
2 nCos[a[e]] q3[6] (8")° a’'[6] ¢’ [6] +
4LSin[a[e]] (8)%a’ [6] ¢’ [6] -2 wCos [a[6]] & ql'[8] (6 +6 ¢’ [6]) +
2nSinfa[e]] & g3’ [6] (6’ +6 ¢’ [6]) -7 (6°6 q2'[6] + (6")2 g2 [6]) -
2L Cos[a[e]] (66 o' [6] + (6")2 0" [6]) +
nq3[e] Sin[a[e]] (e'& ¢’ [6] + (6')2 0" [6])) -
8AL*rpqlle] (2Sin[a[e]] & a'[6] (&' +6 ¢'[6]) -
Cos[a[e]] (66 +e & ¢ [6] + (6)2 0" [6]))) =0

For g3[e]

(3 AEo=°q3[e]1°+3 xn° q2[e]°q3[e] (AEo-Top) +8L*x°q3[e6] To -

3x°q3[e1°To+6n°ql[e]?q3[e] (-AEo+Ty) -4AL*npq3[e] (8')%+
4AL*wpCos[2a[e]] q3[6] (8)2+8AL°pSin[2al[6]] (6')%+
16 AL* mpSin[a[6]] (6)2q2'[6] +16 AL* np (8')2 ql’[8] &’ [©] -
8AL*npq3[e] ()2 a'[6]°-8AL*npql3[e] (&) ¢ [6] +
8AL*npCos[2a[6]] q3[6] (8')2 ¢ [6] +16 ALSpSin[2al[6]] (6')% ¢ [O] +
16 AL*mpSin[a[e]] (8)%q2'[6] ¢'[6] -4 AL*nmpq3[6] (6')2 ¢ [6]% +
4AL*wpCos[2ale]]1 g3[6] (8)? @ [6]1°+8 AL pSin[2al6]] (6')%2 ¢ [6]%+
BAL*np (66 q3/[6] + (6)2q3"[6]) +16 AL®p (6" 6" a’[0] + (&) 2 ' [6]) +
4AL*mpql[e] (Sin[2a[e]] (6)?+2Sin[2a[6]] (6')% ¢ [6] +
Sin[2a[e]] (6)2¢'[6]1?+2 (6" 6 a'[0] + (6") 2 [6])) +
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8AL*npqg2[e] Sin[a[e]] (66 +e & o [6] + (6")2 0" [6])) =0

v. For a[e]
eqnal = -z Sin[y[0]] +
1
LuCos[e[©]] R[E] 32
(L2-2L Cos[ale]] Cos[e[6]] R[6] +R[e12)*’

1

Sin[a[6]] M -

(L2+2 L Cos[a[e]] Cos [¢[6]] R[] + R[6]2) %/

i A(-1+2i)L2upCos[e[e]] R[6] Sin[a[6]]

h - iy2L2 _ i 3/2
i=1 2n2 (( 1+42r:2> L (1+2|)LCos[a[inCos[w[e]]R[e] +R[e]2)

i A(-1+2i)L2upCos[e[e]] R[6] Sin[a[6]]

h - iy212 _ i 3/2
i=12n2 (( 1+42r|12> L2, (-1+2) LCos[a[i]] Cos [¢[6]] R[O] +R[e]2)

2AL2pCos[2a[6]] q3[6] (0)2

+ALpCos[2a[6]] ql[e] q3[O] (8')2 +
T
AL pCos[a[6]] gl[e]®Sin[a[6]] (6')? -
1
AL pCos[a[®6]] q3[6]%Sin[a[6]] (e’)2+5 AL®pSin[2a[6]] (8')%+

2AL2pqgl[e] Sin[2a[6]] (©)2

+L2Sin[2a[6]1 M (8)?+
T

2AL2pqg2[e] Sin[a[e]] & &
+

AL pCos[a[6]] g2[6] q3[6] 6" 6 +
T

ALpql[e] q2[e] Sin[a[e]]1 e 6 +2 AL pCos[a[6]] q3[6] (6)2q2'[6] +
4ALZpSin[a[e]] (8)2q2'[6]

+2ALpqgl[e] Sin[a[e]] (6')?q2'[6] +
T

4AL%2p ()2 ql’[6] a’[6]

+2ALpqglle] (&)2ql'[e] a'[6] +
T

4AL%pCos[2a[6]] q3[6] (6')2 ' [0
2ALpq3[e] (6')2q3 [6] &' [6] + p Qos[2afe]] a3le] (&) " ¢'[e]

7T

2ALpCos[2al[e]] ql[e] g3[e] (6')% ¢ [e] +
4AL2pql[e] Sin[2a[e]] (8)2 ¢ [O]
+

2
— AL3pSin[2a[e]] (8)2 ¢ [O] +
3 7

ALpql[el®’Sin[2a[e]] (6')2¢' [6] -ALpq3[6]°Sin[2a[e]] (6')* v [6] +
2L2Sin[2al6]1 M (6')? ¢’ [6] +2ALpCos[a[e]] q3[6] (6)% g2 [6] ¢'[6] +
4AL%pSin[a[e]] (67)2q2'[6] ¢ [6]

+2ALpqgl[e] Sin[a[6]]
JT

o ) 2AL2pCos[2ale]] q3[6] (8')? ¢’ [6]°
(6')°q2'[6] ¢'[6] + +

T
ALpCos[2a[e]] ql[e] q3[e] (¢')* ¢ [6]?+AL pCos[a[6]] ql[e]?
Sin[a[e]] (6')2 ¢’ [6]°-ALpCos[al[e]] q3[6]1?Sin[a[6]] (6') ¢ [6]% +
1 2AL? 1[e1Sin[2a[6 e)2 ¢’ [6]2
EAL3pSin[2a[e]] (©)2 0 [6]2 4 pglrel Sin[2afell (&) *¢[61”
T
L2Sin[2a[e]] M (6)2 ¢ [6]2-ALpq3[e] (66 gl [e] + (6)2ql”[6]) +
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Appendix F

2AL2p (096 q3'[6] + (6')% g3 [6])

+
Tt

, 5 .
ALpqglle] (6’ é g3'[e] + (6')?q3"[6]) = ALp (676" a’[6] + (6")? " [6]) +

4AL2pqlle] (66 a'[6] + (6")2 a’[6])
+ALpqgl[e]?

T
(006 a'[6] + (6)2a’[0]) +ALpq3[6]% (6" 6 a’'[6] + (8')2 " [6]) +

1 , 1 .
o h? Mn (6" 6" a’[8] + (6) % a” [6]) *o h®>M, (6 6 a'[6] + (6")? " [6]) +

, 1 .
2L M, ("6 a'[6] + (6) % a” [6]) + Mnr 7 (676 a’[6] + (6)? a”’ [6]) +
1 ., 1 .
> Mri(er6 a'[e]+ (e)?a”[6]) *s AlLpri (676 a'[e] + (6)?a”[6]) +

AL pCos[a[6]] 2[6] g3[6] (6" 6 ¢'[6] + (6')? ¢”[6]) +
2ALZpq2[e] Sin[a[e]] (6" & ¢ [6] + (6))% ¢ [6])

+

Tt
ALpql[e] q2[e] Sin[a[e]] (¢’ & ' [6] + (6')2 0" [6]) =0

vi. For y[e]

1
E (M“ (h2+3rr2n) +2 M (h2+3r§+6r%)) (G'é,)"[e] + (6')27"[6]) =0
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