Splint Manual

Version 3.1.1-1
5 June 2003

NHIY

it

Secure Programming Group
University of Virginia
Department of Computer Science

Splint Manual

Authors

This manual was written by David Evans, except for Section 9 and Appendix B which were
written by David Larochelle and David Evans.

Credits

Splint is developed and maintained by the Secure Programming Group at the University of
Virginia Department of Computer Science. David Evans is the project leader and the primary
developer of Splint. David Larochelle developed the memory bounds checking. University of
Virginia students Chris Barker, David Friedman, Mike Lanouette and Hien Phan all contributed
significantly to the development of Splint.

Splint is the successor to LCLint, atool originaly developed as a joint research project between
the Massachusetts Indtitute of Technology and Digital Equipment Corporation’s System
Research Center. David Evans was the primary designed and developer of LCLint. John Guttag
and Jm Horning had the origina idea for a static checking tool for detecting inconsistencies
between LCL specifications and their C implementations. They provided vauable advice on its
functionality and design and were instrumental in its development.

Splint incorporates the original LCL checker developed by Yang Meng Tan. This was built on
the DECspec Project (Joe Wild, Gary Feldman, Steve Garland, and Bill McKeeman). The LSL
checker used by LCLint was developed by Steve Garland. The origina C grammar for LCLint
was provided by Nate Osgood. Thiswork has also benefited greatly from discussions with Mike
Burrows, Stephen Garland, Colin Godfrey, Steve Harrison, Y anlin Huang, Danidl Jackson, John
Knight, David Larochelle, Angelika Leeb, Ulana Legedza, Gary McGraw, Anya Pogosyants,
Avneesh Saxena, Sego Sebastine, Navneet Singh, Raymie Stata, Yang Meng Tan, and Mark
Vandevoorde. | especidly thank Angelika Leeb for many constructive comments on improving
an early version of this document, Raymie Stata and Mark Vandevoorde for technical assistance,
and Dorothy Curtis, Paco Hope, Scott Ruffner, Christina Jackson, David Ladd, and Jessica
Greer for systems assistance.

Much of Splint’s development has been driven by feedback from users in academia and industry.
Many more people than | can mention here have made contributions by suggesting
improvements, reporting bugs, porting early versions of Splint to other platforms. Particularly
heroic contributions have been made by Nelson Beebe, Eric Bloodworth, Jutta Degener, Rick
Farnbach, Chris Flatters, Huver Hu, Alexander Mai, John Gerard Malecki, Thomas G.
McWilliams, Michael Meskes, Richard O Keefe, Jens Schweikhardt, Albert L. Ting and Jm
Zelenka. Martin “Herbert” Dietze and Mike Smith performed valiantly in producing the original
Win32 and OS2 ports. Tim Van Holder produced the automake and autoconf distribution.

Splint research at the University of Virginia is currently funded in part by an NSF CAREER
Award and an NSF CCLI Award for using analysis to teach software engineering. Splint has
been previously supported by a grant from NASA and David Larochelle was funded by a
USENIX student research grant.

UVA Secure Programming Group

Contents
L0 0= =11 o] o SRRSO 11
0Nt V1Y T SRS 11
T =0 SRS 12
1.3 StylizE0 COMIMENLS.....cciuiiiiieiieeiee ettt nees 12
R 0 R N 070 = 1 0] PSP P PSPPSR 12
132 Setting Fags.....ccooviieiiec e 13
NUIT DEF BB EBNCES ...ttt n e naneea 14
211 PrediCate FUNCHIONS........cooeiiiiiieeiee e 14
2.1.2 NOINUIT ANNOLBLIONS.......eeteeiiieieesiee sttt 15
2.1.3 Reaxing NUll CheCKingcooieiieiiieiesee e 15
UNEFINED VAIUES ...t 17
311 Undefined ParamMeLerS.coviiiieiieiiieieeree e 17
3.1.2 Reaxing CheCKiNg........cooiiie ittt 18
3.1.3 Partialy Defined SITUCIUIEScccueiiiiiiieiee e 18
I 1T SRR OPPRR 19
R = 01 g T O 8/ - 19
411 CRGIECIEIS....ccueiiieeiee ettt n e n e ne e n e 19
4.1.2 ENUMEIBLOIS.ciiireeeiteee et e sree e e st e s e e sne s s e s ann e e sne e s snneesnneena 19
4.1.3 NUMENC TYPES ..ttt ettt ettt e st sne e e n e ne e saneeneenneennes 19
4.1.4 Arbitrary INtegral TYPES .. cueie ettt e 19
4.2 BOOIEEN TYPES. ... eiiiieiieieie ettt ettt sttt sttt e e e nane e 20
4.3 ADSITACE TYPESeeeieeiieeeie ettt ettt n e n e nne e n e nneenane e 21
431 CONLrOHING ACCESS...cceueeeiiieeiieeeeieeeetee e et e e rteeeste e e st e esaeeesnteeesneeesnneeeanseeeaneeeans 22
4.3.2 MULBDITITY ..o e 23
4.3.3 SEMI-ADSITECE TYPES ...ttt 24
4.4 POIYMOIPNISITI ..ottt b e s e s e e e sne e nneeeneenneennneans 24
MeEMOrY MaANAGEIMENT ...ttt e e e s s e e s s abe e e e e enreeeeeans 25
5.1 SHOragEMOUEeeiiiiii e 25
5.2 DeallOCaiON EITOIS.......coiiiiieiiciie et 26
521 UNShared REFEIENCES.......ccueiiieiiieiee ittt 26
522 Temporary ParameELerS...........cocoiieiiiieeeieie e 27
5.2.3 Owned and Dependent REFENENCES..........ceeiiiiiieiiesee e 27
524 KeED ParamMeErS........oooii ittt e 28
525 Shared REFEIENCEScceeiiieiieiieee e e 28
5.2.6 SHACK REFEINENCES ..o e 28
5.2.7 INNEE SEOMBOE....ceeiuveeeieee ettt see et e e ssnr e sne e e snne e s nnneesnneenns 28
5.3 Implicit MemMOry ANNOLEHIONS.........coiieieerreeieesee et 29
5.4 REfErENCE COUNLINGvveiueierieriee st itee sttt e e sne e enn e nne e 29

Splint Manual

OIS (= 140 B TR RPPR TR PRPRPRPTR 31
L0 R N = | oo TS 31
6.1.1 UNIQUE ParamMELErS........oeieiieiiieeiie ettt ettt e snee e s e e see e snaeeenneeeens 31
6.1.2 RetUrNed ParamMEterS..........coouiiiiiiiie it 31

6.2 EXPOSUIE......eeieiieie ettt 32
6.21 REa0-ONIY SLOMBOEeieieeiieiiteetee ettt 32
6.2.2 EXPOSEU SLOTATE.eeiueeetierieeeieestie st ettt st sne e e ne e e nnn e nne e 33

7 FUNCHON INEEITACES. ...t 35
7.1 MOIFICHONS ...ttt n e ne e s 35
711 State MOGITICELIONS.ceeieeieieieeiee et 36
7.1.2 MisSiNg MOQIfIES ClAUSEScocveeiieiie e 36

7.2 Global Variables..........cooiiiieeee e 37
7.21 Controlling Globals Checkingcccoiiieiiiiieiee e 37
7.2.2 DEfINITION SEAE......c.eeiieieieeee e 38

7.3 Declaration CONSISIENCY......ueeiuriirieitiesiee st ettt nne e s 38
T4 SEAE CIAUSES......coiieeieeete ettt sttt e e bt e e e e e b e e nnn e nne e ne e s 39
7.5 Requiresand ENSUres ClaSES.........ccccoiiiriiiiiesie et 41

8 CONIIOl FIOW ...ttt nin e 42
8.1 EXEOULION ...ttt ettt e et e bt e e et e ne e nne e nan e e b s 42
8.2 UNEfiNEd BENAVION ..ot 43
8.3 Problematic CONtrol SIIUCTUIEScoiiiiiieiieiie e 44
8.3.1 LiKely INfINItE LOOPS......ceueeieeiiieiie sttt 44
8.3.2 SIITCNES ... 45
8.3.3 DEEP BIEAKS.... oottt e 45
8.34 LoOP aNd If BOGIESceeieiiiiiieeiee et 46
8.35 COMPIEE LOGIC .. .eeeeieieieiieeiie ettt 46

8.4 SUSDICIOUS SEAEEIMENLSeouveeieeiiriesiee sttt ettt sn e eene e s 46
8.4.1 StatementSWith NO EffeCtS.......cooiiiiiiiiieeee e 46
8.4.2 1gNOred REIUM VAIUBScceiiiieiie it 47

O BUEN SIZES .. 48
0.1 CRECKING ACCESSES.eeiutietieiteeeiree st e st st et e s st e se e sse e sn e e abe e s seesn e e aneennnesnneenneennes 48
9.2 ANNOLating BUFfEr SIZES........oooiiiieee e 48
9.3 LessStingent CheCKING.........coviiiieiieiee et 49

LS R R VY 1 o TS 50
10 EXtenSDIE ChECKINGeeiiie et e e e 52
10.1 Defining AtITDULES.eeieie et e sneeeenneeeans 52
10.2 ANNOLBLIONS.....couveeieeiieeete ettt e st s e s e san e neesseesan e e neenneennneeneas 54
T |V = o o 1= PP 55

UVA Secure Programming Group

O O @0 1= = 0 | Y/ = o3 {01 ST PRUTPRR 55
112 FUNCHON-TKE MACTOS ...ttt e e e ens 55
1121 Side Effect Free Parameters..........cccovieeeiiieeiiee e 56

11.3 Controlling Macro ChECKING.eeiiiiiiiieeiieeee s 57
114 11 = 0] £ T PRI 58
1141 DefiNiNG IEEIEIOIS.ooteeieeieeeie et 58
I U L= T 0o N 1 (= (= S 59

D \\F- 011 g To @0 01V o4 o £ 60
121 Type-Based Naming COnVENtiONS.........cceeiiiieiiereriee e 60
1211 CZECN NAIMIES ...ttt 60
S o V= T = 4T S 61
12.1.3 CzechOHOVaK NAMES.......ccueeeiiieeeee et 61
122 NAMESPECE PIEFIXES ... ittt eesneeeens 61
123 NamMING RESIICHONS.cc.uiiiieiiiiie et 63
12.31 RESEIVEA NAIMES......eoeeee et nee e e 63
12.3.2 DIStiNCt NAIMES......cuiiiiieiieiieete et 63

13 COMPIELENESS. ...t n e n e e nne e s 65
131 UNUSE DECIAIAIONS. ... ee ettt e et e e s e e sneeeenneeeans 65
132 COMPIELE PrOgraMS.cceiieeiie e eiee et ettt e e s eee e ste e e sneeeeneeesmneeesnreeenneeeans 65
13.2.1 Unnecessarily EXternal NaIMES........ccocoeiiiiiiiie e 65
13.2.2 Declarations Missing from Headers.........ccevviereiee e 65

14 Librariesand Header File INCIUSION........coooiiiiiii e 66
141 Standard LiDrariEs......ooo ittt 66
1411 1SO Standard Library.........ooceoeeiiiiieeeeeeeeese e 66
1412 POSIX LIBraryoooooieeeiieeeee e 66
14.0.3 UNDX LIDI8IY oo 66
O S 1 ot I 1o = 1 =TS 66
142 Generating Libraries.ccuee et 67
1421 Generating the Standard Libraries..........cccooveieeieeiieniieeesee e 67

14.3 Header FIEINCIUSION........oiiiie i e e 67
14.3.1 PreprocessiNg CONSIANES.ooiureieerrieiiesiee et 68
APPENdiX A AVAIHBDITITY ... s 69
F N o] 1= oo | DT = T =TSR 70
= USRS PP PSRRI 70
Flag Name ADDIeVIBLIONS........ccooiieiie ettt s e e sneeeeneeas 70
(€1 T0] o= I "o T 71

[=1 TS UPP PP PPPPRRPI 71

L TN A= T2 o] o SO 71

= 007075 o PP PRRT 72

Splint Manual

LIBIaITES. ... e 72

L0 011011 | PP PRP 73
(0= o= o =l (o] SR 74
MESSAGE FOMMELttt e e s st e e s e abe e e e e eane e e e e eneeas 75
MOOE SEIECLON FIATSc.eeeeeeiie ettt n e 75
(011 o o 1 = TS 76
NUIl Dereferences (SECHON 2)........oiiueeiieiiieiieiee ettt nnne e 76

Use Before Definition (SECHON 3)eoiiiiiieiieiieeesie e 77
DECIAIBLIONS ...ttt s et s e s ae e san e e s e e s ne e nan e e b e e neennreea 77
TYPES (SECHON 4) ...ttt et n e ne e e n e e ne e 77
Memory Management (SECHION 5).......couviiiieiieiie et 82
SharNg (SECHION B)cuveeiieiieieee e 84
Function INtErfaces (SECHION 7))oiieeieiiieeiee et 85
MECIOS (SECHION L1)....ceuiiiiieiieeeie ettt sttt n e neenneennneea 87
1= = (=T PP 89
Naming Conventions (SECHION 12)c..coiuieiieieerieesiee e 89
Control FIOW (SECHION 8).....cueeiiieiieiiie ettt 92
Extensible Checking (SECHION 13)eiiiiee et 96
Completeness (SECHION 13)ciiiiie et eee et et e e s e et e e e e ste e e saeeeeaeeesneeeesneeeenneeeans 96
APPENdIX C ANNOLBLIONS.ccteeiiieiiieieeeiee ettt se e ne e e nnne e 102
SUPPIESSING WEIMINGS ...ttt sne e eeneenneennneen 102
SYNEECHIC ANNOLBLIONS ...ttt e n e e nnnenaneens 102
FUNCLIONS. ...t ne s 102
[tErators (SECHON 11.4)ooeiiieeiee ettt 103
ConStANtS (SECHION LL1.1) ...eeiieiiiieeieeriee et n e nene e 103
Alternate TYPES (SECHION 4.4) ...ttt 103
DeClarator ANNOLBLIONScoveeireerieeeieesie et re e e nsn e nneennes 103
TYPE ACCESS ...t eteee ettt e et et s e et sa e e n et e s et e sn e e ne e e s r e e e an e e e nn e e nnee s 104

= ool T q 7= T o] o S 107
ArDitrary INtegral TYPES ...co it e s 107
Traditional Lint COMMENESuiiiiiiiiiiieiie e 107
Metastate DEfINITIONS........cc.eiiiieieeiee e 108
ApPPENdiX D SPECITICALIONSeiiuiiiiieiieiee et 109
SPECITICAIION FlAOS. ... 109
Appendix E Annotated Bibliography ..o 112
[06 = PP P RO PRPRPOPROPIN 115

Figures

Figure 1. Typical Effort-Benefit CUIVE..........coooiiiiiiieee e 10
FIgure 2. NUI ChECKING.eeeiieiieie e 14

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

UVA Secure Programming Group

USe DEFOre DEFINITIONcoveeiiecie e 18
B00I€aN ChECKINGei ittt et e e sneeeenees 21
Information Hiding ViolatioNS..........coociiiiiie e 22
MemMOrY ManNagEMENLcoo it e e e s ebe e e e nre e e s e nnes 27
StaCK-AlOCAEA SLOTBOE.eeveerieiete et 28
IMPLICIt ANNOLBLIONS.ceeiiieeiee et e e e e snee e et e e snteeesneeeeneeas 29
R e = = 1o @ 111 o TS 30
UNIQUE PAIAIMELEY'S eeeeeeeetieeeeieeeteeesteeesaeeeeteeesaeeeesneeesseeesneeeenneeesnseeesnseesnneens 31
EXPOSUIE ...ttt et sttt e e e e e e e e e nb e e e e nnee e s 34
MOTITICAION ...t 36
Global VarialES.........coieiiiieeece s 37
ANNOtated GIODAIS LISES.c.ueiiieiiiieiiee it 38
SHAE ClAUSES ...ttt n e naneen 40
EVAIUBLTON OFQEN ... 43
INFINITE LOOPS ...ttt e e naneens 44
SWITCH CASES ... 45
StatementS With NO EFfECT.........oooiiiiieeee e 47
[gNOred REIUIN VAIUESoouieiiiii e 47
MEMONY BOUNGS ...ttt 51
Tantedness AtMDULE..........c.ooiii e 53
Prefix CharaCter COUES.......oouiiiieee e 63
DISHNCE NBIMIES ...ttt 64
Flag Name ADDIeViations..........c.coo it 70

UVA Secure Programming Group

Splint User’s Manual

Verson 3.1.1
27 April 2003

Splint! is a tool for statically checking C programs for security vulnerabilities and programming
mistakes. Splint does many of the traditiona lint checks including unused declarations, type
inconsistencies, use before definition, unreachable code, ignored return values, execution paths
with no return, likely infinite loops, and fall through cases. More powerful checks are made
possible by additional information given in source code annotations. Annotations are stylized
comments that document assumptions about functions, variables, parameters and types. In
addition to the checks specifically enabled by annotations, many of the traditional lint checks are
improved by exploiting this additional information.

As more effort is put into annotating programs, better checking results. A representational effort-
benefit curve for using Splint is shown in Figure 1. Splint is designed to be flexible and allow
programmers to select appropriate points on the effort-benefit curve for particular projects. As
different checks are turned on and more information is given in code annotations the number of
bugs that can be detected increases dramatically.

Problems detected by Splint include:

Dereferencing a possibly null pointer (Section 2);

Using possibly undefined storage or returning storage that is not properly defined (Section 3);
Type mismatches, with greater precision and flexibility than provided by C compilers (Section
4.1-4.2);

Violations of information hiding (Section 4.3);

Memory management errors including uses of dangling references and memory leaks (Section
5);

Dangerous aliasing (Section 6);

Modifications and global variable uses that are inconsistent with specified interfaces (Section
7);

Problematic control flow such as likely infinite loops (Section 8.3.1), fall through cases or
incomplete switches (Section 8.3.2), and suspicious statements (Section 8.4);

Buffer overflow vulnerabilities (Section 9);

Dangerous macro implementations or invocations (Section 11); and

Violations of customized naming conventions. (Section 12).

! Lint is a common programming tool for detecting anomalies in C programs. S. C. Johnson developed
the original lint in the late seventies, mainly because early versions of C did not support function
prototypes. Splint was originally named LCLint because it was originally intended to check for
inconsistencies between LCL specifications and C implementations. To reflect divergence from LCL and
increased focus on detecting security vulnerabilities, the name was changed to Splint, short for
“Specification Lint” and “ Secure Programming Lint”.

9

Snce human
beings
themselves are
not fully
debugged vet,
there will be
bugs in your
code no
matter what
you do.
Chris Mason,
Zero-defects
memo
(quoted in
Microsoft
Secrets,
Cusumano
and Selby)

Splint Manual

N Formal Verification
Tools

T~ Extensible Checking

Buffer sizes

Aliasin
9 —
Checked Macros
—/ ™ Memory Management

~— B
Function Interfaces

Definition

Annotations Null Annotations

Stricter
Type-Checking
\

Fraction of Errors Detected

Abstract Types

W eak Checking

Typical C
Compilers

Amount of Effort Required

Figure1l. Typical Effort-Benefit Curve

Splint checking can be customized to select what classes of errors are reported using command line
flags and stylized comments in the code. In addition, users can define new annotations and
associated checks to extend Splint’s checking or to enforce application specific properties (Section
10).

About This Document

This document is a guide to using Splint. Section 1 explains how to run Splint, interpret messages
and control checking. Sections 2—13 describe particular checks done by Splint. There are some
minor dependencies between sections, but in general they can be read in any order. Section 14
covers issues involving libraries and header file inclusion important for running Splint on large
systems.

This document does not describe technical details of the checking. For technical background and
analysis of Splint’s effectivenessin practice, see the papers available at http://www.splint.org.

10

UVA Secure Programming Group

1 Operation

Splint isinvoked by listing files to be checked. Initidization files, command line flags, and stylized
comments may be used to customize checking globally and locally.

The best way to learn to use Splint, of course, isto actually use it (if you don’t already have Splint
installed on your system, see Appendix A). Before you read much further in this document, |
recommend finding asmall C program. Then, try running:

splint *.c

For the most C programs, this will produce a large number of warnings. To turn off reporting for
some of the warnings, try:

splint -weak *.c

The -weak flag is a mode flag that sets many checking parameters to select weaker checking than is
done in the default mode. Other Splint flags will be introduced in the following sections; a
complete list is given in Appendix B.

1.1 Warnings
A typical warning messageis.

sample.c: (in function faucet)
sample.c:11:12: Fresh storage x not released before return
A memory leak has been detected. Storage allocated locally is not released
before the last reference to it is lost. (Use -mustfreefresh to inhibit
warning)
sample.c:5:47: Fresh storage x allocated

The first line gives the name of the function in which the error isfound. Thisis printed before the
first message reported for a function. The second line is the text of the message. This message
reports a memory leak—storage allocated in a function is not deallocated before the function
returns. The file name, line and column number where the error is located precedes the text.

The next line is a hint giving more information about the suspected error, including information on
how the warning message may be suppressed. For this message, using the -mustfreefresh flag
would prevent this warning from being reported. This flag can be set at the command line, or more
precisaly just around the code point in question by using annotations (see Section 1.3.2).

The find line of the message gives additional location information. For this message, it tells where
the leaking storage was allocated.

The generic message format is (parts enclosed in square brackets are optional):

[<file>:<line> (in <context>)]
<file>:<line>[,<column>]: message
[hint]
<file>:<line>,<column>: extra location information, if appropriate

Users can customize the format and content of messages printed by Splint. The function context is
not printed if -showfunc is used. Column numbers are not printed if -showcol is used. The
+parenfileformat flag can be used to generate file locations in the format recognized by Microsoft

11

Splint Manual

Visual Studio. If +parenfileformat is set, the line number follows the file name in parentheses
(e.g., sample.c(11).) Messages are split into lines of length less than the value set using -linelen
<number>. The default line length is 80 characters. Splint attempts to split lines in a sensible
place as near to the line length limit as possible.

The -hints prevents any hints from being printed. Normally, a hint is given only the first time a
class of error is reported. To have Splint print a hint for every message regardless, use
+forcehints.

1.2 Flags

So that many programming styles can be supported, Splint provides several hundred flags for
controlling checking and message reporting. Some of the flags are introduced in the body of this
document. Appendix B describes every flag. Modes and shortcut flags are provided for setting
many flags at once. Individua flags can override the mode settings.

Flags are preceded by + or -. When aflag is preceded by + we say it ison; when it is preceded by
- it is off. The precise meaning of on and off depends on the type of flag.

The +/- flag settings are used for consistency and clarity, but contradict standard UNIX usage and
it is easy to accidentally use the wrong one. To reduce the likelihood of using the wrong flag,
Splint issues warnings when a flag is set in an unusual way. Warnings are issued when aflag is
redundantly set to the value it already had (these errors are not reported if the flag is set using a
stylized comment), if amode flag or special flag is set after a more specific flag that will be set by
the general flag was aready st, if vaue flags are given unreasonable values, of if flags are set in
aninconsistent way. The -warnflags flag suppresses these warnings.

Default flag settings will be read from ~/.splintrc if it is readable. If there is a .splintrc filein the
working directory, settings in this file will be read next and its settings will override those in
~/.splintrc. Command-line flags override settings in either file. The syntax of the .splintrc file is
the same as that of command-line flags, except that flags may be on separate lines and the #
character may be used to indicate that the remainder of the line is a comment. The -nof flag
prevents the ~/.splintrc file from being loaded. The -f <filename> flag loads options from
filename.

To make flag names more readable, hyphens (-), underscores (_) and spaces in flags at the
command line are ignored. Hence, warnflags, warn-flags and warn_flags al select the warnflags
option.

1.3 Stylized Comments

Stylized comments are used to provide extra information about a type, variable or function
interface to improve checking, or to control flag settings locally.

All stylized comments begin with /*@ and are closed by the end of the comment. Therole of the @
may be played by any printable character. Use -commentchar <char> to select a different stylized
comment marker.

1.3.1 Annotations

12

UVA Secure Programming Group

Annotations are stylized comments that follow a definite syntax. Although they are comments,
they may only be used in fixed grammatical contexts (e.g., like atype qudlifier).

Sections 2—6 describe annotations for expressing assumptions about variables, parameters, return
values, structure fields and type definitions. For example, /*@null@*/ is used to express an
assumption that a parameter may be NULL. Section 7 describes annotations for describing
function interfaces. Other annotations are described in later sections and Section 10 describes
mechanisms users can employ to define new annotations. A summary of annotations is found in
Appendix C.

Some annotations, known as control comments, may appear between any two tokens in a C
program (unlike regular C comments, control comments should not be used within a single token as
they introduce new separators in the code). Syntactically, they are no different from standard
comments. Control comments are used to provide source-level control of Splint checking. They
may be used to suppress spurious messages, set flags, and control checking locally in other ways.

1.3.2 Setting Flags

Most flags (al except those characterized as “global” in Appendix B) can be set locally using
control comments. A control comment can set flags locally to override the command line settings.
The original flag settings are restored before processing the next file. The syntax for setting flagsin
control comments is the same as that of the command line, except that flags may aso be preceded
by = to restore their setting to the original command-line value. For instance,

/*@+charint -modifies =showfunc@*/

sets charint on (this makes char and int indistinguishable types), sets modifies off (this prevents
reporting of modification errors), and sets showfunc to its original setting (this controls whether or
not the name of afunction is displayed before a message).

13

Splint Manual

2 Null Dereferences

A common cause of program failures is when a null pointer is dereferenced. Splint detects these
errors by distinguishing possibly NULL pointers at interface boundaries.

The null annotation is used to indicate that a pointer value may be NULL. A pointer declared with
no null annotation, may not be NULL. If null checking is turned on (controlled by null), Splint will
report an error when a possibly null pointer is passed as a parameter, returned as a result, or
assigned to an external reference with no null qualifier.

If a pointer is declared with the null annotation, the code must check that it is not NULL on all
paths leading to a dereference of the pointer (or the pointer being returned or passed as a value with
no null annotation). Dereferences of possibly null pointers may be protected by conditional
statements or assertions (to see how assert is declared see Section 8.1) that check the pointer is not
NULL.

Consider two implementations of firstChar in Figure 2. For firstCharl, Splint reports an error since
the pointer that is dereferenced is declared with a null annotation. For firstChar2, no error is
reported since the true branch of the s == NULL if statement returns, so the dereference of s isonly
reached if s isnot NULL.

2.1.1 Predicate Functions

Another way to protect null dereference, is to declare a function using nullwhentrue or
falsewhennull (these annotations where originaly falsenull and truenull, but were renamed to
clarify the logical asymmetry; falsenull and truenull may still be used) and call the function in a
conditional statement before the null-annotated pointer is dereferenced.

If afunction annotated with nullwhentrue returns true it means its first passed parameter is NULL.
If it returns false, the parameter is not NULL. Note that it may return true for a parameter that is

null.c Running Splint

Sg?r firstCharl (/*@ull @/ char ;;F#{”;g”;'c
{
f return *s; null.c: (in function firstChar1)
_ null.c:3:11: Dereference of possibly null pointer s: *s

f*s‘;” firstChar2 (/*@ull @/ char null.c:1:35: Storage s may become null
{

ift (s == NULL) return *\0’; Finished checking --- 1 code warning found
9 return *s;
}

Figure2. Null Checking

Output from running Splint is displayed in sans-serif font. The command line is preceded
by >, the rest is output from Splint. Explanations added to the code or splint output are
shown initalics. Code shown in the figures in this document is available from the splint
web site, http://www.splint.org. No error isreported for line 9, since the dereference is
reached only if s isnon-null. For most of the figures, the options -linelen 55 -hints —
showcol were used to produce condensed output, and —exportlocal to inhibit warnings
about exported declarations.

UVA Secure Programming Group

not NULL. A more descriptive name for nullwhentrue would be “if the result is false, the
parameter was not null”. For example, if isNull is declared as,

/*@ul | whentrue@/ bool isNull (/*@ull @/ char *Xx);

we could write firstChar2:
char firstChar2 (/*@ull @/ char *s)

if (isNull (s)) return '\0";
return *s;

}

No error is reported since the dereference of s is only reached if isNull(s) is false, and since isNull
is declared with the nullwhentrue annotation this means s must not be null.

The falsewhennull annotation is not quite the logical opposite of nullwhentrue. If a function
declared with falsewhennull returns true, it means its parameter is definitely not NULL. If it
returns false, the parameter may or may not be NULL. That is afalsewhennull always returns false
when passed a NULL parameter; it may sometimes return false when passed a non-NULL
parameter.

For example, we could define isNonEmpty to return true if its parameter is not NULL and has least
one character before the NUL terminator:

/*@ al sewhennul | @/ bool isNonEnpty (/*@wull @/ char *x)

return (x !'= NULL && *x = '\ 0’);
}

Splint does not check that the implementation of a function declared with nullwhentrue or
falsewhennull is consistent with its annotation, but assumes the annotation is correct when code
that calls the function is checked.

2.1.2 Notnull Annotations

The notnull annotation specifies that a declarator is definitely not NULL. By default, this is
assumed, but it may be necessary to use notnull to override a null in a type definition. The null
annotation may be used in atype definition to indicate that all instances of the type may be NULL.
For declarations of a type declared using null, the null annotation in the type definition may be
overridden with notnull. This is particularly useful for parameters to hidden static operations of
abstract types (see Section 4.3) where the null test has aready been done before the function is
called, or function results known to never be NULL. For an abstract type, notnull may not be used
for parameters to externa functions, since clients should not be aware of when the concrete
representation may by NULL. Parameters to static functions in the implementation module,
however, may be declared using notnull, since they may only be called from places where the
representation is accessible. Return values for static or externa functions may be declared using
notnull.

2.1.3 Reaxing Null Checking

An additional annotation, relnull may be used to relax null checking. No error is reported when a
relnull value is dereferenced, or when a possibly null value is assigned to an identifier declared
using relnull.

15

Splint Manual

This is generally used for structure fields that may or may not be null depending on some other
constraint. Splint does not report and error when NULL is assigned to a relnull reference, or when
a relnull reference is dereferenced. It is up to the programmer to ensure that this constraint is
satisfied before the pointer is dereferenced.

16

UVA Secure Programming Group

3 Undefined Values

Like many static checkers, Splint detects instances where the value of alocation is used before it is
defined. Thisanalysisis done at the procedural level. If thereis a path through the procedure that
uses a local variable before it is defined, a use before definition error is reported. The usedef flag
controls use before definition checking.

Splint can do more checking than standard checkers though, because the annotations can be used to
describe what storage must be defined and what storage may be undefined at interface points.
Unannotated references are expected to be completely defined at interface points. This means al
storage reachable from a global variable, parameter to a function, or function return value is
defined before and after afunction call.

3.1.1 Undefined Parameters

Sometimes, function parameters or return values are expected to reference undefined or partialy
defined storage. For example, a pointer parameter may be intended only as an address to store a
result, or a memory alocator may return alocated but undefined storage. The out annotation
denotes a pointer to storage that may be undefined.

Splint does not report an error when a pointer to alocated but undefined storage is passed as an
out parameter. Within the body of a function, Splint will assume an out parameter is allocated but
not necessarily bound to avalue, so an error isreported if its value is used before it is defined.

Splint reports an error if storage reachable by the caller after the call is not defined when the
function returns. This can be suppressed by -must-define. After a call returns, an actual
parameter corresponding to an out parameter is assumed to be completely defined.

When checking unannotated programs, many spurious use before definition errors may be reported
If impouts is on, no error is reported when an incompletely-defined parameter is passed to aformal
parameter with no definition annotation, and the actual parameter is assumed to be defined after the
cal. The /*@in@*/ annotation can be used to denote a parameter that must be completely defined,
even if imp-outs ison. If imp-outs is off, there isan implicit in annotation on every parameter with
no definition annotation.

17

Splint Manual

usedef.c Running Splint

extern voi d* . > splint usedef.c
exfg Xa: ngl @ut@/ int *x); usedef.c:11: Value *x used before definition
getVal (/*@n@/ int *x): usedef.c:13: Passed storage x not completely
extern int nysteryVval defined
(int *x); (*x is undefined): getVal (x)
it dumbf unc usedef.c:15: Passed storage x not completely
(/*@ut@/ int *x, int i) defined
(*x is undefined): mysteryVal (x)
if (i > 3)

11 return *x;
else if (i > 1)
13 return getval (x);

Finished checking --- 3 code warnings

else if (i == 0) No error isreported for line 18, since the
15 return nysteryVal (Xx); incompletely defined storage x is passed as
el se an out parameter. After the call, x may be
18 setval (x): dereferenced, ;inge setVal is assumed to
19 return *x: completely define its out parameter. The
} warning for line 15 would not appear if
} +impouts were used since thereisno in

annotation on the parameter to mysteryVal.

Figure 3. Use before Definition

3.1.2 Relaxing Checking

The reldef annotation relaxes definition checking for a particular declaration. Storage declared
with a reldef annotation is assumed to be defined when it is used, but no error is reported if it is not
defined before it is returned or passed as a parameter.

It is up to the programmer to check reldef fields are used correctly. They should be avoided in
most cases, but may be useful for fields of structures that may or may not be defined depending on
other constraints.

3.1.3 Partially Defined Structures

The partial annotation can be used to relax checking of structure fields. A structure with undefined
fields may be passed as a partial parameter or returned as a partial result. Inside a function body,
no error is reported when the field of a partial structure is used. After a call, al fields of a
structure that is passed as a partial parameter are assumed to be completely defined.

18

UVA Secure Programming Group

4 Types

Strong type checking often reveals programming errors. Splint can check primitive C types more
gtrictly and flexibly than typical compilers (4.1) and provides support a Boolean type (4.2). In
addition, users can define abstract types that provide information hiding (0).

4.1 Builtin C Types

Splint supports stricter checking of built in C types. The char and enum types can be checked as
distinct types, and the different numeric types can be type-checked strictly.

4.1.1 Characters

The primitive char type can be type-checked as a distinct type. If char is used as a distinct type,
common errors involving assigning ints to chars are detected.

The +charint flag can be used for checking legacy programs where char and int are used
interchangeably. If charint ison, char typesindistinguishable from ints. To keep char and i nt as
distinct types, but alow chars to be used to index arrays, use +charindex.

4.1.2 Enumerators

Standard C treats user-declared enum types just like integers. An arbitrary integral value may be
assigned to an enum type, whether or not it was listed as an enumerator member. Splint checks
each user-defined enum type as distinct type. An error is reported if a value that is not an
enumerator member is assigned to the enum type, or if an enum type is used as an operand to an
arithmetic operator. If the enumint flag is on, enum and int types may be used interchangeably.
Like charinde, if the enumindex flag is on, enum types may be used to index arrays.

4.1.3 Numeric Types

Splint reports where numeric types are used in dangerous or inconsistent ways. With the strictest
checking, Splint will report an error anytime numeric types do not match exactly. If the relax-
quals flag is on, only those inconsistencies that may corrupt values are reported. For example, if
an int is assigned to a variable of type long (or passed as a long formal parameter), Splint will not
report an error if relax-quals is on since a long must have at least enough bits to store an int
without data loss. On the other hand, an error would be reported if the long were assigned to an
int, since the int type may not have enough bitsto store the long value.

Similarly, if a signed value is assigned to an unsigned, Splint will report an error since an
unsigned type cannot represent al signed values correctly. If the +ignore-signs flag is on,
checking is relaxed to ignore al sign qualifiers in type comparisons (this is not recommended, since
it will suppress reporting of real bugs, but may be necessary for quickly checking certain legacy
code).

4.1.4 Arbitrary Integral Types

Some types are declared to be integral types, but the concrete type may be implementation
dependent. For example, the standard library declares the types size_t, ptr_diff and wchar_t, but
does not condtrain their types other than limiting them to integral types. Programs may rely on
them being integral types (e.g., can use + operator on two size_t operands), but should not rely on
aparticular representation (e.g., long unsigned).

19

Two types have
compatible
typeif their
types are the
same.
ANSI C,
3.1.2.6.

Splint Manual

Splint supports three different kinds of arbitrary integral types:

/*@integraltype@*/
An arbitrary integral type. The actual type may be any one of short, int, long, unsigned
short, unsigned, or unsigned long.

/*@unsignedintegraltype@*/
An arbitrary unsigned integral type. The actual type may be any one of unsigned short,
unsigned, or unsigned long.

/*@signedintegraltype@*/
An arbitrary signed integral type. The actual type may be any one of short, int, or long.

Splint reports an error if the code depends on the actua representation of a type declared as an
arbitrary integral. The match-any-integral flag relaxes checking and alows an arbitrary integral
type is allowed to match any integral type.

Other flags set the arbitrary integral types to a concrete type. These should only be used if
portability to platforms that may use different representations is not important. The long-integral
and long-unsigned-integral flags set the type corresponding to /*@integraltype@*/ to be unsigned
long and long respectively. The long-unsigned-unsigned-integral flag sets the type corresponding
to /*@unsignedintegraltype@*/ to be unsigned long. The long-signed-integral flag sets the type
corresponding to /*@signedintegraltype@*/ to be long.

4.2 Boolean Types

Pre-1ISO99 C had no Boolean representation — the result of a comparison operator was an integer,
and no type checking is done for test expressions. C99 introduced a Boolean type (_Bool and bool,
true and false macros in stdbool.h), but did not strengthen the type checking. Splint supports a
Boolean type that can be checked distinctly from integral types. Many common errors can be
detected by introducing a distinct Boolean type and stronger type checking.

Splint checks that the test expression in an if, while, or for statement or an operand of a &&, || or !
operator is a Boolean. If the type of a test expression is not a Boolean, Splint will produce a
warning depending on the type of the test expression and flag settings. If the test expression has
pointer type, the warning is inhibited by —predboolptr (this can be used to prevent messages for the
idiom of testing if a pointer is not null without a comparison). If it is type int, the warnings is
inhibited by -pred-bool-int. For &l other types, Splint warns unless -pred-bool-others is set.
Relations, comparisons and certain standard library functions are declared to return Booleans.

Since using = instead of == is such a common bug, reporting of test expressions that are
assignments is controlled by the separate pred-assign flag. The message can be suppressed by
adding extra parentheses around the test expression.

Use the —booltype <name> flag to select the type name is used to represent Boolean values. There
is no default Boolean type, although bool is used by convention. The names TRUE and FALSE are
assumed to represent true and false Boolean values. To change the names of true and false, use -
booltrue and -boolfalse. (The Splint distribution includes an implementation of bool, in lib/bool.h.
However, it isn't necessary to use thisimplementation to get the benefits of Boolean checking.)

20

UVA Secure Programming Group

bool . c Running Splint

include "bool.h" > splint bool.c +predboolptr —booltype bool
int f (int i, char *s,
bool b1, bool b2) . . . L

bool.c:6: Test expression for if is assignment expression: i = 3
6 if (i =3) bool.c:6: Test expression for if not bool, type int: i=3
; . r (ef ur Inl bi) bool.c:7: Return value type bool does not match declared type int:

| tl
. b1
9 return i; . -
10 if (SL; I bool.c:8: Operand of ! is non-boolean (int): !i
1 return 7, bool.c:8: Right operand of || is non-boolean (char *): li || s
12 if ({Ol ==3b2) bool.c:10: Test expression for if not bool, type char *: s
13 return 3; 9 — Wi : ol i ;
“ return 2: bool.c:12: Use of == with bool variables (risks inconsistency
} because
of multiple true values): b1 == b2
Finished checking --- 7 code warnings found

Figure4. Boolean Checking

Figure 4 illustrates some of the Boolean checking done by Splint.

4.3 Abstract Types

Information hiding is a technique for handling complexity. By hiding implementation details,
programs can be understood and developed in distinct modules and the effects of a change can be
localized. One technique for information hiding is data abstraction. An abstract type is used to
represent some natural program abstraction. It provides functions for manipulating instances of
the type. The module that implements these functions is called the implementation module. We
call the functions that are part of the implementation of an abstract type the operations of the type.
Other modules that use the abstract type are called clients.

Clients may use the type name and operations, but should not manipulate or rely on the actual
representation of the type. Only the implementation module may manipulate the representation of
an abdtract type. This hides information, since implementers and maintainers of client modules
should not need to know anything about how the abstract type is implemented. It provides
modularity, since the representation of an abstract type can be changed without having to change
any client code.

Splint supports abstract types by detecting places where client code depends on the concrete
representation of an abstract type. Some examples of abstraction violations detected by Splint are
shown in Figure 5.

To declare an abstract type, the abstract annotation is added to a typedef.
mstring.h),

For example (in

typedef /*@bstract @/ char *nstring;

declares mstring as an abstract type. It is implemented using a char *, but clients of the type
should not depend on or need to be aware of this. If it later becomes apparent that a better
representation such as a string table should be used, we should be able to change the
implementation of mstring without having to change or ingpect any client code.

21

Traditionally,
programming
books wax
mathematical
when they
arrive at the
topic of
abstract data
types... Such
books make it
seemasif
you'd never
actually use an
abstract data
type except as
adeepaid.
Steve
McConnell

Splint Manual

pal i ndrone. c Running Splint

include "bool.h" > apli i
% include "mstring. h” splint palindrome.c
bool isPalindrome (mstring s) palindrome.c:6: Cast from underlying

H . *
6 char *current = (char *) s: qbstracttype mstrmg. (char *)s
7int i, len = (int) strlen (s); palindrome.c:7: Function strlen expects arg
1 to be char * gets mstring: s

for (I =001 <= (Ten+l) /2 T+) palindrome.c:11: Array fetch from non-array

11 if (current[i] != s[len-i-1]) (mstring): s[len-i- 1]
) return FALSE, palindrome.c:19: Function isPalindrome
return TRUE; expects arg 1 to be mstring gets char *:
} llbobn

bool call Pal (void)
Finished checking --- 4 code warnings
19 return (isPalindrone ("bob"));

}

Figure5. Information Hiding Violations

In aclient module, abstract types are checked by name, not structure. Splint reports an error if an
instance of mstring is passed as a char * (for instance, as an argument to strlen), since the
correctness of this call depends on the representation of the abstract type. Splint also reports errors
if any C operator except assgnment (=) or sizeof is used on an abstract type. The assignment
operator is alowed since its semantics do not depend on the representation of the type (for abstract
types whose instances can change value, a client does need to know if assignment has copy or
sharing semantics as discussed in Section 4.3.2). The use of sizeof is also permitted, since thisis
the only way for clients to allocate pointers to the abstract type. Type casting objects to or from
abstract typesin a client module is an abstraction violation and will generate a warning message.

Normally, Splint will assume a type definition is not abstract unless the /*@abstract@*/ qualifier
isused. If instead you want all user-defined types to be abstract types unless they are marked as
concrete, the +imp-abstract flag can be used. This adds an implicit abstract annotation to any
typedef that is not marked with /*@concrete@*/.

4.3.1 Controlling Access

Where code may manipulate the representation of an abstract type, we say the code has access to
that type. If code has access to an abstract type, the representation of the type and the abstract
type are indistinguishable. Usually, a single program module that is the only code that has access
to the type representation implements an abstract type. Sometimes, more complicated access
control is desred if the implementation of an abstract type is split across program files, or
particular client code needs to access the representation.

There are a several ways of selecting what code has access the representation of an abstract type:

Modules. An abstract type defined in M.h isaccessible in M.c. Controlled by the accessmodule
flag. This means when accessmodule is on, as it is by default, the module access rule is in
effect. If accessmodule is off (when -access-module is used), the module access rule is not in
effect and an abstract type defined in M.h is not necessarily accessiblein M.c.

22

UVA Secure Programming Group

File names. An abstract type named type is accessible in files named type.<extension>. For
example, the representation of mstring is accessible in mstring.h and mstring.c. Controlled by
the access-file flag.

Function names. An abstract type named type may be accessible in a function named
type_name or typeName. For example, mstring_length and mstringLength would have access
to the mstring abstract type. Controlled by accessfunction and the naming convention (see
Section 12).

Access control comments. The syntax /*@access type,*@*/* alows the following code to
access the representation of type. Similarly, /*@noaccess type,*@*/ restricts access to the
representation of type. The type in anoaccess comment must have been declared as an abstract

type.

4.3.2 Mutability

We can view types as being mutable or immutable. A typeis mutable if passing it as a parameter
to afunction call can change the value of an instance of the type. For example, the primitive type
int isimmutable. If i isalocal variable of type int and no variables point to the location where i is
stored, the value of i must be the same before and after the call f (i). Structure and union types are
also immutable, since they are copied when they are passed as arguments. On the other hand,
pointer types are mutable. If x isalocal variable of type int *, the value of *x (and hence, the value
of the object x) can be changed by the function call g(x).

The mutability of a concrete type is determined by its type definition. For abstract types, mutability
does not depend on the type representation but on what operations the type provides. If an abstract
type has operations that may change the value of instances of the type, the type is mutable. If not,
it is immutable. The value of an instance of an immutable type never changes. Since object
sharing is noticeable only for mutable types, they are checked differently from immutable types.

The /*@mutable@*/ and /*@immutable@*/ annotations are used to declare an abstract type as
mutable or immutable. (If neither is used, the abstract type is assumed to be mutable.) For
example,

typedef /*@bstract@/ /*@mutable@/ char *nstring;
typedef /*@bstract@/ /*@nmutable@/ int weekDay;

declares mstring as a mutable abstract type and weekDay as an immutable abstract type.

Clients of a mutable abstract type need to know the semantics of assignment. After the assignment
expression s = t, do s and t refer to the same object (that is, will changes to the value of s aso
change the value of t).

Splint prescribes that all abstract types have sharing semantics, so s and t would indeed be the
same object. Splint will produce awarning if a mutable type is implemented with a representation
(e.g., astruct) that does not provide sharing semantics (controlled by mutrep flag).

The mutability of an abstract type is not necessarily the same as the mutability of its
representation. We could use the immutable concrete type int to represent mutable strings using an

2 The meta-notation, item,* is used to denote a comma separated list of items. For example,
[*@access mstring, intSet@*/
allows access to the representations of both mstring and intSet.)
23

Splint Manual

index into a string table, or declare mstring as immutable as long as no operations are provided
that modify the value of an mstring.

4.3.3 Semi-Abstract Types

Sometimes it is useful to have a type that is abstract in some ways, but can be used with the
standard numerical operators. Splint supports numabstract types for this purpose. The
/*@numabstract@*/ annotation denotes a numabstract type. Splint will report warnings when
numabstract types are used inconsistently, but allow binary numeric operators to operate on two
values of the same numabstract type.

Severa flags control the strictness of type checking for numabstract types: numabstract,
numabstractcast, numabstractlit, numabstractindex, and numabstractprint.

4.4 Polymorphism

In C, dl declarators must be declared to have exactly one type. This makes it impossible to write
functions that operate on more than one type of parameter — for example, we cannot use the same
square function for ints and floats. Because of the stricter type checking made possible by Splint,
it is often useful to declare a parameter that has more than one possible type.

Splint provides aternate types to indicate that a declaration may be one of severa possible types.
The /*@alt type,*@*/ annotation creates a union type. For example, int /*@alt char, unsigned
char@*/ c declares c such that either an int, char or unsigned char value may be assigned to it
without warning.

One use of aternate types is to specify the type of a macro that operates on multiple types of
operands (see Section 11.2.1). Alternate types are also useful for declaring functions for which the
return value may be safely ignored (see Section 8.4.2). A function can be declared to return t
/*@alt void@*/ to indicate that it returns a value of type t, but there should be not warning if that
valueisignored.

24

UVA Secure Programming Group

5 Memory Management

About half the bugs in typical C programs can be attributed to memory management problems.
Memory management bugs are notorioudly difficult to detect through traditional techniques. Often,
the symptom of the bug is far removed from its actual source. Memory management bugs often
only appear sporadically and some bugs may only be apparent when compiler optimizations are
turned on or the code is compiled on a different platform. Run-time tools offer some help, but are
cumbersome to use and limited to detecting errors that occur when test cases are run. By detecting
these errors statically, we can be confident that certain types of errors will never occur and provide
verified documentation on the memory management behavior of a program.

Splint can detect many memory management errors at compile time including using storage that
may have been dedllocated (Section 5.2), memory leaks (Section 5.2), or returning a pointer to
stack-allocated storage (Section 5.2.6).

Mogt of these checks depend on annotations added to programs to document assumptions related to
memory management and pointer values. By documenting these assumptions for function
interfaces, variables, type definitions and structure fields, memory management bugs can be
detected at their source — where an assumption is violated. In addition, precise documentation
about memory management decisions makes it easier to change code.

5.1 Storage Mod€

This section describes execution-time concepts for describing the state of storage more precisely
than can be done using standard C terminology. Certain uses of storage are likely to indicate
program bugs, and are reported as anomalies.®

Splint assumes a CLU-like object storage model.* An object is a typed region of storage. Some
objects use a fixed amount of storage that is alocated and deallocated automatically by the
compiler. Other objects use dynamic storage that must be managed by the program.

Storage is undefined if it has not been assigned a value, and defined after it has been assigned a
value. An object is completely defined if al storage that may be reached from it is defined. What
storage is reachable from an object depends on the type and value of the object. For example, if p
is a pointer to a structure, p is completely defined if the value of p is NULL, or if every field of the
structure p pointsto is completely defined.

When an expression is used as the left side of an assignment expression we say it is used as an
Ivalue. Its location in memory is used, but not its value. Undefined storage may be used as an
Ivalue since only its location is needed. When storage is used in any other way, such as on the
right side of an assgnment, as an operand to a primitive operator (including the indirection
operator, *),° or as a function parameter, we say it is used as an rvalue. It is an anomaly to use
undefined storage as an rvaue.

% This section is largely based on [Evans96]. It semi-formally defines some of the terms needed to
describe memory management checking; if you are satisfied with an intuitive understanding of these
terms, this section may be skipped.
* Thisis similar to the L1SP storage model, except that objects are typed.
° Except sizeof, which does not need the value of its argument.

25

Yea, fromthe
table of my
memory I'll
wipe away all
trivial fond
records, all
saws of books,
all forms, all
pressures
past, that
youth and
observation
copied there.
Hamlet
prefers
garbage
collection
(Shakespeare

Hamlet.
Actl,
Scenev)

‘Tisin my
memory
lock’d, and
you yourself
shall keep the
key of it.
Ophelia
prefers
explicit
deallocation
(Hamlet.
Actl,
Sceneiii)

Splint Manual

A pointer is a typed memory address. A pointer is either live or dead. A live pointer is either
NULL or an address within allocated storage. A pointer that points to an object is an object
pointer. A pointer that pointsinside an object (e.g., to the third element of an allocated block) isan
offset pointer. A pointer that points to allocated storage that is not defined is an allocated pointer.
The result of dereferencing an alocated pointer is undefined storage. Hence, it is an anomaly to
use it asan rvalue. A dead (or “dangling”) pointer does not point to allocated storage. A pointer
becomes dead if the storage it points to is dedllocated (e.g., the pointer is passed to the free library
function.) Itisan anomaly to use a dead pointer as an rvaue.

Thereis a specia object null corresponding to the NULL pointer in a C program. A pointer that
may have the value NULL is a possibly-null pointer. It isan anomaly to use a possibly-null pointer
where anon-null pointer is expected (e.g., certain function arguments or the indirection operator).

5.2 Deallocation Errors

There are two kinds of deallocation errors with which we are concerned: deallocating storage when
there are other live references to the same storage, or failing to deallocate storage before the last
reference to it islost. To handle these deallocation errors, we introduce a concept of an obligation
to release storage. Every time storage is alocated, it creates an obligation to release the storage.
This obligation is attached to the reference to which the storage is assigned.® Before the scope of
the reference is exited or it is assigned to a new value, the storage to which it points must be
released. Annotations can be used to indicate that this obligation is transferred through a return
value, function parameter or assignment to an external reference.

5.2.1 Unshared References
The only annotation is used to indicate a reference is the only pointer to the object it pointsto. We
can view the reference as having an obligation to release this storage. This obligation is satisfied
by transferring it to some other reference in one of three ways:
- pass it as an actual parameter corresponding to a formal parameter declared with an only
annotation
assign it to an external reference declared with an only annotation
return it as aresult declared with an only annotation

After the release obligation is transferred, the origina reference is a dead pointer and the storage it
points to may not be used.

All obligations to release storage stem from primitive allocation routines (e.g., malloc), and are
ultimately satisfied by cals to free. The standard library declared the primitive alocation and
deallocation routines.

The basic memory alocator, malloc, is declared:
/[*@nly@/ /*@ull @/ void *malloc (size_t size);

It returns an object that is referenced only by the function return value.

® If the storage is not assigned to a reference, an internal reference is created to track the storage.
26

UVA Secure Programming Group

only.c Running Splint

1 extern /*@nly@/ int *glob; > splint only.c
/*@nly@/ int * only.c:11: Only storage glob (type int *) not released
f (/*@nl ;/@/ int *x, int *y, before assignment: glob =y

int >z , only.c:1: Storage glob becomes only
{ /*@lobal's gl ob; @/ only.c:11: Implicitly temp storage y assigned to only:
gint *m= (int *) glob=y
9 mal | oc (sizeof (int)); only.c:13: Dereference of possibly null pointer m: *m
1 glob =y Memory leak only.c:8: Stqrage m may becomeT null
12 free (x): only.c:13: Variable x used after being released
13 *m = *x; Use after free only.c:12: Storage x released
14 return z; Memory leak detected | only.c:14: Implicitly temp storage z returned as only: z
} only.c:14: Fresh storage m not released before return

only.c:9: Fresh storage m allocated

Figure 6. Memory Management
The deallocator, free, is declared:’
void free (/*@nly@/ /*@ut@/ /*@ull @/ void *ptr);

The parameter to free must reference an unshared object. Since the parameter is declared using
only, the caller may not use the referenced object after the call, and may not passin areference to a
shared object. There is nothing specia about malloc and free — their behavior can be described
entirely in terms of the provided annotations.

5.2.2 Temporary Parameters

The temp annotation is used to declare a function parameter that is used temporarily by the
function. An error is reported if the function releases the storage associated with a temp formal
parameter or creates new aliases to it that are visible after the function returns. Any storage may
be passed as a temp parameter, and it satisfies its original memory constraints after the function
returns.

5.2.3 Owned and Dependent References

Inrea programsit is sometimes necessary to have storage that is shared between severa possibly
references. The owned and dependent annotations provide a more flexible way of managing
storage, at the cost of less checking. The owned annotation denotes a reference with an obligation
to release storage. Unlike only, however, other externa references marked with dependent
annotations may share this object. It is up to the programmer to ensure that the lifetime of a
dependent reference is contained within the lifetime of the corresponding owned reference.

" The declaration of free has a null annotation on the parameter to indicate that the argument may be
NULL. According to [ISO, 7.20.3.2], NULL may be passed to free without no action. On some UNIX
platforms, passing NULL to free causes a program crash so the UNIX version of the standard library
specifies free without the null annotation on its parameter. To check that allocated objects are completely
destroyed (e.g., all unshared objects inside a structure are deallocated before the structure is deallocated),
Splint checks that any parameter passed as an out only void * does not contain references to live,
unshared objects. This makes sense, since such a parameter could not be used sensibly in any way other
than deallocating its storage.
27

Splint Manual

stack.c Running Splint

int *glob; > splint stack.c
/ * @ependent @/ int * stack.c:12: Stack-allocated storage &loc reachable

f(int **x) from return value: &loc
{ stack.c:12: Stack-allocated storage *x reachable from
int sa[2] ={ 0, 1}; parameter x
int loc = 3; A0 *
stack.c:10: Storage *x becomes stack
9 glob = & oc; stack.c:12: Stack-allocated storage glob reachable
10 *x = &sa[0]; from global glob

stack.c:9: Storage glob becomes stack
12 return &l oc;

}

A dependent annotation is used on the return value.
Without this, other warnings would be reported, since
the result would have an implicit only annotation.

Figure7. Stack-Allocated Storage

5.2.4 Keep Parameters

The keep annotation is smilar to only, except the caller may use the reference after the call. The
called function must assign the keep parameter to an only reference, or pass it as a keep parameter
to another function. It is up to the programmer to make sure that the calling function does not use
this reference after it isreleased. The keep annotation is useful for adding an object to a collection
(e.g., asymboal table), where it is known that it will not be deallocated until the collection is.

5.2.5 Shared References

If Splint is used to check a program designed to be used in a garbage-collected environment, there
may be storage that is shared by one or more references and never explicitly released. The shared
annotation declares storage that may be shared arbitrarily, but never released.

5.2.6 Stack References

Local variables that are not alocated dynamically are stored on a call stack. When a function
returns, its stack frame is deallocated, destroying the storage associated with the function’s local
variables. A memory error occurs if a pointer into this storage is live after the function returns.
Splint detects errors involving stack references exported from a function through return values or
assignments to references reachable from global variables or actual parameters. No annotations
are needed to detect stack reference errors, sinceiit is clear from a declaration if storage is allocated
on the function stack. Figure 7 gives and example of errors reported involving stack-allocated
storage.

5.2.7 Inner Storage
An annotation always applies to the outermost level of storage. For example,
/*@nly@/ int **x;

declares x as an unshared pointer to a pointer to an int. The only annotation applies to x, but not to
*x. To apply annotations to inner storage a type definition may be used:

typedef /*@nly@/ int *oip;
/*@nly@/ oip *x;

28

UVA Secure Programming Group

typedef struct {

only char *nane; Implicit only annotation on mutable structure

i nt val ; C . .
} *rec: field if structimponly is on.
extern only rec rec_last ; Implicit only annotation on mutable global

variablesif globimponly is on.
extern only rec
rec_create (tenp char *nane,
int val)

Annotationsin i tal i cs are not present in
the code, but may be implied depending on
flag settings.

Implicit only annotation on mutable function
result if retimponly is set. Implicit temp
annotation on mutable parameter if
paramimptemp is set.

Figure 8. Implicit Annotations

Now, X isan only pointer to an oip, which is an only pointer to an int.

When annotations are used in type definitions, they may be overridden in instance declarations.
For example,

/* @ependent @/ oip X;

makes x a dependent pointer to an int. Another way to apply annotations to inner storage isto use
a state clause (see Section 7.4).

5.3 Implicit Memory Annotations

Since it is important that Splint can check unannotated programs effectively, the meaning of
declarations with no memory annotations is chosen to minimize the number of annotations needed
to get useful checking on an unannotated program.

An implicit memory management annotation may be assumed for declarations with no explicit
memory management annotation. Implicit annotations are checked identically to the corresponding
explicit annotation, except error messages indicate that they result from an implicit annotation.
Figure 8 illustrates some implicit annotations.

Unannotated function parameters are assumed to be temp. This means if memory checking is
turned on for an unannotated program, all functions that release storage referenced by a parameter
or assign a global variable to aias the storage will produce error messages. (Controlled by
paramimptemp.)

Unannotated return values, structure fields and global variables are assumed to be only. With
implicit annotations (on by default), turning on memory checking for an unannotated program will
produce errors for any function that does not return unshared storage or assignment of shared
storage to aglobal variable or structure field. If an exposure qualifier is used (see Section 6.2), the
implied dependent annotation is used instead of the more generally implied only annotation.
(Controlled by retimponly, structimponly and globimponly. The allimponly flag sets al of the
implicit only flags.)

54 Reference Counting
29

Splint Manual

Another approach to memory management is to add afield to atype to explicitly keep track of the
number of references to that storage. Every time a reference is added or lost the reference count is
adjusted accordingly; if it would become zero, the storage is released. Reference counting it
difficult to do without automatic checking since it is easy to forget to increment or decrement the
reference count, and exceedingly difficult to track down these errors.

Splint supports reference counting by using annotations to constrain the use of reference counted
storage in a manner similar to other memory management annotations. A reference counted typeis
declared using the refcounted annotation. Only pointer to struct types may be declared as
refcounted, since reference counted storage must have afield to count the references. Onefield in
the structure (or integral type) is preceded by the refs annotation to indicate that the value of this
field is the number of live references to the structure. For example (in rstring.h),
typedef /*@bstract @/ /*@efcounted@/ struct ({
|*@efs@/ int refs;
char *contents;
} *rstring;

declares rstring as an abstract, reference-counted type. The refs field counts the number of
references and the contents field holds the contents of a string.

All functions that return refcounted storage must increase the reference count before returning.
Splint cannot determine if the reference count was increased, so any function that directly returns a
reference to refcounted storage will produce an error. This is avoided, by using a function to
return a new reference (e.g., rstring_ref in Figure 9).

A reference counted type may be passed as a temp or dependent parameter. It may not be passed
as an only parameter. Instead, the killref annotation is used to denote a parameter whose reference
is diminated by the function call. Like only parameters, an actua parameter corresponding to a
killref formal parameter may not be used in the calling function after the call. Splint checks that
the implementation of a function releases all killref parameters, either by passing them as killref
parameters, or assigning or returning them without increasing the reference count.

rstring.c Running Splint

include "rstring.h" > splint rstring.c
static rstring rstring ref (rstring r) rstring.c:12: Reference counted
storage returned without modifying

-> ++;
r->ref s++; reference count: r1

6 return r;

}

.)))) No error isreported for line 6 since
rstring rstring_first (rstring rl, rstring r2)

the reference count was
if (strcnp (ril->contents, r2->contents) < 0) 'ncr_eme”ted-_ No error is reported
12 return rl; for line 14, since rstring_ref
el se _ returns a new reference.
14 return rstring_ref (r2);
}

Figure9. Reference Counting
30

UVA Secure Programming Group

6 Sharing

Errors involving unexpected sharing of storage can cause serious problems. Undocumented
sharing may lead to unpredictable modifications, and some library calls (eg., strcpy) have
undefined behavior if parameters share storage. Another class of sharing errors occurs when
clients of an abstract type may obtain a reference to mutable storage that is part of the abstract
representation. This exposes the representation of the abstract type, since clients may modify an
instance of the abstract type indirectly through this shared storage.

6.1 Aliasing

Splint detects errors involving dangerous aliasing of parameters. Some of these errors are already
detected through the standard memory annotations (e.g., only parameters may not be aliases.)
Two additional annotations are provided for constraining aliasing of parameters and return values.

6.1.1 Unique Parameters

The unique annotation denotes a parameter that may not be aliased by any other storage reachable
from the function implementation — that is, any storage reachable through the other parameters or
global variables used by the function. The unique annotation places similar constraints on function
parameters as the only annotation, but it does not transfer the obligation to release storage. Splint
will report an error if aunique parameter may be aliased by another parameter or global variable.

Splint reports an error if a function returns a reference to storage reachable from one of its
parameters (if retalias is on) since this may introduce unexpected aliases in the body of the calling
function when the result is assigned.

Figure 10 illustrated sharing checks. An error is reported since the first parameter to the library
function strcpy is declared with unique. If a unique qualifier were added to the parameter
declaration for s or t, no error would be reported.

6.1.2 Returned Parameters

The returned annotation denotes a parameter that may be aliased by the return value. Splint
checks the call assuming the result may be an aias to the returned parameter.

Consider the following code excerpt:

extern intSet intSet_insert (/*@eturned@/ intSet s, int x);

uni que. c Running Splint

voi d . . . o
capitalize (/*@ut@/ char *s, unique.c: (in function capitalize)
char *t) unique.c:7: Parameter 1 (s) to function strcpy is
{ declared unique but may be aliased externally
7 strcpy (s, t); by
*s = toupper (*s);
} pper (*s) parameter 2 (t)

Figure 10. Unique parameters
31

Splint Manual

nt Set intSet_singleton (int x)

i

{ _ _ _

7 return (intSet_insert (intSet_new (), X));
}

Without the returned qualifier on the parameter to intSet_insert, a memory leak error would be
reported for line 7, since the only storage returned by intSet_new is not released. Because of the
returned qualifier, Splint assumes the result of intSet_insert is the same storage as its first
parameter, in this case the storage returned by intSet_new. No error is reported, since the only
storage is then transferred through the return value (which has an implicit only annotation, see
Section 5.3).

6.2 Exposure

Splint detects places where the representation of an abstract type is exposed. This occurs if a
client has a pointer to storage that is part of the representation of an instance of the abstract type.
The client can then modify or examine the storage this points to, and manipulate the value of the
abstract type instance without using its operations.

There are three ways a representation may be exposed:

1. Returning (or assigning to a global variable) an object that includes a pointer to a mutable
component of an abstract type representation. (Controlled by ret-expose).

2. Assigning a mutable component of an abstract object to storage reachable from an actua
parameter or a globa variable that may be used after the call. This means the client may
manipulate the abstract object using the actual parameter after the call. Note that if the
corresponding formal parameter is declared only, the caller may not use the actual parameter
after the call so the representation is not exposed. (Controlled by assign-expose).

3. Casting mutable storage to or from an abstract type. (Controlled by cast-expose).

Annotations may be used to alow exposed storage to be returned safely by restricting how the
caller may use the returned storage.

6.2.1 Read-Only Storage

It is often useful for a function to return a pointer to internal storage (or an instance of a mutable
abstract type) that is intended only as an observer. The caller may use the result, but should not
modify the storage it points to. For example, consder a naive implementation of the
employee_getName operation for the abstract employee type:
typedef /*@bstract @/ struct ({
char *nane;
int id;
} *enpl oyee;

(.:.Har *enpl oyee_get Nane (enpl oyee e) { return e->nane; }

Splint produces a message to indicate that the return value exposes the representation. One
solution would be to return a fresh copy of e->name. This is expensive, though, especiadly if we
expect employee_getName is used mainly just to get a string for searching or printing. Instead,
we could change the declaration of employee_getName to:

extern /*@bserver @/ char *enpl oyee_get Name (enpl oyee e);

32

UVA Secure Programming Group

Now, the origina implementation is correct. The declaration indicates that the caller may not
modify the result, so it is acceptable to return shared storage. (The program must also not use the
returned observer storage after any other calls to the abstract type module using the same
parameter. Splint does not attempt to check this, and in practice it is rarely a problem.) Splint
checks that the caller does not modify the return value. An error is reported if observer storage is
modified directly, passed as a function parameter that may be modified, assigned to a globa
variable or reference derivable from a globa variable that is not declared with an observer
annotation , or returned as a function result or areference derivable from the function result that is
not annotation with an observer annotation.

String Literals

A program that attempts to modify a string literal has undefined behavior [1SO, 6.4.5]. Thisis not
enforced by most C compilers, and can lead to particularly pernicious bugs that only appear when
optimizations are turned on and the compiler attempts to minimize storage for string literals. Splint
can be used to check that string literals are not modified, by treating them as -observer storage. If
+read-only-strings is set (default in standard mode), Splint will report an error if astring literal is
modified.

6.2.2 Exposed Storage

Sometimes it is necessary to expose the representation of an abstract type. This may be evidence
of a design flaw, but in some cases is justified for efficiency reasons. The exposed annotation
denotes storage that is exposed. 1t may be used on areturn value for results that reference storage
internal to an abstract representation, on a parameter value to indicate a parameter that may be
assigned directly to part of an abstract representation (note that if the parameter is annotated with
only, it is not an error to assign it to part of an abstract representation, since the caller may not use
the storage after the call returns), or on afield of an abstract representation to indicate that external
references to the storage may exist. An error is reported if exposed storage is released, but unlike
an observer, no error is reported if it ismodified. Figure 11 shows examples of exposure problems
detected by Splint.

33

Splint Manual

exposure. c Running Splint

include "enployee. h” > splint exposure.c +checks

char *)

enpl oyee_get Nane (enpl oyee e) exposure.c:6: Function returns reference to
parameter e: e->name

6 return e->name; exposure.c:6: Return value exposes rep of

} employee: e->name

| * @bserver @/ char * exposure.c:6: Released storage e->name

enpl oyee_obsNanme (enpl oyee e) reachable

{ return e->nane; } from parameter at return point

/*@xposed@/ char * exposure.c:6: Storage e->qqmg is released
enpl oyee_exposeName (enpl oyee e) | €xposure.c:23: Suspect modification of observer
{ return e->nane; } name: *name = toupper(*name)

void Three messages are reported for line 6 where a
enpl oyee_capNare (enpl oyee e) mutable field of an abstract type is returned with
no sharing qualifier (without +checks only the

char *nane; ! :
third one would be reported.) Theerror for line

name = enpl oyee_obsNane (e); 23 reports a modification of an observer. If the
23*nane = toupper (*nane); call in line 22 were changed to call
} employee_exposeName, no error would be
reported.

Figure 11. Exposure

UVA Secure Programming Group

7 Function Interfaces

Functions communicate with their calling environment through an interfface. The caller
communicates the values of actual parameters and global variables to the function, and the
function communicates to the caller through the return value, globa variables and storage
reachable from the actual parameters. By keeping interfaces narrow (restricting the amount of
information visible across a function interface), we can understand and implement functions

independently.

A function prototype documents the interface to a function. It serves as a contract between the
function and its caler. In early versions of C, the function “prototype” was very limited. It
described the type returned by the function but nothing about its parameters. ANSI C (1989)
provided function prototypes with the ability to add information on the number and types of
parameter to a function. Splint provides the means to express much more about a function
interface such as what global variable the function may use and what values visible to the caller it
may modify.

The extra interface information places constraints on both how the function may be called and how
it may be implemented. Splint reports places where these constraints are not satisfied. Typically,
these indicate bugs in the code or errors in the interface documentation.

This section describes annotations that may be added to a function declaration to document what
global variables the function implementation may use and what values visible to its caller it may
modify.

7.1 Modifications

The modifies clause lists what values visible to the caller may be modified by a function. Modifies
clauses limit what values a function may modify, but they do not require that listed values are
always modified. The declaration,

int f (int *p, int *q) /*@modifies *p@/;

declares afunction f that may modify the value pointed to by its first argument but may not modify
the value of its second argument or any global state.

Splint checks that a function does not modify any caler-visble value not encompassed by its
modifies clause and does modify al values listed in its modifies clause on some possible execution
of the function. Figure 12 shows an example of modifies checking done by Splint.

35

Splint Manual

void setx (int *X, int *y) |>splintmodify.c +checks

{ /[*@difies *x@/ modify.c:4: Undocumented modification of *y: *y = *x
4 *y = *x: modify.c:5: Suspect object listed in modifies of setx
not modified: *x

_ _ _ modify.c:1: Declaration of setx
void sety (int *x, int *y)

/[*@odifies *y@/ There are no errors for sety — the call to setx modifies
the value pointed to by its first parameter (y) as
documented by the modifies clause. The checks mode
turns on mustmod checking, so the second error
concerning missing documented modifications is

reported.

setx (y, X);

Figure 12. Modification

7.1.1 State Modifications

A few specia names are provided for describing function modifications that effect state not
identifiable through parameters or global variables:

internalState
The function modifies some internal state (that is, the value of a static variable). Even
though a client cannot access the internal state directly, it isimportant to know that
something may be modified by the function call both for clear documentation and for
checking undefined order of evaluation (Section 8.2) and side effect free parameters (Section
11.2.2).

fileSystem
The function modifies the file system. Any modification that may change the system stateis
considered afile system modification. All functions that modify an object of type pointer to
FILE aso modify the file system. In addition, functions that do not modify a FILE pointer
but modify some state that is visible outside this process also modify the file system (e.g.,
rename). The flag mod-file-system controls reporting of undocumented file system
modifications.

nothing
The function modifies nothing (i.e., it is Side effect free).

The annotation, /*@*/ in a function declaration or definition (after the parameter list, before the
semi-colon or function body) denotes a function that modifies nothing and does not use any global
variables (see Section 7.2).

7.1.2 Missing Modifies Clauses

Splint is designed so programs with many functions that are declared without modifies clauses can
be checked effectively. Unless modnomaods isin on, no modification errors are reported checking a
function declared with no modifies clause.

A function with no modifies clause is an unconstrained function since there are no documented
condtraints on what it may modify. When an unconstrained function is caled, it is checked
differently from a function declared with a modifies clause. To prevent spurious errors, no
modification error is reported at the call site unless the mod-uncon flag is on. Flags control

36

UVA Secure Programming Group

gl obal s. c Running Splint

int globl, globZ; > splint globals.c +checks

3int f (void) /*@lobals

gl obl; @/ globals.c:5: Undocumented use of global glob2
{ . globals.c:3: Global glob1 listed but not used
5return gl ob2;

}

Figure 13. Global Variables

whether errors involving unconstrained functions are reported for other checks that depend on
modifications (side effect free macro parameters (Section 11.2.1), undefined evaluation order
(Section 8.2), and likely infinite loops (Section 8.3.1).)

7.2 Global Variables

Another aspect of afunction’s interface, isthe global variablesit uses. A globalslist in afunction
declaration lists externa variables that may be used in the function body. Splint checks that global
variables used in a procedure match those listed in its globals list. A global isused in afunction if
it appears in the body directly, or it is in the globals list of a function called in the body. Splint
reports if aglobal that is used in aprocedure is not listed in its globals list, and if alisted global is
not used in the function implementation. Figure 13 shows an example function definition with a
globals list and associated checking done by Splint.

7.2.1 Controlling Globals Checking

Whether on not an error is reported for a use of a globa variable in a given function depends on
the scope of the variable (file static or external), the checking annotation used in the variable
declaration or the implicit annotation if no checking annotation is used, whether or not the function
is declared with a globals list, and flag settings.

A global or file static variable declaration may be preceded by an annotation to indicate how the
variable should be checked. In order of decreasing checks, the annotations are:

/*@checkedstrict@*/
Strictest checking. Undocumented uses and modifications of the variable are reported in all
functions whether or not they have a globals list (unless check-strict-globs is off).
/*@checked@*/
Undocumented use of the variable is reported in a function with aglobalslist, but not in a
function declared with no globals (unless glob-noglobs is on).
/*@checkmod@*/
Undocumented uses of the variable are not reported, but undocumented modifications are
reported. (If mod-globs-nomods is on, errors are reported even in functions declared with
no modifies clause or globalslist.)
/*@unchecked@*/
No messages are reported for undocumented use or modification of this globa variable.

If avariable has none of these annotations, an implicit annotation is determined by the flag settings.

Different flags control the implicit annotation for variables declared with global scope and
variables declared with file scope (i.e, using the static storage quaifier). To set the implicit

37

Splint Manual

annotation for global variables declared in context (globs for external variables or statics for file
static variable) to be annotation (checked, checkmod, checkedstrict) use imp<annotation>
<context>. For example, +imp-checked-strict-statics makes the implicit checking on unqualified
file static variables checkedstrict. See Appendix B for a complete list of globals checking flags.

7.2.2 Definition State

Annatations can be used in the globals list of a function declaration to describe the states of global
variables before and after the call. If aglobal is preceded by undef, it is assumed to be undefined
before the call. Thus, no error is reported if the global is not defined when the function is called,
but an error is reported if the global is used in the function body before it is defined. The killed
annotation denotes a global variable that may be undefined when the call returns. For globals that
contain dynamically allocated storage, a killed global variable is similar to an only parameter
(Section 5.2). An error is reported if it contains the only reference to storage that is not released
before the call returns. Figure 14 illustrated killed and undef globals.

7.3 Declaration Consistency

Splint checks that function declarations and definitions are consistent. The general rule is that the
first declaration of afunction implies all later declarations and definitions. If afunction is declared
in a header file, the first declaration processed isits first declaration (if it is declared in more than
one header file an error is reported if redecl is set). Otherwise, the first declaration in the file
defining the function isitsfirst declaration.

Later declarations may not include variables in the globals list that were not included in the first
declaration. The exception to this is when the first declaration is in a header file and the later
declaration or definition includes file static variables. Since these are not visible in the header file,
they can not be included in the header file declaration. Similarly, the modifies clause of a later

annot gl obs. ¢ Running Splint

int gl obnum > splint annotglobs.c
struct ({

char *firstname, *Iastname: annotglobs.c:13: Undef global globnum used

int id; before definition
} gl obnane; annotglobs.c:15: Global storage globname
voi d contains 1 undefined field when call
initialize (/*@nly@/ char *nane) retums: firstname

/* @l obal s undef gl obnum annotglobs.c:21: Only storage

undef gl obname @/ globname firstname (type char *) derived

12gl obname. i d = gl obnum from killed global is not released

gl obnare. | ast name = nane; (memory leak)
15}

void finalize (void)
/*@l obal s killed gl obname@/

free (gl obname. | astnane);
21}

Figure 14. Annotated GlobalsLists
38

UVA Secure Programming Group

declaration may not include objects that are not modifiable in the first declaration. The later
declaration may be more specific. For example, if the header declaration is:

extern void set Name (enployee e, char *s) /*@modifies e@/;

the later declaration could be,
voi d set Nane (enpl oyee e, char *) /*@mdifies e->nane@/;

If employee is an abstract type, the declaration in the header should not refer to a particular
implementation (i.e, it shouldn't rely on there being a name field), but the implementation
declaration can be more specific.

This rule also applies to file static variables. The header declaration for a function that modifies a
file static variable should use modifies internalState since file static variables are not visible to
clients. The implementation declaration should list the specific variables that may be modified.

7.4 State Clauses

Sometimes it is necessary to specify function interfaces at a lower level than is possible with the
standard annotations. For example, if a function defines some fields of a returned structure but
does not define al the fields. The /*@special@*/ annotation is used to mark a parameter, global
variable, or return value that is described using state clauses.

State clauses may be used to constrain the state of a parameter or return value before or after a
cal. One or more state clauses may appear in a function declaration, before the modifies or
globals clauses. State clauses may be listed in any order, but the same state clause should not be
used more than once. In astate clause list, result is refers to the return value of the function.

The following state clauses are used to describe the definition state or parameters before and after
the function is called and the return vaue after the function returns:

/*@uses <references>@*/
References in a uses clause must be completely defined before the function is called. They
are assumed to be defined at function entrance when the function is checked.

[*@sets <references>@*/
References in asets clause must be allocated before the function iscalled. They are
completely defined after the function returns. They are assumed to be alocated but
undefined storage at function entrance and an error is reported if there is a path on which
they are not defined before the function returns.

/*@defines <references>@%*/
References in a defines clause must not refer to unshared, allocated storage before the
function iscaled. They are completely defined after the function returns. When the function
is checked, they are assumed to be undefined at function entrance and an error is reported if
there is a path on which they are not defined before the function returns.

/*@allocates <references>@*/
References in an allocates clause must be unallocated before the function is called. They are
allocated but not necessarily defined after the function returns. An error is reported if there
is a path through the function on which they are not allocated before the function returns.

[*@releases <references>@*/

39

Splint Manual

Referencesin the releases clause are deallocated by the function. They must be storage that
could be passed as an only parameter before the function is called, and are dead pointers
after the function returns. They are assumed to be defined at function entrance and an error
isreported if they refer to live, allocated storage at any return point.

Some examples of state clauses are shown in Figure 15. The defines clause for record_new
indicates that the id field of the structure pointed to by the result is defined, but the name field is
not. So, record_create needs to cal record_setName to define the name field. Similarly, the
releases clause for record_clearName indicates that no storage is associated with the name field
of its parameter after the return, so no failure to deallocate storage message is produced for the call

cl auses. c

typedef struct

int id;
[*@nly@/ char *nane;
} *record,;

static /*@pecial @/ record record_new (void)
/| *@efines result->1d@/
{

record r = (record) malloc (sizeof (*r));

assert (r != NULL);
r->id = 3;
return r;

}

static void
record_set Nane (/*@pecial @/ record r, /*@nly@/ char *nane)
/*@lefines r->name@/

{
r->name = nane;
}
record record_create (/*@nly@/ char *nane)
{

record r = record_new ();
record_set Nane (r, name);
return r;

}

void record_cl ear Nane (/*@pecial @/ record r)
| *@ el eases r->nane@/
/| *@nsures isnull r->nane@/

free (r->nane);
r->name = NULL;

}

void record_free (/*@nly@/ record r)
{

record_clearName (r);
free (r);

Figure 15. State Clauses
40

UVA Secure Programming Group

to free inrecord_free. The ensures isnull clause is described in the next section.

7.5 Requiresand Ensures Clauses

More general assumptions about state of parameters and globals before and after a function is
called can be described using requires and ensures clauses. A requires clause specifies a predicate
that must be true at a call site; when checking a function implementation Splint assumes the
constraints given in its requires clauses are true at function entry. An ensures clause specifies a
predicate that is true at a call site after the call returns; when checking a function implementation
Splint warns if there is an execution path that does not return with a state that satisfies the
constraints given in its ensures clauses. A function declaration can have many requires and
ensures clauses as long as their meanings are not contradictory.

The following constraints can be stated using requires and ensures clauses:

Aliasing Annotations

/*@requires only<references>@*/; /*@ensures only<references>@*/

/*@requires shared<references>@%*/; /*@ensures shared<references>@*/

/*@requires owned<references>@*/; /*@ensures owned<references>@*/

/*@requires dependent<references>@*/; /*@ensures dependent<references>@*/
References refer to only, shared, owned or dependent storage before (requires) or after
(ensures) the call.

Exposure Annotations

/*@requires observer<references>@*/; /*@ensures observer<references>@*/
[*@requires exposed<references>@%*/; /*@ensures exposed <references>@*/
References refer to observer or exposed storage before (requires) or after (ensures) the call.

Null State Annotations

[*@requires isnull<references>@*/; /*@ensures isnull<references>@*/
References have the value NULL before (requires) or after (ensures) the call. Note, thisis
not the same name or meaning as the null annotation (which means the value may or may not
be NULL.)

/*@requires notnull<references>@*/; /*@ensures notnull<references>@*/
References do not have the value NULL before (requires) or after (ensures) the call.

41

Splint Manual

8 Control Flow

The section describes checking done by Splint related to control flow. Many of these checks are
significantly improved because of the extra information that is known about the program when
annotations are provided.

8.1 Execution

To detect certain errors and avoid spurious errors, it is important to know something about the
control flow behavior of called functions. Without additional information, Splint assumes that all
functions eventualy return and execution continues normally at the call site.

The noreturn annotation is used to denote a function that never returns®. For example,
extern /*@noreturn@*/ void fatalerror (/*@observer@*/ char *s);

declares fatalerror to never return. This enables Splint to correctly analyze code like,

if (x == NULL) fatalerror ("Yikes!");

*X = 3
Other functions may return, but sometimes (or usualy) return normally. The maynotreturn
annotation denotes a function that may or may not return. This may be useful for documentation,
but does not help checking much, since Splint must assume that a function declared with
maynotreturn returns normally when checking the code. The alwaysreturns annotation denotes a
function that always returns (but Splint does no checking to verify this).

To describe non-returning functions more precisely, the noreturnwhentrue and noreturnwhenfalse
annotations may be used. Similar to nullwhentrue and falsewhennull (see Section 2.1.1),
noreturnwhentrue and noreturnwhenfalse mean that a function never returnsif the value of itsfirst
argument is true (noreturnwhentrue) or false (noreturnwhenfalse). They may be used only on
functions whose first argument is a Boolean.

Hence, a function declared with noreturnwhenwfalse must not return if the value of its argument is
false. For example, the standard library declaresassert as™

[* @or et ur nwhenf al se@/ void

assert (/*@ef@/ bool /*@lt int@/ pred);

Thisway, code like,

assert (x != NULL);

*X = 3;
is checked without reporting a false warning, since the noreturnwhenwfalse annotation on assert
means the deference of x isnot reached isx != NULL isfase.

8 In versions of Splint before 3.0, the noreturn annotation was named exits. The noreturn annotation
means the same thing, but is a more appropriate name. For legacy code, Splint still supports the exits
annotations. Similarly, maynotreturn replaces mayexit, noreturnwhentrue replaces truexit and
noreturnwhenfalse replaces falseexit.
The sef annotation denotes a parameter as side effect free (see Section 11.2.1). We use bool /*@alt
int@*/ as the type of the parameter, to indicate that it may be either a Boolean or an integer.

42

UVA Secure Programming Group

8.2 Undefined Behavior

The order in which side effects take place in a C program is not entirely defined by the code.
Certain execution points are known as sequence points — afunction call (after the arguments have
been evaluated), the end of a full expression (an initializer, expression in an expression statement,
the control expression of an if, switch, while or do statement, each expression of a for statement,
and the expression in areturn statement), and after the first operand or a&&, ||, ? or , operand.

All side effects before a sequence point must be complete before the sequence point, and no
evaluations after the sequence point shall have taken place. Between sequence points, side effects
and evaluations may take place in any order. Hence, the order in which expressions or arguments
are evaluated is not specified. Compilers are free to evaluate function arguments and parts of
expressions (that do not contain sequence points) in any order. The behavior of code is undefined
if it uses a value that is modified by another expression that is not required to be evaluated before
or after the other use.

Splint detects instances where undetermined order of evauation produces undefined behavior. If
modifies clauses and globals lists are used, this checking is enabled in expressions involving
function calls. Evaluation order checking is controlled by the eval-order flag.

When checking systems without modifies and globals information (see Section 7), evaluation order
checking may report errors when unconstrained functions are called in procedure arguments. Since
Splint has no annotations to constrain what these functions may modify, it cannot be guaranteed
that the evaluation order is defined if another argument calls an unconstrained function or uses a
global variable or storage reachable from a parameter to the unconstrained function. Its best to
add modifies and globals clauses to constrain the unconstrained functions in ways that eliminate
the possibility of undefined behavior. For large legacy systems, this may require too much effort.

order.c Running Splint

extern int glob;

/* @l obal s gl ob@/

/*@modifies glob@/;

> splint order.c +evalorderuncon
order.c:11: Expression has undefined behavior (value of

extern int nystery , . .
(voi d); right operand modified by left operand): x++ * x
_ order.c:13: Expression has undefined behavior (left operand
(eXt ?g;‘ i nt nodgl ob uses i, modified by right operand): y[i] = i++
VOl

order.c:14: Expression has undefined behavior (value of
right operand modified by left operand):
modglob() * glob

int f (int x, int y[]) [order.c:15: Expression has undefined behavior
{ _— . . (unconstrained function mystery used in left operand
11 1nt 1 = X++ X; . .
may set global variable glob used in right operand):
13 y[i] = i++ mystery() * glob
14 i += nodgl ob() *
?5[?b;+_ stery() * The warning for line 14 is reported because the modifies
o, o clause of modglob indicated that it may modify glob. The
6 return i ; behavior is undefined since we don’'t know if glob is
} evaluated before, after or during the modification. The

line 15 warning would not be reported without
+evalorderuncon.

Figure 16. Evaluation Order
43

Splint Manual

Instead, the -eval-order-uncon flag may be used to prevent reporting of undefined behavior due to
the order of evaluation of unconstrained functions. Figure 16 illustrates detection of undefined
behavior.

8.3 Problematic Control Structures

A number of control structures that are syntactically legal may indicate likely bugs in programs.
Splint can detect errors involving likely infinite loops (Section 8.3.1), fall through cases and
missing cases in switch statements (Section 8.3.2), break statements within deeply nested loops or
switches (Section 8.3.3), clauses of if, while or for statements that are empty statements or
unblocked single statements (Section 8.3.4) and incomplete if-else logic (Section 8.3.5). Although
any of these may appear in a correct program, depending on the programming style used they may
indicate likely bugs or style violations that should be detected and eliminated.

8.3.1 Likéey Infinite Loops

Splint reports an error if it detects aloop that appearsto be infinite. An error isreported for aloop
that does not modify any value used in its condition test insde the body of the loop or in the
condition test itself. This checking is enhanced by modifies clauses and globals lists (see Section
7) since they provide more information about what global variable may be used in the condition
test and what values may be modified by function callsin the loop body.

Figure 17 shows examples of infinite loops detected by Splint. An error is reported for the loop in
line 14, since neither of the values used in the loop condition (x directly and globl through the call
to f) is modified by the body of the loop. If the declaration of g is changed to include glob1 inthe
modifies clause no error is reported. (In this example, if we assume the annotations are correct,
then the programmer has probably called the wrong function in the loop body. This isn't
surprising, given the horrible choices of function and variable names!)

If an unconstrained function is called within the loop body, Splint will assume that it modifies a
value used in the condition test and not report an infinite loop error, unless infloopsuncon ison. If
infloopsuncon is on, Splint will report infinite loop errors for loops where there is no explicit
modification of a value used in the condition test, but where they may be an undetected
modification through a call to an unconstrained function (e.g., line 12 in Figure 17).

| oop. ¢ Running Splint

extern int globl, glob2; |5 gplintloop.c +infloopsuncon
ex; f%l IOB;I],; é;’g:og)@/ loop.c:14: Suspected infinite loop. No value used in
/*@rodi fi es nothi ng@/; loop test (x, glob1) is modified by test or loop
extern void g (void) body.
/*@rodi fies glob2@/ ; | loop.c:15: Suspected infinite loop. No condition
extern void h (void) values modified. Modification possible through
void upto (int x) unconstrained calls: h

An error is reported for line 14 since the only value
14 while (x >f ()) 9(); | modified by the loop test or body if glob2 and the value
15 while (f () <3) h(): | of the loop test does not depend on glob2. The error for
) line 15 would not be reported without +infloopsuncon.

Figure 17. Infinite L oops
44

UVA Secure Programming Group

8.3.2 Switches

The automatic fall through of C switch statements is almost never the intended behavior.”® Splint
detects case statements with code that may fall through to the next case. The casebreak flag
controls reporting of fall through cases. A single fall through case may be marked by preceding
the case keyword with /*@fallthrough@*/ to indicate explicitly that execution falls through to this
case. See Figure 18 for an example.

For switches on enum types, Splint reports an error if amember of the enumerator does not appear
as acase in the switch body (and there is no default case). (Controlled by misscase.)

switch.c Running Splint

typedef enum { > splint switch.c
gEgBABN(L)Y DEMEIYEI:ET}FL;}W switch.c:10: Fall through case (no preceding
voi d deci de (ynmy) break)
switch.c:13: Missing case in switch: DEFINITELY
switch (y)
E:ase PROBABLY: No fall through error isreported for the NO
case NO printf ("No!"); case, since there are no statements associated
10 case MAYBE: printf ("Maybe"); with the previous case.
/*@allthrough@/
case YES: printf ("Yes!"); The /*@fallthrough@*/ comment prevents a
13} message from being produced for the YES
} case.

Figure 18. Switch Cases

8.3.3 Deep Breaks

There is no syntax provided by C (other than goto) for breaking out of a nested loop. All break
and continue statements act only on the innermost surrounding loop or switch. This can lead to
serious problems™ when a programmer intends to bresk the outer loop or switch instead. Splint
optionally reports warnings for break and continue statements in nested contexts.

Four types of break warnings are reported:

break inside a loop (while or for) that is inside a loop. Controlled by looploopbreak. To
indicate that a break isinside an inner loop, precede the break by /*@innerbreak@*/.

break inside aloop that is inside a switch statement. Controlled by switchloopbreak. To mark
the break as aloop break, precede the break by /*@loopbreak@*/.

break inside a switch statement that is inside aloop. Controlled by loopswitchbreak. To mark
the break as a switch break, precede the break by /*@switchbreak@*/.

break inside a switch inside another switch. Controlled by switchswitchbreak. To indicate that
the break isfor the inner switch, use /*@innerbreak@%*/.

19 Peter van der Linden estimates that default fall through is the wrong behavior 97% of the time. [vdL 95,
p. 37]
1 «software Glitch Cripples AT& T Network”, Telephony, 22 January 1990.

45

Splint Manual

Since continue only makes sense within loops, a warning (controlled by looploopcontinue) is
reported only for continue statements within nested loops. A safe inner continue may be preceded
by /*@innercontinue@*/ to suppress error messages locally. The deepbreak flag sets al nested
bresk and continue checking flags.

Splint warns if the marker preceding a break is not consistent with its placement. A warning
results if innerbreak precedes a break that is not breaking an inner loop, switchbreak precedes a
break that is not breaking a switch, or loopbreak precedes a break that is not breaking aloop.

8.3.4 Loop and If Bodies

An empty statement after an if, while or for often indicates a potential bug. A single statement (i.e.,
not a compound block) after an if, while or for is not likely to indicate a bug, but make the code
harder to read and edit. Splint can report errors for if or loop statements with empty bodies or
bodies that are not compound statements. Separate flags control checking for statements following
an if, while or for:

[if, while, forlempty — report errors for empty bodies (e.g., if (x > 3) ;)
[if, while, for]block — report errors for non-block bodies (e.g., if (x > 3) x++;)

The if statement checks also apply to the body of the else clause. No ifblock warning is reported if
the body of the else clauseis an if statement, to allow conventiona else if chains.

8.3.5 CompleteLogic

Although it may be perfectly reasonable in many contexts, an if-else chain with no final else may
indicate missing logic or forgetting to check error cases. If elseif-complete is on, Splint warns
when an if statement that is the body of an else clause does not have a matching else clause. For
example, the code,

if (x =0) { return "nil"; }

else if (x == 1) { return "many"; }

results in awarning since the second if has no matching else branch.

8.4 Suspicious Statements

Splint detects errors involving statements with no apparent effects (Section 8.4.1) and statements
that ignore the result of a called function (Section 8.4.2).

8.4.1 Statementswith No Effects

Splint can report errors for statements that have no effect. (Controlled by no-effect.) Because of
modifies clauses, Splint can detect more errors than traditional checkers. Unless the no-effect-
uncon flag ison, errors are not reported for statements that involve calls to unconstrained functions
since the unconstrained function may cause a modification. Figure 19 shows examples of Splint’s
no effect checking.

46

UVA Secure Programming Group

noeffect.c Running Splint

extern voild L > splint noeffect.c +noeffectuncon
n; m;lo:clfl I* /(.' nSth t)r? (/j f@/ ’ noeffect.c:6: Statement has no effect: y == *x
ccal @ 1S snorthand for noeffect.c:7: Statement has no effect:
modifies nothing and use no globals. nomodcall(x)
extern void sterycall (int *x);
i Y () noeffect.c:8: Statement has no effect (possible
int noeffect (int *x, int y) undetected modification through call to
{ N unconstrained function mysterycall):
nomodcal | (X); mysterycall(x)
nmysterycall (x);
return *x; The warning for line 8 would not be

} reported without +noeffectuncon.

Figure 19. Statementswith No Effect

8.4.2 Ignored Return Values

Splint reports an error when a return value is ignored. Checking may be controlled based on the
type of the return value: ret-val-int controls reporting of ignored return values of type i nt , and ret-
val-bool for return values of type bool , and ret-val-others for all other types. A function
statement may be cast to voi d to prevent this error from being reported.

Alternate types (Section 4.4) can be used to declare functions that return values that may safely be
ignored by declaring the result type to dternately be voi d. Severa functions in the standard
library are specified to dternately return voi d to prevent ignored return value errors for standard
library functions (e.g., st r cpy) where the result may be safely ignored (see Section 14.1). Figure
20 shows examples of ignored return value errors reported by Splint.

i gnore.c Running Splint

1 nclude “bool . h” > splint ignore.c
extern int fi (void);

extern bool fb (void); . o ,
externint /*@lt void@/ | ignore.c:8:Return value (type int) ignored: fi()

fv (void); ignore.c:10: Return value (type bool) ignored: fb()

int ignore (void) The message for line 8 would not be reported if -retvalint is
s fi (); set; for line 10, if -retvalbool is set.

9 (void) fi (); . : -

10 fb (); No message is reported for line 9 because the result is cast
1 fv (); to void, and no message is reported for line 11 because fv is
12 return fv (); declared to alternately return void.
}

Figure 20. Ignored Return Values

47

Splint Manual

9 Buffer Sizes

Buffer overflow errors are a particularly dangerous type of bug in C programs. They are directly
responsible for about half of al security attacks [Larochelle01]. For performance reasons, C does
not perform run time bounds checking. Referencing storage outside allocated regions can cause
memory corruption and lead to strange behavior. Moreover, buffer overflow bugs are particularly
insidious because they can go undetected in testing or normal use, but usually result in security
critical bugs. Reads beyond the end of a buffer can cause the program to leak information. Writes
beyond the end a buffer (buffer overflows) can usualy be exploited make the program run
arbitrary code. Attackers can exploit these programming bugs to replace the return address on the
stack and place arbitrary code in memory thereby gaining full access to the machine. Splint is able
to detect many memory bounds errors. 2

9.1 Checking Accesses

Splint models blocks of contiguous memory using two properties. maxSet and maxRead. Given a
buffer b, maxSet(b) denotes the highest address beyond b that can be safely used as an Ivalue. For
the declaration char buf[MAXSIZE] we have maxSet(buf) = MAXSIZE - 1. Similarly, maxRead
denotes the highest index of a buffer that can be safely used an rvalue. It is inappropriate to read
an uninitialized element or beyond the NUL terminator of a null terminated buffer.

When a buffer is accessed as an Ivalue, Splint generates a precondition constraint involving the
maxSet property. When a buffer is accessed as an rvalue, Splint generates a precondition
congtraint involving the maxRead property. For the expresson *ptr, Splint generates the
constraints maxSet(ptr) >= 0 or maxRead(ptr) >= 0 depending on whether ptr is used as an Ivalue
or rvalue. Similarly, for accesses of the form ptr{i], splint generates the constraints maxSet(ptr) >=
i or maxRead(ptr) >=i. If +boundswrite is set, Splint warns if it is unable to resolve a constraint
involving maxSet. If +boundsread is set, Splint warns about unresolved maxRead constraints al so.

Splint generates postconditions for statements to help resolve precondition constraints. When a
buffer is written to we know that an element of a buffer is initialized and is safe to read. We
generate the postcondition maxRead(ptr) >= 0 if the buffer is accessed using *ptr or maxRead(ptr)
>= | if the buffer is accessed using ptr[i]. Splint generates additional postconditions for a variety of
C constructs. For assignment statements, Splint generates a postcondition equating the two
operands. Splint also generates post condition constraints for the maxSet value of fixed sized
arrays.

9.2 Annotating Buffer Sizes

Function declarations may include requires and ensures clauses that specify assumptions about
buffer sizes for function preconditions. They are interpreted like requires and ensures clauses for
simple memory states (see Section 7.5) but can be more expressive. When a function with a
requires clause is called, the call site must be checked to satisfy the constraints implied by the
requires clause. Similarly, an ensures clause can be used to specify function post conditions. |If
the +checkpost flag is set, Splint warns if it cannot verify that a function implementation satisfies
its declared postconditions.

12 See [Larochelle01] for information on internal aspects of the checking.
438

UVA Secure Programming Group

Constraints can contain function parameters as well as global variables and integer constants. The
unary operators, maxSet and maxRead which correspond to the properties described above are also
supported. Multiple predicates may be conjoined using /.

For example, the standard library annotates strcpy:

void /*@lt char * @/strcpy
(/*@nique@/ /I*@ut@/ /*@eturned@/ char *sl1, char *s2)
/*@odifies *s1@/
/*@equires maxSet (sl) >= naxRead(s2) @/
/*@nsures maxRead(sl) == naxRead (s2) @/;

The requires clause indicates that the buffer passed as s1 must be large enough to hold the string
passed as s2. The ensures clause specifies that maxRead of sl after the call is equal to maxRead
of s2. In cases where the size of s2 is unknown, programs should use strncpy, annotated as:

void /*@lt char * @/ strncpy
(/*@nique@/ /*@ut@/ /*@eturned@/ char *sl1, char *s2,
size_t n)
/*@odifies *s1@/
/*@equires maxSet(sl) >=(n - 1); @/
/*@nsures maxRead (s2) >= maxRead(sl) /\ maxRead (sl) <= n; @/;

The syntax for buffer size constraint clauses is:

constraint P (requires | ensures) consExpr relOp consExpr

relOp P ==|>|>=|<|<=

consExpr P consExpr binOp consExpr | unaryOp (consExpr) | term
binOp P +]-

unaryOp P maxSet | maxRead

term b identifier | literal | result

9.3 LessStringent Checking

For some programs, Splint’s standard bounds checking produces an unacceptably high number of
warnings. Because of this, Splint now prioritizes warnings using a simple heuristic. The flags
likely-bounds, likely-bounds-write, and likely-bounds-read are similar to bounds, bounds-write,
and bounds-read but they only cause Splint to produce warnings for what it determines are likely
bounds errors. Splint classifies an unresolved constraint as a likely bounds error if it can reduce
the constraint to a numerical inconsistency suchas5 >= 10. Warnings for these constraints are
more likely to be legitimate -- indicating real bugs or the lack of annotations. Additionally, when
these warnings are false positives, it is easier for humans to recognize them as spurious. These
flags generate significantly fewer errors (an order of magnitude in some cases), and the errors
generated are easier to understand. However, this does not come without cost. The checking is
significantly less precise and is likely to missreal errors.

49

Splint Manual

9.4 Warnings

Since bounds checking is more complex than other checks done by Splint, memory bounds
warnings contain extensive information about the unresolved constraint. Warning messages for
unresolved constraints contain both the original constraints and the simplified form of the
congtraint which cannot be resolved. If the constraint was derived from a function precondition,
the original precondition is included in the error message. If the +showconstraintlocation flag is
set, the message includes the expresson that the constraint is derived from. The
+showconstraintparens flag directs Splint to display fully parenthesized constraints in warnings to
remove ambiguity.

Consider the code excerpt below containing atrivial out-of-bounds write:

i nt buf[10];
buf [10] = 3;
Splint warns:-

setChar.c:5:4: Likely out-of-bounds store:
buf{10]
Unable to resolve constraint: requires 9 >= 10
needed to satisfy precondition: requires maxSet(buf @ setChar.c:5:4) >= 10

Splint has simplified the constraint from the requires clause to 9 >= 10 by substituting for the
known value of maxSet(buf) and generated a warning because 9 (the highest index of buf that may
be safely written to) is not greater than or equal to 10.

A more redlistic example is shown Figure 21. The function updateEnv is a naive implementation
of afunction to copy an environmental variable. There is no standard restriction on the length of
the return value of getenv so this can cause a buffer overflow. A safe version of updateEnv (such
as updateEnvSafe in Figure 21) would ensure that the buffer is large enough to hold the
environment variable string before copying. The requires clause means Splint will report a
warning if a call to updateEnvSafe passed in a buffer as str that is not big enough to hold the
value passed as strSize characters.

In many cases, functions will have multiple unresolved constraints which are smilar. For example,
if a subsequence statement writes to the next element of a buffer. Usually, al these constraints
represent all real problems or are all spurious. If the +redundantconstraints flag is set, Splint
reports even apparently redundant warning messages. Otherwise, if satisfying one unresolved
congtraint would imply satisfying another, Splint only prints a warning message for the stronger
constraint.

50

UVA Secure Programming Group

The +functionpost flag is useful for determining if array bounds warnings are spurious. If this
flag is set, Splint will print the constraints that it established at the end of the function. If warnings
are spurious, localized control comments can be used to suppress them.

Bounds. c Running Splint

. > splint bounds.c +bounds +showconstraintlocation

voi d updat eEnv(char * str)
¢ char * tnp; bounds.c:9: Possible out-of-bounds store:
7 tnp = getenv(“MYENV'); strcpy(str, tmp)

if (tmp I'= NULL) _ Unable to resolve constraint:
}9 strepy (str, tnp); requires maxSet(str @ bounds.c:9) >=

maxRead(getenv("MYENV") @ bounds.c:7)

voi d updat eEnvSafe (char * str, needed to satisfy precondition:

. _ size_t strSize) requires maxSet(str @ bounds.c:9) >=

[*@equires zzixSet (str) maxRead(tmp @ bounds.c:9)
= strSize -1@/) L .

{ derived from strcpy precondition: requires

char * tnp; maxSet(<parameter 1>) >=

tnp = getenv("MENV"); maxRead(<parameter 2>)

if (tmp !'= NULL)

strncpy (str, tnp,
strSize -1);
str[strSize -1] = '/0;

}

}

Figure21. Memory Bounds

51

Splint Manual

10 Extensible Checking

Splint provides mechanisms for defining new checks and annotations using metastate definitions.
User-defined checks can be used to check and document properties not supported by the provided
checks.”®

A large class of useful checks can be described as constraints on attributes associated with
program objects or the globa execution state. Unlike types, however, the values of these attributes
can change along an execution path. Splint provides a general language that lets users define
attributes associated with different kinds of program objects as well as rules that both constrain
atributes’ values at interface points and specify how attributes change.

Because user-defined attribute checking is integrated with normal checking, Splint's analysis of
user-defined attributes can take advantage of other analyses, such as alias and nullness analysis.

10.1 Defining Attributes

To define an attribute, create a metastate file (.mts) that defined the possible values and transfer
rules of the attribute. Attributes can either be associated with a particular kind of program object
(for example, al char ¥ s) or with the global state (whether or not the network has been initialized).
The —mts <file> flag is used to direct Splint to read a metastate file (which will be found on the
LARCH_PATH with default extension .mts).

An example attribute definition is shown in Figure 22. It defines the taintedness attribute for
recording whether or not a char * came from a possibly untrustworthy source. Knowing whether a
value is possibly hogtile is useful for preventing severa security vulnerabilities including format
string bugs.** (A simpler way to detect format vulnerabilities is to warn for any format string that
is unknown at compile time. Splint provides this checking, issuing a warning if the +formatconst
flag is set and finds any unknown format strings at compile time. This can produce spurious
messages, however, because there might be unknown format strings that are not vulnerable to
hostile input.)

The first three lines of the attribute definition define the taintedness attribute associated with char *
objects, which can be in one of two states: untainted or tainted. The context clause gives a context
selector for which objects have the attribute. In this case, reference char * means that every
reference that is a char * has an associated taintedness attribute. Other contexts include
parameter (only parameter declarations), literal (only string or number literals), and null (only
known NULL values). Attribute can also be defined that are not associated with any particular
object, but instead are associated with the global state of a program execution. The global
keyword is used before attribute to define aglobal attribute.

The oneof clause introduces two identifiers for representing the taintedness value: untainted for
references that are not derived from untrustworthy input, and tainted for references that may
contain hostile data.

13 This section is largely based on [Evans02].
14 C. Cowan et al., FormatGuard: Automatic Protection from printf Format Sring Vulnerabilities. 10th
Usenix Security Symposium, 2001.

52

UVA Secure Programming Group

attribute taintedness
context reference char *
oneof untainted, tainted
annotations
tainted reference ==> tainted
untainted reference ==> untainted

transfers

tainted as untainted ==> error "Possibly tainted storage used where untainted required."
merge

tainted + untainted ==> tainted
defaults

reference ==> tainted

literal ==> untainted

null ==> untainted
end

Figure 22. Taintedness Attribute

The annotations clause defines two new annotations that may be used to describe taintedness
assumptions. In this case, the annotations match the names of the value choices, but they may be
any identifier. The clause tainted reference ==> tainted definesthe tainted annotation that may
be used on areference to indicate that it has tainted state.

The transfers clause defines rules for state changes and warning when objects are passed as
parameters, returned, or assigned to externally visible references. The rule, tainted as untainted
==> error "Possibly tainted storage used where untainted required.", means it is an error to
pass a tainted value as a parameter that has untainted taintedness. All other transfers are
implicitly permitted, and leave the passed storage in the same state as before the transfer. We may
also use a transfers clause to indicate that the reference changes state after a transfer. A
losereference clause (not used in taintedness) is Smilar to a transfers clause, except it is used to
provide rules for when a reference to storage is lost, either by leaving the scope in which it was
declared, returning from a function, or assigning it to a new value.

The merge clause defined rules for combining state along paths. The clause merge tainted +
untainted ==> tainted indicates that combining tainted and untainted objects produces a tainted
object. Thus, if a reference is tainted along one control path and untainted along another control
path, checking assumes that it is tainted after the two branches merge. It is aso used to merge
taintedness states in function specifications (see the strcat example in the next section). We can
also define error combinations so that a warning is reported if the states on different paths are
incompatible.

The defaults clause specifies default values used for declarators without explicit attribute
annotations. We choose default values to make it easy to start checking an unannotated program.
Here we assume unannotated references are tainted and Splint will report a warning where
unannotated references are passed to functions that require untainted parameters. The warnings
indicate either a format bug in the code or a place where an untainted annotation should be added.
Running Splint again after adding the annotation will propagate the newly documented assumption
through the program.

The full grammar for metastate definitionsis given in Appendix C.

53

Splint Manual

10.2 Annotations

The annotations defined by metastate definitions can be used like normal annotations. The context
specifier for an annotation indicates where it may be used. For the taintedness example, we can
use tainted and untainted as annotations wherever only could be used. This includes ensures and
requires clauses, which allows us to specify functions that modify state associated with metastate
definitions. The syntax <expr>:<attribute> is used to refer to the value of the user-defined
attribute for expression <expr>.

It is often necessary to extend the library specifications with metastate annotations. We don’t want
to have different versions of the library for different metastate annotations, so instead Splint
provides a mechanism for adding annotations separately using an .xh file. For the taintedness
example, we do this by providing annotated declarations in the tainted.xh file. Example
specificationsin thisfile include:

int printf (/*@ntainted@/ char *fnt, ...);
char *fgets (char *s, int n, FILE *streanm) /*@nsures tainted s@/

char *strcat (/*@eturned@/ char *sl1l, char *s2)
/*@nsures sl:taintedness = sl:taintedness | s2:taintedness @/

The strcat specification uses /*@ensures s1:taintedness = sl:taintedness | s2:taintedness @*/ to
indicate that the taintedness of s1 after strcat returns is the result of merging the taintedness of s1
and s2 before the call. Because the parameters lack annotations, they are implicitly tainted
according to the default rules and either untainted or tainted references can be passed as parameters
to strcat. The ensures clause means that after strcat returns the first parameter (and the result,
because of the returned annotation on s1) will be tainted if either passed object was tainted. Splint
merges the two taintedness states using the attribute definition rules—hence, if the s1 parameter is
untainted and the s2 parameter is tainted, the result and first parameter will be tainted after strcat
returns.

UVA Secure Programming Group

11 Macros

Macros are commonly used in C programs to implement constants or to mimic functions without
the overhead of a function call. Macros that are used to implement functions are a persistent
source of bugsin C programs, since they may not behave like the intended function when they are
invoked with certain parameters or used in certain syntactic contexts.

Splint eliminates most of the potential problems by detecting macros with dangerous
implementations and dangerous macro invocations. Whether or not a macro definition is checked
or expanded normally depends on flag settings and control comments (see Section 11.3). Stylized
macros can also be used to define control structures for iterating through many values (see Section
11.4).

11.1 Constant Macros

Macros may be used to implement constants. To get type-checking for constant macros, use the
constant annotation. For example,

/*@onstant null char *nstring_undefi ned@/

Declared constants are not expanded and are checked according to the declaration. A constant with
a null annotation may be used as only storage.

11.2 Function-like M acros

Using macros to imitate functions is notoriously dangerous. Consider this broken macro for
squaring a number:

define square(x) x * x

This works fine for a simple invocation like square(i). 1t behaves unexpectedly, though, if it is
instantiated with a parameter that has a side effect. For example, square(i++) expands to i++ *
i++. Not only does this give the incorrect result, it has undefined behavior since the order in which
the operands are evaluated is not defined. (See Section 8.2 for more information on how
expressions exhibiting undefined evaluation order behavior are detected by Splint.) To correct the
problem we either need to rewrite the macro so that its parameter is evaluated exactly once, or
prevent clients from invoking the macro with a parameter that has a side effect.

Another possible problem with macros is that they may produce unexpected results because of
operator precedence rules. The instantiation, square(i+1) expands to i+1*i+1, which evaluates to
i+i+1 instead of the square of i+1. To ensure the expected behavior, the macro parameter should be
enclosed in parentheses where it is used in the macro body.

Macros may aso behave unexpectedly if they are not syntactically equivalent to an expression.
Consider the macro definition,

define incCounts() ntotal ++; ncurrent ++;

Thisworks fine, unlessit is used as a statement. For example,
if (x <3) incCounts();

increments ntotal if x < 3 but always increments ncurrent.

55

Splint Manual

One solution is to use the comma operator to define the macro:
define incCounts() (ntotal ++, ncurrent++)

More complicated macros can be written using ado ... while construction:

define incCounts() \
do { ntotal ++; ncurrent++; } while (FALSE)

Splint detects these pitfalls in macro definitions, and checks that a macro behaves as much like a
function as possible. A client should only be able to tell that a function was implemented by a
macro if it attempts to use the macro as a pointer to a function.

Splint does these checks on a macro definition corresponding to a function:

Each parameter to a macro (except those declared to be side effect free, see Section 11.2.1)
must be used exactly once in al possible executions of the macro, so side effecting arguments
behave as expected.” (Controlled by macroparams.)

A parameter to a macro may not be used as the left-hand side of an assignment expression or as
the operand of an increment or decrement operator in the macro text, since this produces non-
functional behavior. (Controlled by macroassign.)

Macro parameters must be enclosed in parentheses when they are used in potentially dangerous
contexts. (Controlled by macroparens.)

A macro definition must be syntactically equivalent to a statement when it is invoked followed
by a semicolon. (Controlled by macrostmt.)

The type of the macro body must match the return type of the corresponding function. If the
macro is declared with type void, its body may have any type but the macro value may not be
used.

All variables declared in the body of a macro definition must be in the macro variable
namespace, so they do not conflict with variables in the scope where the macro is invoked
(which may be used in the macro parameters). By default, the macro namespace is al names
prefixed by m_. (See Section 12.2 for information on controlling namespaces.)

At the call site, amacro is checked like any other function call.

11.2.1 Side Effect Free Parameters

Suppose we really do want to implement square as a macro, but want do so in a safe way. One
way to do thisis to require that it is never invoked with a parameter that has a side effect. Splint
will check that this constraint holds, if the parameter is annotated to be side effect free. That is, the
expression corresponding to this parameter must not modify any state, so it does not matter how
many timesit is evaluated. The sef annotation is used to denote a parameter that may not have any
Side effects:

extern int square (/*@ef @/ int x);

define square(x) ((x) *(x))
Now, Splint will not report an error checking the definition of square even though x is used more
than once.

'3 To be completely correct, all the macro parameters should be evaluated before the macro has any side
effects. Splint does not check this.
56

UVA Secure Programming Group

A message will be reported, however, if square is invoked with a parameter that has a side effect.
For the code fragment,

square (i++)
Splint produces the message:
Parameter 1 to square is declared sef, but the argument may modify: i++

It is also an error to pass a macro parameter that is not annotated with sef as a sef macro
parameter in the body of a macro definition. For example,

extern int sunmsquares (int x, int y);
define sunsquares(x,y) (square(x) + square(y))

Although x only appears once in the definition of sumsquares it will be evaluated twice since
square is expanded.

A parameter may be passed as a sef parameter without an error being reported, if Splint can
determine that evaluating the parameter has no side effects. For function calls, the modifies clause
is used to determine if a side effect is possible.® To prevent many spurious errors, if the called
function has no modifies clause, Splint will report an error only if sef-uncon is on. Justifiably
paranoid programmers will insst on setting sef-uncon on, and will add modifies clauses to
unconstrained functions that are used in sef macro arguments.

One common application of macros is to get around the lack of polymorphism in C. We can use
the /*@alt <type>,"@> syntax (see Section 4.4) to indicate that an alternate type may be used.
For example,

externint /*@lt float@/ square (/*@ef@/ int /*@lt float@/ Xx);

define square(x) ((x) *(x))
declares square for both ints and floats. Note however, that the return type is either int or float,
regardless of the actual parameter type. This is weaker than what is actually known about the
return type.

11.3 Controlling Macro Checking

By default, Splint expands macros normally and checks the resulting code after macros have been
expanded. Fags and control comments may be used to control which macros are expanded and
which are checked as functions or constants.

If the fcn-macros flag is on, Splint assumes al macros defined with parameter lists implement
functions and checks them accordingly. Parameterized macros are not expanded and are checked
as functions with unknown result and parameter types (or using the types in the prototype, if oneis
given). The analogous flag for macros that define constants is const-macros. If it is on, macros
with no parameter lists are assumed to be constants, and checked accordingly. The all-macros flag
sets both fen-macros and const-macros. If the macro-fen-decl flag is set, a message reports
parameterized macros with no corresponding function prototype. If the macro-const-decl flag is
set, a sSimilar message reports macros with no parameters that have no corresponding constant
declaration.

!¢ Functions that do not produce to the same result each time they are called with the same arguments
should be declared to modify internalState so they will lead to errorsiif they are passed as sef parameters.
57

Splint Manual

The macro checks described in the previous sections make sense only for macros that are intended
to replace functions or constants. When fcnmacros or constmacros is on, more general macros
need to be marked so they will not be checked as functions or constants, and will be expanded
normally. Macros that are not meant to behave like functions should be preceded by the
[*@notfunction@*/ comment. For example,

/*@not function@/
define forever for(;;)

Macros preceded by notfunction are expanded normally before regular checking is done. If a
macro that is not syntactically equivalent to a statement without a semi-colon (e.g., a macro which
enters a new scope) is not preceded by notfunction, parse errors may result when fcn-macros or
const-macros is on.

11.4 Iterators

It is often useful to be able to execute the same code for many different values. For example, we
may want to sum all elements in an intSet that represents a set of integers. If intSet is an abstract
type, there is no easy way of doing this in a client module without depending on the concrete
representation of the type. Instead, we could provide such a mechanism as part of the type's
implementation. We call a mechanism for looping through many values an iterator.

The C language provides no mechanism for creating user-defined iterators. Splint supports a
stylized form of iterators declared using syntactic comments and defined using macros.

Iterator declarations are similar to function declarations except instead of returning a value, they
assign values to their yield parameters in each iteration. For example, we could add this iterator
declaration to intSet.h:

/*@ter intSet_elenents (intSet s, yield int el); @/

The yield annotation means that the variable passed as the second actual argument is declared as a
local variable of type int and assigned a value in each loop iteration.

11.4.1 Defining Iterators

An iterator is defined using a macro. Here's one (not particularly efficient) way of defining
intSet_elements:
typedef /*@bstract @/ struct ({
i nt nel ements;

int *el enents;
} intSet;

define intSet_elenents(s,mel) \
{ int mij; \
for (mi = (0); mi <= ((s)->nelenents); mi++) { \
int mel = (s)->elenments[(m.i)];

define end_intSet_elenents }}

Each time through the loop, the yield parameter m_el is assigned to the next value. After each
value has been assigned to m_el for one iteration, the loop terminates. Variables declared by the
iterator macro (including the yield parameter) are preceded by the macro variable namespace prefix
m__ (see Section 11.2) to avoid conflicts with variables defined in the scope where the iterator is
used.

58

UVA Secure Programming Group

11.4.2 Using Iterators

The general structure for using an iterator is,
iter (<parans>) stnt; end_iter

For example, aclient could use intSet_elements to sum the e ements of an intSet:
i nt Set s;
int sum= 0;

|nt Set_elenments (s, el) {
sum += el ;
} end_intSet _el enents;
The actual parameter corresponding to a yield parameter, el, is not declared in the function scope.
Instead, it is declared by the iterator and assigned to an appropriate value for each iteration.

Splint will do the following checks for uses of stylized iterators:

An invocation of the iterator iter must be balanced by a corresponding end, named end_iter.

All actual parameters must be defined, except those corresponding to yield parameters.

Yield parameters must be new identifiers, not declared in the current scope or any enclosing
scope.

Iterators are a bit awkward to implement, but they enable compact, easily understood client code.
For abstract collection types, an iterator can be used to enable clients to operate on elements of the
collection without breaking data abstraction.

59

Splint Manual

12 Naming Conventions

Naming conventions tend to be areligious issue. Generally, it doesn't matter too much what naming
convention is followed as long as one is chosen and followed religiously. There are two kinds of
naming conventions supported by Splint. Type-based naming conventions (Section 12.1) constrain
identifier names according to the abstract types that are accessible where the identifier is defined.
Prefix naming conventions (Section 12.2) constrain the initial characters of identifier names
according to what is being declared and its scope. Naming conventions may be combined or
different conventions may be selected for different kinds of identifiers. In addition, Splint supports
checking that names do not conflict with names reserved for the standard library or implementation
(Section 12.3) and are sufficiently distinguishable from other names.

12.1 Type-Based Naming Conventions

Generic naming conventions constrain vaid names of identifiers. By limiting vaid names,
namespaces may be preserved and programs may be more easily understood since the name gives
clues as to how and where the name is defined and how it should be used.

Names may be constrained by the scope of the name (externd, file static, internal), the file in which
the identifier is defined, the type of the identifier, and global constraints.

12.1.1 Czech Names

Czech'” names denote operations and variables of abstract types by preceding the names by
<type>_. The remainder of the name should begin with a lowercase character, but may use any
other character besides the underscore. Types may be named using any non-underscore characters.

The Czech naming convention is selected by the czech flag. If access-czech is on, a function,
variable, constant or iterator named <type> <name> has access to the abstract type <type>.
Reporting of violations of the Czech naming convention is controlled by different flags depending
on what is being declared:

czech-fcns
Functions and iterators. An error is reported for a function name of the form <prefix>_<name>
where <prefix> is not the name of an accessible type. Note that if accessczech is on, a type
named <prefix> would be accessible in a function beginning with <prefix>_. If access-czech is
off, an error is reported instead. An error is reported for a function name that does not have an
underscore if any abstract types are accessible where the function is defined.

czech-vars

czech-constants

czech-macros

¥ The most renowned C naming convention is the Hungarian naming convention, introduced by Charles
Simonyi [Simonyi, Charles, and Martin Heller. “The Hungarian Revolution.” BYTE, August 1991, p.
131-38]. The names for Splint naming conventions follow the tradition of using Central European
nationalities as mnemonics for naming conventions. The Splint conventions are similar to the Hungarian
naming convention in that they encode type information in names, except that the Splint conventions
encode the names of accessible abstract types instead of the type of the declaration of return value.
Prefixes used in the Hungarian naming convention are not supported by Splint.

60

UVA Secure Programming Group

Variables, constants and expanded macros. An error is reported if the identifier name starts
with <prefix>_ and prefix is not the name of an accessible abstract type, or if an abstract
type is accessible and the identifier name does not begin with <type>_ where type isthe
name of an accessible abstract type. If access-czech is on, the representation of the type is
visible in the constant or variable definition.

czech-types
User-defined types. An error is reported if atype name includes an underscore character.

12.1.2 Slovak Names

Slovak names are similar to Czech names, except they are spelled differently. A Soovak nameis of
the form <type><Name>. The type prefix may not use uppercase characters. The remainder of
the name starts with the first uppercase character.

The slovak flag selects the Slovak naming convention. Like Czech names, it may be used with
access-slovak to control access to abstract representations. The slovak-fcns, slovak-vars, slovak-
constants, and slovak-macros flags are analogous to the similar Czech flags. If slovak-type ison,
an error is reported if atype name includes an uppercase | etter.

12.1.3 Czechodovak Names

Czechodovak names are a combination of Czech names and Slovak names. Operations may be
named either <type>_ followed by any sequence of non-underscore characters, or <type> followed
by an uppercase letter and any sequence of characters. Czechodovak names have been out of
favor since 1993, but may be necessary for checking legacy code. The czechoslovak-fcns,
czechoslovak-vars, czechoslovak-macros, and czechoslovak-constants flags are analogous to the
similar Czech flags. If czechoslovak-type is on, an error is reported if a type name contains either
an uppercase letter or an underscore character.

12.2 Namespace Prefixes

Another way to restrict names is to constrain the leading character sequences of various kinds of
identifiers. For example, the names of al user-defined types might begin with T followed by an
uppercase letter and al file static names begin with an uppercase letter. This may be useful for
enforcing a namespace (e.g., al names exported by the X-windows library should begin with X) or
just making programs easier to understand by establishing an enforced convention. Splint can be
used to constrain identifiers in this way to detect identifiers inconsistent with prefixes.

All namespace flags are of the form, -<context>prefix <string>. For example, the macro variable
namespace restricting identifiers declared in macro bodies to be preceded by m_ would be selected
by -macrovarprefix "m_". The string may contain regular characters that may appear in a C
identifier. These must match the initial characters of the identifier name. In addition, specia
characters (shown in Figure 23) can be used to denote a class of characters.® The * character may
be used at the end of a prefix string to specify the rest of the identifier is zero or more characters
matching the character immediately before the *. For example, the prefix string T&* matches T or
TWINDOW but not Twin.

18 Of course, namespace prefixes should really be described by regular expressions. If there is sufficient
interest (that is, someone volunteers to program it), regular expressions will be supported in a future
version of Splint.

61

Of coursg, this
isacomplete
jumble to the
uninitiated,
and that’ s the
joke.
Charles
Smonyi, on the
Hungarian
naming
convention

Splint Manual

Different prefixes can be selected for the following identifier contexts:

macro-var-prefix Any variable declared inside a macro body

unchecked-macro-prefix Any macro that is not checked as a function or
constant (see Section 11.4)

tag-prefix Tags for struct, union and enum declarations

enum-prefix Members of enum types

type-prefix Name of a user-defined type

file-static-prefix Any identifier with file static scope

glob-var-prefix Any variable (not of function type) with global scope

const-prefix Any constant (see Section 11.1)

iter-prefix An iterator (see Section 11.4)

proto-param-prefix A parameter in afunction declaration prototype

external-prefix Any exported identifier

If an identifier isin more than one of the namespace contexts, the most specific defined namespace
prefix is used (e.g., a global variable is also an exported identifier, so if global-var-prefix is s, it
is checked against the variable name; if not, the identifier is checked against the external-prefix.)

For each prefix flag, a corresponding flag named <prefixname>exclude controls whether errors
are reported if identifiers in a different namespace match the namespace prefix. For example, if
macro-var-prefix-exclude is on, Splint checks that no identifier that is not a variable declared inside
amacro body uses the macro variable prefix.

Hereis a (somewhat draconian) sample naming convention:

-unchecked-macro-prefix "~*" Unchecked macros have no lowercase |etters.

-type-prefix "TA&*" All type names begin with T followed by an
uppercase letter. The rest of the name is all
lowercase |etters.

+type-prefix-exclude No identifier that does not name a user-defined type
name begins with the type name prefix.

-file-static-prefix "~ &&&" File static scope variables begin with an uppercase
letter and three lowercase |etters.

-proto-param-prefix "p_" All parameters in prototypes must begin with p_.

-glob-var-prefix "G" All global variables start with G.

+glob-var-prefix-exclude No identifier that is not a global variable starts with
G.

The prefix for parameters in function prototypes is useful for making sure parameter names are not
in conflict with macros defined before the function prototype. In most cases, it may be preferable
to not name prototype parameters. If the proto-param-name flag is set, an error is reported for any
named parameter in a prototype declaration. If a proto-param-prefix is set, no error is reported for
unnamed parameters.

It may aso be useful to check the names of prototype parameters correspond to the names in
definitions. While using header files as documentation is not generally recommended, it is common
enough practice that it makes sense to check that parameter names are consistent. A discrepancy
may indicate an error in the parameter order in the function prototype. If proto-param-match is

62

The decision to
retain the old
six-character

case-

insensitive
restriction on
significance
was most

painful.

ANS C

UVA Secure Programming Group

Any uppercase letter, A-Z

& Any lowercase letter, a-z

% Any character that is not an uppercase letter (allows lowercase letters, digits and
underscore)

~ Any character that is not a lowercase letter (alows uppercase letters, digits and

underscore)

Any letter (a-z, A-Z)

Any letter or digit (A-Z, a-z, 0-9)

Any character vaid in a C identifier

Any digit, 0-9

H VT

Figure 23. Prefix Character Codes

set, Splint will report an error if the name of a definition parameter does not match the
corresponding prototype parameter (after removing the protoparamprefix).

12.3 Naming Restrictions

Additional naming restrictions can be used to check that names do no conflict with names reserved

for the standard library, and that identifier are sufficiently distinct (either for the compiler and

linker, or for the programmer.) Restrictions may be different for names that are needed by the
linker (external names) and names that are only needed during compilations (internal names).
Names of non-static functions and global variables are external; al other names are internal .

12.3.1 Reserved Names

Many names are reserved for the implementation and standard library. A complete list of
reserved names can be found in [vdL, p. 126-128]. Some name prefixes such as str followed by a
lowercase character are reserved for future library extensions. Most C compilers do not detect
naming conflicts, and they can lead to unpredictable program behavior. If ansi-reserved is on,
Splint warns about external names that conflict with reserved names. If ansi-reserved-internal is
on, warnings are also produced for internal names.

If +cpp-names is set, Splint warns aout identifier names that are keywords or reserved words in
C++. Thisisuseful if the code may later be compiled with a C++ compiler (of course, thisis not
enough to ensure the meaning of the code is not changed when it is compiled as C++.)

12.3.2 Distinct Names

Splint can check that names differ within a given number of characters, optionaly ignoring
alphabetic case and differences between characters that ook similar. The number of significant
characters may be different for externa and internal names.

Using +distinct-external-names sets the number of significant characters for external names to six
and makes aphabetical case insignificant for external names. This is the minimum significance
acceptable in an ANSI-conforming compiler. Most modern compilers exceed these minimums
(which are particularly hard to follow if one uses the Czech or Slovak naming convention). The
number of dgnificant characters can be changed using the external-name-length <number> flag.
If external-name-case-insensitive is on, aphabetical case isignored in comparing external names.
Splint reports identifiers that differ only in alphabetic case.

63

Splint Manual

nanes. c Running Splint

Ghar *stringrev (char > splint names.c +distinctinternalnames

S): +internalnamelookalike +isoreserved
3int f (int x)
names.c:1: Name stringreverse is reserved for future
1 library extensions. Functions that begin with
"str" and a lowercase letter may be added to
if (x > 3) <stdlib.h> or <string.h>. (1IS099:7.26.9)
names.c:6: Internal identifier looka1ike is not
10 int x = 1ookalike; distinguishable from lookalike except by lookalike

x += | ookali ke; characters
I names.c:5: Declaration of lookalike
return x; names.c:10: Variable x shadows outer declaration

} names.c:3: Previous declaration of x: int

5 int | ookalike
6 i nt | ookali ke

Figure 24. Distinct Names

For interna identifiers, a conforming compiler must recognize at least 31 characters and treat
alphabetical cases distinctly. Nevertheless, it may still be useful to check that internal names are
more distinct then required by the compiler to minimize the likelihood that identifiers are confused
in the program. Analogously to external names, the internal-name-length <number> flag sets the
number of significant characters in an internal name and internal-name-case-insensitive sets the
case sensitivity. The internal-name-look-alike flag further restricts distinctions between identifiers.
When set, smilar-looking characters match — the lowercase letter | matches the uppercase letter |
and the number 1; the letter O or o matches the number 0; 5 matches S; and 2 matches Z.
Identifiers that are not distinct except for look-alike characters will produce an error message.
External names are also internal names, so they must satisfy both the external and internal distinct
identifier checks. Figure 24 provides some examples of distinct name checking.

UVA Secure Programming Group

13 Completeness

Splint can report warnings for unused declarations and exported declarations that are not used
externally.

13.1 Unused Declarations

Splint detects constants, functions, parameters, variables, types, enumerator members, and
structure or union fields that are declared but never used. The flags constuse, fcnuse, paramuse,
varuse, typeuse, enummemuse and fielduse control whether unused declaration errors are reported
for each kind of declaration. Errors for exported declarations are reported only if topuse ison (see
Section 13.2).

The /*@unused@*/ annotation can be used before a declaration to indicate that the item declared
need not be used. Unused declaration errors are not reported for identifiers declared with unused.

13.2 Complete Programs

Splint can be used on both complete and partial programs. When checking complete programs,
additional checks can be done to ensure that every identifier declared by the program is defined and
used, and that functions that do not need to be exported are declared static.

Splint checks that all declared variables and functions are defined (controlled by compdef).
Declarations of functions and variables that are defined in an externa library, may be preceded by
/*@external@*/ to suppress undefined declaration errors.

Splint reports external declarations that are unused (controlled by topuse). Which declarations are
reported also depends on the declaration use flags (Section 13.1). The +partial flag sets flags for
checking a partia system. Top-level unused declarations, undefined declarations, and unnecessary
external names are not reported if +partial is set.

13.2.1 Unnecessarily External Names

Splint can report variables and functions that are declared with global scope (i.e., without using
static), that are not used outside the file in which they are defined. In a stand-alone system, these
identifiers should usually be declared using static to limit their scope. If the export-static flag is
on, Splint will report declarations that could have file scope. It should only be used when all
relevant source files are listed on the Splint command line; otherwise, variables and functions may
be incorrectly identified as only used in the file scope snce Splint did not process the other file in
which they are used.

13.2.2 Declarations Missing from Headers

A common practice in C programming styles, is that every function or variable exported by M.c is
declared in M.h. If the export-header flag is on, Splint will report exported declarations in M.c
that are not declared in M.h.

65

Splint Manual

14 Librariesand Header Filelnclusion

Libraries can be used to record interface information. A library containing information about the
standard C Library is used to enable checking of library calls. Program libraries can be created to
enable fast checking of single modulesin alarge program.

14.1 Standard Libraries

In order to check calls to library functions, Splint uses an annotated standard library. This
contains more information about function interfaces then is available in the system header files
since it uses annotations. Further, it contains only those functions documented in the 1SO C99
standard. Many systems include extra functions in their system libraries; programs that use these
functions cannot be compiled on other systems that do not provide them. Certain types defined by
the library are treated as abstract types (e.g., a program should not rely on how the FILE typeis
implemented). When checking source code, Splint does include system headers corresponding to
filesin the library, but instead uses the library description of the standard library.

The Splint distribution includes several different standard libraries: the ANSI standard library, the
POSIX standard library™, and a UNIX library based on the Open Group's Single Unix
Specification. Each library comesin two versions. the standard version and the strict version.

14.1.1 1SO Standard Library

The default behavior of Splint is to use the 1SO standard library (loaded from standard.lcd). This
library is based on the standard library described in the SO C99 standard.

14.1.2 POSIX Library

The POSIX library is selected by the +posixlib flag. The POSIX library is based on the IEEE Std
1003.1-1990.

14.1.3 UNIX Library

The UNIX library is selected by the +unixlib flag. This library is based on the Open Group's
Single Unix Specification, Version 2. In the UNIX library, free is declared with a non-null
parameter. 1SO specifies that free should handle the argument NULL, but several UNIX platforms
crash if NULL is passed to free.

14.1.4 Strict Libraries

Stricter versions of the libraries are used is the -ansi-strict, posix-strict-lib or unix-strict-lib flag is
used. These libraries use a dtricter interpretation of the library. They will detect more errors in
some programs, but may to produce many spurious errors for typical code.

The differences between the standard libraries and the strict libraries are:

The standard libraries declare the printing functions (fprintf, printf, and sprintf) that may return
error codes to return int or void. This prevents typica programs from leading to deluge of
ignored return value errors, but may mean some relevant errors are not detected. In the strict

¥ POSIX library was contributed by Jens Schweikhardt.
66

UVA Secure Programming Group

library, they are declared to return int, so ignored return value errors will be reported (depending
on other flag settings). Programs should check that this return value is non-negative.

The standard libraries declare some parameters and return values to be alternate types (int or
bool, or int or char). The 1SO C99 standard specifies these types as int to be compatible with
older versions of the library, but logically they make more sense as bool or char. In the strict
library, the stronger type is used. The parameter to assert isint or bool in the standard library,
and bool in the dtrict library. The parameter to the character functions isalnum, isalpha, iscntrl,
isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower and toupper is char
or unsigned char or int in the standard library and char in the strict library. The type of the
return value of the character classification functions (all of the previous character functions
except tolower and toupper) is bool or int in the standard library and bool in the strict library.
The type of the first parameter to ungetc is char or int in the standard library and char in the
strict library (EOF should not be passed to ungetc). The second parameter to strchr and strrchr
ischar or int in the standard library and char in the strict library.

The global variables stdin, stdout and stderr are declared as unchecked variables (see Section
7.2) in the standard libraries. In the strict libraries, they are checked.

The global variable errno is declared unchecked in the standard libraries, but declared
checkedstrict in the strict libraries.

If no library flag is used, Splint will load the standard library, standard.lcd. If +nolib is set, no
library is loaded. The library source files can easily be modified, and new libraries created to
better suit a particular application.

14.2 GeneratingLibraries

To enable running Splint on large systems, mechanisms are provided for creating libraries
containing necessary information. This means source files can be checked independently, after a
library has been created. The command line option -dump library stores information in the file
library (the default extension .Icd is added). Then, -load library loads the library. The library
contains interface information from the files checked when the library was created.

14.2.1 Generating the Standard Libraries

The standard libraries are generated from header files included in the Splint distribution. Some
libraries are generated from more than one header file. Since the POSIX library subsumes the
standard library, the headers for the standard and POSIX libraries are combined to produce the
POSIX library. Similarly, the UNIX library is composed of the standard, POSIX and UNIX
headers. The header files include some sections that are conditionally selected by defining
STRICT. The commands to generate the standard libraries are:

splint -nolib ansi.h -dunp ansi

splint -nolib -DSTRICT ansi.h -dunp ansistrict

splint -nolib ansi.h posix.h -dunp posi x

splint -nolib -DSTRICT ansi.h posix.h -dunp posixstrict

splint -nolib ansi.h posix.h unix.h -dunp unix
splint -nolib -DSTRICT ansi.h posix.h unix.h -dunp uni xstrict

14.3 Header FileInclusion
The standard behavior of Splint on encountering
#i ncl ude <X h>

67

Splint Manual

is to search for a file named X.h on the include search path (set using —I) and then the system base
include path (read from the include environment variable if set or using a default value, usually
{usrfinclude). If X.h isthe name of a header file in aloaded standard library and X.h isfound in a
directory that is a system directory (as set by the -sysdirs flag; the default is /usr/include), X.h will
not be included if +skip-iso-headers or +skip-posix-headers (depending on whether X.h isan 1SO
or POSIX header file) is on (both are on by default). To force al headers to be included normally,
use -skip-iso-headers.

Sometimes headers in system directories contain non-standard syntax that Splint is unable to parse.
The +skip-sys-headers flag may be used to prevent any include file in a system directory from
being included.

Splint is fast enough that it can be run on medium-size (10,000 line) programs without
performance concerns. Libraries can be used to enable efficient checking of small modulesin large
programs. To further improve performance, header file inclusion can be optimized.

When processing a complete system in which many files include the same headers, alarge fraction
of processing time is wasted re-reading header files unnecessarily. If you are checking a 100-file
program, and every file includes utils.h, Splint will have to process utils.h 100 times (as would
most C compilers). If the +single-include flag is used, each header file is processed only once.
Single header file processing produces a significant efficiency improvement when checking large
programs split into many files, but is only safe if the same header file included in different contexts
always has the same meaning (i.e., it does not depend on preprocessor variable defined differently
at different inclusion sites).

When processing a single file in a large system, a large fraction of the time is spent processing
included header files. This can be avoided if the information in the header files is stored in a
library instead. If +never-include is s&t, inclusion of files ending in .h is prevented. Files with
different suffixes are included normally. To do this the header files must not include any expanded
macros. That is, the header file must be processed with +all-macros, and there must be no
/*@notfunction@*/ control comments in the header. Then, the +never-include flag may be used
to prevent inclusion of header files. Alternately, non-function macros can be moved to a different
file with a name that does not end in .h. Remember, that this file must be included directly from
the .c file, since if it isincluded from an .h file indirectly, that .h file isignored so the other fileis
never included.

These options can be used for significant performance improvements on large systems. The
performance depends on how the code is structured, but checking a single module in a large
program is several times faster if libraries and +noinclude are used.

14.3.1 Preprocessing Constants

Splint defines the preprocessor constant S_SPLINT_S when preprocessing source files. If you
want to include code that is processed only when Splint is used, surround the code with

ifdef S_SPLINT_S

endif

68

UVA Secure Programming Group

Appendix A Availability

The web home page for Splint is http://iwww.splint.org. It includes this guide in HTML format,
samples demonstrating Splint, and links to related web sites. Splint is available as source code and
binary executables for severa platforms. Splint may be fredly distributed and modified under the
GNU Genera Public License. The latest development code is available through SourceForge.

Splint development is largely driven by suggestions and comments from users. We are also very
interested in hearing about your experiences using Splint in developing or maintaining programs,
enforcing coding standards, or teaching courses. For general information, suggestions, and
guestions on Splint send mail to splint@cs.virginia.edu.

To report abug in Splint send a message to splint-bug@cs.virginia.edu.

There are two mailing lists associated with Splint:

splint-announce@virginia.edu
Reserved for announcements of new releases and bug fixes. All users should add themselves
to thislist.

splint-interest@virginia.edu
Informal discussions on the use and development of Splint.

To subscribe to amailing list, send a message to majordomo@virginia.edu containing the body
subscribe splint-announce or subscribe splint-interest.

69

m:--++

shortcut

Splint Manual

AppendixB Flags

There are four different types of flags:
Globd flags for controlling initializations and global behavior
Message format flags for controlling how messages are displayed

Mode selectors for coarse control of Splint checking
Checking flags that control checking and what classes of messages are reported.

Global flags can be used in initidization files and at the command line; all other flags may also be
used in control comments.

Key
To the left of flags that are set locally, is a flag descriptor encoding what kind of flag it is and its
default value. The descriptions are:

A plain flag. The value after the colon gives the default setting (e.g., thisflag is off.)

A mode checking flag. The value of the flag is set by the mode selector. The four signs give the
setting in the weak, standard, checks and strict modes. (e.g., this flag is off in the weak and
standard modes, and on in the checks and strict modes.)

A shortcut flag. Thisflag sets other flags, so it has no default value.

Flag Name Abbreviations
Within a flag name, abbreviations may be used. Figure 25 shows the flag name abbreviations.

Expanded Form Short Form
constant const
declaration decl
function fcn
global glob
implicit, implied imp
iterator iter
length len
modifies mods
modify mod
memory mem
parameter param
pointer ptr
return ret
variable var
unconstrained, unconst uncon

Figure 25. Flag Name Abbreviations

The expanded and short forms are interchangeable in flag names.

For example, globsimpmodsnothing and globalsimpliesmodifiesnothing denote the same flag.
Abbreviations in flag names alow pronounceable, descriptive names to be used without making

70

UVA Secure Programming Group

flag names excessvely long (although one must admit even globsimpmodsnothing is a bit of a
mouthful.)

To make flag names more readable, the space, dash (-), and underscore (_) characters may be used
insde a flag name. Hence, globals-implies-modifies-nothing, glob_imps_modsnothing and
globsimpmodsnothing are equivalent.

Global Flags

Globd flags can be set at the command line or in an options file, but cannot be set locally using
stylized comments. These flags control on-line help, initialization files, pre-processor flags,
libraries and outpui.

Help

On-line help provides documentation on Splint operation and flags. When a help flag is used, no
checking is done by Splint. Help flags may be preceded by - or +.

help
Display general help overview, including list of additional help topics.
help <topic>
Display help on <topic>. Available topics:
Annotations describe annotations
Comments describe control comments
flags describe flag categories
flags <category> all flags pertaining to <category> (one of the categories
listed by splint -help flags)
flags alpha all flagsin aphabetica order
flags full print afull description of all flags
mail print information on mailing lists
modes flags settings in modes
prefixcodes Character codes for setting namespace prefixes
references print references to relevant papers and web sites
vars describe environment variables
version print maintainer and version information
help <flag>
Describeflag <flag>. (May list severa flags.)
warn-flags

Display awarning when aflag is set in asurprising way. An error is reported if an obsolete
flagis set, aflagis set to its current value (i.e., the + or - may be wrong), or a mode selector
flag is set after mode checking flags that will be reset by the mode were set. By defaullt,
+warn-flags ison. To suppress flag warnings, use -warn-flags.

warn-rc
There was a problem reading an initialization file

bad-flag
A flag is not recognized or used in an incorrect way

fileextensions
Warn when command line file does not have a recognized extension.

I nitialization

71

Splint Manual

These flags control directories and files used by Splint. They may be used from the command line
or in an options file, but may not be used as control comments in the source code. Except where
noted. they have the same meaning preceded by - or +.

tmpdir <directory>
Set directory for writing temp files. Default is/tmp/.
I<directory>
Add directory to path searched for C include files. Note there is no space after the I, to be
consistent with C preprocessor flags.
S<directory>
Add directory to path search for .Icl specification files.

larchpath <path>
Set path to search for library files. Overrides LARCH_PATH environment variable.
Iclimportdir <directory>
Set directory to search for LCL import files. Overrides LCLIMPORTDIR environment
variable.

f <file>
Load options from <file>. If thisflag is used from the command line, the default ~/.splintrc file
isnot loaded. This flag may be used in an options file to include another optionsfile.

i <file>
Set LCL initilization file.

nof
Prevents the default options files (./.splintrc and ~/.splintrc) from being loaded. (Setting -nof
overrides +nof, causing the options files to be loaded normally.)

sys-dirs
Set directories for system files (default is/usr/). Separate directories with the path separator
for your operating system (e.g., semi-colons for Windows or colons for Unix:
lusr/include:/usr/localllib). Flag settings propagate to filesin a system directory. If -sys-dir-
errors iS set, no errors are reported for files in system directories.

Pre-processor

These flags are used to define or undefine pre-processor constants. The -I<directory> flagisaso
passed to the C pre-processor.

D<initializer>
Passed to the C pre-processor.
U<initializer>

Passed to the C pre-processor.
unrecogdirective

Preprocessor directive is not recognized.
preproc

Preprocessing error.

Libraries
These flags control the creation and use of libraries.

dump <file>

72

UVA Secure Programming Group

Save state in <file> for loading. The default extension .Icd isadded if <file> has no
extension.

load <file>
Load state from <file> (created by -dump). The default extension .Icd is added if <file>
has no extension. Only one library file may be loaded.

By default, the standard library is loaded if the -load flag is not used to load a user library. If no
user library isloaded, one of the following flags may be used to select a different standard library.
Precede the flag by + to load the described library (or to prevent alibrary from being loaded using
no-lib). See Section 14.1 for information on the provided libraries.

no-lib
Do not load any library. This prevents the standard library from being loaded.
ansi-lib
Use the ANSI standard library (selected by default).
strict-lib
Use strict version of the ANSI standard library.
posix-lib
Use the POSIX standard library.
posix-strict-lib
Use the strict version of the POSIX standard library.
unix-lib
Use UNIX version of standard library.
unix-strict-lib
Use the strict version of the UNIX standard library.
iso-lib
Use library based on the SO standard library specification.
warn-unix-lib
Warn when the unix library isused. Unix library may not be compatible with al platforms.
which-lib
Print out the standard library filename and creation information.

newded
There isanew declaration that is not declared in aloaded library or
earlier file. (Usethisflag to check for consistency against alibrary.)
impconj
Make al alternate typesimplicit (useful for making system libraries).

Output

These flags control what additional information Splint prints. Setting +<flag> causes the
described information to be printed; setting -<flag> preventsit. By default, all these flags are off.

use-stderr
Send error messages to standard error (instead of standard output).

show-summary
Show a summary of all errors reported and suppressed. Counts of suppressed errors are not
necessarily correct since turning a flag off may prevent some checking from being done to
save computation, and errors that are not reported may propagate differently from when they
are reported.

show-scan

73

Splint Manual

Show file names are they are processed.

show-all-uses
Show list of uses of all external identifiers sorted by number of uses.
stats
Display number of lines processed and checking time.
time-dist
Display distribution of where checking time is spent.
quiet

Suppress herald and error count. (If quiet is not set, Splint prints out a herald with version
information before checking begins, and aline summarizing the total number of errors
reported.)
which-lib
Print out the standard library filename and creation information.
limit <number>
At most <number> similar errors are reported consecutively. Further errors are
suppressed, and a message showing the number of suppressed messages is printed.
message-stream <file>
Send status messages to <file>.
message-stream-stdout
Send status messages to standard output stream.
message-stream-stderr
Send status messages to standard error stream.
warning-stream <file>
Send warnings to <file>.
warning-stream-stdout
Send warnings to standard output stream.
warning-stream-stderr
Send warnings to standard error stream.
error-stream <file>
Send fatal errorsto <file>.
error-stream-stdout
Send fatal errors to standard output stream.
error-stream-stderr
Send fatal errors to standard error stream.

Expected Errors

Normally, Splint will expect to report no errors. The exit status will be success (0) if no errors are
reported, and failure if any errors are reported. Flags can be used to set the expected number of
reported errors. Because of the provided error suppression mechanisms, these options should
probably not be used for final checking rea programs but may be useful in developing programs

using make.

expect <number>
Exactly <number> code errors are expected. Splint will exit with failure exit status unless
<number> code errors are detected.

74

80

UVA Secure Programming Group

M essage For mat

These flags control how messages are printed. They may be set at the command line, in options
files, or locally in syntactic comments. The line-len and limit flags may be preceded by + or - with
the same meaning; for the other flags, + turns on the describe printing and - turns it off. The box
to the left of each flag givesits default value.

show-column
Show column number where error is found.
show-func
Show name of function (or macro) definition containing error. The function name is printed
once before the first message detected in that function.
show-all-conjs
Show all possible alternate types (see Section 4.4).
paren-file-format
Use <file>(<line>) format in messages. (Default is + for Win32 for compatibility with
Microsoft Visua Studio.)
hints
Provide hints describing an error and how a message may be suppressed for the first error
reported in each error class.
force-hints
Provide hintsfor al errors reported, even if the hint has already been displayed for the same
error class.
line-len <number>
Set length of maximum message line to <number> characters. Splint will split messages
longer than <number> characters long into multiple lines.
indentspaces <number>
Set number of spaces to indent sub-messages.
locindentspaces <number>
Set number of spaces to indent sub-messages that start with file locations.
showdeephistory
Show all available information about storage mentioned in warnings.
showloadloc
Show location information for load files.
csv
Produce comma-separated values (CSV) warnings output file.
csvoverwrite
Overwrite exisiting CV'S output file Show location information for load files.
htmlfileformat
Show file locations as links.
streamoverwrite
Warn and exit if a stream output file would overwrite an existing file.

Mode Selector Flags

Mode selects flags set the mode checking flags to predefined values. They provide a quick coarse-
grain way of controlling what classes of errors are reported. Specific checking flags may be set
after amode flag to override the mode settings. Mode flags may be used locally, however the mode
settings will override specific command line flag settings. A warning is produced if a mode flag is
used after a mode checking flag has been set.

75

Splint Manual

These are brief descriptions to give a generd idea of what each mode does. To see the complete
flag settings in each mode, use splint -help modes. A mode flag has the same effect when used with
either + or -.

weak
Weak checking, intended for typical unannotated C code. No modifies checking, macro
checking, rep exposure, or clean interface checking is done. Return values of type int may
beignored. The typesbool, int, char and user-defined enum types are al equivalent. Old
style declarations are unreported.

standard
The default mode. All checking done by weak, plus modifies checking, global, alias
checking, use al parameters, using released storage, ignored return values or any type,
macro checking, unreachable code, infinite loops, and fall through cases. The types bool, int
and char are distinct. Old style declarations are reported.

checks
Moderately strict checking. All checking done by standard, plus must modification
checking, rep exposure, return alias, memory management and complete interfaces.

strict
Absurdly strict checking. All checking done by checks, plus modifications and global
variables used in unspecified functions, strict standard library, and strict typing of C
operators. A special reward will be presented to the first person to produce areal program
that produces no errors with strict checking.

Checking Flags

These flags control checking done by Splint. They may be set locally using syntactic comments,
from the command line, or in an options file. Some flags directly control whether a certain class of
message is reported. Preceding the flag by + turns reporting on, and preceding the flag by - turns
reporting off. Other flags control checking less directly by determining default values (what
annotations are implicit), making types equivalent (to prevent certain type errors), controlling
representation access, etc. For these flags, the effect of + is described, and the effect of - is the
opposite (or explicitly explained if there is no clear opposite). The organization of this section
mirrors Sections 2-14.

Null Der efer ences (Section 2)

shortcut null
A possibly null pointer may be dereferenced, or used somewhere a non-null pointer is
expected. (sets nullderef, nullpass, nullref, nullassign, and nullstate).

m:- +++ nullderef
A possibly null pointer is dereferenced. Valueis either the result of a function which may
return null (in which case, code should check it is not null), or a global, parameter or
structure field declared with the null qualifier.

m:- +++ nullpass
A possibly null pointer is passed as a parameter corresponding to aformal parameter with
no /* @null@*/ annotation. 1f NULL may be used for this parameter, add a /* @null @*/
annotation to the function parameter declaration.

m:- +++ nullret

76

UVA Secure Programming Group

Function returns a possibly null pointer, but is not declared using /* @null @*/ annotation of
result. If function may return NULL, add /* @null @*/ annotation to the return value
declaration.

m:- +++ nullstate
A possibly null pointer is reachable from a parameter or global variable that is not declared
using a/* @null @*/ annotation.

m:- +++ nullassign
A reference with no null annotation is assigned or initialized to NULL. Use /* @null@*/ to
declare the reference as a possibly null pointer.

Use Befor e Definition (Section 3)

m:- +++ usedef
The value of alocation that may not be initialized on some execution path is used.
m:---- impouts
Allow unannotated pointer parameters to functions to be implicit out parameters.
m:- +++ compdef
Storage derivable from a parameter, return value or global variable is not completely
defined.
m:- +++ uniondef
No field of aunion isdefined. (No error isreported if at least one union field is defined.)
m:- +++ mustdefine
Parameter declared with out is not defined before return or scope exit.

P:+ fullinitblock
Initializer does not set every field in the structure.
P: + initallelements
Initializer does not define al elements of adeclared array.
P: + initsize
Initializer block contains more elements than the size of a declared array.

Declarations

m:-+++ incondefs
A function, variable or constant is redefined with a different type.

m:--++ functionderef
A function typeis dereferenced. The ANSI standard allows this because of implicit
conversion of function designators, however the dereference is unnecessary.
m:--++ redundantsharequal
A declaration of an immutable object uses a redundant observer qualifier.
m:-+++ misplacedsharequal
A declaration of an unsharable object uses a sharing annotation.

Types (Section 4)

P:+ type
Type mismatch.

77

m;- +++

m;++++

mi- - ++

mi- - ++

P: -

P: bool

P:FALSE

P: TRUE

P+

mi- - ++

m;- +++

m;++++

shortcut

P+

Splint Manual

string-literal-too-long
A string literal is assigned to a char array too small to hold it.

string-literal-no-room
A string literal is assigned to a char array that is not big enough to hold the null terminator.

string-literal-no-room-final-null
A string literal is assigned to a char array that is not big enough to
hold the final null terminator. This may not be a problem because a null
character has been explictedly included in the string literal using an

escape sequence.

string-literal-smaller
A string literal is assigned to a char array that smaller than the string literal needs.

enum-members
Type of initid values for enum members must beint.

Boolean Types (Setion4.2)

These flags control the type name used to represent Booleans, and whether the Boolean type is
abstract.

bool
Boolean type is an abstract type.
booltype <name>
Set name of Boolean typeto <name>.
boolfalse <name>
Set name of Boolean false to <name>.
booltrue <name>
Set name of Boolean true to <name>.
likelybool
Splint has found a type which appears to be the boolean type. Use the -booltype, -boolfase
and -booltrue flags to change the name of the default boolean type.

Predicates

pred-bool-ptr
Type of condition test is a pointer.
pred-bool-int
Type of condition test is an integral type.
pred-bool-others
Type of condition test is not a Boolean, pointer or integral type.
pred-bool
Sets predboolint, predboolptr and preboolothers.
pred-assign
The condition test is an assignment expression. If an assignment is intended, add an extra
parentheses nesting (e.g., if ((a = b)) ...).

78

m-- -+

mi- - ++

Mi++- -

Mi++- -

m-- -+

m-- -+

m;- +++

m;- +++

m-- -+

m-- -+

UVA Secure Programming Group

Primitive Oper ations
ptr-arith
Arithmetic involving pointer and integer.
nullptrarith
Pointer arithmetic using a possibly null pointer and integer.

boolops
The operand of a boolean operator is not a boolean. Use +ptrnegate to alow ! to be used on
pointers.
ptr-negate
Allow the operand of the ! operator to be a pointer.
bitwise-signed
An operand to a bitwise operator is not an unsigned value. This may have unexpected results
depending on the signed representations.
shiftimplementation
The |eft operand to a shift operator may be negative (behavior isimplementation-defined).
shiftnegative
The right operand to a shift operator may be negative (behavior undefined).
shift-signed
The |eft operand to a shift operator is not an unsigned value.
strict-ops
Primitive operation does not type check strictly.
sizeof-type
Operand of sizeof operator isatype. (Safer to use int *x = sizeof (*x); instead of sizeof

(int).)

Array Formal Parameters

These flags contral reporting of common errors caused by confusion aout the semantics of array
formal parameters.

sizeof-formal-array
The sizeof operator is used on a parameter declared as an array. (In many instances this has
unexpected behavior, since the result is the size of a pointer to the element type, not the
number of elementsin the array.)

fixed-formal-array
An array forma parameter is declared with afixed size (e.g., int x[20]). Thisislikely to be
confusing, since the size isignored.

formal-array
A formal parameter isdeclared as an array. Thisis probably not a problem, but can be
confusing since it is treated as a pointer.

Format Codes

format-code
Invalid format code in format string for printflike or scanflike function.

format-type
Type-mismatch in parameter corresponding to format code in a printflike or scanflike
function.

format-const

79

m;- +++

m;- +++

m;- +++

m;- +++

mi+- - -

mi+- - -

mi+- - -

Mi++- -

mi+- - -

m:- - - -

Splint Manual

Format parameter is not known at compile-time. This can lead to security vulnerabilities
because the arguments cannot be type checked.

Main

main-type
Type of main does not match expected type (function returning an int, taking no parameters
or two parameters of type int and char **.)

Comparisons

bool-compare
Comparison between Boolean values. This is dangerous since there may be multiple true
values as any non-zero value is interpreted as true.

real-compare
Comparison involving float or double values. Thisis dangerous since it may produce
unexpected results because floating point representations are inexact.

ptr-compare
Comparison between pointer and number.

unsigned-compare
An unsigned value is used in a comparison with zero in away that is either a bug or
confusing.

TypeEquivalence

void-abstract
Allow void * to match pointersto abstract types. (Casting a pointer to an abstract type to a
pointer to void is okay if +void-abstract is set.)
cast-fcn-ptr
A pointer to afunction is cast to (or used as) a pointer to void (or vice versa).
forward-decl
Forward declarations of pointersto abstract representation match abstract type.
imp-type
A variable declaration has no explicit type. Thetypeisimplicitly int.
incomplete-type
A formal parameter is declared with an incomplete type (e.g.,i nt[]1[]).
char-index
Allow char to index arrays.
enum-index
Allow members of enum typeto index arrays.
bool-int
Make bool and int are equivalent. (No type errors are reported when a Boolean is used
where an integral type is expected and vice versa.)
char-int
Make char and int types equivalent
charunsignedchar
To allow char and unsigned char types to match use +charunsignedchar.
enum-int
Make enum and int types equivalent
float-double
Make float and double types equivalent
ignore-quals

80

Mi++- -

UVA Secure Programming Group

Ignore type quaifiers (long, short, unsigned).
relax-quals

Report qualifier mismatches only if dangerous (information may be lost since alarger typeis

assigned to (or passed as) a smaller one or a comparison uses signed and unsigned values.)
ignore-signs

Ignore signs in type comparisons (unsigned matches signed).
long-integral

Allow long type to match an arbitrary integral type (e.g., dev_t).
long-unsigned-integral

Allow unsigned long type to match an arbitrary integral type (e.g., dev_t).
match-any-integral

Allow any integral type to match an arbitrary
long-unsigned-unsigned-integral

Allow unsigned long type to match an arbitrary unsigned integral type (e.g., size_t).
long-signed-integral

Allow long type to match an arbitrary signed integral type (e.g., ssize_t).

num-literal

Integer literals can be used as floats.
char-int-literal

A character constant may be used as an int.
zero-ptr

Literal 0 may be used as a pointer.
zero-bool

Treat 0 as a boolean.
relax-types

Allow al numeric types to match.
shortint

Make short int and int types equivalent.

Abdract Types (Section4.3)

abstract

A data abstraction barrier is violated
imp-abstract

Implicit abstract annotation for type declarations that do not use concrete.
mut-rep

Representation of mutable type has sharing semantics.

Access (Section 4.3.1)

access-module
An abstract type defined in M.h (or specified in M.Icl) is accessiblein M.c.
access-file
An abstract type named type is accessible in files named type.*
access-czech
An abstract type named type may be accessible in afunction named type_name. (Section
12.1.12)
access-slovak

81

shortcut

m;- +++

m-- -+

m;- +++

m-- -+

mi- - ++

m;- +++

m;- +++

m;- +++

shortcut

m;- +++

Splint Manual

An abstract type named type may be accessible in a function named typeName.
(Section.12.1.2)

access-czechoslovak
An abstract type named type may be accessible in a function named type_name or
typeName. (Section 12.1.3)

access-all
Sets access-module, access-file and access-czech.

Memory Management (Section 5)

Reporting of memory management errors is controlled by flags setting checking and implicit
annotations and code annotations.

Desllocation Errors(Section 5.2)

use-released

Storage used after it may have been released.
strict-use-released

An array element used after it may have been released.

| ncondgent Branches

branch-state
Storage has inconsistent states of alternate paths through a branch (e.g., it is released in the
true branch of an if-statement, but there is no else branch.)

strict-branch-state
Storage through array fetch has inconsistent states of alternate paths through a branch.
Since array elements are not checked accurately, this may lead to spurious errors.

dep-arrays
Treat array elements as dependent storage. Checking of array elements cannot be done
accurately by Splint. If dep-arrays isnot set, array elements are assumed to be independent,
so code that releases the same element more than once will produce no error. If dep-arrays
is set, array elements are assumed to be dependent, so code that releases the same element
more that once will produce an error, but code that releases different elements correctly will
produce a spurious error.

Memory Leaks

must-free
Allocated storage was not released before return or scope exit. Errors are reported for only,
fresh or owned storage.

mustfreefresh
Allocated storage was not released before return or scope exit. Errors are reported for fresh
storage

mustfreeonly
Allocated storage was not released before return or scope exit. Errors are reported for only
storage

memchecks
Sets al dynamic memory checking flags (memimplicit, mustfree, mustdefine, mustnotalias,
null, memtrans).

comp-destroy

82

m-- -+

shortcut

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

m;- +++

UVA Secure Programming Group

All only references derivable from out only parameter of type void * must bereleased. (This
isthe type of the parameter to free, but may also be used for user-defined dedllocation
functions.)

strict-destroy
Report complete destruction errors for array elements that may have been released. (If
strict-destroy is not set, Splint will assume that if any array element was released, the entire
array was correctly released.)

Trander Errors

A transfer error is reported when storage is transferred (by an assignment, passing a parameter, or
returning) in away that isinconsistent.

mem-trans
Sets all memory transfer errors flags.
only-trans
Only storage transferred to non-only reference (memory leak).
ownedtrans
Owned storage transferred to non-owned reference (memory leak).
fresh-trans
Newly-allocated storage transferred to non-only reference (memory leak).
shared-trans
Shared storage transferred to non-shared reference
dependent-trans
Inconsistent dependent transfer. Dependent storage is transferred to a non-dependent
reference.
temp-trans
Temporary storage (associated with atemp formal parameter) is transferred to a non-
temporary reference. The storage may be released or new aliases created.
kept-trans
Kept storage (storage what was passed as keep) transferred to non-temporary reference.
keep-trans
Keep storage istransferred in away that may add anew aliasto it, or release it.
refcount-trans
Reference counted storage is transferred in an inconsistent way.
newref-trans
A new reference transferred to a reference counted reference (reference count is not set
correctly).
immediate-trans
An immediate address (result of &) istransferred inconsistently.
static-trans
Static storage is transferred in an inconsistent way.
expose-trans
Inconsistent exposure transfer. Exposed storage is transferred to a non-exposed, non-
observer reference.
observer-trans
Inconsistent observer transfer. Observer storage is transferred to a non-observer reference.
unqualified-trans
Unqualified storage is transferred in an inconsistent way.

83

mi- - ++

mi- - ++

mi- - ++

m;- +++

m;++++

shortcut

shortcut

m;- +++

m;- +++

m;- +++

Splint Manual

Initializers
only-ung-global-trans
Only storage transferred to an unqualified global or static reference. Thismay lead to a
memory leak, since the new reference is not necessarily released.
static-init-trans
Static storage is used as an initial value in an inconsistent way.
unqualified-init-trans
Unqualified storage is used as an initial value in an inconsistent way.

Derived Storage

comp-mem-pass
Storage derivable from a parameter does not match the alias kind expected for the formal
parameter.

Sack References

stack-ref
A stack reference is pointed to by an external reference when the function returns. Since the
call frame will be destroyed when the function returns the return value will point to dead
storage. (Section 5.2.6)

Implicit Memory Annotations (Section 5.3)
all-imp-only
Sets glob-imp-only, ret-imp-only, struct-imp-only, specglobimponly, specretimponly and
specstructimponly.
glob-imp-only
Assume unannotated global storageis only.
param-imp-temp
Assume unannotated parameter is temp.
ret-imp-only
Assume unannotated returned storage is only.
struct-imp-only
Assume unannotated structure or union field is only.
code-imp-only
Sets glob-imp-only, ret-imp-only and struct-imp-only.
mem-imp
Report memory errors for unqualified storage.
pass-unknown
Passing a value as an unannotated parameter clearsits annotation. Thiswill prevent many
spurious errors from being report for unannotated programs, but eliminates the possibility of
detecting many errors.

Sharing (Section 6)

Aliasng (Section 6.1)

alias-unique
An actual parameter that is passed as a unique formal parameter is aliased by another
parameter or global variable.

may-alias-unique

m;- +++
m:- - ++
shortcut
m:- - ++
m:- - ++
m:- - ++
P+
m:- - - +
m:- - ++
m;- +++
P+
m:- - ++
shortcut
m:- - - +

UVA Secure Programming Group

An actual parameter that is passed as a unique formal parameter may be aliased by another
parameter or global variable.

must-not-alias
An alias has been added to atemp-qualifier parameter or global that is visible externally
when the function returns.

ret-alias
A function returns an aias to parameter or global.

EXxposure (Section 6.2)

rep-expose
Theinternal representation of an abstract typeisvisible to the caller. This means clients
may have access to a pointer into the abstract representation. (Sets assign-expose, ret-
expose, and cast-expose.)

assign-expose
Abstract representation is exposed by an assignment or passed parameter.

cast-expose
Abstract representation is exposed through a cast.

ret-expose
Abstract representation is exposed by areturn value.

Observer Modifications

mod-observer
Possible modification of observer storage.
mod-observer-uncon
Storage declared with observer may be modified through a call to an unconstrained function.

String Literals (Section 6.2.1)

read-only-trans
Report memory transfer errors for initializations to read-only string literals
read-only-strings
String literals are read-only (ISO semantics). An error isreported if astring literal may be
modified or released.

Function Interfaces (Section 7)

M odification (Section 7.1)

modifies
Undocumented modification of caler-visible state. Without +moduncon, modification
errors are only reported in the definitions of functions declared with a modifies clause (or
specified).

must-mod
Documented modification is not detected. An object listed in the modifies clause for a
function, is not modified by the implementation.

mod-uncon
Report modification errors in functions declared without a modifies clause.(Sets mod-
nomods, mod-globs-nomods and mod-strict-globs-nomods.)

mod-nomods

85

%= == ¢
%= == ¢
%= == ¢
P+
m;++++
%= == ¢
%= == ¢
%= == ¢
m;- +++
m:- - ++
m;++++
m;- +++
%= == ¢
%= == ¢
%= == ¢
%= == ¢

Splint Manual

Report modification errors (not involving global variables) in functions declared without a
modifies clause.

mod-uncon-nomods
An unconstrained function is called in afunction body where modifications are checked.
Since the unconstrained function may modify anything, there may be undetected
modifications in the checked function.

mod-internal-strict
A function that modifies internalState is called from afunction that does not list
internalState in its modifies clause.

mod-file-sys
A function modifies the file system but does not list fileSystem in its modifies clause.

Global Variables (Sxtion7.2)

Errors involving the use and modification of global and file static variables are reported depending
on flag settings, annotations where the gobal variable is declared, and whether or not the function
where the global is used was declared with a globals clause.

globs

Undocumented use of a checked global variable in afunction with aglobalslist.
glob-use

A global listed in the globalslist is not used in the implementation.
glob-noglobs

Use of a checked global in afunction with no globalslist.
internal-globs

Undocumented use of internal state (should have globals internalState).
internal-globs-noglobs

Use of internal state in function with no globals list.

glob-state

A function returns with global in inconsistent state (null or undefined)
all-globs

Report use and modification errors for globals not annotated with unchecked.
check-strict-globs

Report use and modification errors for checkedstrict globals.

Modification of Global Variables

mod-globs
Undocumented modification of a checked global variable.

mod-globs-unchecked
Undocumented modification of an unchecked global variable.

mod-globs-nomods
Undocumented modification of a checked global variable in a function with no modifies
clause.

mod-strict-globs-nomods
Undocumented modification of a checkedstrict global variable in afunction declared with no
modifies clause.

GlobalsLigsand Modifies Clauses

warn-missing-globs
Globa variable used in modifies clauseis not listed in globals list. (The global isadded to
the globalslist.)

86

m;- - - +
m;- - ++
m:--- -
m:--- -
m:--- -
m:--- -
m:--- -
m;- - - +
m;- - - +
m;- - ++
m;- +++
shortcut
m;- +++
m;- +++
m;- +++
m;- - ++
m;- +++
m;- +++
m:--- -
m;- +++

UVA Secure Programming Group

warn-missing-globs-noglobs

Globd variable used in modifies clause of afunction with no globals list.
globs-imp-mods-nothing

A function declared with a globalslist but no modifies clause is assumed to modify nothing.
mods-imp-noglobs

A function declared with a modifies clause but no globals list is assumed to use no globals.

Implicit Checking Annotations
imp-checked-globs

Implicit checked annotation on global variables with no checking annotation.
imp-checked-statics

Implicit checked qudlifier file static scope variables with no checking annotation.
imp-checkmod-globs

Implicit checkmod qualifier on global variables with no checking annotation.

imp-checkmod-statics

Implicit checkmod qualifier file static scope variables with no checking annotation.
imp-checkedstrict-globs

Implicit checked qualifier on global variables with no checking annotation.
imp-checkedstrict-statics

Implicit checked qudifier file static scope variables with no checking annotation.
imp-checkmod-internals

Implicit checkmod qualifier on function scope static variables with no checking annotation.

Global Aliasing

glob-alias

Function returns with global aliasing external state (sets checkstrict-glob-alias, checked-

glob-alias, checkmod-glob-alias and unchecked-glob-alias).
checkstrict-glob-alias

Function returns with a checkedstrict global aiasing externa state.
checked-glob-alias

Function returns with achecked global aiasing externa state.
checkmod-glob-alias

Function returns with acheckmod global aliasing external state.
unchecked-glob-alias

Function returns with an unchecked global aiasing external state.

Declaration Consstency (Section 7.3)

incon-defs
Identifier redeclared or redefined with inconsi stent type.
incon-defs-lib
Identifier defined in alibrary is redefined with incons stent type.
overload
Standard library function overloaded.
match-fields
A struct or enum type is redefined with inconsistent fields or members.

M acr os (Section 11)

87

P: -

P: -

shortcut

P: -

m;- +++

m;- +++

m;- +++

m;- +++

m-- -+

m;- +++

m;- +++

m;++++

shortcut

m;- +++

Splint Manual

These flags control expansion and checking of macro definitions and invocations.

Macro Expanson

These flags control which macros are checked as functions or constants, and which are expanded in
the pre-processing phase. Macros preceded by /*@notfunction@*/ are never expanded regardless
of these flag settings. These flags may be used in source-file control comments.

fcn-macros
Macros defined with parameter lists are not expanded and are checked as functions.
const-macros
Macros defined without parameter lists are not expanded and are checked as constants.
all-macros
Sets fcn-macros and const-macros.
lib-macros
Macros defining identifiers declared in aloaded library are not expanded and are checked
according to the library information.

Macro Definitions
These flags control what errors are reported in macro definitions.

macro-stmt
Macro definition is not syntactically equivalent to function. This meansif the macro is used
as a statement (e.g., if (test) macro();) unexpected behavior may result. Onefix isto
surround the macro body with do { ... } while (FALSE).
macro-return
The body of amacro declared as afunction uses a return statement. This exhibits behavior
that could not be implemented by a function.
macro-assign
A macro parameter is used as the left side of an assignment expression.
macro-parens
A macro parameter is used without parentheses (in potentially dangerous context).
macro-empty
Macro definition of afunction is empty.
macro-redef
Macro isredefined. There is another macro defined with the same name.
macro-unrecog
An unrecognized identifier appearsin amacro definition. Since the identifier may be defined
where the macro is used, this could be okay, but Splint will not be able to check the
unrecognized identifier appropriately.

Corregponding Dedarations

macro-match-name
An iter or constant macro is defined using a different name from the one used in the
previous syntactic comment

macro-decl
A macro definition has no corresponding declaration. (Sets macrofcndecl and
macroconstdecl.)

macro-fcn-decl
Macro definition with parameter list has no corresponding function prototype. Without a
prototype, the types of the macro result and parameters are unknown.

88

m;- +++

m;- +++

mi- - ++

shortcut

UVA Secure Programming Group

macro-const-ded

A macro definition without parameter list has no corresponding constant declaration.
next-line-macros

A congtant or iter declaration is not immediately followed by a macro definition.

SdeEffect Free Parameters (Section 11.2.1)

These flags control error reporting for parameters with inconsistent side effects in invocations of
checked function macros and function calls.

sef-params
An actual parameter with side effectsis passed as aformal parameter declared with sef.
sef-uncon
An actual parameter involving acall to an unconstrained function (declared without modifies
clause) that may modify anything is passed as a sef parameter.

Iterators

iterbalance
Iter is not balanced with end_<iter>.
iteryield
Iter yield parameter is inappropriate.
has-yield
An iterator has been declared with no parameters annotated with yield.

Naming Conventions (Section 12)

name-checks
Turns al name checking on or off without changing other settings.

Type-Based Naming Conventions (Section 12.1)

Czech Naming Convention
czech
Selects complete Czech naming convention (sets access-czech, czech-fens, czech-vars,
czech-consts, czech-macros, and czech-types).
access-czech
Allow access to abstract types following Czech naming convention. The representation of
an abstract type named t is accessible in the definition of a function or constant named
t_name.
czech-fcns
Function or iterator name is not consistent with Czech naming convention.
czech-vars
Variable name is not consistent with Czech naming convention.
czech-macros
Expanded macro name is not consistent with Czech naming convention.
czech-consts
Congtant name is not consistent with Czech naming convention.
czech-types
Type name is not consistent with Czech naming convention. Czech type names must not use
the underscore character.

89

shortcut

shortcut

Splint Manual

Sovak Naming Convention

slovak
Selects complete Slovak naming convention (sets access-slovak, slovak-fcns, slovak-vars,
slovak-consts, slovak-macros, and slovak-types).
access-slovak
Allow access to abstract types following Slovak naming convention. The representation of
an abstract type named t is accessible in the definition of a function or constant named
tName.
slovak-fcns
Function or iterator name is not consistent with Slovak naming convention.
slovak-macros
Expanded macro name is not consistent with Slovak naming convention.
slovak-vars
Variable nameis not consistent with Slovak naming convention.
slovak-consts
Constant name is not consistent with Slovak naming convention.
slovak-types
Type name is not consistent with Slovak naming convention. Slovak type names may not
include uppercase letters.

Czechodovak Naming Convention

czechoslovak
Selects complete Czechod ovak naming convention (sets access-czechoslovak, czechoslovak-
fcns, czechoslovak-vars, czechoslovak-consts, czechoslovak-macros, and czechoslovak-
types).
access-czechoslovak
Allow access to abstract types by Czechodovak naming convention. The representation of
an abstract type named t is accessible in the definition of afunction or constant named
t _name or tName.
czechoslovak-fcns
Function name is not consistent with Czechoslovak naming convention.
czechoslovak-macros
Expanded macro name is not consistent with Czechos ovak naming convention.
czechoslovak-vars
Variable name is not consistent with Czechoslovak naming convention.
czechoslovak-consts
Constant name is not consistent with Czechodovak naming convention.
czechoslovak-types
Type name is not consistent with Czechod ovak naming convention. Czechod ovak type
names may not include uppercase letters or the underscore character.

Namespace Pr efixes (Section 12.2)
macro-var-prefix <prefix string>

Set namespace prefix for variables declared in amacro body. (Defaultism_.)
macro-var-prefix-exclude

A variable declared outside a macro body starts with the macro-var-prefix.
tag-prefix <prefix string>

Set namespace prefix of struct, union or enum tag identifiers.
tag-prefix-exclude

90

mi- - ++

m-- -+

m;- +++

UVA Secure Programming Group

Anidentifier that is not atag starts with the tagprefix.
enum-prefix <prefix string>

Set namespace prefix for enum members.
enum-prefix-exclude

An identifier that is not an enum member starts with the enumprefix.
file-static-prefix <prefix string>

Set namespace prefix for file static declarations.
file-static-prefix-exclude

An identifier that is not file static starts with the filestaticprefix.
global-prefix <prefix string>

Set namespace prefix for global variables.
global-prefix-exclude

Anidentifier that is not aglobal variable starts with the globalprefix.
type-prefix <prefix string>

Set namespace prefix for user-defined types.
type-prefix-exclude

An identifier that is not atype name starts with the typeprefix.
external-prefix <prefix string>

Set namespace prefix for external identifiers.
external-prefix-exclude

An identifier that is not external starts with the externalprefix.
local-prefix <prefix string>

Set namespace prefix for local variables.
local-prefix-exclude

An identifier that is not alocal variable starts with the localprefix.
unchecked-macro-prefix <prefix string>

Set namespace prefix for unchecked macros.
unchecked-macro-prefix-exclude

An identifier that is not the name of an unchecked macro starts with the

uncheckedmacroprefix.
const-prefix <prefix string>

Set namespace prefix for constants.
const-prefix-exclude

Anidentifier that is not a constant starts with the constantprefix.
iter-prefix <prefix string>

Set namespace prefix for iterators.
iter-prefix-exclude

An identifier that is not an iter starts with the iterprefix.
proto-param-prefix <prefix string>

Set namespace prefix for parameters in function prototypes.
proto-param-prefix-exclude

An identifier that is not a parameter in a function prototype starts with the protoprarmprefix.
proto-param-name

A parameter in afunction prototype has a name (can interfere with macro definitions).
proto-param-match

The name of a parameter in afunction definition does not match the corresponding name of

the parameter in afunction prototype (after removing the protoparamprefix).

Naming Redtrictions (Section 12.3)
shadow
91

m:- - ++

mi- - - +

m:- - ++

mi- - - +

m:- - ++
P: -

P: 6

m;- +++

Splint Manual

Declaration reuses name visible in outer scope.

Reserved Names

ansi-reserved

Externa name conflicts with name reserved for the compiler or standard library.
ansi-reserved-internal

Internal name conflicts with name reserved for the compiler or standard library.

iso-reserved
External name is reserved for system use by 1SO C99 standard.

iso-reserved-internal
Internal name is reserved for system in 1SO C99 standard (this should not be necessary
unless you are worried about C library implementations that violate the standard and use
macros).

cpp-names
Internal or external name conflicts with a C++ reserved word. (Will cause problems if
program is compiled with a C++ compiler.)

Didinct External Names

distinct-external-names

An externa name is not distinguishable from another external name using externalnamelen
significant characters.

external-name-len <number>
Sets the number of significant charactersin an external name (ANSI default minimum is 6).
Sets +distinct-external-names.

external-name-case-insensitive
Make alphabetic case insignificant in external names. According to ANSI standard, case
need not be significant in an external name. If +distinct-external-names is not set, sets
+distinct-external-names with unlimited externa name length.

Didinct Internal Names

distinct-internal-names
An internal name is not distinguishable from another internal name using internalnamelen
significant characters. (Also effected by internal-name-case-insensitive and internal-name-
lookalike.)
internal-name-len <number>
Set the number of significant charactersin an internal name. Sets +distinct-internal-names.
internal-name-case-insensitive
Set whether case is significant an internal names (-internal-name-case-insensitive means
caseis significant). If +distinct-internal-names is not set, sets +distinct-internal-names
with unlimited internal name length.
internal-name-lookalike
Set whether similar looking characters (e.g., “1” and “I ") match in internal names.

Control Flow (Section 8)

Undefined Evaluation Order (Section8.2)

eval-order
Behavior of an expression is unspecified or implementation-dependent because sub-
expressions contain interfering side effects that may be evaluated in any order.
92

m-- -+

m;- +++

mi- - ++

m-- -+

m;- +++

m;- +++

m;- +++

P+

P+

shortcut

shortcut

UVA Secure Programming Group

eval-order-uncon
An expression may be undefined because a sub-expression contains a call to an
unconstrained function (no modifies clause) that may modify something that may be
modified or used by another sub-expression.

Problematic Control Structures (Section 8.3)

inf-loops
Likely infinite loop is detected (Section 8.3.1).

inf-loops-uncon
Likely infinite loop is detected. Loop test or body calls an unconstrained function that may
produce an undetected modification.

elseif-complete
Thereisno finals else following an else if construct (Section 8.3.5).

case-break
There is anon-empty casein aswitch not followed by abreak (Section 8.3.2).

first-case
The first statement after a switch is not a case.

Duplicate-case
Duplicate casesin switch.

miss-case
A switch on an enum type is missing a case for amember of the enumerator.

emptyreturn
Empty return in function declared to return value.

alwaysexits
Loop predicate aways exits.

loop-exec
Assume all loops execute at |east once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a particular
loop that is known to aways execute to prevent spurious messages. (sets for-loop-exec,
while-loop-exec and iter-loop-exec).

for-loop-exec
Assume al for loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a particular
loop that is known to aways execute to prevent spurious messages.

while-loop-exec
Assume all while loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a particular
loop that is known to aways execute to prevent spurious messages.

iter-loop-exec
Assume all iterator loops execute at least once. This effects use-before-definition and
memory checking. It should probably not be used globally, but may be used surrounding a
particular loop that is known to always execute to prevent spurious messages.

obvious-loop-exec
Assume loop that can be determined to always execute always does.

Deep Break (Section 8.3.3)

deep-break
Report errors for break statements inside a nested while, for or switch. (Setsall nested
break and continue flags.)

93

m;- - ++
m;- - ++
m;- - - +
m;- - - +
m;- - - +
shortcut
shortcut
m;- - ++
m;- - - +
m;- - - +
m;- - - +
m;++++
m;- - - +
m;- +++
m;- +++
m;- - - +
m;- +++

Splint Manual

loop-loop-break
There isabreak inside awhile, for or iterator loop that is inside awhile, for or iterator oop.
Mark with /*@innerbreak@*/ to suppress the message.

switch-loop-break
Thereisabreak inside awhile, for or iterator loop that isinside a switch statement. Mark
with /*@loopbreak@*/.

loop-switch-break
Thereisabreak inside a switch statement that is inside awhile, for or iterator loop. Mark
with /*@switchbreak@%*/.

switch-switch-break
There is abreak inside a switch statement that is inside another switch statement. Mark
with /*@innerbreak@%*/.

loop-loop-continue
Thereisacontinue inside awhile, for or iterator loop that isinside awhile, for or iterator
loop. Mark with /*@innercontinue@*/.

L oop and if Bodies (Section 8.3.4)

all-empty
Anif, while or for statement has no body (sets if-empty, while-empty and for-empty.)
all-block
The body of an if, while or for statement is not a block (sets if-block, while-block and for-
block.)
while-empty
A while statement has no body.
while-block
The body of awhile statement is not a block
for-empty
A for statement has no body.
for-block
The body of afor statement is not a block.
if-empty
Anif statement has no body.
ifblock
The body of an if statement is not a block.

Suspicious Statements (Section 8.4)

unreachable
Code is not reached on any possible execution.
noeffect
Statement has no effect.
noeffect-uncon
Statement involving call to unconstrained function may have no effect.
noret
Thereisapath with no r et ur n in afunction declared to return anon-voi d value.

94

UVA Secure Programming Group

Ignored Return Values (Section 8.4.2)

These flags control when errors are reported for function calls that do not use the return value.
Casting the function call to void or declaring the called function to return /*@alt void@*/.

m:- +++ ret-val-bool
Return value of type bool ignored.
m:- +++ ret-val-int
Return value of type int ignored.
m:++++ ret-val-other
Return value of type other than bool or int ignored.
shortcut ret-val
Return value ignored (Sets retvalbool, retvalint, retvalother.)

Memory Bounds (Section 9)

shortcut bounds
Memory read or write may be out of bounds of allocated storage (sets boundsread and
boundswrite).
m---- boundsread
A memory read references memory beyond the alocated storage (sets likel yboundsread).
m---- boundswrite
A memory write may write to an address beyond the allocated buffer (sets likelyboundswrite).
shortcut likelybounds
Likely memory read or write may be out of bounds of alocated storage (sets likelyboundsread
and likelyboundswrite).

m---- likelyboundsread
A likely memory read references memory beyond the allocated storage.
m---- likelyboundswrite

A likely memory write may write to an address beyond the allocated buffer.
m---- fcnpost
Display function post conditions.

m---- redundantconstraints
Display seemingly redundant constraints
m---- checkpost

The function implementation may not satisfy a post condition given in an ensures clause.
P- showconstraintparens

Display parentheses around constraint terms.
P+ showconstraintlocation

Display location for every constraint generated.

The following flags are mainly of interest to Splint developers. The default value are adequate
in norma use. They are included for completeness.

P- debugfcnconstraint
Perform buffer overflow checking even if the errors would be inhibited.
P- implictconstraints

Generate implicit constraints for functions. Thisis an experimental option. Currently this
option reduces the number of bounds errors but causes real error to be missed.
P+ orconstraint

95

m++++

m++++

m-- -+

m;- +++

m;- +++

m;++++

m;- +++

m;++++

m;++++

m;- +++

m-- -+

mi- - ++

shortcut

m-- -+

mi- - ++

Splint Manual

This flags affects the internal constraint resolution. If set, the internal constraint resolution
is more accurate. The performance impact is minimal so thereislittle reason not to have this
flag set.

Extensible Checking (Section 13)

mts <filename>

Load meta state declaration and corresponding xh file.
statetransfer

Transfer violates user-defined state rules.
statemerge

Control path merge violates user-defined state merge rules.

Completeness (Section 13)

Unused Declar ations (Section 13.1)

These flags control when errors are reported for declarations that are never used. The unused
annotation can be used to prevent unused errors from being report for a particular declaration.

top-use
An external declaration is not used in any file.
const-use
Constant never used.
enum-mem-use
Member of enumerator never used.
var-use
Variable never used.
param-use
Function parameter never used.
fen-use
Function is never used.
type-use
Defined type never used.
field-use
Field of structure or union typeis never used.
unused-special
Declaration in a special file (corresponding to .1 or .y file) is unused.

Complete Programs (Section 13.2)

decl-undef
Function, variable, iterator or constant declared but never defined.

partial
Check as partial system (sets -decl-undef, -export-local and prevents checking of macrosin
headers without corresponding .c files.)

Exports

export-local
A declaration is exported but not used outside this module. (Declaration can use the static
qualifier.)

export-header

96

mi- - ++

mi- - ++

m;- +++

mi- - ++

m-- -+

m;- +++

shortcut

shortcut

UVA Secure Programming Group

A declaration (other than a variable) is exported but does not appear in a header file.
export-header-var
A variable declaration is exported but does not appear in a header file.

Unrecognized | dentifiers
unrecog
An unrecognized identifier is used.
sys-unrecog
Report unrecognized identifiers that start with the system prefix, __ (two underscores).
repeat-unrecog
Report multiple messages for unrecognized identifiers. If repeatunrecog is not set, an error
is reported only the first time a particular unrecognized identifier appears in the file.

Multiple Definition and Declar ations
redef

A function or variable is defined more than once.
redecl

An identifier is declared more than once.
nested-extern

An ext er n declaration is used inside a function body.

SO Conformance
noparams
A function is declared without a parameter list prototype.
old-style
Function definition isin old style syntax. Standard prototype syntax is preferred.
exit-arg
Argument to exit has implementation defined behavior. The only valid arguments to exit are
EXIT_SUCCESS, EXIT_FAILURE and 0. An error isreported if Splint can determine
dtatically that the argument to exit is not one of these.
use-varargs
Report if <varargs.h> is used (should use stdarg.h).

Limits

The ANSI Standard includes limits on minimum numbers that a conforming compiler must
support. Whether of not a particular compiler exceeds these limits, it is worth checking that a
program does not exceed them so that other compilers may safely compile it. In addition,
exceeding a limit may indicate a problem in the code (eg., it is too complex if the control nest
depth limit is exceeded) that should be fixed regardless of the compiler. Splint checks the
following limits. For each limit, the maximum vaue may be set from the command line (or locally
using a stylized comment). The minimum limits were increased for the ISO C99 specification. If
the is099-limits flag is used, al limits are checked with the minimum values of an 1SO C99
conforming compiler. If the ansi89-limits flag is used, all limits are checked with the minimum
values of an ANSI C89 conforming compiler.

ansig89-limits
Check for violations of minimum limits prescribed by ANSI C89 standard (sets control-
nest-depth, string-literal-len, include-nest, num-struct-fields, and num-enum-members).
iS099-limits

97

m-- -+

m-- -+

m-- -+

m-- -+

mi- - ++

Splint Manual

Check for violations of minimum limits prescribed by 1SO C99 standard (sets control-nest-
depth, string-literal-len, include-nest, num-struct-fields, and num-enum-members).
control-nest-depth <number>
Set maximum nesting depth of compound statements, iteration control structures, and
selection control structures (ISO C99 minimum is 63; ANSI C89 minimum is 15).
string-literal-len <number>
Set maximum length of string literals (ISO C99 minimum is 4095; ANSI C89 minimum is
509).
num-struct-fields <number>
Set maximum number of fieldsin astruct or union (1ISO C99 minimum is 1023; ANSI
minimum is 127).
num-enum-members <number>
Set maximum number of members of an enum type (1SO C99 minimum is 1023; ANSI
minimum is 127).
include-nest <number>
Set maximum number of nested #include files (1ISO C99 minimum is 63; ANSI minimum is
8).

Header Incluson (Section 14.3)

skip-ansi-headers
Prevent inclusion of header filesin a system directory with namesthat match standard ANSI
headers. The symbolic information in the standard library isused instead. Flag in effect only if
alibrary including the ANSI library isloaded. The ANSI headers are: assert, ctype, errno, float,
limits, locale, math, setjmp, signal, stdarg, stddef, stdio, stdlib, strings, string, time, and wchar..
skip-iso-headers
Prevent inclusion of header filesin a system directory with names that match standard 1SO
C99 headers. The symbolic information in the standard library is used instead. In effect
only if alibrary that includes the standard library isused. The SO C99 headers are: assert,
complex, ctype, errno, fenv, float, inttypes, iso646, limits, locale, math, setjmp, signal,
stdarg, stdbool, stddef, stdio, stdlib, string, tgmath, time, wchar, and wctype.
skip-posix-headers
Prevent inclusion of header filesin a system directory with names that match standard
POSIX headers. The symbolic information in the standard library is used instead. In effect
only if alibrary that includes the POSIX library isused. The skipped POSIX headers are:
dirent, fcntl, grp, pwd, termios, sys/stat, sys/times, sys/types, sys/utsname, sys/wait,
unistd, and utime.
warn-posix-headers
Report use of a POSIX header when checking a program with anon-POSIX library.

warn-unix-headers
Warn the user that the unix library may not be compatible with all platforms
skip-sys-headers
Prevent inclusion of all header filesin system directories.
sys-dir-expand-macros
Expand macros in system directories regardless of other settings, except for macros
corresponding to names defined in aload library.
sys-dir-errors
Report errorsin filesin system directories (set by -sys-dirs).
warn-sys-files

98

UVA Secure Programming Group

Warn when a system file was listed as a command line file but Splint is not set to report errors
for system files. This prevents accidentally missing warnings in system files when Splint is run
in asystem directory.

global: - single-include

Optimize header inclusion to only include each header file once.
global: - never-include

Use library information instead of including header files.

global: - case-insensitive-filenames
File names are case insensitive (file.h and FILE.H are the samefile).

Comments
These flags control how syntactic comments are interpreted.
P.@ comment-char <char>

Set the marker character for syntactic comments. Comments beginning with /*<char> are
interpreted by Splint.

P: - noaccess
Ignore access comments.
P: - nocomments

Ignore al stylized comments.
P: + sup-counts
Actua number of errors does not match number in /*@i<n>@*/
P: + lint-comments
Interpret traditional lint comments (/*FALLTHROUGH?*/, *"NOTREACHED*/,
[*PRINTFLIKE*/).
m:- +++ warn-lint-comments
Print awarning and suggest an alternative when atraditional lint comment is used.
P:+ unrecog-comments
Stylized comment is unrecognized. .
P + unrecog-flag-comments
Semantic comment attempts to set a flag that is not recognized.
P: + annotationerror
A declaration uses an invalid annotation.
P: + commenterror
A syntactic comment is used inconsistently.

Parsng
P: - continue-comment
A line continuation marker (\) appears inside a comment on the same line as the comment
close. Preprocessors should handle this correctly, but it causes problems for some
Preprocessors.
P.+ nest-comment
A comment open sequence (/*) appears inside acomment. This usually indicates that an
earlier comment was not closed.
P: - slashslashcomment
A /I comment isused. 1SO C99 dlows // comments, but earlier standards did
not.

99

m;- +++

m;++++

mi- - ++

m:- - ++

mi- - ++

mi- - ++

m-- -+

m:- - - -

P:3

m: ----

Splint Manual

duplicate-quals

Report duplicate type qualifiers (e.g., unsigned unsigned).
gnu-extensions

Support some GNU and Microsoft language extensions.

syntax
Parse error.

try-to-recover
Try to recover from aparse error. |If trytorecover is not set, Splint will abort checking after
aparse error is detected. If it isset, Splint will attempt to recover, but Splint does performs
only minimal error recovery. Itislikely that trying to recover after a parse error will lead to
an internal assertion failing.

Warn use

bufferoverflow

Use of function that may lead to buffer overflow.
bufferoverflowhigh

Use of function that may lead to buffer overflow.
implementationoptional

Use of adeclarator that is implementation optional, not required by 1SO99.
multithreaded

Non-reentrant function should not be used in multithreaded code.
portability

Use of function that may have implementation-dependent behavior.
superuser

Call to function restricted to superusers.
toctou

Possible time of check, time of use vulnerability.
unixstandard

Use of function that need not be provided by UNIX implementations

| TS4 compatibility flags
its4mostrisky

Security vulnerability classified as most risky in its4 database.
its4veryrisky

Security vulnerability classified as very risky in its4 database.
its4risky

Security vulnerability classified asrisky in its4 database.
its4moderate

Security vulnerability classified as moderate risk in its4 database.
its4low

Security vulnerability classified asrisky in its4 database.

Debug flags

bugslimit

Set maximum number of bugs detected before giving up.
debugfcnconstraint

Perform buffer overflow checking even if the errors would be surpressed.

100

UVA Secure Programming Group

grammar
Debug parsing. Prints bison generated debuging information.
keep
Do not delete temporary files.
nopp
Do not pre-process input files.
showsourceloc
Display the source code location where awarning is produced.

101

Splint Manual

Appendix C Annotations

Suppressing War nings

Several annotations are provided for suppressing messages. In generd, it is usualy better to use
specific flags to suppress a particular error permanently, but the general error suppression flags
may be more convenient for quickly suppressing messages for code that will be corrected or
documented later.

ignore

end
No errors will be reported in code regions between /*@ignore@*/ and /*@end@*/. These
comments can be used to easily suppress an unlimited number of messages, but are
dangerous since if real errors are introduced in the ignore...end region they will not be
reported. The ignore and end comments must be matched — awarning is printed if the file
endsin an ignore region or if ignore is used inside ignore region.

i
No errors will be reported from an /*@i@*/ comment to the end of the line.

i<n>
No errors will be reported from an /*@i<n>@*/ (e.g., /*@i3@*/) comment to the end of
theline. If there are not exactly n errors suppressed from the comment point to the end of
the line, Splint will report an error. Thisis more robust than i or ignore since a message is
generated if the expected number errorsis not present. Since errors are not necessarily
detected until after thisfileis processed (for example, and unused variable error), suppress
count errors are reported after all files have been processed. The -supcounts flag may be
used to suppress these errors. Thisis useful when a system if being rechecked with different
flag settings.

t

t<n>
Likei and i<n>, except controlled by +tmpcomments flag. These can be used to
temporarily suppress certain errors. Then, -tmpcomments can be set to find them again.

Syntactic Annotations

The grammar below is the C syntax from [K&R,A13] modified to show the syntax of syntactic
comments. Only productions effected by Splint annotations are shown. In the annotations, the @
represents the comment marker char, set by -commentchar (default is @).

Functions

direct-declarator b
direct-declarator (parameter-type-listyy) stateClause* o5 global s,pe modifiesyy
| direct-declarator (identifier-listyy) stateClause* o global sy modifiesyy

stateClause b /*@ (uses | sets | defines | allocates | releases) reference,” ;op @*/
| /*@ (ensures | requires) stateTag reference,” ;op @*/ (Section 7.4)

stateTag P only | shared | owned | dependent | observer | exposed | isnull | notnull
| identifier (Annotation defined by metastate definition, Section 10)

102

UVA Secure Programming Group

globals P /*@globals globitem,” ;opt @*/ | /*@globals declaration-listop ; opt @*/
globitem b [(undef | killed)*] identifier | internalState | fileSystem

modifies P /*@modifies (nothing | (expression | internalState | fileSystem)®; o) @*/
| /*@*/ (Abbreviation for no globals and modifies nothing.)

Iterators (Section 11.4)

The globals and modifies clauses for an iterator are the same as those for a function, except they
are not enclosed by a comment, since the iterator is aready a comment.

direct-declarator
P /*@iter identifier (parameter-type-listoy) iterGlobal sy, iterModifies,, @*/

iter-globals b globals declaration-listop: ;opt
iter-modifies P modifies moditem,+ ;| modifies nothing ;op

Constants (Section 11.1)
external-declaration b /*@constant declaration ;o @*/

Alternate Types (Section 4.4)
Alternate types may be used in the type specification of parameters and return values.

extended-typep type-specifier alt-typeqp
alt-type P /*@alt basic-type,” @*/

Declarator Annotations

General annotations appear after storage-class-specifiers and before type-specifiers. Multiple
annotations may be used in any order. Here, annotations are without the surrounding comment. In
a declaration, the annotation would be surrounded by /*@ and @*/. In a globals or modifies
clause or iterator or constant declaration, no surrounding comments would be used since they are
within a comment.

Type Definitions (Section 4.3)
A type definition may use any either abstract or concrete, either mutable or immutable, and

refcounted. Only a pointer to a struct may be declared with refcounted. Mutability annotations
may not be used with concrete types since concrete types inherit their mutability from the actual

type.

abstract

Typeis abstraction (representation is hidden from clients.)
concrete

Type is concrete (representation is visible to clients.)
immutable

Instances of the type cannot change value.
mutable

Instances of the type can change value.
refcounted

Reference counted (Section 5.4).

103

Splint Manual

Type Access
Control comments may also be used to override type access settings.

/*@access <type>,"@*/
Allows the following code to access the representation of <type>. Type access applies from
the point of the comment to the end of the file or the next access control comment for this
type.

/*@noaccess <type>,*@*/
Restricts access to the representation of <type>. The type in anoaccess comment must
have been declared as an abstract type.

Global Variables (Section7.2)
One check annotation may be used on a global or file-static variable declaration.

unchecked
Wesakest checking for global use.
checkmod
Check modification by not use of global.
checked
Check use and modification of global.
checkedstrict
Check use of global, even in functions with no global list.

Memory Management (Section 3)
dependent
A reference to externally-owned storage. (Section 5.2.2)
keep
A parameter that is kept by the called function. The caller may use the storage after the call, but
the called function is responsible for making sure it is deallocated. (Section 5.2.4)
killref
A refcounted parameter. Thisreferenceiskilled by the call. (Section 5.4)
only
An unshared reference. Associated memory must be released before referenceislost. (Section 5.2)
owned
Storage may be shared by dependent references, but associated memory must be released before
thisreferenceislost. (Section 5.2.2)
shared
Shared reference that is never deallocated. (Section 5.2.5)
temp
A temporary parameter. May not be released, and new aliases to it may not be created.
(Section 5.2.2)

Aliasng (Section6)
Both alias annotations may be used on a parameter declaration.

unique

Parameter that may not be aliased by any other reference visible to the function. (Section 6.1.1)
returned

Parameter that may be aliased by the return value. (Section 6.1.2)

Exposure (Section6.2)
104

UVA Secure Programming Group

observer

Reference that cannot be modified. (Section 6.2.1)
exposed

Exposed reference to storage in another object. (Section 6.2)

Definition State (Section 3)
out
Storage reachable from reference need not be defined.
in
All storage reachable from reference must be defined.
partial
Partially defined. A structure may have undefined fields. No errors reported when fields are used.
reldef
Relax definition checking. No errors when reference is not defined, or when it is used.

Global State (Section 7.2.2)

These annotations may only be used in globals lists. Both annotations may be used for the same
variable, to mean the variable is undefined before and after the call.

undef

Variable is undefined before the call.
killed

Variable is undefined after the call.

Null State (Section 2)

null
Possibly null pointer.
notnull
Non-null pointer.
relnull
Relax null checking. No errors when NULL isassigned to it, or when it is used as a non-null
pointer.

Null Predicates (Section 2.1.1)

A null predicate annotation may be used of the return value of a function returning a Boolean type,
taking a possibly-null pointer for its first argument.

nullwhentrue

If result istrue, first parameter is NULL.
falsewhennull

If result is TRUE, first parameter is not NULL.

Execution (Section8.1)

The noreturn, maynotreturn and alwaysreturn annotations may be used on any function. The
noreturnwhentrue and noreturnwhenfalse annotations may only be used on functions whose first
argument is a Boolean.

noreturn

Function never returns.
maynotreturn

Function may or may not return.

105

Splint Manual

noreturnwhentrue

Function does not return if first parameter is TRUE.
noreturnwhenfalse

Function does not return if first parameter if FALSE.
alwaysreturn

Function always returns.

SideEffedts (Setion11.2.1)

sef
Corresponding actual parameter has no side effects.

Dedlarations
These annotations can be used on a declaration to control unused or undefined error reporting.

unused

Identifier need not be used (no unused errors reported.) (Section 13.1)
external

Identifier is defined externally (no undefined error reported.) (Section 13.2)

Switch Statements

fallthrough
Fall through case. No message is reported if the previous case may fall through into the one
immediately after the fallthrough.

Break and Continue Statements (Section 8.3.3)
These annotations are used before abreak or continue statement.
innerbreak
Break is breaking an inner loop or switch.
loopbreak
Break is breaking aloop.
switchbreak
Break is breaking a switch.

innercontinue
Continue is continuing an inner loop.

Unreachable Code
This annotation is used before a statement to prevent unreachable code errors.
notreached

Statement may be unreachable.

Format String Arguments
These annotations are used immediately before a function declaration.

printflike

Check variable arguments like printf library function.
scanflike

Check variable arguments like scanf library function.

Use Warnings

106

UVA Secure Programming Group

These annotations are used immediately before a function, variable or type declaration.

warn <flag-specifier> <message>
Issue awarning (controlled by flag-specifier) where this declarator is used.

Macro Expansion

/*@notfunction@*/
The next macro definition is not intended to be a function, and should be expanded in line
instead of checked as a macro function definition.

Arbitrary Integral Types

These annotations are used to represent arbitrary integral types. Syntactically, they replace the
implicit int type.

/*@integraltype@*/
An arbitrary integral type. The actual type may be any one of short, int, long, unsigned
short, unsigned, or unsigned long.

/*@unsignedintegraltype@*/
An arbitrary unsigned integral type. The actual type may be any one of unsigned short,
unsigned, or unsigned long.

/*@signedintegraltype@*/
An arbitrary signed integral type. The actual type may be any one of short, int, or long.

Traditional Lint Comments

Some of the control comments supported by most standard UNIX lints are supported by Splint so
legacy systems can be checked more easily. These comments are not lexically consistent with
Splint comments, and their meanings are less precise (and may vary between different lint
programs), so we recommend that Splint comments are used instead except for checking legacy
systems aready containing standard lint comments.

These standard lint comments supported by Splint:

/*FALLTHROUGH*/ (alternate misspelling, /*FALLTHRU*/)
Prevents errors for fall through cases. Same meaning as /*@fallthrough@*/.
/*NOTREACHED*/
Prevents errors about unreachable code (until the end of the function). Same meaning as
/*@notreached@%*/.
/*PRINTFLIKE*/
Arguments similar to the printf library function (there didn’t seem to be much of a consensus
among standard lints as to exactly what this means). Splint supports:

[*@printflike@*/
Function takes zero or more arguments of any type, an unmodified char * format string
argument and zero of more arguments of type and number dictated by the format string.
Format codes are interpreted identically to the printf standard library function. May
return aresult of any type. (Splint interprets /*PRINTFLIKE*/ as /*@printflike@*/.)
/*@scanflike@*/
Like printflike, except format codes are interpreted as in the scanf library function.
/*ARGSUSED*/

107

Splint Manual

Turns off unused parameter messages for this function. The control comment,
/*@-paramuse@*/ can be used to the same effect, or /*@unused@*/ can be used in
individual parameter declarations.

Splint will ignore standard lint comments if -lint-comments is used. If +warn-lint-comments is
used, Splint generates a message for standard lint comments and suggest replacements.

M etastate Definitions
The grammar for .mts filesis shown below.

metastate P [global] attribute identifier clause* end
clause P contextClause | valuesClause | defaultClause | defaultsClause
| annotationsClause | mergeClause | transfersClause | loserefClause
| preconditionsClause | postconditionsClause
contextClauseb context contextSelector
contextSelector b (parameter | reference | result | clause | literal | null) [type]
valuesClauseb oneof valueChoice,*

defaultClause b default valueChoide
defaultsClauseb defaults (contextSelector ==> valueChoice)*

annotationsClauseb annotations (identifier [contextSelector | ==> valueChoice)*

mergeClauseb merge (mergeltem + mergeltem ==> transferAction)*
mergeltemb valueChoice | *

transfersClauseb transfers (valueChoice as valueChoice ==> transferAction)*
loserefClauseb losereference (valueChoice ==> errorAction)*

transfer Actionp valueChoice | errorAction
errorActionp error [stringLiteral]

valueChoiceb identifier

108

UVA Secure Programming Group

Appendix D Specifications

Another way of providing more information about programs is to use formal specifications.
Although this document has largely ignored specifications, Splint was originally designed to use the
information in LCL specifications instead of source-code annotations. This document focuses on
annotations since it takes less effort to add annotations to source code than to maintain an
additiona specification file. Annotations can express everything that can be expressed in LCL
specifications that is relevant to Splint checking. However, LCL specifications can provide more
precise documentation on program interfaces than is possible with Splint annotations. This
appendix (extracted from [Evans94]) is a very brief introduction to LCL Specifications. For more
information, consult [GH93].

The Larch family of languages is a two-tiered approach to formal specification. A specification is
built using two languages — the Larch Shared Language (LSL), which is independent of the
implementation language, and a Larch Interface Language designed for the specific
implementation language. An LSL specification defines sorts, analogous to abstract types in a
programming language, and operators, analogous to procedures. It expresses the underlying
semantics of an abstraction.

The interface language specifies an interface to an abstraction in a particular programming
language. It captures the details of the interface needed by a client using the abstraction and places
congtraints on both correct implementations and uses of the module. The semantics of the interface
are described using primitives and sorts and operators defined in LSL specifications. Interface
languages have been designed for several programming languages.

LCL [GH93, Tan95] is a Larch interface language for Standard C. LCL uses a C-like syntax.
Traditionally, a C module M consists of a source file, M.c, and a header file, M.h. The header file
contains prototype declarations for functions, variables and constants exported by M, as well as
those macro definitions that implement exported functions or constants, and definitions of exported
types. When using LCL, a module includes two additional files— M.Icl, a formal specification of
M, and M.Ih, which is derived by Splint (if the Ih flag is on) from M.lcl. Clients use M.Icl for
documentation, and should not need to look at any implementation file. The derived file, M.Ih,
contains include directives (if M depends on other specified modules), prototypes of functions and
declarations of variables as specified in M.lcl. The file M.h should include M.Ih and retain the
implementation aspects of the old M.h, but is no longer used for client documentation.

Specification Flags
These flags are relevant only when Splint is used with LCL specifications.

Global Flags

Ics
Generate .Ics files containing symbolic state of .Icl files (used for imports). By default .Ics
files are generated for each .Icl file processed. Use -Ics to prevent generation of .Ics files.
lh
Generate .Ih files. By default, -lh isset and no .Ih files are generated. Use +1h to enable .1h
file generation.
i <file>

109

Mi- ++-

m:- - - -

m-- -+

shortcut

shortcut

m-- -+

Splint Manual

Set LCL initidization file to <file>. The LCL initialization fileisread if any .Icl filesare

listed on the command line. The default file isclinit.Ici, found on the LARCH_PATH.
Iclexpect <number>

Exactly <number> specification errors are expected. Specification errors are errors

detected when checking the specifications. They do not depend on the source code.

Implicit Globals Checking Qualifiers

imp-checked-spec-globs
Implicit checked qudlifier on global variables specified in an LCL file with no checking
annotation.

imp-checkmod-spec-globs
Implicit checkmod qualifier on global variables specified in an LCL file with no checking
annotation.

imp-checkedstrict-spec-globs
Implicit checked qudifier on global variables specified in an LCL file with no checking
annotation.

Implicit Annotations

spec-glob-imp-only
Implicit only annotation on global variable declaration in an LCL file with no allocation
annotation.

spec-ret-imp-only
Implicit only annotation on return value declaration in an LCL file with no allocation
annotation.

spec-struct-imp-only
Implicit only annotation on structure field declarationsin an LCL file with no allocation
annotation.

spec-imp-only
Sets spec-glob-imp-only, spec-ret-imp-only and spec-struct-imp-only.

Macro Expanson

spec-macros
Macros defining specified identifiers are not expanded and are checked according to the
specification.

Complete Programsand Specifications
spec-undef
Function, variable, iterator or constant specified but never defined.
spec-undecl
Function, variable, iterator or constant specified but never declared.
need-spec
There isinformation in the specification that is not duplicated in syntactic comments.
Normally, thisis not an error, but it may be useful to detect it to make sure checking
incomplete systems without the specifications will till use thisinformation.
export-any
An error isreported for any identifier that is exported but not specified. (Setsall export
flags below.)
export-const
Constant exported but not specified.
110

m:- - - +
m:- - - +
m:- - - +
m:- - - +
m:- - - +

export-var

Variable exported but not specified.
export-fcn

Function exported but not specified.
export-iter

Iterator exported but not specified.
export-macro

An expanded macro exported but not specified
export-type

Type definition exported but not specified

111

UVA Secure Programming Group

Splint Manual

Appendix E Annotated Bibliography
Splint

All of these papers are available at http://www.splint.org/publications/.

[Barker01] Chris Barker. Satic Error Checking of C Applications Ported from UNIX to WIN32
Systems Using LCLint. Senior Thesis, University of Virginia Deptartment of Computer Science.
May 2001.

Describes annotations and checks useful for porting applications.

[Evans94] David Evans. Using specifications to check source code. MIT/LCS/TR 628,
Laboratory for Computer Science, MIT, June 1994.

MIT SM Thesis. Describes research behind Splint, focusing on how specifications can be
exploited to do lightweight checking. Includes case studies using LCL.int.

[EGHT94] David Evans, John Guttag, Jim Horning and Yang Meng Tan. LCLint: A tool for
using specifications to check code. SIGSOFT Symposium on the Foundations of Software
Engineering, December 1994.

Somewhat obsolete introduction to LCLint. Shows how LCLint isused to find errorsin a
sample program.

[Evans96] David Evans. Satic Detection of Dynamic Memory Errors. SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ' 96), Philadelphia, PA., May 1996.

Describes approach for exploiting annotations added to code to detect awide class of errors.
Focuses on memory management checks described in Section 5 of this manual.

[Evans00] David Evans. Annotation-Assisted Lightweight Satic Checking. First International
Workshop on Automated Program Analysis, Testing and Verification. February, 2000.

Short position paper describing research agenda behind Splint.

[Evans02] David Evans and David Larochelle. Improving Security Using Extensible
Lightweight Static Analysis. |EEE Software, Jan/Feb 2002.

Most security attacks exploit instances of well-known classes of implementations flaws.
This article describes how Splint can be used to detect common security vulnerabilities
(including buffer overflows and format string vulnerabilities).

[Larochelle0l1] David Larochelle and David Evans. Statically Detecting Likely Buffer

Overflow Vulnerabilities. 2001 USENIX Security Symposium, Washington, D. C., August 13-
17, 2001.

112

UVA Secure Programming Group

Buffer overflow attacks may be today's single most important security threat. This paper
describes how Splint can be used to detect likely vulnerabilities through an analysis of the
program source code and presents experience using our approach to detect buffer overflow
vulnerabilities in two security-sensitive programs.

C

[1SO99] International Standard 1SO/IEC 9899. Programming languages— C. Second edition.
December 1999.

International standard specification for C programming language. Approved by ANSI May
2000.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, second
edition. Prentice Hall, New Jersey, 1988.

Standard reference for ANSI C. If you haven't heard of this one, you probably didn’t get
thisfar (unless you started at the back).

[vdL94] Peter van der Linden. Expert C Programming: Deep C Secrets. SunSoft Press, Prentice
Hall, New Jersey, 1994.

Filled with useful information on the darker corners of C, aswell as lots of industry
anecdotes and humor. Splint’s reserved name checking is loosaly based on the list of
reserved names in this book.

M ethodology

[GH93] John Guttag and James Horning with Stephen J. Garland, Kevin D. Jones, Andrés Modet,
and Jeannette M. Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag,
Texts and Monographs in Computer Science, 1993.

Overview of the Larch family of specification languages and related tools. Includesa
chapter on LCL, the Larch C interface language, on which Splint is based.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in Program
Development, MIT Press, Cambridge, MA, 1986.

Describes a programming methodology using abstract types and specified interfaces. Much
of the methodology upon which Splint is based comes from this book. Usesthe CLU
programming language.

[Liskov0l1] Barbara Liskov with John Guttag. Program Development in Java, Addison Wedey,
2001.

An updated version of [LG86] for the Java programming language.

113

Splint Manual

[Tan95] Yang Meng Tan. Formal Specification Techniques for Engineering Modular C. Kluwer
International Seriesin Software Engineering, Volume 1, Kluwer Academic Publishers, Boston,
1995.

Modified and updated version of MIT Ph D thesis, previoudy published as MIT/LCSTR-
619, 1994. Includes presentation of the semantics of LCL and a case study using LCL.

Secur e Programming

[Hat95] Les Hatton. Safer C: Developing Software for High-integrity and Safety-critical
Systems. McGraw-Hill International Seriesin Software Engineering, 1995.

A broad work on all aspects of developing safety-critical software, focusing on the C
language. Provides good judtification for the use of C in safety-critical systems, and the
necessity of tool-supported programming standards. Splint users will be interested to see
how many of the errors listed as only being dynamically detectable can be detected statically

by Splint.
[VMO02] John Viegaand Gary McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wedey, 2002.

A comprehensive survey of techniques and principles for building secure programs.

See dso [Evans02] and [Larochelle0l].

114

| ndex

splintrc, 72
@/, 36
@, 12, 99, 101
abstract types, 15, 21, 22, 23, 31, 32, 33, 39,
58, 60, 61, 66, 80, 81, 89, 90, 103, 108,
112
access control, 22
dliasing, 9, 27, 31, 84, 87, 103
aternate types, 47, 75, 102
annotations, 9, 10, 13, 26, 27, 41, 101, 102
abstract, 21, 30, 81, 102
access, 23, 103
dlocates, 39
at, 57,94
checked, 37, 67, 86, 87, 103
checkedstrict, 37, 67, 86, 87, 103
checkmod, 37, 87, 103
concrete, 81, 102
constant, 88
defines, 39
dependent, 27, 41, 83, 103
end, 101
exits, 42, 104
exposed, 33, 83, 104
externa, 65, 105
fallthrough, 45, 105, 106
falseexit, 42
falsenull, 14, 104
falsewhennull, 14
fileSystem, 36
i, 101
i<n>, 99, 101
ignore, 101
immutable, 23, 102
implicit, 29
in, 17, 104
innerbreak, 45, 93, 94, 105
innercontinue, 46, 94, 105
integraltype, 20, 106
internal State, 36, 57
iter, 58, 59, 88, 91
keep, 28, 83, 103
killed, 38, 104
killref, 103
loopbreak, 45, 46, 93, 105
misscase, 45

115

UVA Secure Programming Group

mutable, 23, 102
neverexit, 105
noaccess, 23, 103
notfunction, 58, 68, 87, 106
nothing, 36
notnull, 15, 104
notreached, 105, 106
null, 14, 27, 55, 104
nullwhentrue, 14
observer, 33, 83, 85, 103
only, 26, 31, 38, 40, 41, 82, 83, 84, 103
out, 17, 104
owned, 27, 41, 82, 83, 103
partial, 18, 104
printflike, 105, 106
refcounted, 30, 102
refs, 30
reldef, 18, 104
releases, 40
relnull, 15, 104
returned, 31, 103
scanflike, 105, 106
sef, 56, 88, 105
sets, 39
shared, 28, 41, 83, 103
signedintegraltype, 20, 106
switchbreak, 45, 93, 105
t, 101
t<n>, 101
temp, 27, 83, 84, 103
trueexit, 42
truenull, 14
unchecked, 37, 67, 86, 87, 103
undef, 38, 104
unique, 31, 103
unsignedintegraltype, 20, 106
unused, 65, 105, 106
uses, 39
warnuse, 105
yield, 58
ARGSUSED, 106
assert, 42, 67
booal, 20, 42, 67, 78, 80, 94, 104
break statements, 45, 93, 105
characters, 19
CLU, 25

Splint Manual

comparisons, 80
complete logic, 46
complete programs, 65, 96, 109
continue statements, 45, 105
control comments, 13
control flow, 42, 104
control nesting depth, 97
control structures, 92
czechmacros, 60
declarations, 38, 87, 105
distinct names, 63, 92
enumerators, 19, 97
environment variables
LARCH_PATH, 72
LCLIMPORTDIR, 72
errno, 67
evaluation order, 92
exit, 97
exit status, 74
expected errors, 74
exported declarations, 65
exports, 96
exposure, 84, 103
externa names, 65, 92
fall through cases, 9, 45, 105, 106
FALLTHROUGH, 99, 106
fileSystem, 36, 85
flag name abbreviations, 70
flags, 10, 11, 12
abstract, 81
accessczech, 60, 61, 81, 89
accessczechosovak, 81, 90
accessfile, 23, 81
accessfunction, 23
accessmodule, 22, 81
accesssall, 81
accesssovak, 61, 81, 89
aliasunique, 84
alblock, 94
alempty, 94
alglobs, 86
alimponly, 29
almacros, 57, 68, 88
ansilib, 73
ansilimits, 97
ansireserved, 63, 91
ansireservedinternal, 63, 91
ansistrict, 66

116

array parameters, 79
assignexpose, 32, 85
bitwisesigned, 79

bool, 78

boolcompare, 80
boolfase, 20, 78

boolint, 13, 80

booltrue, 20, 78
booltype, 20, 78
branchstate, 82
casebreak, 45, 93
castexpose, 32, 85
castfcnptr, 80

charindex, 19, 80
charint, 13, 19, 80
charintliteral, 81
checkedglobalias, 87
checkmodglobdias, 87
checks, 36, 76
checkstrictglobalias, 87
checkstrictglobs, 37, 86
codeimponly, 84
commentchar, 12, 99, 101
compdef, 65, 77
compdestroy, 82
compmempass, 84
constmacros, 57, 58, 87
constprefix, 62, 91
congtprefixexclude, 91
constuse, 65, 96
continuecomment, 99
controlnestdepth, 97
cppnames, 92

czech, 60, 89
czechconstants, 60
czechconsts, 89
czechfens, 60, 89
czechmacros, 89
czechodovak, 90
czechod ovakconstants, 61
czechod ovakconsts, 90
czechodovakfens, 61, 90
czechod ovakmacros, 61, 90
czechodovaktype, 61
czechod ovaktypes, 90
czechodovakvars, 61, 90
czechtypes, 61, 89
czechvars, 60, 89

D<initidizer>, 72
declundef, 96

deepbreak, 46, 93
deparrays, 82
dependenttrans, 83
distinctexternalnames, 63, 92
distinctinternalnames, 92
dump, 67, 72, 73
duplicatequals, 99
elsafcomplete, 46, 93
empty, 88

enumindex, 19, 80
enumint, 19, 80
enummemuse, 65, 96
enumprefix, 62, 90
enumprefixexclude, 90
evalorder, 43, 92
evalorderuncon, 43, 44, 92
exitarg, 97

expect, 74

exportany, 109
exportconst, 109
exportfcn, 109, 110
exportheader, 65, 96
exportheadervar, 96
exportiter, 110
exportlocal, 96
exportmacro, 109, 110
exporttype, 110
exportvar, 109, 110
exposetrans, 83
externalnamecaseinsensitive, 63, 92
externalnamelen, 92
externa prefix, 62, 91
external prefixexclude, 91
f <file>, 12, 72
fcnmacros, 57, 58, 87
fenuse, 65, 96

fielduse, 65, 96
filestaticprefix, 62, 90
filestaticprefixexclude, 90
fixedformalarray, 79
floatdouble, 80

forblock, 94

forcehints, 12, 75
forempty, 94
formalarray, 79
formatcode, 79

UVA Secure Programming Group

formattype, 79

forwarddecl, 80

freshtrans, 83

globalias, 87

globalprefix, 90, 91
globalprefixexclude, 90
globimponly, 29, 84
globnoglabs, 37, 86

globs, 86
globsimpmodsnothing, 70, 86
globstate, 86

globuse, 86

globvarprefix, 62
globvarprefixexclude, 62
gnuextensions, 99

hasyield, 89

help, 71

hints, 75

i <file>, 108

I<directory>, 72

ifblock, 46, 94

ifempty, 94

ignorequals, 80

ignoresigns, 19, 80
immediatetrans, 83
impabstract, 22, 81
impcheckedglobs, 86
impcheckedspecglobs, 109
impcheckedstatics, 86
impcheckedstrictglobs, 87
impcheckedstrictspecglobs, 109
impcheckedstrictstatics, 38, 87
impcheckmodglobs, 87
impcheckmodinternals, 87
impcheckmodspecglobs, 109
impcheckmodstatics, 87
impouts, 17, 18, 77
imptype, 80

includenest, 97

incompl etetype, 80
incondefs, 87

incondefdib, 87

infloops, 92

infloopsuncon, 44, 92
internalglobs, 86

internal globsnoglobs, 86
internalnamecasa nsensitive, 64, 92
internalnamelen, 92

Splint Manual

internalnamelength, 64
internalnamel ookalike, 64, 92
iterprefix, 62, 91
iterprefixexclude, 91
keeptrans, 83

kepttrans, 83

larchpath, 72

Iclexpect, 109
Iclimportdir, 72

Ics, 108

Ih, 108

libmacros, 88

limit, 74, 75

lindlen, 12, 75
lintcomments, 99, 107
load, 67, 73

localprefix, 91
localprefixexclude, 91
longintegral, 20, 81
longsignedintegral, 20, 81
longunsignedintegral, 20, 81

longunsignedunsignedintegral, 20, 81

looploopbreak, 45, 93
looploopcontinue, 45, 94
loopswitchbreak, 45, 93
macroassign, 56, 838
macroconstdec!, 57, 88
macrodecl, 88
macrofcndecl, 57, 88
macromatchname, 88
macroparams, 56
macroparens, 56, 88
macroredef, 88
macrostmt, 56, 88
macrounrecog, 88
macrovarprefix, 61, 62, 90

macrovarprefixexclude, 62, 90

maintype, 79
matchanyintegral, 20, 81
matchfields, 87
mayaliasunique, 84
memimp, 84

memtrans, 83

misscase, 93

modfilesys, 85
modfilesystem, 36
modglabs, 86
modglobsnomods, 37, 85, 86

118

modglobsunchecked, 86
modifies, 13, 85
modinternastrict, 85
modnomods, 36, 85
modobserver, 85
modobserverstrict, 85
modsimpnoglobs, 86
modstrictglobsnomods, 85, 86
moduncon, 36, 85
modunconnomods, 85
mustdefine, 17, 77
mustfree, 82
mustfreefresh, 11
mustmod, 36, 85
mustnotalias, 84
mutrep, 23, 81
namechecks, 89
needspec, 109
nestcomment, 99
neverinclude, 68, 98
newreftrans, 83
nextlinemacros, 88
noaccess, 99
nocomments, 99
noeffect, 46, 47, 94
noeffectuncon, 46, 47, 94
nof, 12, 72

nolib, 67, 73
noparams, 97

noret, 94

null, 76
numenummembers, 97
numliteral, 81
numstructfields, 97
observertrans, 83
oldstyle, 97

onlytrans, 83
onlyunqglobaltrans, 83
overload, 87
ownedtrans, 83
paramimptemp, 29, 84
paramuse, 65, 96, 106
parenfileformat, 11, 75
partial, 65, 96
passunknown, 84
posixlib, 66, 73
posixstrictlib, 66, 73
predassign, 20, 78

predbool, 78
predboolint, 78
predboolothers, 20, 78
predboolptr, 20, 21, 78
protoparammatch, 63, 91
protoparamname, 62, 91
protoparamprefix, 62, 91
protoparamprefixexclude, 91
ptrarith, 78

ptrcompare, 80
ptrnegate, 79

quiet, 74
readonlystrings, 33, 85
readonlytrans, 85
realcompare, 80

redecl, 38, 97

redef, 96

refcounttrans, 83
relaxquals, 19, 80
relaxtypes, 81
repeatunrecog, 96
repexpose, 84

retaias, 31, 84
retexpose, 32, 85
retimponly, 29, 84
retval, 94

retvalbool, 47, 94
retvalint, 47, 94
retvalother, 94
retvalothers, 47
S<directory>, 72
sefparams, 88

sefuncon, 57, 88
shadow, 91

sharedtrans, 83
shiftsigned, 79
showallconjs, 75
showalluses, 74
showecoal, 11
showcolumn, 75
showfunc, 11, 13, 75
showscan, 74
showsummary, 73
singleinclude, 68, 98
sizeofformalarray, 79
sizeoftype, 79
skipansiheaders, 68, 98
skipposixheaders, 68, 98

119

UVA Secure Programming Group

Skipsysheaders, 68, 98
sovak, 61, 89
dovakconstants, 61
slovakconsts, 89, 90
dovakfcns, 61, 89
dovakmacros, 61, 89
slovaktypes, 89, 90
slovakvars, 61, 89, 90
specglobimponly, 109
specimponly, 109
specmacros, 109
specretimponly, 109
specstructimponly, 109
specundec!, 109
specundef, 109
stackref, 84

standard, 76
staticinittranc, 83
statictrans, 83

stats, 74

strict, 76
strictbranchstate, 82
strictdestroy, 82
strictlib, 73

strictops, 79
strictuserel eased, 82
stringliterallen, 77, 78, 97
structimponly, 29, 84
supcounts, 99, 101
switchloopbreak, 45, 93
switchswitchbreak, 45, 93
syntax, 99

sysdirerrors, 72, 98
sysdirexpandmacros, 98
sysdirs, 68, 72, 98
systemunrecog, 96
tagprefix, 62, 90
tagprefixexclude, 90
temptrans, 83

timedist, 74
tmpcomments, 101
tmpdir, 72

topuse, 65, 96
trytorecover, 99, 100
type, 73, 77

typeprefix, 62, 91
typeprefixexclude, 62, 91
typeuse, 65, 96

Splint Manual

U<initidizer>, 72 initialization files, 12, 72
uncheckedglobalias, 87 splintre, 12, 72
uncheckedmacroprefix, 62, 91 Iclinit.lci, 109
uncheckedmacroprefixexclude, 91 initializers, 83
uniondef, 77 internal State, 36, 57, 85, 86
unixlib, 66, 73 isalpha, 67
unixstrictlib, 66, 73 iscntrl, 67
unqualifiedinititrans, 83 isdigit, 67
unqualifiedtrans, 83 isgraph, 67
unreachable, 93, 94 idower, 67
unrecog, 96 isprint, 67
unrecogcomments, 99 ispunct, 67
unusedspecial, 96 isspace, 67
usedef, 17, 77 isupper, 67
usereleased, 82 isxdigit, 67
usestderr, 73 iterators, 58, 88, 89, 102
usevarargs, 97 Larch, 108
varuse, 65, 96 LARCH_PATH, 72, 109
voidabstract, 80 LCL, 108
warnflags, 12, 71 LCLIMPORTDIR, 72
warnlintcomments, 99, 107 Icsfiles, 108
warnmissingglobs, 86 Ihfiles, 108
warnmissingglobsnoglobs, 86 libraries, 66, 72, 87
warnposixheaders, 98 line splitting, 12
weak, 11, 76 lint comments, 106
whichlib, 73, 74 loop bodies, 46
whileblock, 94 loopexec, 93
whileempty, 94 LSL, 108
zeroptr, 81 macros, 55, 62, 87, 106, 109
format codes, 79 main, 79
free, 26, 27, 66, 82 malloc, 26
function interfaces, 35, 85 McConnell, Steve, 21
gcc extensions, 99 memory leaks, 25, 82, 103
global variables, 17, 32, 37, 43, 62, 86, 87, memory management, 9, 25, 30, 82
102, 103, 109 message format, 75
globalslist, 37, 43, 44 Microsoft Visual Studio, 12, 75
GNU extensions, 99 modes, 75
header fileinclusion, 98 checks, 36, 76
header files, 65, 67, 68 standard, 76
help, 71 strict, 76
hints, 12, 75 weak, 11, 76
if bodies, 46 modification, 31, 32, 33, 35, 43, 56, 57, 85
ignored return values, 9, 47, 94 modifies clause, 35, 39, 43, 44, 46, 57, 85,
immutable type, 23 86, 102
implicit annotations, 37, 84, 86, 109 multiple definitions, 96
include file nesting, 98 mutability, 23, 32
infinite loops, 9, 37, 44 mutable type, 23
information hiding, 9, 19, 21, 103 namespaces, 61, 90

120

naming convention, 23, 60, 89
Czech, 60, 63, 81, 89
Czechodlovak, 61, 81, 90
Slovak, 61, 63, 81, 89

naming restrictions, 63, 91

no effects, 46, 94

NOTREACHED, 99, 106

null, 66, 86

null dereferences, 14, 76, 77, 104

null predicates, 104

numeric types, 19

output, 73

parse errors, 99

parsing, 99

partia programs, 65

path with no return, 94

pointers, 80

polymorphism, 57, 102

POSIX, 66, 98

predicates, 78

preprocessor, 72

primitive operations, 78

printf, 66, 79, 105

PRINTFLIKE, 99, 106

problematic control structures, 44

read-only storage, 32

reference counting, 30, 83

reserved names, 63, 91

return values, 47

security vulnerabilities, 9

sequence points, 43

Shakespeare, William, 25, 26

shared storage, 27

sharing, 31, 84

sharing semantics, 23

side effect free, 88

side effect free parameters, 56

side effects, 105

sizeof, 22, 79

specia reward, 76

stack pointers, 25, 28

121

UVA Secure Programming Group

stack references, 28

standard error, 73

standard libraries, 66

standard library, 26

standard output, 73

static, 65

static variables, 37

stderr, 67

stdin, 67

stdout, 67

storage model, 25

strchr, 67

string literals, 33, 85, 97

strrchr, 67

structure fields, 97

suppressing warnings, 101

switch, 105

switch statements, 44, 45

syntactic comment, 98

syntax, 12

tolower, 67

toupper, 67

type, 9, 13, 21, 78, 79

type access, 103

type checking, 19

type equivaence, 80

types, 106

undefined, 43

undefined behavior, 31, 33, 36, 37, 43, 55,
92

undefined values, 9, 17, 38, 77, 86, 104

ungetc, 67

unreachable, 9

unreachable code, 94, 105, 106

unrecognized identifiers, 96

unused declarations, 9, 65, 96

use warnings, 105

use-before-definition, 9, 17, 38, 77, 93

van der Linden, Peter, 45, 63

varargs, 97

void, 47

