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Abstract

In geometrical camera calibration the objective is to deter-
mine a set of camera parameters that describe the map-
ping between 3-D reference coordinates and 2-D image
coordinates. Various methods for camera calibration can
be found from the literature. However, surprisingly little
attention has been paid to the whole calibration procedure,
i.e., control point extraction from images, model fitting,
image correction, and errors originating in these stages.
The main interest has been in model fitting, although the
other stages are also important. In this paper we present a
four-step calibration procedure that is an extension to the
two-step method. There is an additional step to compen-
sate for distortion caused by circular features, and a step
for correcting the distorted image coordinates. The image
correction is performed with an empirical inverse model
that accurately compensates for radial and tangential dis-
tortions. Finally, a linear method for solving the parame-
ters of the inverse model is presented.

1. Introduction

Camera calibration in the context of three-dimensional
machine vision is the process of determining the internal
camera geometric and optical characteristics (intrinsic
parameters) and/or the 3-D position and orientation of the
camera frame relative to a certain world coordinate system
(extrinsic parameters) [8]. In many cases, the overall per-
formance of the machine vision system strongly depends
on the accuracy of the camera calibration.

Several methods for geometric camera calibration are
presented in the literature. The classic approach [7] that
originates from the field of photogrammetry solves the
problem by minimizing a nonlinear error function. Due to
slowness and computational burden of this technique,
closed-form solutions have been also suggested (e.g.
[8],[1],[5]). However, these methods are based on certain
simplifications in the camera model, and therefore, they do
not provide as good results as nonlinear minimization.
There are also calibration procedures where both nonlinear
minimization and a closed form solution are used (e.g.

[5],[10]). In these two-step methods, the initial parameter
values are computed linearly and the final values are
obtained with nonlinear minimization. The methods where
the camera model is based on physical parameters, like
focal length and principal point, are called explicit meth-
ods. In most cases, the values for these parameters are in
themselves useless, because only the relationship between
3-D reference coordinates and 2-D image coordinates is
required. In implicit camera calibration, the physical
parameters are replaced by a set of non-physical implicit
parameters that are used to interpolate between some
known tie-points (e.g. [9]).

In this paper, we present a four-step calibration proce-
dure that is an extension to the two-step procedure. Section
2.1. describes the closed-form solution to the problem
using a direct linear transformation (DLT). Section 2.2.
briefly discuss the nonlinear parameter estimation. The
third step is needed if we use control points whose projec-
tions are larger than one pixel in size. In Section 2.3., we
only consider circular features, but similar analysis can be
made for arbitrary feature shapes. There are also other
error sources in feature extraction, like changes in the illu-
mination, but they are discussed in [4]. The fourth step of
the procedure is presented in Section 3. and it solves the
image correction problem. Image correction is performed
by using a new implicit model that interpolates the correct
image points based on the physical camera parameters
derived in previous steps. A complete Matlab toolbox for
performing this calibration procedure will be available
through the Internet.

2. Explicit camera calibration

Physical camera parameters are commonly divided into
extrinsic and intrinsic parameters. Extrinsic parameters are
needed to transform object coordinates to a camera cen-
tered coordinate frame. In multi-camera systems, the
extrinsic parameters also describe the relationship between
the cameras. The pinhole camera model is based on the
principle of collinearity, where each point in the object
space is projected by a straight line through the projection
center into the image plane. The origin of the camera coor-



dinate system is in the projection center at the location (X0,
Y0, Z0) with respect to the object coordinate system, and
the z-axis of the camera frame is perpendicular to the
image plane. The rotation is represented using Euler angles
ω, ϕ, and κ that define a sequence of three elementary rota-
tions around x, y, z-axis respectively. The rotations are per-
formed clockwise, first around the x-axis, then the y-axis
that is already once rotated, and finally around the z-axis
that is twice rotated during the previous stages.

In order to express an arbitrary object point P at location
(Xi, Yi, Zi) in image coordinates, we first need to transform
it to camera coordinates (xi, yi, zi). This transformation con-
sists of a translation and a rotation, and it can be performed
by using the following matrix equation:

(1)

where

The intrinsic camera parameters usually include the
effective focal length f, scale factor su, and the image center
(u0, v0) also called the principal point. Here, as usual in
computer vision literature, the origin of the image coordi-
nate system is in the upper left corner of the image array.
The unit of the image coordinates is pixels, and therefore
coefficients Du and Dv are needed to change the metric
units to pixels. These coefficients can be typically obtained
from the data sheets of the camera and framegrabber. In
fact, their precise values are not necessary, because they are
linearly dependent on the focal length f and the scale factor
sx. By using the pinhole model, the projection of the point
(xi, yi, zi) to the image plane is expressed as

(2)

The corresponding image coordinates  in pixels are
obtained from the projection  by applying the follow-
ing transformation:

(3)

The pinhole model is only an approximation of the real
camera projection. It is a useful model that enables simple
mathematical formulation for the relationship between ob-
ject and image coordinates. However, it is not valid when
high accuracy is required and therefore, a more comprehen-

sive camera model must be used. Usually, the pinhole mod-
el is a basis that is extended with some corrections for the
systematically distorted image coordinates. The most com-
monly used correction is for the radial lens distortion that
causes the actual image point to be displaced radially in the
image plane [7]. The radial distortion can be approximated
using the following expression:

(4)

where k1, k2,... are coefficients for radial distortion, and
. Typically, one or two coefficients are

enough to compensate for the distortion.
Centers of curvature of lens surfaces are not always

strictly collinear. This introduces another common distor-
tion type, decentering distortion which has both a radial
and tangential component [7]. The expression for the tan-
gential distortion is often written in the following form:

(5)

where p1 and p2 are coefficients for tangential distortion.
Other distortion types have also been proposed in the lit-

erature. For example, Melen [5] uses the correction term
for linear distortion. This term is relevant if the image axes
are not orthogonal. In most cases the error is small and the
distortion component is insignificant. Another error com-
ponent is thin prism distortion. It arises from imperfect lens
design and manufacturing, as well as camera assembly.
This type of distortion can be adequately modelled by the
adjunction of a thin prism to the optical system, causing
additional amounts of radial and tangential distortions
[2],[10].

A proper camera model for accurate calibration can be
derived by combining the pinhole model with the correc-
tion for the radial and tangential distortion components:

(6)

In this model the set of intrinsic parameters (f, su, u0, v0)
is augmented with the distortion coefficients k1,..., kn, p1
and p2. These parameters are also known as physical cam-
era parameters, since they have a certain physical meaning.
Generally, the objective of the explicit camera calibration
procedure is to determine optimal values for these parame-
ters based on image observations of a known 3-D target. In
the case of self-calibration the 3-D coordinates of the target
points are also included in the set of unknown parameters.
However, the calibration procedure presented in this article
is performed with a known target.
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2.1. Linear parameter estimation

The direct linear transformation (DLT) was originally
developed by Abdel-Aziz and Karara [1]. Later, it was
revised in several publications, e.g. in [5] and [3].

The DLT method is based on the pinhole camera model
(see Eq. (3)), and it ignores the nonlinear radial and tangen-
tial distortion components. The calibration procedure con-
sists of two steps. In the first step the linear transformation
from the object coordinates (Xi, Yi, Zi) to image coordinates
(ui, vi) is solved. Using a homogeneous 3 x 4 matrix repre-
sentation for matrix A the following equation can be writ-
ten:

(7)

We can solve the parameters a11,..., a34 of the DLT
matrix by eliminating wi. Let us denote

The following matrix equation for N control points is ob-
tained [5]:

(8)
By replacing the correct image points (ui, vi) with

observed values (Ui, Vi) we can estimate the parameters
a11,..., a34 in a least squares fashion. In order to avoid a
trivial solution a11,..., a34 = 0, a proper normalization must
be applied. Abdel-Aziz and Karara [1] used the constraint
a34 = 1. Then, the equation can be solved with a pseudoin-
verse technique. The problem with this normalization is
that a singularity is introduced, if the correct value of a34 is
close to zero. Instead of a34 = 1 Faugeras and Toscani [3]
suggested the constraint  which is sin-
gularity free.

The parameters a11,..., a34 do not have any physical
meaning, and thus the first step where their values are esti-
mated can be also considered as the implicit camera cali-
bration stage. There are techniques for extracting some of
the physical camera parameters from the DLT matrix, but
not many are able to solve all of them. Melen [5] proposed
a method based on RQ decomposition where a set of eleven

physical camera parameters are extracted from the DLT
matrix. The decomposition is as follows:

(9)

where λ is an overall scaling factor and the matrices M and
T define the rotation and translation from the object coordi-
nate system to the camera coordinate system (see Eq. (1)).
Matrices V, B, and F contain the focal length f, principal
point (u0, v0) and coefficients for the linear distortion (b1,
b2):

The linear distortion correction is used here to compen-
sate for the orthogonality errors of the image coordinate
axes. A five step algorithm for solving the parameters is
given in [5] and it not represented here. In this procedure,
the scale factor su is assumed to be 1. In the case of copla-
nar control point structure, the 3 x 4 DLT matrix becomes
singular. Thus, a 3 x 3 matrix with nine unknown parame-
ters must be used. Melen also proposed a method for
decomposing the 3 x 3 matrix, but only a subset of physical
camera parameters can be estimated.

2.2. Nonlinear estimation

Since no iterations are required, direct methods are
computationally fast. However, they have at least the fol-
lowing two disadvantages. First, lens distortion cannot be
incorporated, and therefore, distortion effects are not gen-
erally corrected, although some solutions also for this prob-
lem have been presented. For example, Shih et al. [6] used
a method where the estimation of the radial lens distortion
coefficient is transformed into an eigenvalue problem. The
second disadvantage of linear methods is more difficult to
be fixed. Since, due to the objective to construct a nonitera-
tive algorithm, the actual constraints in the intermediate
parameters are not considered. Consequently, in the pres-
ence of noise, the intermediate solution does not satisfy the
constraints, and the accuracy of the final solution is rela-
tively poor [10]. Due to these difficulties the calibration
results obtained in Section 2.1. are not accurate enough.

With real cameras the image observations are always
contaminated by noise. As we know, there are various error
components incorporated in the measurement process, but
these error components are discussed more profoundly in
[4]. If the systematic parts of the measurement error are
compensated for, it is convenient to assume that the error is
white Gaussian noise. Then, the best estimate for the cam-
era parameters can be obtained by minimizing the residual
between the model and N observations (Ui, Vi), where i =
1,..., N. In the case of Gaussian noise, the objective func-
tion is expressed as a sum of squared residuals:

uiwi

viwi

wi

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

Xi

Y i

Zi

1

=

L=

X1 Y 1 Z1 1 0 0 0 0 X1u1– Y 1u1– Z1u1– u1–

0 0 0 0 X1 Y 1 Z1 1 X1v1– Y 1v1– Z1v1– v1–
... ... ... ... ... ... ... ... ... ... ... ...

Xi Y i Zi 1 0 0 0 0 Xiui– Y iui– Ziui– ui–

0 0 0 0 Xi Y i Zi 1 Xivi– Y ivi– Zivi– vi–
... ... ... ... ... ... ... ... ... ... ... ...

XN Y N ZN 1 0 0 0 0 XNuN– Y NuN– ZNuN– uN–

0 0 0 0 XN Y N ZN 1 XNvN– Y NvN– ZNvN– vN–

a = a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34, , , , , , , , , , ,[ ] T

La 0=

a31
2

a32
2

a33
2

+ + 1=

A λV 1– B 1– FMT=

V
1 0 u0–

0 1 v0–

0 0 1

= B
1 b1+ b2 0

b2 1 b1– 0

0 0 1

= F
f 0 0

0 f 0

0 0 1

=



(10)

The least squares estimation technique can be used to
minimize Eq. (10). Due to the nonlinear nature of the cam-
era model, simultaneous estimation of the parameters
involves applying an iterative algorithm. For this problem
the Levenberg-Marquardt optimization method has been
shown to provide the fastest convergence. However, with-
out proper initial parameter values the optimization may
stick in a local minimum and thereby cause the calibration
to fail. This problem can be avoided by using the parame-
ters from the DLT method as the initial values for the opti-
mization. A global minimum of Eq. (10) is then usually
achieved after a few iterations.

Two coefficients for both radial and tangential distortion
is normally enough [4]. Our experiments have also shown
that the linear distortion in modern CCD arrays is typically
negligible. Thus, the parameters b1, b2 can be usually left
out, and totally eight intrinsic parameters are then esti-
mated. The number of extrinsic parameters depends on the
number of camera views. Using a 3-D target structure, only
a single viewpoint is required. In the case of a coplanar tar-
get, a singularity is introduced that limits the number of
parameters that can be estimated from a single view. There-
fore, multiple views are required in order to solve all the
intrinsic parameters. The number of extrinsic parameters is
now added by six for each perspective view.

2.3. Correction for the asymmetric projection

Perspective projection is generally not a shape preserv-
ing transformation. Only lines are mapped as lines on the
image plane. Two- and three-dimensional objects with a
non-zero projection area are distorted if they are not copla-
nar with the image plane. This is true for arbitrary shaped
features, but in this article we are only concerned with cir-
cles, because of their simple analytic formulation. Another
reason is that they are very common shapes in many man-
made objects.

The center points of the circles are often located from
the images with subpixel precision, but the distortion
caused by the perspective projection is not typically con-
sidered. Perspective projection distorts the shape of the cir-
cular features in the image plane depending on the angle
and displacement between the object surface and the image
plane. Only when the surface and the image plane are par-
allel, projections remain circular. These facts are well-
known, but the mathematical formulation of the problem
has been often disregarded. Therefore, we shall next review
the necessary equations.

Let the coordinate system Ω1 (X, Y, Z) ∈ ℜ 3 be centered
in the camera focus O, and let its Z-axis be perpendicular to
the object surface Π1 (see Fig. 1). The rays coming from

the circle Γ1 that is located on the surface Π1 form a
skewed cone, whose boundary curve C can be expressed as
follows:

(11)
Parameters α and β specify the skewness of the cone in

X and Y directions and the parameter γ specifies the sharp-
ness of the cone. Thus, if the distance from the camera
focus to the object surface is denoted by d, the circle equa-
tion becomes (X - αd)2 + (Y - βd)2 = (γd)2.

The camera coordinate system Ω2 (x, y, z) ∈ ℜ 3 is also
centered in the camera focus, but its z-axis is orthogonal to
the image plane Π2, and its x- and y-axes are parallel to the
image axes u and v. Thus, the transformation from Ω2 to Ω1
is expressed by using the following rotation:

(12)

where the vectors , , and
 form an orthonormal basis. Now, we can ex-

press Eq. (11) in camera coordinates

(13)

Let us denote the focal length, i.e. the orthogonal dis-
tance between O and Π2, by f. Then, the intersection Γ2 of
C and Π2 is expressed as:

(14)

where

We notice from Eq. (14) that the projection is a quadratic
curve and its geometrical interpretation can be a circle, hy-
perbola, parabola, or ellipse. In practice, due to the limited
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Figure 1. Perspective projection of a circle.
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field of view the projection will be a circle or ellipse.
From Eq. (14) the center of the ellipse  can be

expressed as

(15)

In order to find out what is the projection of the circle
center, let us consider a situation where the radius of the
circle is zero, i.e. γ = 0. Consequently, r, s, and t become
zero, and we obtain the position of the projected point that
is due to the symmetry of the circle also the projection of
the circle center :

(16)

For non-zero radius (γ > 0) there are only some special
cases when Eqs (15) and (16) are equal, e.g. the rotation is
performed around the Z-axis (a31 = a32 = 0). Generally, we
can state that the ellipse center and projected circle center
are not the same for circular features with non-zero radius.

Ellipse fitting or the center of gravity method produces
estimates of the ellipse center. However, what we usually
want to know is the projection of the circle center. As a
consequence of the previous discussion, we notice that the
location is biased and it should be corrected using Eqs (15)
and (16). Especially, in camera calibration this is very
important, because the circular dot patterns are usually
viewed in skew angles.

There are at least two possibilities to correct this projec-
tion error. The first solution is to include the correction

 to the camera model. An optimal estimate
in a least squares sense is then obtained. However, this
solution degrades the convergence rate considerably, and
thus increases the amount of computation. Another possi-
bility is to compute the camera parameters recursively,
when the parameters obtained in the least squares estima-
tion step are used to evaluate Eqs (15) and (16). Observed
image coordinates (Ui,Vi) are then corrected with the fol-
lowing formula:

(17)

After correction, the camera parameters are recomputed.
The parameters are not optimal in a least squares sense, but
the remaining error is so small that no further iterations are
needed.

The significance of the third calibration step is demon-
strated in Fig. 2 a) with an image of a cubic 3-D calibration
object. Since the two visible surfaces of the object are per-
pendicular there is no way to select the viewing angle so
that the projection asymmetry vanishes. Fig. 2 b) shows the
error in horizontal and vertical directions. The error in this
case is quite small (about 0.14 pixels peak to peak), but it is
systematic causing bias to the camera parameters.

3. Image correction

The camera model given in Eq. (6) expresses the projec-
tion of the 3-D points on the image plane. However, it does
not give a direct solution to the back-projection problem, in
which we want to recover the line of sight from image
coordinates. If both radial and tangential distortion compo-
nents are considered, we can notice that there is no analytic
solution to the inverse mapping. For example, two coeffi-
cients for radial distortion cause the camera model in Eq.
(6) to become a fifth order polynomial:

(18)

We can infer from Eq. (18) that a nonlinear search is
required to recover  from . Another alterna-
tive is to approximate the inverse mapping. Only few solu-
tions to the back-projection problem can be found from the
literature, although the problem is evident in many applica-
tions. Melen [5] used an iterative approach to estimate the
undistorted image coordinates. He proposed the following
two-iteration process:

(19)
where vectors  and  contain the distorted and the cor-
rected image coordinates respectively. The function
represents the distortion in image location q. In our tests this
method gave a maximum residual of about 0.1 pixels for
typical lens distortion parameters. This may be enough for
some applications, but if better accuracy is needed then
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Figure 2. a) A view of the calibration object. b) Error
caused by the asymmetrical dot projection.
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ṽi

2
k+ 2ũiṽi
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2
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3
+(

+ p1ũi
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more iterations should be accomplished.
A few implicit methods e.g. a two-plane method as pro-

posed by Wei and Ma [9] solve the back-projection prob-
lem by determining a set of non-physical or implicit
parameters to compensate for the distortion. Due to a large
number of unknown parameters, this technique requires a
dense grid of observations from the whole image plane in
order to become accurate. However, if we know the physi-
cal camera parameters based on explicit calibration, it is
possible to solve the unknown parameters by generating a
dense grid of points  and calculating the correspond-
ing distorted image coordinates  by using the cam-
era model in Eq. (6). Based on the implicit camera model
proposed by Wei and Ma [9] we can express the mapping
from  to  as follows:

(20)

Wei and Ma used third order polynomials in their exper-
iments. In our tests, we noticed that it only provides about
0.1 pixel accuracy with typical camera parameters. This is
quite clear, since we have a camera model that contains
fifth order terms (see Eq. (18)). Thus, at least fifth order
approximations should be applied. This leads to equations
where each set of unknown parameters  includes 21
terms. It can be expected that there are also redundant
parameters that may be eliminated. After thorough simula-
tions, it was found that the following expression compen-
sated for the distortions so that the maximum residual error
was less than 0.01 pixel units, even with a substantial
amount of distortion present:

(21)

and
(22)

where , , and
. If we compare this implicit inverse model

to the camera model in Eq. (6) we notice that also the in-
verse model has components which resemble radial and tan-
gential distortions. The counterparts for the distortion
parameters k1, k2, p1, and p2 are the coefficients a1,..., a4.

The model (21)-(22) contains only eight unknown
parameters instead of 63 parameters that were in the origi-
nal fifth-order model in Eq. (20). Back-projection using
this model will require less computation than the iterative
approach suggested by Melen giving also more accurate
results. The parameters a1,..., a8 can be solved either itera-
tively using the least squares technique, when the smallest
fitting residual is obtained, or directly, when the result is
very close to the optimal.

In order to solve the unknown parameters for the inverse

model, N tie-points  and  covering the whole
image area must be generated. In practice, a grid of about
1000 - 2000 points, e.g. 40 x 40, is enough. Let us define

Using Eqs (21) and (22) the following relation is obtained:

(23)
The vector p is now estimated in a least squares sense:

(24)
The parameters computed based on Eq. (24) are used in

Eqs (21) and (22) to correct arbitrary image coordinates (u,
v). The actual coordinates are then obtained by interpola-
tion based on the generated coordinates  and

.

4. Experiments

Explicit camera calibration experiments are reported in
[4]. In this section we concentrate on the fourth step, i.e.,
the image correction. Let us assume that the first three steps
have produced the physical camera parameters listed in
Table 1.

First, we generate an equally spaced grid (40 x 40) of
tie-points  that cover the entire image and a small
portion outside the effective area so that we can guarantee
good results also for the border regions. The corresponding
distorted coordinates  are obtained by applying Eqs
(4) and (5). The parameters a1,..., a8 are then solved with
the LS method in Eq. (24). The results are given in Table 2,
and the fitting residual between the inverse model and the
true points is shown in Fig. 3.

The maximum error in the fitting residual is in this case
less than 0.0005 pixels. For more intensive distortion, the
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ũi' ũi' a1ri
2

a2ri
4
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Table 1. Physical camera parameters.

a1 a2 a3 a4
-8.328e-03 1.670e-04 3.269e-06 1.568e-05

a5 a6 a7 a8
2.202e-04 -1.518e-07 -3.428e-08 -1.151e-02

Table 2. Parameters of the inverse model.
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4
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error will be slightly bigger, but under realistic conditions
always less than 0.01 pixels as the feature detection accu-
racy (std) was about 0.02 pixels [4].

In the second experiment, we generate a uniformly dis-
tributed random set of 2000 points in the image area. These
points are first distorted and then corrected with the inverse
model. The error originating in this process is represented
as histograms in Fig. 4 in both horizontal and vertical
directions. The error seems to have the same magnitude as
the fitting residual. Therefore, we can affirm that the inter-
polation between the tie-points does not degrade image
correction noticeably.

5. Conclusions

A four-step procedure for camera calibration was pre-
sented in this article. This procedure can be utilized in vari-
ous machine vision applications, but it is most beneficial in
camera based 3-D measurements and in robot vision,
where high geometrical accuracy is needed. This procedure
uses explicit calibration methods for mapping 3-D coordi-
nates to image coordinates and an implicit approach for
image correction. The experiments in the last section
showed that the error caused by the inverse model is negli-
gible. A Matlab toolbox for performing the calibration pro-
cedure is implemented and it will be available through the
Internet.
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Figure 3. Fitting residual.
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