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Abstract

In this paper, we shall give a set R* and indicate its properties, and thus, some abnormal results, such as the
limit number may be successor, the natural number may be transfinite, the infinite set can not be equipotent to
its proper subset etc., will be obtained.
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1. On R™

Assume the ordered set formed by front (n+1) prime numbers on the number axis (We refer only to the non-
negative integers on right of number axis) in accordance with natural order be

Dy ={do, di, da,-- -, dy}
make product )
=] |

i=0

, and denote the directed and closed segment from 0 to 3,, on the axis by
M, =0~ 3,]
The (3, + 1) integers in the M, form an ordered set, in symbols
Z,=1{0,1,2,---, 3,}

For any m € Z,, dividing the m successively by every prime in D,, assume the remainders be respectively

Ym0s "mls """ 5 'mn

Ym0
ROy =| "
Ymn

Obviously, for any one of numbers in Z, there is a definite matrix of single column corresponding with it. We
arrange all these column matrices in natural order, such that they form a n-degree matrix of remainders

and rewrite them as a single column matrix

roo o - r3,0

rop r o1
R(”): 01 11 3.1

Yon Ttn - T3n
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So the integral points in M,, the integers in Z, and the columns in R® (respectively rejecting their last element)
naturally form one-to-one correspondences (refer following 1.1, 1.2), each of them may therefore be replaced
by the other.

The R™ has following properties:

1.1 Any two different numbers in Z, except 3.(R™(3,) = R™(0)) correspond to two different columns in R™
(Two columns are called the same or equal when only when their corresponding elements at the same rows are
all equal, in sign ”=").

Proof: Assume that there were integers i, j € [0, 3,) and i < j, such that R™ (i) = R"(j), then by congruence
property (Hua, 1964, P. 3, P. 22.), the difference (j — i) can be integrally divided by each of all primes in D,,
therefore by 3, also. This is contrary to known that (j — i) < 3,.

1.2 The all different columns in R™ (Both the same first and last columns termed 0-columns which are com-
posed all by zeros may disregard the last one) include all possible combinations taking respectively one remain-
der of each primes in D,,.

Proof: Assume d; € Dy, the all possible remainders of d; are

P(di):{09 19 2""9di_1}

o

ri
Taking r; € P(d))(i = 0, 1, 2,---, n), we obtain a combination of remainders as | . |. Evidently, the number

of all possible such combinations is
Cclzo 'C}zl ""'C}z,, =dyd, - d, = 3,

By 1.1, there exactly are 3, different columns in R™, and thus the 1.2 has been proved.

We may separate all the columns in R™ into two classes: A column which does not contain the element zero
is called a column of first class, otherwise a column of second class. The integral points in M,, (or numbers in
Z,) corresponding with the columns of first class are termed residual points (or residual numbers) of degree n,
easily known

1.3 The number (total) of all columns of first class in R is

3= ﬁ(di -1)
i=0

. By 1.2, we only except the element zero from P(d;)(i = 0, 1, 2,---, n), then get the combinations so done.
Denote the ordered set (in natural order) of all residual numbers in Z, by

M) _ (s o)
A _{50 961 k) ’63;1_1}

easily known, 6(()") = 1, whereas the 6(1”) must be the next prime d(,.1). Obviously, the primes are infinite.

Calling the column R(")(%Sn) (the element at the first row is 1, and the others all 0) the mid-column of R™, we
have

1.4 The two classes of columns in R™ are all symmetrically distributive with reference to the mid-column. The
mutually symmetric columns R?(m) and R"(3,, — m)(m € Z,) satisfy

Fmi + 1(3,-mi = 0mod(d;) (i =0,1,2,---,n)

We call R®(m) and R"(3,, — m) the mutually conjugate columns, in symbols, R (m) = R™(3, — m), and also
so do for two relative points or numbers.
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Two columns in R™ are called mutually independent columns when only their corresponding elements of all
the same rows are different, otherwise, mutually dependent columns. And so call the relative points or numbers.

1.5 For any integer i € Z,, when the i is an odd the column R (i) does not have any independent column of
first class; When the i is an even, then the R" (i) has such columns so many that the number ¢ satisfies

3 <g<3 where3 = l_[(d,- -2)
i=1

1.6 For any even h € Z,, assume that its independent points of first class (i.e. independent residual points)
laying within the interval [/, 3,] have number ¢’, then in M,, the number of all pairs of residual points being &
apart (i.e. the distance between them is / length units) is necessarily the ¢’, and the converse is also true.

Proof: Assume that § € [k, 3,] is a residual number independent of /4, then the R™(§ — h) must be a column
of first class (i.e. the (6 — k) is also a residual number). If not, the element in R?’(6) that corresponds with the
element zero of R (8 — h) is necessarily equal to the relative element of R" (k). This contradicts that the 4 and
¢ are mutually independent. Conversely, assume §; and 9§, be two residual numbers in M, and 6, — 61 = h, then
63 € [h, 3,], above all, the 3, must be independent of /. Because if not, for both R™(8,) and R™(h), say, their
elements of i-th row were equal, then the element of i-th row in R?(8;) must be zero. This contradicts that the
01 is a residual number.

Particularly, in the M, the number of all twin residual numbers is (3;; — 1) pairs.

2.0nR

According to congruence properties, the whole semi-axis of numbers forms infinitely many periodic segments:
[0, 3,1, [3n, 23,1, [23,, 33,1, - - . Each of them corresponds to the same R™.

Adding the next prime d,4 into the D,,, we obtain relatively Dy+1, 3n+1, Zn+1, M,,H and R*+D. Obviously, the
RV involves d,. | ones of the same R"™ ranging periodically, but because of increasing a row of new elements
at last (ranging the P(d,) periodically to 3, times), among the old columns of first class in R”*! there now
are 3/ ones to have translated into second class. Evidently, the columns of first class decrease relatively. For the
sake of convenience, the process of translating from R"™ to R**! through increasing the next prime is called
regular evolution. Clearly, under the regular evolution, the properties stated before remain unchanged always.

Let R™ by the order of natural numbers regularly evolves on infinitely (i.e. n — 0 ), then

Dn_>D={d09d17“'sdn,“'}

3n—>3=ﬁdi
i=0

M, — M =[0-3]
Zn_>Z={0, 1’ 2,...’3n,...’3}

rOO rlo .« r3”0 “ e r30
rOl rll oo r3”1 .« r31
R™ - R= :

Yon Tn cee r3nn e r3n

The R still preserves similar properties about mentioned before, above all

2.1 The R also possesses the last column R(3) which is identical with the first column R(0), both are composed
by infinitely many zeros. Clearly, the proper factors of 3 involve every prime in D, and thus 3 = 0 mod(d;)(i =
0, 1, 2, ---). Again, the index of each prime factor of 3 is degree 1, hence the 3 is the minimal number by all
primes as factors.

Similarly, the R possesses the mid-column R( % 3), its element at the first row is 1, and the others are all zeros.
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1
1
2.2 In R, the first column R(0) possesses the successor R(1) = | : |, the last column R(3) possesses the
1
dy—1
di -1
predecessor R(3—1) = : (the (3 —1) is therefore of definite meaning, and the 3 is a successor number),

d, -1

and the others possess both predecessor and successor. For this sake, we require only to subtract together 1 from
every element of given column (if its some element, say one at mark i row, is zero, then do after replacing it by
corresponding prime d; ), or to add together 1 to every element of the column (if the element at mark i row plus
1 is equal to d;, then transform into zero).

ro
ry o
. r
LetX=| : |(rePd),i=0,1,2,---), Xy =| . |,and Rg be the submatrix formed by the front (k+1)
n :
Tk

rows of R (the Ry is composed only by the R®) and its periodic segments), then.
2.3 Any X is necessarily a column of R and any column of R must be some X.

Proof: Assume that there were an X being not a column of R, then there necessarily exists a certain k € wy (the
wy is ordered set of natural numbers), such that the X; ¢ Ry, and therefore X; ¢ R® as well as any periodic
segment of R®). This obviously contradicts the 1.2. Similarly, any column of R can only be some X.

2.4 In R, any two columns but the R(3) are mutually unlike.

Proof: (a) It may be alleged that, in R, there is no any other 0-column (its elements are all zeros) to be between
the R(0) and R(3). Otherwise, if there were (0 < a < 3) such that R(«) could be a 0-column, then @ =
Omod(d;)(i = 0, 1, 2,--+), thus every prime in D would be proper factor of the «, and so, @ > 3 (see 2.1), this
is contrary to the assumption. (b) In R, there are no any two non-zero columns to be the same. Otherwise, if
there were non-zero columns R(a) and R(8)(a, S € Z,and @ < 3), such that R(«@) = R(B), then by Ry_, denote
the submatrix composed by all the columns from R(0) to R(«) in R, and on the R parallely translate it to right,
so that to coincide with Ry_g up to their last column, thus the two submatrixes, because their last columns
are identical, by the double-direction induction (see late 3.2) easily known, the column (denoted by R(8 — «))
coinciding with the first column of Ry_, must be a 0-column. By (a), this is impossible.

Denote the matrix obtained after to reject the last column R(3) off the R by R*, and conceive the R* as an ordered
set of its columns in natural order, then the R* has minimal and maximal elements R*(0) and R*(3 — 1) (called
two extreme columns). Assume X be a non-extreme column of R*, then clearly, the X has both immediate
predecessor and successor. Therefore, the R* is a discrete set without any “limit (or inaccessible) element”.

As R™, the R* contains the columns of first class (e.g. in the column X let 7, = n + 1(n € wg) we get one), and
in the R*, each column has its conjugate one (the R*(0) and R*(%B) are self-conjugate).

2.5 The potency (cardinal) of R* is equal to the potency of the Continuum (Xie, 1979, P. 2.): 1% = c. Proof:
Denote the Continuum [0, 1] by C, and let any infinite decimal O.mymy ---m,--- (0 <m; <9,i=1,2,---)1in

> www.ccsenet.org/imr 11



Vol. 1, No. 1 ISSN: 1916-9795

C correspond to the element of R*, we find that E = ¢ < R*. Next denote the set of all denumerable

sequences consisting of non-negative integers by S, no doubt S = ¢, and R* C § when each column of R* is

naturally conceived as such a sequence, and so R* < S = c. Thus, R* = ¢ (here followed the old view of
cardinals and only make reference).

Use the R™* to express the ordered set of all columns of R™ but the last one R™(3,,), in definition, always
3, = R"™* for any n € wy, again when n — oo,

3,&R™* - 3&R*

then 3 = R* and thus 3 = c.
3. On R*

Since the columns in R* and the integral points on number axis M (except the end point 3) form a one-to-one
correspondence, thus we can directly use the columns of R* to label the integral numbers on M in the relation
of correspondence (the end number 3 is labeled by R* itself). Obviously, these numbers not only include all
natural numbers, but exceed them by far (e.g. the all residual numbers but the R*(1), the conjugate numbers of
the natural numbers but zero etc. are all transfinite). Above all, in R* except R*(0), the all other numbers are
successor ones, and any two consecutive numbers correspond to two points spaced out 1 apart on M, and thus
the R* (as well as the 3) may be regarded as extension of natural number set (such numbers as well as their
points are still called integral ones).

Similarly to R™, in R* the amount of all columns of first class is 3’ = [](d; — 1). These numbers expressed by
i=0

such columns except the R*(1) may be called generalized primes (or transfinite primes). Easily known, in R*

the twin generalized primes are infinitely many pairs, their number is (3" — 1) pairs, where 3~ = [[(d; — 2). Of
i=1
course, for any number in R*, if its element of the first row is 0, it is called an even; if 1, an odd. In order to be

clear about the orderity and connectivity of R*, we have:

Axiom 1: The distribution of all integral points on M possesses: 1) equidistant property (all points are every-
where equispaced out by 1 length unit and, the extreme points have one-side consecutive points, the others
have two-side ones); 2) increasing property (from left to right monotonically increasing); 3) completeness
(single-linearly marked the all integers from O to 3 ). Such arrangement is termed the number axis order.

Axiom 2: Assume @, B(er < fB) being two integral points on M, by Rz_ﬂ denote the subset of a segment from
R*(a@) to R*(B) in R*, let U and V be two nonempty and mutually complementary subsets of Rz_ﬁ(for any
R*(x) € Rj;_ﬁ, either R*(x) € U or R*(x) € V), then there exist R*(x;) € U and R*(x») € V, such that the R*(x;)
and R*(x;) are consecutive.

3.1 No doubt, the R* is an ordered set (with the number axis order).

Note that, taking R*(@) € R*, the subset formed by all front columns of the R*(@) is denoted by A = {R*(0), R*(1),
-+« ,R*(a — 1)} (when @ = 0, A = @), particularly the A is called the pre-part of R*(«) and signed as RS,(Q, 1y
the subset formed by all back columns of the R*(a) by B = {R*(@ + 1), R"(a + 2), --- ,R*(3 — 1)} (when
a = 3 -1, B = @), then for any R*(x) € R*, perhaps R*(x) = R*(a), or R*(x) € A (i.e. R*(x) < R*(a)), or
R*(x) € B (i.e. R*(x) > R*(@)). Obviously, it is impossible that R*(x) € A and R*(x) € B too (otherwise, there
will be two identical columns in R*).

3.2 Double-direction induction (DDI): By RZ_B denote the subset of a segment (R*(@) < R*(8)) in R*, there is
R*(¢) € RZ_/g which possesses property Q, “’for any column R*(x) of RZ_/;’ assume the R*(x) possess the Q, then
its consecutive columns (R*(x — 1) and R*(x + 1)) also possess the Q”, so every column of R;ﬁ possesses the
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Q.

Proof: Assume some columns of Rz_ﬁ do not possess the Q, and all such columns form a set as U, its comple-
mentary set be V, then by axiom 2, in R’,_; there exist consecutive columns R*(x;) € U and R*(x,) € V, because

the R*(x,) has possessed the Q, from assumption, the R*(x1) possesses also the Q, this is a contradiction.

3.3 The R* is not a well ordered set (see late 3.5). And thus, the 3 has been not an ordinal number (Thomas,
1978, P. 24-31.) in traditional meaning. Now define the numbers in R* and the R* itself (expressing the number
3) as axis numbers, then for each integral point on M there is a certain axis number corresponding with it. For
consistence with 3 = R* as ever, every axis number, as R*(@) € R*, may be defined as its pre-part, namely
R*(a) = R;_(Q_l) (when @ = 0, its pre-part being @).

This paper doesn’t stipulate operations on axis numbers, only affirms the determinacy of predecessor and suc-
cessor for given axis number. The 3 is an end number no its successor, so the (3 + 1) has not been axis number.
Asto 3’ and 3, since all greater than 0 and smaller than 3, they must be axis numbers.

3.4 Each axis number (but zero) regarded as a set is not equipotent to its proper subset (PS).

Proof: Obviously, in R* any nonzero natural number has possessed such property. For convenience, assume that
nonempty-subset R;_, of R* is not equipotent to its any PS, we prove that Ra_m (¢ =a—-1)and RS_m(ag =
a + 1) are also not equipotent to their PS. 1). Suppose that the RS—al were equipotent to its PS W, then add the
element R*(a) respectively to Rg_al and W, and make it correspond to itself, so we find that the R,_, and its PS
W U {R*(@)} are equipotent, this is contrary to assumption. 2) Suppose that the RS_QZ were equipotent to its PS
E, then a) If R*(ay) ¢ E, and R*(a;) corresponds to R*(x) of E, then reject both R*(a;) and R*(x) off RS_QZ and
E respectively, clearly R*(x) € R;_,, and so the R;_, would be equipotent to its PS (E rejected the R*(x)), being
contrary to assumption. b) If R*(a) € E, then in the corresponding relation of RS—(Zz and E, either R*(ay) is
oneself correspondence, in this case, reject the R*(e2) off Ry, and E, at once we find R, being equipotent
to its PS E*(E rejected the R*(»)), this is similar contradiction; or each R*(a;) corresponds to other element,
to say, R*(x1) € E and R*(x) € RS_QQ are the maps of R*(a;) from its set onto the opposite respectively, then
reject the R*(az) off each set, and make R*(x7) correspond to R*(x1), so we still find the R;_, being equipotent
to its PS E*, and also obtain a contradiction to assumption. By DDI, the 3.4 has been proved. So the axis

number is also cardinal like natural number.

3.5 Traditionally, the ordinal number wq defined by the ordered set of natural numbers is a minimal transfinite
number”. In fact, the axis number system has shown that, between the finite and infinite there is no certain
boundary and unbridgeable gulf. And so, so-called “minimal transfinite number” does not exist. Relatively,
the ”"minimal transfinite cardinal number” does not exist too (old conclusion of infinite cardinals have been not
enough to regard as criterion).

Usually, one stipulates the ”natural numbers” being all finite. However, since each natural number itself also
expresses the “number” of natural numbers (concretely, of all ones smaller than it), hence, if natural numbers are
infinite many, then necessarily there will be some infinite natural number” (generalized natural number). Since
restricting of the decimal notation, when the order of units in a numeral changes into infinite, the traditional
notation has had no method to express and to judge it, and so one counts it being no existing. However, when
one has some new number scale and expressing means, the condition will be quite another.
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