UNIVERSITY OF CALIFORNIA

Los Angeles

Recursive Random Games:

A Probabilistic Model for Perfect Information Games

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Gerard Philippe Michon

1983

MASTER COPY

840029



O

CLanuR



@ Copyright by
Gerard Philippe Michon
1983



The dissertation of Gerard Philippe Michon is approved

ﬂw S\ Mot vt —

Thomas 3. Ferguson

M&w

Sheils A. Greibach

Rt N

E. Burton Swanson

W

Judea Pearl,—Committee Chair

University of California, Los Angeles

1683

ii



Table gi contents

Table of contents
Index to definitions, theorems and figures

Abstract

0.Preface and Surmary

1.Introduction

2.Impartial recursive random games

3.Matched statistics and inert structures

4.Analyzing the complexity of game solving

5.Partisan games

6.Error propagation and pathology analysis

7.Quiescence analysis

8.Estimating the winning probabiiity after a truncated search

Appendix

A.Strange non-inert internal structures
B.Necessary and sufficient conditions for inertness
C.Standard pruning transforms N and M

Refarences

Page

iid
iv

vii

101
105
107

113



INDEX to Definitions, Theorems and Figures.

Branching Factor f thecetasscssesssensannns Def.
- of SOLVE ....... Ceassasesreasaans Th.
- of SOLVE, Ceesetsresenatacanaoenne Th.
Bushy Inert Structures ....... ceenaeans Th 4.2 Fig.
External Structure ... ... Cereeseerreans | Def.
Games of Finite Height ...... Cetreeatesarannn .. Def.
Game Structure (G) teessesseneas cresraenens Def.
HSOLYE  eiiiieeinenas Cesransenas Fig.
Inert Games tereasteesansesasas «e.. Def.
Internal Structure = ........... Cesesarerannn Def.
Length of a Game P Def,
Matched statistics tesieseenecaenn . Th 3.1 Def.
Minimal Search Tree = ......... tesseseraesaans Def.
Misére Play Rule = ....oivnens Cesrssssaaans Fig.
Normal Play Rule cerevetscaransaerannas .. Fig.
Partisan Games Ceescasaisesasseanne ..o. Def.
Partisan Statistics teetiraesesnenanas ceness Def.
Performance of SOLVE  ................ vevaeaes Fig.
Performance of SOLVEi Cereerrscannaens crerana Fig.
Probability of finiteness .............. Th 2.1 Fig.
Probability of a game- ...... Creessananenens ... Fig.
Probability of 10SSES  eeverivnonnnns .A ......... Def.
Probability of ties e e Fig.
~ Probability of wins Ceanessaesannansiennnns Def.

iv

2.4
4.1
4.3
3.2
3.2
2.3
2.6
7.2
3.4
3.1
2.5



QSOLVYE Cerbsssenanennns veeesess Fig.
Quiescence teeeeenans crsensesesans . Def.
Quiescence Consistency .......co.nn cesssaaresas Th.

Quiescence Threshold ......ccvcn.s chrssensnas Fig.
Recursive Random Games G ....... Ceeeesanniaanene Def.
Stability tecrsetsneseennn R A - P
Static Evaluation = ......... ciresirananenas Fig.
Statistical Structure F .......ccvvenes thessanes Def.
Status of Games = ..... Cersesesaannes ve... Fig.
Status Diagram = ....... Ceeseecesanns .... Fig

Survival Rate (b) ferestsaaneaataraen voo.. Def.
Transition Statistics .....eveeeennss cerensaas Fig.
Visible Nodes = «cieee... cesentesacns ... Fig.
Winning probability p  .c.cveenieinnennns cevees Def.

7.2
7.2
7.1

2.1
5.2
6.1



VITA

March 29, 1956--Born, Talence {Gironde}, France

1976-1979-~ Ecole Polytechnique, Paris, France

1979-1980-- Ecole Nationale Superieure des Telecommunications
1980-1981-- M.S., University of California, Los Angeles
1981-1983-- Research Assistant, Department of Computer Science

University of California, Los Angeles

vi



ABSTRACT OF THE DISSERTATION

Recursive Random Games:

A Probabilistic Model for Perfect Information Games
by

Gerard Philippe Michon
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1983

Professor Judea Pearl, Chair

A simple prqbabi1istic model for game trees is described which ex-
hibits features likely to be found in realistic games. The model allows
any node to have n offsprings (including n=0) with probability f_  and
assigns each terminal node a WIN status with probability p and a LOSS
status with probability q = 1-p. Our model may include 1nfinite game
trees and/or games that never end when played perfectly. The statistiba1
properties of games and the computational complexities o7 various game
solving approaches are quantified and compared. A simple analysis of
game pathology and quiescence is also given. The model provides a
theoretical justification for the observed good behavior of game-playing
programs whose search horizon is not rigid. Pathological features that
were recently found to be inherent in some former game models are pu® in

a new perspective.
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Recursive Random Games:
A Probabilistic Model for Perfect Information

Games

0. Preface and Summary

Traditionally, game-playing has been regarded as one of the key
activities a machine would have to perform well before the gquestion of
its intelligence could be addressed, but all is not well with this idea.
The power of fascination of a working program i§ such that people often
see this as an end in itself, yet since computer science is still large-
1y an experimental field, we have the possibility of trying out ideas
before questiohing their scope or validity. The result is that if Some
ideas work reasonably well, they are unlikely ever to be questioned.
For example, the reasons why a simple idea 1like minimaxing works are
still quite obscure once one recognizes that an initial intuitive appeal
and/or a decent berformance in actual tests do not.qualify as rational
explanations. Moreover, before we could even wonder why any given
methodology works, we should wonder what it means that such a methodolo-
gy does work. Do we want a procedure to perform well against opponents

whose abilities are inherently limited, or do we request some kind of



absolute measure ?

Game-playing is a perfect laboratory for studying a pure form of
deductive reasoning uncorrupted by previous knowledge. We are not in-
terested here in the form of expertise that is gained through Tong and
tedious compilation of recipes: our object is the process by which those
: recipes are synthesized efficiently from scratch. What are the mechan-
isms that contribute to turn a rough and inaccurate understanding of a
situation into a decent level of expertise without resorting to exter-
nally compiled knowledge ? A better understanding of such mechanisms
would undoubtly be gained if their .effects could be measured with

respect to some universal yardstick.

The staggering combinatorial complexity of usual games makes a
probabilistic yardstick an obvious choice. This is similar to the prob-
lem of statistical mechanics, where the number of molecules in a typical
real sample 1is so large that deterministic laws can only be used as
tools for deriving the probabilistic laws that govern the behavior of
fhe sample as a whole. Compare this to the size of the game tree for
chess, traditionally estimated to be around 10120, and the number of

different board positions roughly 10%0. Moreover, one can even design



games that are theoretically undecidable. No algorithm could be
designed that would be guaranteed to find whether a typical position of
such a game can be settled in finitely many moves when played perfectly.

£*]

In spite of this staggering complexity, simple practical 1ideas
1ike the minimax evaluation of a truncated game tree have proved reason-
ably effective. However, if the playing performance of commercially
available microprocessor-based machines 1is no longer ridiculous, the
play-level of even the best programs running on the most powerful
machines available still does not compare with that of the better human
experts. We conjecture that this is due, in part, to the Tack of a reli-
able measure that could accurately monitor progress in game-playing
technology. We still lack an efficient way of discriminating between
good and bad new ideas, and are often too shy in questioning the validi-

ty of old ones.

Normally, we hope that a few general concepts combined with a Tlot
of wasted computations will enable a machine to reach a decent 1eve1 of
expertise. This works to some extent. When this does not measure up to
our expectations, the usual remedy is to introduce stiil more computing
power and hope that the result will somehow be better. The basic
processes through which common sense principles are turned into exper-

tise are hardly ever questioned. Undoubtely, current approaches are

* Petri Nets can be viewed as games where the transition which is
fired next is up the player whose turn it is. The outcome of such games
is determined according to the normal play rule: whoever cannot fire a
transition Toses the game. 'Petri Net Games' are undecidable in the
sanse described here.



~able to perform this magic but there is also very little doubt that they
are suboptimal. It is unlikely that we just need a few more tricks and
a little more speed to let our machines compete against the best experts
and win. The success that brute force approach has enjoyed needs ex-
plaining. A probabilistic quantification of game concepts should help
in such a clarification and contribute to a better design of future pro-
cedures. To achieve this goal, our probabilistic yardstick needs to be

both simple to use and universal enough.

Qur exploration of these problems in the present study is modest,
restricted to an effort to explain how some procedures effectively take
advantage of some probabilistic features of certain games to improve on
the quality of any decision procedure, including random guessing, at the
expense of more computational time . For this we need a meta-domain of

discourse that would allow us to examine infinitely many game positions

at once. For if there is a form of intelligence that works surprisingly

well without any previous experience in the domain of discourse, the
very mechanisms that make such a form of intelligence work at all cannot
be captured by the study of any single game. Such a discourse is given

to us by the theory of probability.

The use of probabilistic methods in the study of a totally deter-
ministic domain 1ike perfect information games may appear superficially
surprising, but in the world of games like in many others, determining
the 1likelihood of a given feature is often much easier than recognfzing
its occurrence in a particular instance. For example, it may well be

easier to find the probability of winning from a typical position than



it is to find the correct winning strategy from a given situation. In
other words, it may be much easier to know how well we are expected to
do than how well we are doing. The best we can do, then, is choose a
procedure of good expected performance according to some probabilistic

model of the situation.

This paper presents such a probabilistic model for two-player per-
fect information games. Every game position allows a random number of
legal moves such that each, if enacted, Teads to a similar situation.
The model both conveys nontrivial general properties of games and ac-
counts for some aspects of games that were overlooked in former models
discussed in the literature. This includes game models based on a uni-
form tree structure [15,17.23,261 , that is, games that always allow the
same number of legal optigns irrespective of the particular situation.
By placing those models in a larger perspective, we explain some-of the

paradoxical artifacts with which they were recently found to be plagued.

Section 1 introduces the fundamental concepts generally used in
the world of games in é persﬁective suitable for the rest of this expo-
sition. We emphasize that games can be reduced to game trees, that
games whose graphs contain cycles will unfold into infinite game trees,
and that some but not all, of these infinite game trees correspond *o
games that cannot be settled in a finite number of moves if both players
are playing perfectly. We find it useful to view those games as 'dynamic

ties'.



Once section 2 introduces our model quantitatively, the natural
appearance of dynamic ties, appears as a justification a posteriori of
our methodology. Our probabilistic assumptions do not rule out a coun-
terpart of the cyclic games that may appear with games played on graphs.
The catch is that the kind of ties that appear in game trees are essen-
tially impossible to recognize as such by any finite procedure. So even
though our model does not rule out ties, we must consider that whenever
the model's parameter are such that ties appear with nonzero probability
the games may well be impossible to solve even for players with unbound-
ed look-ahead capabilities. This can also be seen as an intrinsic 1im1-
tation of game-playing procedures that discard the cycle structure of

the game graph entirely. [*]

Section 3 separates the model's parameters into two basic groups.

Thé first gfoup, called the internal structure K governs the behavior of

games before their actual termination by determining the probability
distribution of the number of Jegal options. The second, called the

external structure consists of a probability of termination (1-b) and a

probability p that a terminated game is a win for whoever turn it is to
play. The external structure may be matched to the internal structure
when the parameter p is equal to a special value EK- When this happens,
internal and external nodes have the same probability of being first

player wins, and our analysis remains valid even if external nodes ap-

* Hash coding techniques are sometimes used to detect nodes that
have been previously examined. While this technique 1is intended
primarily to eliminate duplicate expansions of a node's successors 1in
the acyclic case, it has the potential of avoiding cyclic expansions.
Therefore, game-playing procedures that incorporate hash-coding may
recognize ties in a finite number of steps. '



pear according to some unspecified scheme. This scheme does not need to
obey our general probabilistic assumption, and this remark extends the
scope of our discussion. For example, external nodes could appear
predominantly as children of bushy nodes, or they could all be located
at a given fixed depth, as in most former models. In the matched case,
the exact conditions for termination influence only the game's length,
not its outcome. Furthermore, we show that some internal structures,
called inert, have the property that they do not allow ties , games of
infinite length, even if the probability of termination is arbitrarily
Jow. The key to inertness is shown to be the fact that those games al-
Tow a large standard deviation in the number of legal options available
from a typical game position. This can happen for arbitrarily bushy
game structures. Inert structures are appropriate for describing Tong
and bushy games in which ties almost never occur. The geometric distri-
bution is shown to be a convenient special case aﬁpropriate for such a

description.

The use of the model in the comparative analysis, of the complexity
of game-solving procedures is examplifiad in section 4. An expression
for the branching factor of the standard depth-first search procedure
SOLVE is given. Various procedures that improve on SOLVE are also dis-
cussed. The Towest probability of termination that makes a game-solving
procedure almost surely terminate is suggested as a good measure of the

limitations inherent in that particular procedure.

Section 5 extends the model to include asymmetrical partisan

games. In our probabilistic perspective, partisan games are games that



allow the probability distribution of the number of 1legal options to
depend explicitly on whose turn it is to play. The winning probability
for tip nodes may also depend on who played last. The discussion is not
significantly more complex than that for the impartial case which is
used in the rest of the paper mostly for convenience. The world of par-
tisan games, however, is significantly richer than that of impartial
ones. Most real games have partisan rules and this often translates
into a partisan probabilistic model. The partisan version of our model
may exhibit an amusing phenomenon, illustrated in section 5. One player
may have a decisive advantage in a game lasting many moves, while the
other player only stands a chance if the game lasts very few moves.
Partisan games can also be totally unfair. If one of the players cannot
win a terminal position while the other player cannot lose one, the best
the former player can hope for is a tie. In this very special case,
virtually all internal structures will yield a nonzero probability for

ties if the probability of termination is low enough. [*]

Section 6 outlines some ideas relating to the propagation of er-
rors in the evaluation of the status of a game tree. This issue was the
jnitial motivation for the model presented here. Program designers have
been assuming for decades that the quality of a game-playing decision
based on minimaxing couid only improve with a deeper search. Yet it was
recently discovered [20] that the standard theoretical game model that

is traditionally [15,17,23,26] used supports the opposite view, in spite

* One of the rare exceptions is the geometric distribution (see
Section 3). If the game's internal structure K is the same for both
players, then exceptions to this statement can only be obtained if 1-K
is 1its own invérse. At this writing, the geometric distribution is the
only such example we know of.



of the fact that minimax programs have been performing reasonably well
for decades. Theoretically, the deeper a minimax search, the worse the

decision. Nau [20] termed this phenomenon pathological. Minimax search

performs much better 1in practjce than it has any right to in theory !
Explanations have been attempted [24,25] , but the question is still

essentially open.

Our model supports the view that a tractable game will not be
pathological, while an intractable game, a game in which dynamic ties
appear naturally, normally will be pathological. In this context,
pathology appears as a property of the internal structure of a game. A
minimax estimate can be expected to discriminate between good and bad
moves better than the static evaluation function it is based on, provid-
ed the internal structure of the game is fnert. To put it bluntly,
pathology was observed on former models that used a constant-branching
degree d because the internal structure of these models (K(z) = 24 ds
not inert. This remark could also be seen as an indication that the
games people actually play are somehow better represented by an finert

structure than by a non-inert one. [*]

in actual game-playing procedures, it would be foolish to hope for
an exhaustive search of the game tree. For all situations that are not
end-game positions, the search has to be truncated as some point, yet

truncating the search tree at a fixed depth turns out to be a poor idea

* IT 1s not our intention to say that chess,-say, can be represented
accurately by a recursive random game. However, we believe that the
concepts presented here are general enough to have a counterpart in the
domain of real games. Any reference to such games is to be taken in a
figurative sense.



in practice. Consequently, pursuing the search of game trees only from
certain positions called non-quiescent was recognized very early r27] as
an effective scheme. Section 7 presents an analysis of gquiescence, and
demonstrates that our model is flexible enough to allow an investigation
of the theoretical reasons for the advantage of quiescence-based search.
Section 7 contains a theoretical confirmation of the usefulness of
quiescence and establishes an appropriate criterion for truncating the

search.

Section 8 presents an alternative to the minimax rule of process-
ing the information obtained from nodes farther down in the game tree.
The alternative suggested is to propagate winning estimates in the same
way winning probabilities would. This results in a product propagation

rule. A simple minded analysis of that rule is given in that section.

10



1. Introduction

The games we consider here are two-player, perfect information
games 1in which the players take alternate turns. The most general
representation of such games is a directed, possibly infinite graph
whose vertices represent positions and whose edges represent legal moves
from one position to another. A vertex from which there 1is no edge,
hence no legal move, represents a terminal position. A 1abel is assigned
to each terminal position; the outcome of the game depends on what TabeT

is associated to the final position.

The two standard ways of labeling terminal positions are tradi-
‘tiona11y [10,5] called the "normal play rule" and the "misére play
rule". The normal play rule states that all terminal nodes are 1labeled
L (loss), indicating that-whoever has to play from a terminal position
is the loser. The misére play rule states the opposite, that all termi-
nal nodes are 1labeled W (win)g whoever is unable to play when called
upon to do so is the winner. Some authors also allow finite games to be
drawn by labeling some terminal positions T (tie). For the sake of clar-
ity, the arguments deve?cped in this paper restrict T to games that can-
not be won by either player in a finite number of moves; a terminal po-
sition is either a loss or a win. Figure 1l.1l.a2 gives examples of such

games.

11



Normal play rule Misére play rule

Figure 1.1.b : Extended labeling of some games .

(W) (0

T & & Q ..
O ® O

E?% %ﬁ EOROG

Figure 1.1.b shows how to extend the labeling of terminal nodes to

internal nodes. Since perfect players always leave their opponent with
the worst possible position, a next player win (label W) is a node with
at least one child labeled L, a next player loss (label L) is a node for
which all children are labeled W. If the iterative application of those
two labeling rules eventually leaves some nodes unlabeled, those are
ties {label T). One should be aware, however, that there is more to
game playing that this 1labeling protedure: it is not sufficient when
called upon to play from a W node to move into an L node to insure a win

in a finite number of moves. This is illustrated by the last example



given in Figure 1.1 where the winner, the player who made the second
move, c¢an actually postpone his victory forever while always leaving his
opponent in a losing (L) position. Consequently, it is convenient to
view. a perfect winner as winning in the least possible number of moves
against é perfect loser who attempts to postpone his 105; as long as

possible.

A convenient way to deal with games is to turn them into game
trees by unfolding them, duplicating any node with more than one prede-
cessor. This results in an infinite tree whenever the original game

contained any cycles or was infinite itself.

The purpose of this paper is to make some observations on the sta-
tistical behavior of an interesting ensemble of such game trees. The
spectrum of features our model exhibits is rich enough to encompass some
characteristics that we feel are'essentiéT to thé analysis of heuristic
game-playing strategies,yet are generally overlooked. Our model is op-
posed to the now classical analysis (see [10] ,pp 139-140 or 28] ) that
assumes equiprobability among games of given depth while making the
elegant but not so innocent assumption that only structurally distinct
nodes need to be counted as distinct. This simple assumption turns out
to be a very difficult one to check against the 'real worlid'. A game
1ike chess may or may not have many structurally identical positions
that Tlook totally different on the board. If the statistical features
that one can derive [28] from such simplified models is ever %o be use-
ful 1in practice, then a totally different approach is required. This

paper presents such an approach.

13



We define an ensemble of possible games which may contain all con-
ceivable game trees, and assign reasonable probabilities to sets of
those games. Our statistical assumptions have been kept as simple as
possible to serve the purpose of obtaining an insight into the essential
concepts of Game Solving. Possible extensions of our basic model are
discussed in section 5. The results presented here are to be taken in
the sense of giving a general feeling of the issues involved in a sta-
tistical approach to the notorfously difficult problem of automated
game-playing. We suspect that some important aspects of the statistics
of games that people actually play are unlikely to show up in such a
simplistic frame; however, we do believe that all the features that do

show up and are discussed at length here should not be disregarded.

The motivation for a statistical model of games f{s clear. The
combinatorial complexity of a game tree effectively hides away its use-
ful information and makes the outcome of a game highly unpredictable.
Furthermore, even though the outcome eventually depends on minute de-
tails in the game tree, few players would fail to recognize that Tlike
situations are 1likely to yield Tike outcomes. This alone would make a
statistical approach legitimate. Moreover, since our primary goal is to
capture the essence of some of the general features of games through a
probabilistic representation, the study of any particular game, no
matter how 'typical' we think that particular game is, would be insuffi-

cient.

14



2. Impartial Recursive Random Games

In our basic model, we consider that every nonterminal position
allows n Tlegal moves with probability fn, regardless of how this posi-
tion was reached or of whose turn it is to play. Consequently, we call
such games impartial. A position is terminal with probability fO' We
will always assume that fO is not equal to zero. Such positions are la-
beled independently W, with probability p and L, with probability
qg=1-p.

Symbolically, the above definition is best expressed by the fol-
lowing recursive definition of what we call the family § of impartial
recursive random games.

Definition 2.1

G = folp<w+qel>) + fL @ + F, 0+ f3,0\ + ...
§ - §§
This formula states that a member of G is either a terminal node,
a game with one initial option (probability fl ), or a game with two in-
itial options (probability f, ), etc.
Definition 2.2

®
The generating function F(z)= z:fnz" is called the tree structure
n=0

of § . The pair (F,p) is referred to as the statistics of § .

Definition 2.1 introduces a notation we will use extensively.

Script letters (such as § ) denote a set of game trees, while a symbol
0

like é E denotes all games with two options, each a member of §. <W>

and <L> denote the singletons corresponding to labeled terminal posi-



tions. A set of games is always to be used with its probability as a
'coefficient’'. Coefficient 1 is implicit for G itself. Hence, all such
formulas have a numeric counterpart easily obtained by removing ail sym-

bols denoting games. The numeric counterpart of Definition 2.1 is:

—
I

= fo(p‘l'q) + ‘Fl + ‘Fz + ‘F3 + ...

that is:

—
H

F(1)

This result states that the right-hand side of the formula in De-
finition 2.1 enumerates all possible games. In more complex cases, how-
ever, such a numerical result will convey nontrivial information. Actu-
ally, the symbolic version of the formula is merely a condensed explana-
tion for the numerical counterpart. The formula states some equality
between sets, while the numerical equation asserts the equality of their

probabilities.

16



Figure 2.1.a : Probability of some small games

® Fop

fz(fo)zpq

. f3f2(f0)4pq3 .

Figure 2.1.D

Figure 2.1.a gives the probability of some small games according
to our basic model. Figure 2.1.b gives an example of a game that yields
an infinite tree when unfoldéd and, therefore, almost never (probability
0) occurs in our model . However, even though only finite games have a
nonzero ﬁrobabi11ty, sets of infinite games may'sti11 have nonzero pro-

bability.

Let us consider the set £ of finite games (£ CG§) and compute

its probability pg . # and pp satisfy the following equation, which
states that a finite tree is eijther a leaf or an internal node with only

finite offsprings :

pF,[' = fo(p<w>+q<[_>] + fl(pF) @

17



The numerical counterpart of this formula is the fixed point equa-

tion : pp = Fipg).

This equation is always trivially satisfied for pc=l and # = § .
However, this is not always the correct solution to our problem. The
above fixed point equation may have more than one solution. We need a
more refined analysis that consists in asserting that /£ is the union of
all trees of finite height. Let us define ;f'n as the set of finite
games of height at most n, where the height of a finite tree is defined
as the longest path from the root (a leaf has height 0, a tree 'with only
one internal node has height 1). We then have a correct inductive defin-
ition of fn A

Definition 2.3
pg {'0. = fo(p<w>+q<l_>}

2
p{_ﬁl’rn"'l = folp<i>+q<l>) + Fl(p,’;) ? + fz(pg)“ /0\

£n £ nén

* 3R e

The numerical counterpart of Definition 2.3 permits us to compute

the probabiTity p{l of £, :

0

P = o
+1 _ n

18



The value of the solution pp = 1im Dg depends critically on the
n-s

parameter r = %;(1), as shown in Figure 2.2 .
Definition 2.4

The branching factor r of a family of trees of structure F is the

expected number of offsprings of a typical node, namely the quan-

tity r = %;(1) .

Theorem 2.1 ( Galton-Watson processes (1874) f11)

The members of a family of trees of structure F are finite with
probability 1 if and only if the branching factor r of the family
is less than or equal to 1. Otherwise the probability of finite-

ness is the least fixed point of F.

It is not at all difficult, although beyond the scope of this sim-
ple illustration, to see that, for r=1, the average height of a tree is

infinite; although infinite trees have zero probability.

The above introductory computation was concerned with the underly-
ing tree structure of our basic model, not with 7ts game properties.
The win-loss status of the tiﬁ nades was irrelavant. Now, however, we
consider our trees as games by dividing G into the three basic families
: next player wins, next player losses, and ties, respectively denoted
by W , L and T . Our general scheme is similar to the one used for

the above illustration, the main difference being that the concept of a

19



slope T

y = F(x)

Figure 2.2.a : When r>1 not all game trees are finite

20



N\

y = F(x)

0]
slope r /

Figure 2.2.b : When r{l all game trees are finite

21



tree's height will be replaced by that of a game's length.
Definition 2.5
The length of a game is the number of moves two perfect players
would play before reaching a terminal position . Recall that per-
fect players try to win in the least possible number of moves or

to postpone an unavoidable loss as long as possible.

Consider the family ({/, of first player wins of length n or less
and the family L. of forced losses of length n or less. (I early, W/ is
the union of all Wn and L is the union of all Ln while T includes
everything else, that is, all games of infinite length. Denoting the

complement of L, by (/n we obtain :

0
PL LO = foq<L>
PS WO = fop<W>
+1
T Ly = 0O 8 g2
n nwn
+1

Ln In § Un kn

#3000 Oy sal (100D A\p{ (102 8\) + .

22



The numerical counterpart of those formulas is

0. n+l oo prpMy-

pL foq PL F(pu) fop

0 +1 -

py = fop | s fop-l-].-F(l-pE)

These relations make it natural to introduce a new function, G.
Definition 2.5

The game structure G of an ensemble § of statistics (F,p) is the

quantity  G(z) = fgp + 1 - F(2)

The above relations can be written in a way that deserves to be
expressed as a Theorem by'using G.

Theorem 2.2 |

Both the probability u, = 1-pE that the first player can avoid

losing in n moves or less, and the probability v, = Pu that he can

win in n moves or less, are given by the following recurrence:

6(0) Une1
G(l) Vn+l

( uq

B

Figure 2.3 illustrates the rest of the discussion. One can draw

G(vy)
G{up)

It
n

two ‘'spirals'. The solid line gives u, for even values of n and v, for
odd values of n. The dotted line yields u, for odd indices and v, for
even indices. The fixed point of G is t ;m is the slope of F, the op-
posite of that of G, at point t. Ties almost never occur (see Figure
2.3.a) when -both spirals converge toward the fixed point t. This can
only happen when t is a stable fixed point of G (i.e. m <1). If m is

larger than 1, ties always occur with nonzero probability (see Figure
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Figure 2.3.a : Ties almost never occur only if m<l

Y is the probability thet the first player can win in n moves or less
u i{s the probability that the first player can avold losing in n moves
or less

m 1is the slope of -G at point
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t is the fixed point of G
m is the slope of -G at point t
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2.3.b). If m is Tess than or equal to one, the situation illustrated in
Figure 2.3.a, where ties almost never occur, is the most common case.
One can find functions G that have stable 'two-cycles' in spite of the
fact that m<l. [*] The 'spirals' cannot get past the outermost two-cycle

of G and ties will therefore appear with nonzero probability.

A case of particular interest is the limiting.case where ties al-
most never occur and m=l, since it almost always (probability 1) yields
games which are finite in length when played perfectly, although the ex-

-pected Tength of these games is infinite. We call such a statistic
(F,p}) a transition statistic. We view a transition statistic as

describing the state of affairs commonty called a phase transition in

various domains of statistical physics (thermodynamics, ferromagnetism
... ) where a given property changes abruptly with the minute variation
of some parameter. As is the case in theoretical physics, discontinui-
ties in our statistical model are brought about due to the fact that in-
finity is allowed. This leads us to adopt the vocabulary of physicists
and to acknowledge the fact that there is more to a phase transition

than a sharp transition.

When dealing with a transition statistic, one can expect a game
that may well be impossible to play perfectly for players with finite

look-ahead capability , yet is almost surely (probability 1) a forced

* txamples of such 'strange' functions G are given in Appendix A. A
necessary and sufficient condition for the absence of such two-cycles in
G appears in section 5 (Theorem 5.1} in a more general context. Theorem
5.1 implies that ties almost never occur if and only if the two curves
of equations x=G(y) and y=G({x) have only one point of intersection. This
is ‘usually' the case when m<l so that m<l is 'almost' a necessary and
sufficient condition. - -
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loss for one of the players. This certainly looks 1ike the type of si-
tuation that humans and computers are 1ikely to encounter when playing
interesting games whose exact analysis is far beyond their analytic
capabilities. statistics close 0 the transition point (mel} are there-
fore more likely to yield a realistic model of interesting games. Games
below the transition point (m<l) are expected to last very few moves and
to lack challenge. games beyond the transition point {(m>1) are too
challenging even for players with infinite look-ahead, since there is a
nonzero probability that such games cannot be settled in a finite number
of moves. Listed on Figure 2.4 are some examples of transition statis-
tics with the normal rule of ptay namely that whoever is unable to move
when called upon to do so is the loser. Those could be used to approxi-

mate roughly, for analytic purposes, the statistics of some real games.
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Figure 2.4 : Examples of transition statistics (m=1)

for Impartial Recursive Random Games in Normal Play (p=0)
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3. Matched Statistics and Inert Structures.

In a finite horizon model of games it has been observed [23] that
a certain winning probability for the tip nodes (our parameter p) im-
plies an identical probability for 211 internal nodes. A winning proba-
bility for the tip nodes satisfying this property will be said to match
the structure of the tree. We will now define and characterize matched
statistics within our model and explain why matching actually allows us
to analyze successfully game trees in which leaves appear with less sta-

tistical regularity than we have assumed so far.

First, we find it convenient to separate the statistics (F,p) of a
family of games into its two natural components: that which governs the
termination of the game and that which governs the internal structure of
a nonterminated game.

Definition 3.1

The internal structure of a family of impartial recursive random

® f
. . . - n - n.
games is the generatwng’funct1on K(z) = églk“z , where k= T:?E

is the probability for an internal node to have n offsprings.

Definition 3.2

The external structure of a family of impartial recursive random

games is the pair (p,b) where p is the winning probability for tip

nodes and b=1-f, is the probability that a node is terminal.

The quantity b is introduced as an independent parameter that can
be seen as controlling the depth of the tree and that, together with ¥,

fully describes the statistical structure F via: F(z) = (1-b)+bK(z).

29



The rest of this section will assume that the internal structure K
is given, and will investigate the variations of PL » Pr and py for
various external structures.

Definition 3.3

The external structure (p,b) is said to match the internal struc-

ture K 1{f the probability that any given node is a win (resp. a

loss) is equal to the probability that an external node is a win

(resp. a loss).

In other words, internal and external structures match when

Py =p and p_=q = 1-p.

Definition 3.3 clearly implies that matching may only occur when
ties have zero probability. The condition p=py then reduces (see Figure
2.3.a) to p = G(p), where G(z) = fpp+1-F(z) = (1-b)p+b(1-K{z)), as pre-
viously defined. This can be rewritten p = 1-K(p), provided b # O.

Hence, calling EK the fixed point of 1-K, we have p = EK' Match-
ing occurs under this condition with the added restriction that ties ac-
tually have zéro probability; this formally implies that %;(EK).i 1 or
b < [%giEK)]‘l . Hence: |

Theorem_iﬂg

An external structure {p,b) matches an internal structure K if and

only if

1/ p =8 (where § is the fixed point of 1-K )
and 2/ b < (1!

and 3/ Ties almost never occur. [*]
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It may appear surprising that the winning probability Py =p = EK
remains the same over a wide range of b. This, however, is merely a
consequence of the fact that when terminal and internal nodes have the
same winning pfobabi1ity, the frequency of terminal nodes is essentially
irrelevant. Actually, when the matching condition p = Ek is satisfied,
the way terminal nodes appear is completely irrelevant to the computa-
tion of the winning probability. py will always be equal to EK as long

as ties are somehow forced to have zero probability.

For example, Pearl [23] uses K(z) = z4 in his constant length
model, where all terminal nodes appear at the same fixed depth, and
proves that when tip nodes are independently chosen to be wins with pro-
bability EK: all internal nodes are also wins with probability EK- In
fact our very notation EK is merely a generalization of a notatien Ed
first introduced by Baudet [3] in such a model (Baudet also used

K(z) = z9).

One major distinction between our model and the model used by
Pear! and Baudet 1is the stability of the matching condition p = EK-
Pearl's model exhibits a high instability since Py tends to depart from
EK as the (even) height of the game increases. Quite rapidly [23] , py
will be extremely close to either 0 or 1 (depending on whether p is
below or above EK). By contrast, in our model, (see Figure 3.1} the

farther away tip nodes are expected to be the closer py will be to EK'

* The second condition is redundant. It is implied by the third.
However, condition 2 is interesting as a closed form condition that is
“usually sufficient to ensure condition 3. The third condition should be
kept because m < 1 (section 2) does not always suffice to prevent ties
from occurring as shown in Appendix A. '
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We conjecture that the paradoxical instability found in fixed horizon
models is due mostly to a built-in bias toward one player. Those models
imply that whoever plays second plays last. What this amounts to is a
highly asymmetrical relation between the situations of the two players.
This bias does not disappear in large game trees. In fact, Pearl showed
that the effect is just opposite: the higher the tree, the greater the
bias. These remarks are a warning against the fact that simple wmodels
may exhibit features that may or may not have much to do with the origi-
nal thing. This most probably applies to the model discussed here as
‘weT1, and explains why we found it so important to match the conclusions
derived from the model against one's intuition of what kind of features

cne would find in a complex game.

The diagrams of Figure 3.1 summarize our discussion so far. Those
diagrams are all plotted for a given internal structure (here K(z) = 22)
and each diagram corresponds to a given p. The parameter b is used as

the horizontal coordinate. The diagrams are to be read as follows.

Given a statistic (F,p) where F(z) = (1-b)+bK(z) , one considers
the vertical slice whose abscissa is b in the diagram corresponding to
p. Such a slice is of length 1 and the share of the slice that falls
into a given region of the diagram (LOSS, WIN or TIE) gives the proba-

bility of the game's status (Toss, win or tie) for the statistics (F,p).

The diagrams are obtained as follows. The equation of the boun-

dary between the WIN and LOSS region as implied by Figure 2.3.a, is:

32



y= Gb(y) (in the binary case : y = (1-b)p+b(1-y2))

The notation Gy is equivalent to our former G but stresses the

fact that 6,(z) = (1-b)p+b(1-K(z)) explicitly depends on b.

The equation of the TIE region as implied by Figure 2.3.b, is: [*]

_ y-Gy(Gy(y))
T TGy (y)

(in the binary case, 0 = b2y2-by+l-ab , where a = (1-b)p+b )

The transition point at the intersection of the two boundaries is

also on the curve of equation (independent of p):

b= [%giy)]'l (in the binary case : yb = %J

This curve is the dotted line on Figure 3.1 .

The TIE region is not always as wide as it appears in Figure 3.1 .
In fact, it may well be the sole vertical segment at b = 1. When this
happens in the matched case, we call the game inert <o emphasize the
fact that such statistics need not be 'stabilized' by any provisions for

early termination.

* Here we assume that ties do not occur unless the second condition
of Theorem 3.1 is violated. This is the most common case.
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Definition 3.4
An internal structure K is said to be inert when ties almost never

occur in any game structure G{z) ='(1-b)EK + b{1-K(z)). [*]

With an inert internal structure , the probability that a game is
a first person win is essentially independent of what happens at the tip
nodes {external stfucture). This situation is certainly paradoxical and
it 1is useful to consider a special case where such a behavior is easily

understood without the machinery we have developed so far.

Consider the case of string games where a nonterminal node can

only have one offspring. Using our previous notations K(z) = z ; hence,
EK = %- and g%iﬁx) = 1. Mow, a game of this kind is essentially a
string of moves, where no choice is ever left to either player. This
string is almost surely finite and 15 of length n with probability
b"(1-b). Therefore the game will last an even number of moves with pro-
bability T%E and an odd number of moves with probability T%E' When b is
close to unity, those two probabilities are close to.% . That is to say
“that both players are equally likely to play last. Therefore advantaging
the ‘last' ﬁ1ayer by increasing p will not seriously bias the game in
favor of either the first or the second player. Also, this example shows
what EK = % really is, namely the winning probability for tip nodes that
makes the winning probability for the root node independent of how early

the game is expected to terminate.

* Tonditions for inertness are discussed in Appendix B. The
definition of inertness makes it explicit only that ties do not occur in

the matched case (p = EK). At this writting, we do not know of any inert
internal structure that would allow ties even if the winning probability

p is not matched to it. The condition dK( <1 is a 'tight' necessary
condition for inertness. az %) <
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At this point, one probably expects inert games to be essentially
similar to string games. This turns out not to be the case, and one can
exhibit arbitrarily bushy inert games. More specifically, there are in-
ert structures in which games with Tess than m options have probability
0, no matter how large one chooses m to be, provided games with many
more options appear very often (making the game more bushy still ... ).
For example, a game in which all internal nodes have degree either 2 or
32 is inert, provided that binary nodes represent between 18 and 22.5%
of all internal nodes, whereas a game whose nodes are of degree 2 or 50
is 1inert whenever the proportion of binary nodes is more than 9% but
less than 26%. For reasons that relate to the topics we are now going to
discuss, inert games still tend to be more common when nodes of degree
one are allowed and/or when nodes of relatively large degrees may ap-
pear. For instance; a game cannot be inert when the degree of all non-

terminal nodes is between 2 and 31.

Let us examine the most complex class of inert internal struc-
tures, that consisting of those games that would 'almost' be transition
statistics (see section 2) if b was. ‘almost' unity. This corresponds to
structures K for which %§1EK) =1, It is convenient for the purpose of
this study to consider t = EK as a parameter and K as a possibly infin-
ite set of positive coefficient kn that add up to 1. K is then merely

the unknown in the following two simultaneous parametric equations:

K(t) = 1-t
dK =
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This amounts to the following vectorial equation, adding a coeffi-

cient [-1n{t)] for the sake of the geometric interpretation:

@ n
s k t . 1-t
n=1 "[mﬂ1h“ﬂ] Lt1MtJ

This means that point B of coordinates [-tlf:it)] is the barycen-

n

tre of the set of points An = [ t where each point Ap s given

-ntMn{t)
the weight k.. The points A, are all on the curve of equation

y = =xIn{x) in the (x,y) plane, whereas point B is always on the sym-
metrical curve of equation y = -(1-x)In(l-x). This situation is summar-
ized 1in Figure 3.2.a : for a given t ﬁ:é , B will be in the convex hull
of the points A,  and one can therefore express B as a positive weighted
sum of the ‘A, This yields K such that t = §. It is possible to do
so, as illustrated in Figure 3.2.b ,even if the weight of An is zero for
n smaller than a given (arbitrarily Targe) integer m , provided that

Lm0

The relative positions of B and the points An are given in Figure
3.2.c for various values of t. The main point here is that inert games,
which are in some theoretical sense easy ones, can be arbitrarily com-
plex or bushy. The key to inertness is that the expectaed situations are
varied enough in terms of their number of offsprings. To put it blunt-
1y, a node with many children is Tikely to be a2 win whereas a node with
few children is 1ikely to be a 7loss. Moreover, if the statistical

structure is inert, the relative frequency of nodes with either 'few' or

* This means that one has to choose a parameter t (a winning
probability) close to unity if m is large.
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‘many' offsprings actually makes this the dominant effect.

The above discussion was implicitely assuming that the condition
%g(EK)’= 1 is sufficient to insure inertness. We know ({see Appendix A)
that this is not quite the case. Actually, some members of the class we
just studied are not inert. There is however a very interesting sub-
class, which is easily proven to contain only inert structures Fase],

This class is that of geometri¢ distributions.

The geometric distribution K(z) = E%%&%l (where the parameter a is
a nonnegative number strictly less than 1) happens to be a bushy inert
statistic in the sense just discussed, i.e., dg(EK) = 1, irrespective of

the value of a.

The geometric distribution is quite interesting in both a theoret-
ical sense because it is a bushy inert structure, and a practical sense
because most results can be expressed in closed form. [*] The following
is a condensed glossary of the basic features of the geometric distribu-

tion.

. z{l-a) . l-ar 1 _47 = yd
K(z) = T4z a [TTEE 1] -(d-17z

1

~
n

.= (1-a) a""

*k A direct proof is elementary and is left to the reader.

* Closed form expressions can even be given for the quantities wu,

and Vi of section 2.
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di((z) - 1-a
z (l-az)2

d = %%(l) = T%E ( Average internal degree )

n
——

dK
z = 1-K(1-K(2)) (There are infinitely many stable two-cycles !)

This last property of‘the geometric distribution is used to build
the strange internal structures given in Appendix A. Such strange inert
structures yield a shape for the TIE region that departs somewhat from
that 4llustrated in Figure 3.1. In particular, the TIE region may be-of
a height strictly smaller than unity around b=1 and/or it may include
vertical segments of finite Tength. [*] More details can be found in Ap-

pendix A.

This whole spectrum of possibilities that 1ies betweeh inert
structures, 1like the geometric distribution, and the typical non inert
structures (as illustrated in Figure 3.1) may appear only in some con-
trived examples for the impartial case we have discussed so far. Howev-
er, they seem the rule rather than the exception for the partisan games

we shall discuss in section 5.

* When this happen, such vertical segments are to be counted as
included in the TIE region. So, for all intents and purposes, we may
consider the TIE region as closed and both the WIN and LOSS regions as
open {within the unit square minus its rightmost side).
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4. Analyzing the complexity of game solving

The first three séctions of this paper presented basic jdeas and
premises. This section will support the claim made in the introduction
that many enlightning results are easily obtained using the model
presented here. While some of our results were previously obtained in
other contexts, giving a valuable hint of their general validity, here
we show how easily such results may be obtained. Our model by making
basic questions easy to solve, permits more interesting problems to be

addressed.

The first problem addressed concerns the time complexity of the
basic game solving procedure SOLVE. By solving a game we mean finding
whether the first player has a forced WIN, a forced LOSS, or if the game
is a TIE. The simple procedure SOLVE described below is intended to com-
pute such a WIN or LOSS status. However, unlike the more general pro-
cedure outlined in the introduction, SOLVE cannot terminate when the
‘game is actually a TIE. This is an intrinsic limitation of this model
where the possibly finite graph structure (containing cycles) of an in-
finite tree is totally unknown. There is therefore no way we can assert
for sure in a finite number of steps that a game is a TIE. Aside from
this limitation, we migﬁt actually suspect that SOLVE has a nonzero pro-
bahility of nontermination well before the transition point (see section
2) where ties occur with nonzero probability. This turns out to be the
case and this remark serves as the basis of an estimate of the perfor-

mance of SOLVE and of other related game solving procedures.
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FUNCTION SOLVE {G : Game): Status
IF G is a leaf then RETURN its status
ELSE SOLVE from left to right the options of G until one is found
which is a LOSS.
IF G has such a LOSS option, RETURN WIN
ELSE RETURN LOSS
ENDFUNC.

The single most important parameter in the analysis of a search

procedure like SOLVE is its branching factor namely the expected number

of children of a SOLVEd node that would need to be SOLVEd before SOLVE
terminates. It s important to note that this number does not assume
that SOLVE actually terminates. In fact, the procedure has a nonzero
probability of not terminating whenever its branching factor is greater
than 1, as implied by Theorem 2.1. The branching factor, by our stan-
dards,  expresses how many children would need to be expanded on the
average. It is understood that all nodes that need to be expanded ac-
cording to a procedure like SOLVE will all be expanded if and only if

the procedure actually terminates.

1t turns out that this branching factor can be easily computed

directly from the parameters of the basic model.

Let us use the following notations :

u = 1-pL
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r = The branching factor, the average. number of options
that need to be examined in order to SOLVE the parent
node.

's_ = The expected number of children of a WIM node with n
offsprings that need to be SOLVEd in order to SOLVE
the parent node. A node is a WIN node with n offspr-

ings with probability bkn(l-u”).

Note that the counterpart of s, for nodes that are not WINs is al-
ways n, since all opfions of such a node have to be considered before we
can conclude that we do have a no-win situation. The branching factor r
is the weighted average of the expected number of options examined for
external nodes where zero options are examined, wins with n options
where ‘s, options are expanded, or non-wins with n options where all n

options are expanded. This translates into:

®
r=b ¥ kn[(l-u")snmun]
n=l

A node with n options is a win with probability (1-u").
There is a probability of uk=1{1-u) that a node with n children will
have a leftmost L0OSS option as its kEh offspring. SOLVE will expand k

children of such a node. This yields the following expression for s,

(1-uM)s (1-u)+2u(1-u)+...+nun'1(l-u)

n
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Hence, we conclude immediately that:

AN

r=>b niik"[ - - u™]
= b[l-uifi(‘u) - K(u)] = b(l-lfflu))

So far, we have not even assumed that we were below the transition point
where TIEs have nonzero probability. Making this assumption implies that
u=1-p, =py=t, where t is the fixed point of G, (as discussed at the end
of section 2) and, therefore, that u = {l-b)p + b (1-K(u}), which allows
a simplification of the above result.

Theorem_inl

The branching factor of SOLVE is FSOLVE = Elliﬁéﬁll. where ﬁ=l-pL
is the probability of not having a forced LOSS when playing first.

When ties almost never occur, u=t=l-p =py and rgp yp = E:%éaﬁlﬂ-

As claimed in the beginning of this section, this result is close-
1y related to those obtained for different game models. For example,
when the probability of early termination is low {(i.e. when b s <close
to 1), the above expression clearly becomes Tgf' T*] This expressior can
be found in [23] (where t 1is called p*) as the branching factor of

SOLVE.

* This is also true, in all cases, for normal play (p=0), but we

consider this as a mere mathematical coincidence. What is really of
importance here is the close relation of the result given here and the
one quoted. An occasional exact match is not significant given the fact
that the models compared are otherwise quite different.
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When SOLVE terminates, the model can actually be used to estimate
the average number of nodes it expands. The analysis is only slightly
more complex than the above but does not seem to bring any new finsight

and is not given here.

It is of crucial importance, however, to know when SOLVE does ter-
minate. This cruciality may not be apparent if we only concern our-
selves with the exact solution to games as we have so far. In section 7,
however, we show that the parameter b is something the programmer has
some control over when approximative solutions only are sought. Ulti-
mately, a perfect decision could be expected when the survival rate ®
used in the decision procedure is the same as the natural survival rate
(b) of the game, as this means that no artificial cutoffs are necessary
- a rare situation but a practical assumption for endgame positions. The
largest value of b that almost always ensures the termination of SOLVE
{or other game solQing procedures} will be used as an indicator of its
performance without any further Jjustifications. This is justified at

length in section 7.

SOLVE will almost surely (probability 1) terminate if and only if

TsoLve s less than 1. Using the expression of rgg yp given in Theorem
4.1, the terminating or 'finiteness' condition is therefore that
t< 1+(1-b)P. Since t is the fixed point of the decreasing function Gy

(see section 2), the finiteness condition can be rewritten as

Gb(1+(€;b)p) §_1+(£;b)P or, more explicitly:

1-{1-b)p 5 1 _g(Ll+{1-blp,
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: 3 1
If we assume the normal play rule, this reduces to: b E'ETE:EE;TT .

This last relation can be used to determine the largest b accept-
able to SOLVE. In Figure 4.1.a this maximal value of b has been plotted
as a function of d when K{z)=29 ; note that d should be an integer. An
internal structure z9 does not allow inertness in games. Therefore, the
value of b at which TIEs first appear, the transition point, has been
plotted on the same graph for reference purposes: it represents the best

performance any game solving procedure could achieve. The equation of

1

q

1-
this curve, b =.%(1+d) , is obtained from Figure 2.4.

For an inert structure, 1like the geometri¢c distribution
K(z} = HfTééTTE’ the conclusions are quite similar, the only difference
being that there is no upper bound as to what a game solving procequre
can achieve. Figure 4.1.b relates to the geometric distribution. HNote
that the variable d is the expected number of options of a nonterminal
position in both cases; hence the curves of Figure 4,1.a and Figure

4.1.b are directly comparable.

The graphs show that the maximal value of b quickly converges to-
ward the limit‘%. This turns out to be general, whether or not the nor-
mal play rule is used, and does not depend on the particular form of K.
As long as we make the average degree of an internal node increase, that
maximal value of b will converge to;ard a limit Dbeg yelp) = %;%u The
value of this 1imit 1is obtained by noticing that the gquantity

X = lii%;glﬂ is bounded from above by the ratio EEB and cannot aporoach

1 (except when p=1 , as discussed below). Therefore, the quantity K(x)
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converges toward zero faster than K(l;EJ when K becomes bushy, when the
average degree of internal nodes becomes large.

Theorem 4.2

For bushy internal structures K, the parameter bSOLVE(p) below

which SOLVE almost surely terminates is given by the expression:
b (p) = %:E
SOLVE!'P =P

When p=1, the previous argument does not hold but the situation is
even easier to analyze directly since the finiteness condition then
reduces to bL% -K(l-‘%))‘i 0 and cannot be satisfied for a bushy enough
K unless b is zero. Therefore the general relation we just gave also

holds for p=1 and yields bgy ye(1) = 0.

We may also wish to know whether SOLVE alTows some kind of SOLVE-
inertness, namely statistics for which b is almost 1 but for which SCLVE
will almost surely terminate. As one suspects, the answer is no, exéept
in the trivial case of string-games. The formal reason is that the fin-
iteness condition then degenerates into K(%J 3_%., which fs triviélTy
not true of any acceptable function K except K(z)=z. A search procédure
that handles inert games (in the sense of sections 3 or 5) much better

than SOLVE or its varjahts is discussed in section 8.

The gap that appears in Figure 4.1 between SOLYE and perfect solv-
ing can be bfidged. To do so, we must provide a way of ensuring a
minimal breadth to the search. A foolproof method is to use a modified
version of SOLVE that can return the status of any game of length M or

less. We call LSOLVE this depth limited version of SOLVE. A 'Pseudo-
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Status' is either WIN,LOSS or UNDEFINED. LSOLVE returns UNDEFINED if and
only if the game G is of length greater than M. M is a nonnegative in-

teger.

FUNCTION LSOLYE (G : Game, M : Integer): Pseudo-Status

IF G is a Teaf THEN RETURN its status.

IF M is zero THEN RETURN UNDEFINED.

ELSE compute from left to right the Pseudo-Status
LSOLYE(G' ,M-1) of each option G' of G until one is
found which is a LOSS.

IF G has such a LOSS option, RETURN WIN
ELSE IF G has an UNDEFINED option, RETURN UNDEF INED
ELSE RETURN LOSS

ENDFUNC.

A foolproof game solving procedure is obtained by successively
running LSOLYVE with a larger and larger M until the result is not UNDE-
FINED. A similar approach presents certain advantages when applied to
game-playing and has been popu1ér in certain commercial chess-playing

microprocessor-based machines.

Another alternative that we find interesting is to give up total
safety and use LSOLVE as a test within a simple modification of SOLVE
that we call SOLVE; : SOLVE itself is renamed SOLVEy in this context.
What SOLVE. does is merely a depth-first search similar to that of SOLVE
with the additional twist that any node with a game-length of i or 1less
is always easily solved regardless of the complexity, say, of its left-

most option(s).
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FUNCTION SOLVE; (G : Game): Status
IF LSOLYE(G,i) is not UNDEFINED THEN RETURN this as a
result. This means that G is a game of Tength i or
less.
ELSE SOLVE; from 1eft.to right the options of G until one is
found which is a LOSS.
IF G has such a LOSS option, RETURN WIN
ELSE RETURN LOSS
ENDFUNC.

SOLVE; is only the simplest of the procedures based on this idea,
not the most efficient. In particu1a}, a2 given node can be visited many
times during different auxiliary searches (LSOLVE). It is possible to
reduce this waste dramatically through nontrivial bookkeeping if space
Timitations are not a problem. Such improved versions of SOLVEf will,
however, terminate if and oﬁ]y if SOLVET does. This makes it interesting
to extend to SOLVE; the analysis given above for SOLVE;. This s sum-
marized below using the same notations. Note that even though SOLVEi ex-
pands in its main loop less nodes than SOLVEO, such expansions cost more
in terms of either time {for plain SOLVE.) and/or space (for improved

versions).

®
r = (ui-vi)néikn E(l-u)sn+nun]

where u; and v4 are the quantities defined in Theorem 2.2. Besides, we

still have:
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(l-u")sn {l-u)+2u(1-u)+...+nu"'1(1-u)

n+l
= L-Iu_—u— - (n+1)u"

= 2 l-un"'1 n7
r = (ugevg) Z Ky BT - Y

(ugovg 2L

W

Theorem 5_ .1

The branching factor of SOLVE; is rggyp. = By Zmer®ll . hen
1

ties almost never occur, this expression is equal to the quantity

8 E:%éﬁ?lg , where B8, - %1U1-vi) is a decreasing function of i

' . P .
whose value is 1 for i=0 and whose limit 1s-€£ {zero when ties

have probability zero).

SOLVE; almost always terminates when rgg g  is Tess than 1. An
1

argument similar to that used for SOLVE, shows that this reduces to the

following finiteness condition:

1+B;(1-bl}p

1-(1=b)p » 1.k( )
wrmy > T

Using the two inequalities:

1+Bi(1—b)p

Lo > A and k() 2 1K(—pgg—)
I¥5) = 1985 i~ By

we see that the finiteness condition is certainly satisfied when
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1 vt 1 . Cpian . - : _
ng?'i 1 K(I¥B;) . This condition is sufficient and is 'almost’ neces
sary when b is close to unmity, the interesting case. At any rate, this

means that SOLVE; almost always terminates when I#%‘ is less than or
i

equal to the fixed point § of 1-K .
Theorem 4.4
SOLVEi almost always terminates when the fraction B; of the non-
terminal nodes whose length is greater than i is less than the

quantity [l/EK -11.

For example, if K is the geometric distribution as described at
the end of section 3, the quantity EI/EK -1] is equal to \|T=7 (i.e.

1). As a result, the condition given in Theorem 4.4 is never satis-
AR

fied for SOLVE, [*] but is fairly often satisfied even for lowly SOLVE,.

Under normal play {p=0), B1 is equal to 2%%%%1; hence the condition of

Theorem 4.4 is satisfied as soon as b is less than — L. This quanti-
a+\1T=x

ty 1is close to 1 when a is close to either its mimimum or its maximum O
and 1 respective]y; This means that SOLVE1 is eafficient for either

sparse or bushy games. For the intermediate cases, SOLVEl does not per-

1
a*r\|T=%
4/5. This minimum is reached for a=3/4,that is d=4 . This means that

form too poorly either since the minimal value of is as high as

SOLVE; almost always terminate when 20% or more of the nodes are termi-

nal.

* This 1s always the case, regardless of the structure K, as B, is
always equal to 1 while [l/EK -1] is strictly less than 1 for all
structures K, (with the exception of string-games - X(z)=2).
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he{l-a)?
(1-ab)(1-2ab+ab2)
minate when 13.7% of the nodes are terminal {for d=4).

Simitarly, B2 = , and SOLVE2 almost always ter-

We conclude this section by an investigation of the conditions in

which SOLVE, terminates when the statistics are matched (p = t = EK).

What follows {s restricted to the geometric distribution

{K(z) = H‘-‘('a;:ﬂ? ).

The matched winning probability s EK = Qﬁ3%3:= 1 -1 + 0(%).

) \ig
For this value of p, we have t=p. The expression of the branching fac-
tor of SOLVE, given in Theorem 4.3 reduces to B8y ng%T = (ug-vi 0\ 1T

SOLVE; almost surely terminates when this quantity is Tess than or equal

to 1. For i=0 this means that b must be less than or equal to _%_4 for
\id
Targer values of i the largest acceptable b can be plotted as a function

of d {Figure 4.2).

Surprisingly enough, the largest acceptable value of b converges
{sTowly) toward a strictly positive 1imit as d goes to infinity. This

limit is a solution of the equation:
bi = 1-(-b%i+l 1-(-b)"
* : +
This is a consequence of the fact that, for i>0, we can prove that:

x.
u; = 1- -3 . 0(%{)
\id
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Xk

V, = l_——-—-"'O(l)
! v 3
n+1. . .
Where Xq = lii?gﬁya— and j = 1+2l§J and k = 2[&]. Therefore:

- 1
(u.i-'Vi) \:U" :X-“,l-X-i: + 0('\—::&)

This means that (u;-v;) \{T 7s equal to 1 + 0‘;%5) when X, 4-x;i = 1.
This relation can be rewritten as the equation given above. The
corresponding values of b for varicus values of i are tabulated below.
For example, the table shows that if 19.5% or more of the nodes are ter-
minal, (or ‘quiescent', as discussed in section 7), then the procedure
SOLVE;, which searches 3 full moves ahead before going depth first, will
almost surely terminate. In practice, the situation is better than what
the table suggests,.as the values given are only pessimistic estimates
of the largest acceptable b that are accurate only when the degree d fis

unrealistically Targe (see Figure 4.2).
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Figure 4.3
The highest proportion of nonquiescent nodes that make SOLVET

terminate for any geometric internal structure.
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5. Partisan games

When the same moves are legal for either player, a game is called
impartial. A partisan game, on the contrary, is a game in which the two
players may have different options. The rules of such games specify who
is allowed to make which move from a given position. A typical partisan
game is chess. Each player owns certain pieces and can move only those.
His opponent's moves are totally distinct from his own. Partisan games
typically allow one to gain a certain advantage in terms of the number
of moves one could skip and still be the winner. [*] This is totally
unknown in the world of impartial games where skipping a move always

turns a winner into a loser.

One could say that whether a game is partisan or impartial is only
a question of how each position is described. Indeed, adding a bit (to
indicate whose turn it is to play) to the description of each position
of a partisan game would turn it formally into an impartial game. This
turns out to be a poor idea. This extra bit of information is artificial
and leads to at least two prob1ems. First, several such artificiai1y im=-
partial games are not played simultaneously [10] the way their partisan
counterparts are. This is important whenever a game can break down into
the disjunctive sum of smaller games. Second, and more relevant to this
context, a partisan game may exhibit a statistical asymmetry between the

two players that cannot be represented by any impartial model.

* A more precise formulation of this 'advantage' [10,5] leads one to
consider numbers of moves that are not integers. This is a natural
concept when considering (disjunctive) sums of games.
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If anything, partisan games are much more common than impartial
ones and this is the primary motivation for this section. Some partisan
games may indeed be impartial in a statistical sense but many are not.
Usually, partisan games that are statistically impartial in certain even
positions, like chess at its beginning, quickly evolve into asymmetrical

situations.

Our model is readily modified to account for this kind of basic
dissymmetry. We define partisan games as two classes of games, one for
each player. The definitions of the two classes are mutually recursive.

Definition 5.1

A partisan recursive réndom game consists in the pair (g,g'),

where G and §' are defined by the following formulas :

§ §'g"
G' = flglp'<u>+q'<l>) + F17 G + ' 0+ ...
The player who is called upon to play from a member of § is re-

ferred to as player A . The other player is called A’

In addition to the above, notations similar to that introduced 1in

the impartial case are used. Those are summarized below so as to avoid
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any ambiguity as to which quantity belongs to which player.

Definition §,g

. ® ®
Flz) = = f2" F'iz) = £ f' 2"
n=0 n=0
= {1-b)+bK(2z) = (1-b')+b'K'(2)
G(z) = fp+l-F(z) G'(z) = f'p'+l-F'(2}
= (1-b)p+b(1-K(z}) = (1-b")p'+b' (1-K'(2)}
r =3 e =9

The development is similar to that of the impartial case, with the
added twist that most quantities now come in two flavors. The probabil-
ities un.[resp. vn] that player A does not have a farced Toss resp. has
a forced win] in n moves or.less is-now related to the similar quanti-

ties for player A', as follows:

ug = G(0) Uptp = Gv'y)
vg = G(1) Vet = Glu'p)
u'g = 6'(0} U'pep = G'vy)
VIO = G'(1) V|n+1 =Gl(un)

This is best exhressed graphically (see Figure 5.1.a) by intreducing the
two curves of equations x=G(y)} and y=G'(x). Four sets of stairs are
drawn using those two curves. [*] Ties may or may not have zero proba-
bility (see Figures 5.1.a and 65.1.b). The graphical interpretation

makes it quite clear when they do.

* ine four possible origins of the stairs are the points
),{0,u'g),(vg,1) and (up,0}. 0n1y the stairs corresponding to
19 are drawn on F1gure 5.1.a and 5.1.b They yield v, for even

91ces and u' for odd indices.
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Figure 5.1.2 : A partisan game where tles almost never occur.

v, (resp. vé) is the probability that player A (resp. player A'} can
win in n moves or less when playing flrst.

0 (resp. uﬁ) is the probability that player A (resp. player A') can
avoid losing in n moves or less when playing firsti,
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Figure 5.1.b : A partisan game where ties ofiten occur.

Py, 1Dp 1Py (resp. { Dy oDy ) are the probabilities that player A
(resp. player A') will be given a LOSS, a TIE or a WIN
position when playing first.
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Theorem 5.1
Ties almost never occur if and only if the two curves of equations

x = G(y) and y = G'(x) have only one point in common.

Figure 5.1.¢ illustrates another point which can occur in the im-
partial case as well {see Appendix A), but is particularly dramatic in
the partisan case. The parameters that produced Figure 5.l.c are only
slightly different form those used in Figure 5.1.b. The slight differ-
ence, however caused the two extra intersections to disappear. The
result is that ties can no longer occur. What were previously ties are
now WINs for player A'. However, the wins for A' are clearly separated
into two categories. The quick ones (in about 6 moves or less) and the
tedious ones {in more than 25 moves). The probability of games that
would last between 6 and 25 moves is small. Besides, the probability
thaﬁ A could win a long game is patently ridiculous. In fact, the only
 games that A is somewhat 1ikely to win are those that Tast less than 3

or 4 moves.

We can also note, in passing, that a similar graphical interpreta-
tion holds true to decide whether or not the underlying tree structures
are finite. The tree structure is therefore almost surely finite if and
only if the two curves of equations x = F(y) and y = F'(x) have only one
point in common, namely the point (1,1). Now, we observe that [x = F{y)]
%) at point (1,1) while [y = F'(x}]
lies above its tangent {of slope r') at point {1,1). Therefore, for the

1ies below its tangent ({of slope

tree to be finite it is necessary and sufficient that r' be less than or
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equal to %" This can be stated as a partisan counterpart of Theorem 2.1.
Theorem 5.2
A partisan tree structure is almost surely finite if and only if

' _ dF R |
rr' <1, wherer—_ﬁ-(l).andr "Tz"(l)'

We can further remark that the expected number Zn of nodes at
depth n 1is simply a product of n terms alternately equal to r and r'.

The natural definition of the branching factor is as the 1limit of the

1
; n
quantity (Z.)".

Definition §._3_»-

The branching factor of a partisan tree structure is \I77 .

It turns out that m;)st of the discussion made in the impartial
case is still valid . Among the exceptions, one should mention the sta-
bility we observed in section 3 (see Figure 3.1) for 1impartial games.
For partisan games, the quantity p, (resp. p'y) is no longer guaranteed

to be between p and EK (resp. between p' and EK')-

Inertness, is defined essentially 1ike it was in the impartial

case.
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Definition 5.4

A partisan internal structure (K,K') is inert if ties almost never
occur in any probability distribution of internal structure (X,K')
and of external structure ((EK-EK')’(b’b')’ for any quantities EK

and EK' strictly between 0 and 1 satisfying M*]

S
[ &

Conditions for inertness are presented in Appendix B in such a partisan

1=K (B
1-K'(& )

W

context, encompassing the impartial case as well.

The ideas of this section could be extended by defining more than
two classes of games at once. Such an extension could provide a better
fit for the observed statistical behavior of a given practical game
and/or a more accurate heuristical guideline for actual play. The number
of types of games one defines need not be finite or even countable. This
kind of statistics dis sometimes [1] called “general Markov branching
pfocesses". Howaver, induliging in such refinements would soon distract
us from our primary goal which is to provide a simple model. Further-
more, if any practical use is ever to be made directly from the predic-
tions of the model {see section 7) we may have to estimate the model's
parameters with a relatively small sample. A general Markov branching
process model simply does not enable us to do this unless the number of
types is rather limited. Even then, we need a good way of distinguishing

between types a priori. This may not be so difficult to do in practice

* Note that, unlike what happened in the impartial case, there may
be more than one possibility for EK and EK" This may even be frue if
K =K', as shown in Appendix A.
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as we can rely on common sense. For example, a capture in chess is like-
1y to be interpreted as a type change. Hence, a coarse evaluation func-
tion based, say, only on the count of the pieces, could be used to de-
fine the a priori type of a node. It could then be practical to have 20

or more types of nodes.
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6. Error propagation and pathology analysis

This section will address a question whose answer was taken for
granted until very recently. It has always been assumed that a deeper
search would naturally lead to a better decision. This seems to be the
behavior of procedures that deal with real games. However, Nau [20]
showed that a deeper search of a game tree could actually Jead to a
poorer decision. This observation was made using the earlier uniform de-
gree and constant height model. This phenomenon is now known as game
pathology. As of this writting, it is still not clear how generally
widespread pathology is among real games. Common sense would seem to in-
dicate that it is an artifact of our models for either the structures of
games or the heuristics we use on them. A discussion of the prbbable
causes for pathology appears in [24] but the problem is still widely
open. Pathology, however, seems restricted to the minimax rule for using
one's static estimate of a situation. It does not appear for other rules

like the one discussed in section 8.

This section describes a simple-minded investigation of the quali-
ty of a decision based on the estimate of positions farther down in the
game tree. We give strong evidence of the fact that games with a uniform

number of Tlegal options are bound to be pathological. By contrast, we

show that games that obey the geometric distribution are not pathologi-

cal. Finally, we characterize the optimal type of estimates to be used
in the kind of search described below inspired from commonly used algo-
rithms. We reach the paradoxical conclusion that it sometimes pays off

to make some mistakes on purpose...
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We make the following assumptions.

Estimates are used only for nodes at a given level n. This is not
highly recommended in practice, as suggested in section 7, but is
consistent with the conditions in which pathology was first ob-

served.

Ties almost never occur. This is consistent with Nau's model.

Terminal positions do not appear at or before depth n. Again this is

consistent with Nau's original assumptions.

The external and internal statistics are matched. This enables most of

[}

our results to be used even though terminal nodes appear according
to a rule that may have 1ittle to do with our general scheme, as
discus;ed in section 3. This is an easy way to ensure consistency
with the previous assumption. Again this does not depart signifi-

cantly from the assumptions of Nau or.Pearl.
- The estimates used are boolean (WIN/LOSS) estimates. T*]

To summarize, the main difference between our investigation and
those appearing 1in [24,20] is that we allow a position to have a vari-

able number of options.

* This assumption is rarely, if ever, practical. However, it has
been shown [23] that when more refined estimates are used and
reduces to SOLVE-like procedures. A procedure called SCOUT that does
this explicitly (and efficiently) has been introduced in [23]
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Given the depth n introduced in the first condition above, we in-

troduce the four following joint probabilities.
W is the probability that a node is a WIN and is estimated as such.
L is the probability that a node is a LOSS and is estimated as such.

W is the probability that a node is a WIN but is estimated as a
LOSS.

-th is the probability that a node is a LOSS but is estimated as a
WIN.

The quality of our initial, static heuristic is of course given by
the value of those four parameters for n=0. Now, we notice that the es-
timated status and the true status propagate according to the same rules
but independently of each other. That means, for exampie, that a node is
a WIN estimated as a LOSS if and only if at Teast one of its children is
really a LOSS but all of them are estimated as WINs. The probability
that this will happen 'at level n+l' for a node with i cptions is there-

fore:
rn(“n+-i-_n)1-1 + wnrn(wn+tn)1-2 + ... F (Nn)1'1tn = (wn+'[..n)1 - (wn)T

Averaging this over all possible number of options, a node having i op-

tions with probability k; yields:

1;.1.ﬂ+]_ = K(“n"'tn) - K(Nn)

Similarly,
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rn-[-l = K(Nn"l'wn) - K(Nn)
We also have the two relations:

Lo = K{Wy,)

n+l

W

ey = L KON = KON = (WD)

This last relation was obtained courtesy of the equation
1= W W # e thnsy.  Note that a node could well be correctly es-
timated as a WIN just because one of its options has been estimated as a

LOSS while another of its option really 1s a LOSS.

For convenience, we will visualize the four quantities just intro-
duced as a 2x2 matrix.
Wy W,

Mn =

[ —— — by

n Lﬂ

[

A diagonal matrix represents a perfect estimation. The nondiagonal terms
each represent the probability of making a specific kind of mistake. The
four elements add up to 1. Because we assumed matched statistics, the

sum of the first row which represents the probability that a node really

is a WIN is t = EK . and the sum of the second row is {1-t). Therefore:
KW W) = K(t) = 1-t

So, the above expression of T, can be greatly simplified.
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o ['xn t-Xy, t-K(yy)¥K{xn)  Klyp)-K{x,)
= - then My, = K (
n Yn=%n 1 t‘i'Xn-yn n l-t-K(Xn) xn) 7

In other words y, ; = 1-K(y,). In the uniform case K(z) = 29 that Mau
focused on, we obtain the equation Yoel = 1-(yn)d that Pearl [23] dis-
cussed at length. That means that Yy will eventually oscillate between
the two values 0 and 1. Since X, must be zero when y, is zero, this
means that the matrix M, will oscillate between the two values:

o 0
L0 IEt} and {1Et o}

Which of those two values corresponds to even values of n depends on
whether YO_ was 1initially above or below the fixed point t = EK' This
type of behavior is common to other type of internal structures as well,
namely any typical non-inert structure, that is one that does not have
any stable two-cycles besides (0,1). [*] For such;an internal struéture,
a matrix My that is even slightly nondiagonal will quickly degenerate
into the above two-cycle. Even an excellent static evaluation of a
node's status will be rapidly spoiled, a phenomenon which Mau [20] calls

pathological.

If there are other stable two-cycles however, the situation may
Took quite different. The only stable two-cycle, for a typical inert

structure, reduces to the fixed point t itself. In general, however, the

* IT one considers non-inert structures like the ones described in
Appendix A, the general rule is that y  wil] converge toward t if and
only if t is a stable fixed point and the initial value y, 1lijes within
the innermost {unstable) two-cycle of 1-K. If this is ngt.the case, y,
will eventually be attracted either by the innermost stable two-cycle or
by one of the two stable two-cycles that surround y,. One of the
interesting implications of this is that there are internal structures
for  which the probability of error converges toward zero if and only if
the initial heuristic was above a certain level of quality.
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matrix M, may now oscillate ultimately between the two values

x t-xi t 0 1
LS 1-321 and [1—t-K(x) K(x)]

where x is any stable solution of x = 1-K(1-K(x)). The extreme example
of such a behavior is that of the geometric distribution for which
x = 1-K(1-K(x)) for any value of x ! This very special property of the
geometric distribution enables us to compute easily what value of x is
reached in the final two-cycle from the initial matrix MO- We can also
compute the parity of the final cycle, that is, whether the first of the
above matrices corresponds to even or odd values of n. The argumenf is

based on the fact that, for the geometric distribution, Yne2 = Yn-

If the first of the above matrices corresponds to even values of
n, this means that x, the sum of its first co1umn, is equal to ¥p, the
sum of the first column of My, Since t-x must be positive, this means
that y, was originally less than or equal to t. On the other hand, if
even values of n correspond to the second matrix, Yp is equal to 1-K{x).
Since 1-t-K{x) must be positive, y, was greater than or equal to t. In
either case, the sum of the two nondiagonal terms, which represents the

probability of error will be:

i¥g - ti.  For even (large) values of n.

!1-K(y0) - t! For odd {large) values of n.

This type of behavior is typically nonpathological. If the above

quantities are smaller than the initial error term t-2x,+y,, 1ook-ahead
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is beneficial. The deeper that we can afford to search, the better. MNow
comes the real surprise. The above two quantities become equal to zero
if and only if y5 = t. If this is not the case, even a very deep search
will yield a  nonzero probability of error. The meaning here is rather
surprising. If one wants to make the best use of a deep search, then the
accuracy of one's estimates are only of secondary importance. It is more
important is to make sure that the two possible kinds of error are
equally 1ikely. That is, that there should be as many WIN nodes that we
consider to be LOSSes (probability t-Xx5) as there are LOSS nodes that we

estimate as WINs (probability yy-xq). In other words, one should not

use the 'best' estimate available, but should make some mistakes on pur-

pose so as to ensure the above balance!

Most inert structures do not have a dense population of stable
two-cycTes in the neighborhood of x=t, as does the géometric distribu-
tion. Therefore, the 1imit of y_ will usually be t regard]eﬁs of the
initial value of y,. This means that estimates derived from a deep
search of an inert structure will tend %o be perfect regardless of how
poor the initial static evaluation function with which we started. How-
ever, the geometric distribution is not that forgiving but appears as
one of the less forgiving inert structures. This is one of the reasons
that make it especially interesting for the purpose of evaluating search

procedures.

At t@is point, the balance condition Wy = Lo, apart from being
rather paradoxical may appear somewhat difficult to satisfy in practice.

The reason is that, obviously, Ty cannot be more than the probability of
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a next player LOSS. [*] For reasonably bushy games, most nodes are WINs,
that is t is close to 1, and the condition Wb = Ty therefore implies
that the conditional probability that a node is estimated as a LOSS,
given it is a WIN, is less than 1%3 and is therefore pretty close to
zero. The next section will show that this problem is taken care of to
some extent by some search schemes. However, even though such schemes
will eventually correct an initial imbalance, this correction is expen-
sive in term of the extra running time needed to achieve a certain qual-
ity of decision. In the remainder of this section we show that it s
indeed practical to build up a balanced static evaluation function if

the statistical features of the game tree are well known. Our example

is, again, that of the geometric distribution.

The only static feature of a node that is naturally accounted for
in our model is the number n of its legal options. Furthermore, the
larger the number of legal options, the greater the probability that a
" node is a WIN. Therefore, the only natural static evaluation functions
in our model consist in estimating that a node with n offsprings is:

A L0OSS if n is less than N

A WIN if n is more than N

A LOSS with probability {1-c) and a WIN with probability ¢ if n is

equal to N.

Note that if n is equal to N, the static evaluation 1is obtained

strictly by flipping a coin. This coin need not be a fair one.

¥ Recall the quantities we are dealing with are joint probabilities,
not conditional probabilities.
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We will now study which values of N and c are optimal. Since a
position with n legal options is a LOSS with probability t" and a WIN
with probability 1-t", the optimal purely static evaluation function is
clearly to use c¢=0 and N=l¥%%é%é%ll, since this is what gives a node its
more likely status. Such an approach is only appropriate for a shallow
search. For a deep search we just saw that the condition to be respect-
ed is that the two probabilities of errors W, and Ty be nearly equal.

W

Ny L Nl .
ky{l-cH1-t¥) + T ki(1-t')

i=l

iy
!

N
=
o
ot

In the geometric case, this means that:

ST

t = aN - c(l-a)aN‘1 where t = 1= i

This condition is fairly easy to satisfy. We do not even need to flip a
coin (c=0) for the values of d = Téa tabulated in Figqure 6.1. Values of
d between those tabulated imply some coin flipping to achieve a perfect
balance. For comparison the second column of Figure 6.1 shows the op-

timal value of N under the maximum 1ikelihood shallow search criterion.
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7. Quiescence analysis

It is rarely practicé1 to solve a game exactly. Most of the time
we will have to perform a truncated search and base our decision on it.
This causes two problems. First, one has to decide when to ‘stOp the
search. Second, one must design a way of evaluating a node statically
once it has been decided that the search should be stopped. More em-
phasis is wusually placed on the second aspect, yet the first aspect,

growth control, is at least equally important, if not more so.

The static evaluation function is traditionally highly problem-
dependent and is often used to embody most, if not all, of whatever
problem-specific knowledge is available. Since static evaluation func-
tions are often highly sophisticated, our basic model can only account
for'the most primitive of thém. Coarse evaluation functions based only

on the number of offspring have been discussed in the previous section.

The number of offspring of a given node is also useful to he1b de-
cide about the quiescence of nodes. The term "quiescent" is used in the
literature to qualify a node that is not really worth expanding any
further. Ideally, static evaluations should only be applied to quiescent
nodes. A typical example of a non-quiescent position would be a check in

chess.

Even though the actual quiescence of a position could theoretical-
ly be unrelated to the number of legal moves from that position, there
are at least two reasons why this is not too likely to happen. First,

the very purpose of the introduction of quiescent nodes was to control

77



the growth of the search tree. The important parameter here is the
branching degree of each and every position. Second, our intuition of a
non-quiescent position corresponds to a position where there is an im-
mediate threat. The rules of the game may even dictate that this threat
be removed at all cost, as with a check in chess. In fact positions with
very few actual options in chess are almost exclusively check positions

and are therefore all non-quiescent.

In what follows we take it as an axiom that the single most common
feature of non-quiescent positions is that they tend to have fewer op-
tions than the average position. Exactly which positions are quiescent
is something the programmer has to decide carefully. It turns out, as
we will soon see, that the percentage of non-quiescent positions among
internal nodes is merely a multiplicative factor for the actual parame-
ter b of the game tree considered. Through his decisions concerning
quiescence, the programmer does therefore éontroT the survival rate b
seen by his procedure. [t is therefore crucial to know the range of b
that ensures termination of a specific procedure. This concern was the
primary motivation for the study done at the end of section 4. Since we
only use boolean estimates here, the results of section 4 are directly

applicable.

It may or may not be the case that the frequency of quiescent po-
sitions is the only growth control factor. However, non-quiescent nodes
should always be searched further. Therefore, if the game playing pro-
cedure is expected to terminate almost surely in a natural way, the

non-quiescent nodes should not appear too often. More precisely, if only
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non-quiescent nodes are expanded, the procedure should be guaranteed to
terminate. An actual game-playing procedure could include some code to
ensure termination 1in any case and force the static evaluation of even
non-quiescent nodes beyond a certain depth. However this should only be
seen as a catastrophe handler. If it were to be executed on a regular
basis, many occurrences of the horizon effect would have to be feared

and overall performance would suffer greatly.

Definition 7.1

The minimal search tree of a game is the subtree containing the

root whose internal nodes are all non-quiescent and whose leaves

are all quiescent.

Quiescence must therefore be defined so that the minimal search
trée of the game is either finite or easy to solve. The latter means.
that the straightforward procedure SOLVE will almost always terminate.
Furthermore, since there is a rather high correlation between quiescence
and winning status, SOLVE should have an easy task even under the misére
p1ay'ru1e {(the worst case). [*] This analysis has already been done in
section 4. If we call B and ¥ the survival rate and internal structure
of the minimal search tree, we know that the minimal search tree is al-

most surely SOLVEable even under the misére.p1ay rule when:
_b 1
Since the above relation must be satisfied by any admissible quiescence

* A nonquiescent node is a position with few options and therefore a
probable loss. The minimal search tree of a game tends therefore to obey
the misére play rule.
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scheme, we will refer to it as the quiescence consistency condition. As

just stated, this condition does not assume anything about the particu-
lar quiescence scheme used. In general, most of our discussion in this
section applies to any scheme. However, we find it beneficial to focus
on the scheme we call standard. Even though our discussion is given in
quite general terms, this is really the model we have in mind. We will
therefore not make any further semantic distinction between 'quiescence'
and 'standard quiescence'. Under the standard scheme considered here, a

node is quiescent when it has more than Q offsprings.

Definition 7.2

The. quiescence threshold Q is the largest number of options that a

nonquiescent node may have. Internal nodes with Q options or less

are nonquiescent. A1l other nodes are quiescent.

This implies the two relations:

¥=b 3‘ k
n=1 n
Kn
Kh = 3
z ky
n=1

If K is the geometric distribution, kn = (1_3)3”‘1, this yields:

b (1-a®)

o
n

_ (1-a)z  1-{az)?
K(z) = 232555 “'f:Q—
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Again, we need only consider the worst case where the natural survival
rate b is close to unity. In which case, the quiescence consistency con-

dition reduces to:

Q
1 1+a
72K =7)

This retation was used to compute the table of Figure 7.1. There we ta-
bulated the lowest value of d [*] that gquarantees that the minimal
search tree can almost surely be solved when the quiescence threshold is
Q. Notice that non-guiescent nodes should be rare encugh if the quies-
cence consistency condition is to be respected. Augmenting the average
degree of the game actually reduces the proportion of‘ non-quiescent.
nodes. For a given Q, the bushier the game tree, the skinnier its

minimal search ftree.

For reference purposes, we included in Table 7.1 the lowest degree

d for which the minimal search tree is almost surely finite. The

minimal search tree is aimost surely finite when ¥ nk_ <1 . In the

nz
n=1
geometric case, this reduces to:
g al*l - (o+1)a v a <0
* Recall that d = 1/(1-a) is the average degree of an internal node

in the geometric distribution.
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Figure 7.1

Acceptable quiescences threshold for the geometric distribution.
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The quiescence consistency condition turns out to be a crucial
~condition for the almost certain termination of the two procedures
HSOLVE and QSOLYE that we are now going to &escribe. HSOLVE and O0SOLVE
are directly inspired from commonly used procedures. For some gbscure

reason, MSOLVE is much more popular than QSOLVE. We support the opposite
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choice and will give both intuitive and gquantitative arguments in favor

of QSOLVE.

FUNCTION HSOLVE (G : Game, M : Integer): Status
| IF G is a leaf THEN RETURN its status
IF M is zero THEN
IF G is quiescent, RETURN ESTIMATE(G)
ELSE RETURN HEXPAND (G,0)
ELSE RETURN HEXPAND (G,M-1)
ENDFUNC.

FUNCTION QSOLVE (G - Game, M:Integer): Status
IF G is a Teaf THEN RETURN its status
IF M is zero THEN
IF G is quiescent, RETURN.ESTIMATE(G)
ELSE QEXPAND (G,0)
ELSE IF G is quiescent, RETURN QEXPAND(G,M-1)

ELSE RETURN QEXPAND(G,M)
ENDFUNC.

Besides the function ESTIMATE that returns the estimated status of a
quiescent node, HSOLVE and QSOLVE each use their own function yEXPAND.

- ySOLVE and yEXPAND are mutually recursive.
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FUNCTION yEXPAND(G : Game, M : Integer): Status
Compute from left to right the Status ySOLVE(G',M) of each option
G' of G until one is found which is a LOSS.
IF G has such a LOSS option, RETURN WIN
ELSE RETURN LOSS |
ENDFUNC.

Figure 7.2 illustrate how the search trees of QSOLVE and HSOLVE
grow for increasing values of M. For a given M, QSOLVE always expands at
least all the nodes HSOLVE does. This means that when typical time con-
straints are imposed, QSOLVE will have to be called with a fower value
of the argument M than the one we could afford with HSOLVE. However,
QSOLVE seems a priori a more promising approach. The search seems more

balanced and smarter in QSOLVE than it is for HSOLVE. [*]

The characteristic of QSOLVE is to try out all sequences of moves

that include a given number of nontrivial moves. For example, when a

given node has only one option, it is foolish to consider that this sin-
gle option should be given any less attention than what we intended to
give to the father node. In general, searching an only child should
never be considered as having gone one level deeper in the tree. QSOLVE
manages to handle such situations, and many more, by considering as

"trivial' all moves that are made from a quiescent position., By con-

* USOLVE is a special case of a more general procedure TSOLVE that
distinguishes trivial and nontrivial moves: a node reached through a
trivial move deserves the same attention as 1its father. TSOLVE has
essentially the same qualities as QSOLVE but it is more flexible and
more practical; in chess, captures are trivial moves while positions
that allow captures need not be non-quiescent.
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Figure 7.2 : Visible Nodes

Flgure 7.2.a

QSOLVE_seaxch (Q=1)

Figure 7.2.b

HSOLVE search (Q=1)
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trast, HSOLVE will react correctly only to the non-quiescent nodes that
are on its search frontier. The problem is that there might well be a
trivial path that leads from the root to a quiescent node on the search
frontier of HSOLVE. An intelligent player is likely to zero in on that
path even if it is 15 or 20 moves long. By ensuring that any path' lead-
ing to 1its search frontier involves a given number of nontrivial deci-
sions, QSOLVE may protect itself efficiently against such a smart op-

ponent.

Ancther argument against HSOLVE is the following. Consider the
last node of a chain of k consecutive nonquiescent nodes. If such a node
is visible [*] for the first time for a certain value of M, none of its_
successors will be visible until M reaches the value M+k. Besides, M+k
could well be too large for this ever to take place. Considering that
the algorithm detected such a hot sequence relatively early, this is a
shameful waste of opportunity. QSOLVE, on the contrary, is paranoid
about not wasfing such opportunities. Every successor of a nade visible

at level M will always be visible at level M+l.

The nodes that are visible at level 0, for either HSOLVYE or QSOLVE
since both procedures are identical when M=0, are precisely the nodes in
the minimal search tree. Therefore the quiescence consistency condition
introduced earlier is sufficient to ensure the termination of HSOLVE or
QSOLVE at level M=0. The following Theorem therefore shows that it en-
® We say that a node is visible when it would be actually visited if
only the ‘pure' growth control was in effect, disregarding the game
related cutoffs. In other words, the visible nodes are those nodes that
would be expanded by ySOLVE (y = Q or H) if yEXPAND was systematically

computing the status of each and every possible option of G before
returning a result.
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sures termination of both procedures at any level M.
Theorem 7.1
HSOLVE (G,M) and QSOLVE (G,M) almost surely terminate if and only
if HSOLVE (G,0) [or QSOLVE (G,0) ] does.

The result concerning HSOLVE is actually elementary. The number of
nodes at depth M is certainly finite and each one of them that HSOLVE
actually reaches will almost surely be solved because HSOLVE(.,0) almost

always terminates. Therefore HSOLVE(G,M) will almost surely terminate.

A similar result concerning QSOLVE requires an induction on M. If
we know that QSOLVE{.,M-1) almost surely terminates, we know that each
leaf of the minimal search tree of G will almost surely be solved if
QSOLVE reaches it. This is so because QSOLYE simply requires that all
the options of such leaves be solved at 7level M-1 only. Since the
minimal search free itself is almost surely solved once the status of

its leaves is known, QSOLVE will almost always terminate.

The rest of this section will be concerned with the quality of the
decisions obtained through either HSOLVE or QSOLVE. This js to be con-
trasted with the discussion given at the end of the previous section for
a straight search. [*] The notations we will now use are consistent with
those of section 6 once it is understood that all positions were con-
sidered quiescent there. Furthermore, we now make assumptions similar
to those of section 6. In particular, we assume that no real leaf is

ever encountered before we truncate our search. This implies that the

* The no-frills search, as discussed in section 6, can be seen as a
special case of the type of search given here (a la QSOLVE or HSOLVE)
when all nodes are considered quiescent.
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quantity & used in the rest of this section corresponds to b=1; for ex-
ample, U = 1-aQ for the geometric distribution and a standard quiescence
scheme with threshold Q. The subscript n is the value of the parameter

M of QSOLVE.

W is the probability that a quiescent node is a correctly estimated
WIN.

Ln is the probability that a quiescent node is a correctly estimated

LasS.

Wh is the probability that a quiescent node s a WIN misinterpreted
as a LOSS.

T, is the probability that a quiescent node is a LOSS misinterpreted
as a WIN. '

We will also use the notations qﬁ, qE, q" and q" for the
w T

corresponding unconditioned quantities. For example qﬂ is the probabili-
ty that a node, quiescent or not, is correctly interpreted as a WIN by

QSOLVE when M=n. Finally, T will denote the internal structure of quies-

cent nodes. H{z) is best defined via the relation:
K{z) = (1-B)A(z) + § K(z2)

The gquantities just introduced satisfy the following relations that are
ieasi1y obtained through a simple derivation similar to that used in sec-

tion 6.
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q; = (1B + 5 [ Kl + q;) - g ]

"2 (1T + 5[ K(gh +q" - x(g") 1]
qT__ nt W qw W

qf=(1-’6)1.n+5'r(q{})
n n n n
G =1-q -a -4
W T - T

In addition, the fact that options of quiescent nodes visited at Tevel

n+l by QSOLVE are visited [*] at Tevel n translates into:

Woel ='H(QQ + q;) - HTqQ)
Theg = rr(q{} + q;) - flq))
bpet :'H(qa)

Wnel =1 = Wnep = L = Cpea

Notice that some other handy relations like qﬂ +q" =t are still
W

valid here for the unconditioned quantities. The corresponding relation

for the quantities relating to quiescent nodes only s slightly dif-
ferent, namely W, + W, = tg, where tq = 1-F(t) is the probability that a
quiescent node is a win.

* By visited here, what we really mean is of course that they would

be visited if no ‘cutoff' (an elder LOSS sibling)} occurs.
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Before we proceed in analyzing QSOLVE, we should notice that the
fate of HSOLVE is easily settled through the above expressions for n=0.

In particular, we obtain

(0-q0) = (1B) (Wy-Ty) + B (Kt - (q© - 00 - Rt} ]
wr w T

Since the sign of the second term is clearly the opposite of that of

(@ - q0), it follows that
T T |
_qu < (1-19) 1WAaTh!
1 il | 0- O|

Now, we know from section 6 that the error term for a deep 'straight’
gsearch (of even depth) converges precisely toward {Wb.[b: for the
geometric distribution when all nodes are considered quiescent. We con-
jecture that this quantity is 1ikely to be at lTeast as easy to minimize
when only nodes of high degree are considered quiescent. Furthermore, if
we consider that:

0
q
W

0
g g
Lt "

W
Mg = 0

]

then the analysis made in section 6 applies fully to HSOLVE since this
is what HSOLVE really perceives as the static estimation matrix for the
nodes at depth M. The above inequality shows that the matrix is even
more balanced than was the static evaluation matrix for quiescent nodes.
What this means is that, at least for the geometric distribution, HSOLVE
is strictly more efficient than a straight (fixed depth) search. This

argument, appealing as it is, still relies on the unsupported claim that
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it is at least as easy to 'balance’ a static evaluation on quiescent

nodes as it is in the general case.

The analysis of QSOLVE is somewhat more complex but the conclu-

sions are more definite and more interesting.

n
[q;',} % t 0 ]
Let Mn be the matrix n ol The perfect matrix [ 0 1-t ] is
%: Q |

a trivial fixed point for M. as is seen either through the above rela-
tions or through common sense. What matters, however, is the stability
of this fixed point. A stable fixed point will be strong evidence that
the probability of error in QSOLVE converges toward zero while an  un-
stable fixed point shows that the probability of error can never be

zero. [*] Let:

where o and 8, are small quantities that we will treat as infini-
‘tesimals. We obtain the following relations by differentiating the

above recurrence equations.

%y = (1B, + 5 Ry

W

pn+l

(I-B)ﬁ “n + b 'E“n“'l

where E’='%§(t) and 7 = %g(t) . This can be rewritten as

* UnTess the static evaluation was perfect to begin with, a case we
systematically disregard here.
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Foner ] | _amim [B‘Y 1| [“n]
LBn+1 ] 1-5%2 L ! 5%]LPn

The solution to this recurrence is

[“n] %P0 (1BIW 4 [1] , %P0 (1) o [1 ]
Bny ¢ 15X 1 T RS -1d
The second term is negligible compared to the first. Therefore, the

stability condition reduces to:
| 1
t Q-pim Ve
| f o o—
| 4

Since %%iEK) = {1-5)M + B ¥, one can easily see that this condition fis
satisfied if ggiEK) <1, as is always the case with inert structures. *
If the structure is barely inert, Tike the éeometric distribution, the
above ratio {s equal to one. In such a case, the above first-order
analysis is not sufficient. In fact, what happens is that higher order
derivatives of ¥ and ¥ will sti1l make x and 8 converge toward zero. f*]
This convergence, will be quite sTow in its final stage. However, the
difference between x and 3 will converge exponentially fast towerd zero,
as prediﬁted by the above relations. Finally, one should note that even
though the rate of convergence of x and 8 is eventually quite stow, it
is initially rather fast. One reaches error rates as low as 2% or 3% for
searches as shallow as n=3 or 4, even with a poor static evaluation

function. This, of course, is very important in practice since n cannot

* This remark is based on a computer-aided study of the geometric
distribution, based on the general equations given in this section.
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usually be much greater than 5 or 5.
Theorem 7.2
The probability that QSOLVE will misestimate a node converges to-

ward zero, for the geometric distribution, as the parameter M in-

creases.

Mote that Theorem 7.2 holds true regardless of how poor the ini-
tial static evaluation is. The static evaluation could even be worse
than random guessing. Theorem 7.2 would still hold true if our static
evaluation was systematically considering all L0SSes as WINs and vice-

versa!
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8. Estimating the winning probability after a truncated search

In this section we address the following question. Given a game
taken from an ensemble of impartial recursive random games, what is the
probabiTity that this game is a next player win ? For the sake of sim-
plicity, we will assume throughout this section that we are betow tran-
sition, no matter how slightly; a game can therefore only be a win (with

probability t) or a loss (with probability (1-t)).

Clearly, we will always be able to answer 0 or 1 to the above
question if we search the game exhaustively. On the other hand, if we
do not search the game at all, our best answer is that we have a proba-
bj1ity t of being able to win it, assuming, for the moment, that t and
other relevant general statistical parameters are known. However, this
estimate will change as more information is obtained, if we perform a
1imited search from the start position. More precisely, this estimate
will merely be a conditional probability: the probability that the root
is a WIN, given the structure of the tree searched so far. If we know

the parameter t, this conditional probability can be computed.

Winning probabilities neither propagate according to a minimax
rule nor allow the same cutoffs, but follow a product rule. More pre-
cisely, if t; |, to, t3, ... , t, are the respective probabilities that
the n children of a given node are wins, then the probability th;t the

.parent node is a win will be (1-t tot3...t,).

We will now focus on the easiest search procedure to analyze,

namely a breadth first search where the shallowest node is expanded up
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to a fixed depth. We should stress that we do not advocate this method
for actual game playing. The following analysis is essentially meant to
be compared to what is obtained under similar assumptions in section 6

for the minimax rule.

Let us call T, the winning probability of the root node estimated
from the search up to depth n. Since Tn is an actual conditional proba-
bility, it is certainly an unbiased estimator of the uninformed winning
probability t and its expected value is therefore t. We find it useful,
however, to sketch an elementary inductive proof of this because the
proof allows us to study the evolution of the bias of T, when Ty is only

an estimate of‘t.' First we notice that: [*]

@
E(Tpep) = (1-b)p + biz;_lkp(l-E(Tn)p) = G(E(T,))

Therefore, since Ty = t and G(t) = t by definition, we conclude

by induction that E(T))

t. So, T, is unbiased. The above recurrence

also shows that we do not really need to know the precise value of t and
could use a slightly different value for TO- The bias fades away as n

gets large and E(Tn) converges toward t in a way similar to that 1illus-

trated in Figure 2.3.a.

0f course, the mean of T is of only theoretical value to us: what
we would like to know is how good is T, at distinguishing between likely
wins and losses. One easy way to measure such performance 1is to study

the vafiance of Tn ,namely v(Tn) = E(Tﬁ)-tz . The higher the variance,

* Note that a node is recognized as terminal only when it is
expanded and children are estimated independently.
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the better. The best, maximum variance is t{(1-t) and is obtained for an
estimator that returns only O or 1, and does so with the corresponding
probabilities of losses and wins, so that its mean is sti1l t. An op-
timal variance does not necessarily mean our estimator does a perfect
discrimination between wins and losses, but it is a strong clue if we
know that our estimator was obtained by honest means, by gathering in-
formation from the search and not by flipping an irrelevant coin. We

call such an estimator statistically perfect. What this means is merely

that such an estimator will only give yes/no answers (0 or 1) and do so
with the same frequency the perfect estimator would. Even though the
variance is not a foolproof indicator in the way the conditional proba-
bility is,  there are several reasons why the study of its behavior is
appealing. Probably the primary reason is that the variance is a good
indicator of the c]ustering of the estimafed probability of a win around
the values 0 and 1. This indicates the power of the evaluation procedure
in distinguishing between wins and losses. Furthermore, we can prove
that the variance of T, converges toward t(1-t} even if our estimate To
differs from t. Therefore an experimental estimate of the variance can

help directly in refining our initial estimation of t.

We now compute E(T2) and prove T becomes statistically perfect

for large values of n and does so rather quickly ...

@
E(T§+1) = (1-b)p + bii_'lka((l-Tn,lTn’z...Tn’.i)z)
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o
= (1-b)p + b = kp(l-zg('rn)NE{T%)p)

i=

= 2
= 26(E(T,))-G(E(Ty))

In other words, with w, = E(Tﬁ) , we have :

o 32
wo-t

L

nel = 2t = Glwy)

Since t is the fixed point of G, it does not take long to see that
it is also a fixed point of the recurrence equation for W,. Further-
more, the shape of 2t-G{z) {all derivatives positive) implies it has two
fixea points of which only t is stable. Our assumption of being below
transition precisely implies -%§(t) =m <l. Therefore, w, is nonde-
creasing and has a limit of t. Hence, the Timit of the variance of Tn

is the perfect value t{l-t). The rate of convergence depends on the

parameter m.

We believe such an analysis of the variance is a good enough meas-
ure of the performance of an estimator. However, as we previously ob-
served, it is not entirely foolproof. Here we can almost as easily
derive a foolproof indication of good performance, namely the expected

value E, (T,) of T,, given that the position is a win. The reader may

want %o use a scheme similar to the above in conjunction with the obvi-

cus relation:
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E(T,) = tEy(T)+{1-t)EL(Ty)

then obtain the following relation that holds even if T,y is not equal to

t:
tE{(Tpep )=t = DIK(EE(TH))=K(E(T,)))
and use it to show that E,(T,) approaches 1 when n gets large.

[t is noteworthy that the provably good performance of the product
rule also holds when Ty is not exactly equal to the usually unknown
parameter t. If this is the case, T, is certainly a biased estimator of
t, although this bias tends to fade away quickly as n increases. Furth-

ermore, V(T,) approaches the optimal value t(l-t) at a rate essentially -

similar to the one observed in the unbiased case.

What is even more remarkable is the fact that product rule esti-
mateﬁ enable wus to skillfully play games that would be absolutely in-
tractable to a minimax procedure. Consider, for example, a game whose
statistical structure 1fs known to be inert. The above analysis shows
that even.if b is very close to unity, the product estimates will con-
verge rather quickly toward the perfect evaluation. Product rule esti-
mates tend to gather information that i{s present very early in the
search tree and to be relatively insensitive to the remoteness of game
termination. By contrast, minimax procedures are based essentially on
the game logic that is undoubtedly valid for either endgames or brilli-
ant short term facticaT gains. However, the validity of the minimax ap-
proach when such definite tactical advantages are not accessible is

highly questionable and has been seriously challenged recently by MNau
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[20] and Pearl [24] . OQur opinion is that the product rule is highly
valuable as a tie-Dreaker among those options that have a similar
minimax value. We get the best of both worlds if such a philosophy is
used. We will still be able to detect checkmates or definite tactical
advantages that can be reached in very few moves but will not base our
decisions on meaningless minimax values when none is in sight. Present
day chess-playing programs are known often to base their play on minute
variations of the minimax values and are therefore extremely sensitive
to minute changes in the way nodes are evaluated. Such behavior is high-
ly undesirable as it makes use of the static evaluation function for
purposes it was not really designed for. This is why we conclude this

section with a few practical reflections.

A good game playing program should successively answer the three

basic questions :
[s the position quiescent ?

If it is we evaluate it either statically, or by using ei-
ther the product rule or the minimax rulz if it was decided be-
forehand that some time should be spent examining this position
somewhat deeper. In other words, the children of a quiescent node
are examined, if at all, less carefully {(e.g. with a tighter depth

1imit) than the parent node.

If it is not, we decide that its children should be examined

with essentially the same care as the parent node.
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Practically, one could start the search with a cirtain depth

Wi credit and consume one unit when trying out a tota{1y quiescent
move, a move that does not seem to make things change a Tot, and
consume nothing for a move that introduces a drastic change in the

position. [*]
Is there a brilliant short term combination ?

This is taken care of by a minimax approach and is a dom-

inant factor in a decision, should the answer be positive.
Was is the most a priori promising move ?

This is best decided with a 1imited search using the product

rule when no ‘minimax-like' advantage is in sight.

* Quiescence scores between 0 and 1 allows unlimited 'fine-tuning’'.
However, the author participated in the development of an otherwise very
simple program that used only 0 and 1 quiescence and could defeat
experts {France's 1980 junior champion of International Checkers lost
one game at tournament speed even though the program was running on a
microprocessor !). :

4
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a y
df z) = 1-a
; (1-az)2
4
dK 1 &
d =N{1) = = ( Average interné/iifgree )
dK 4
S0 =1 Y 4
;"/l' 4’
z = 1-K(1-K(z)) (Tyere are infini#fely many stable two-cycles !)

4
_r/.
/‘

This Tast property of thi gegk/'ric distribution is used to build

the strange internal structures yf/en in Appendix A. Such strange inert
structures yield a shape for thff TIC region that departs somewhat from
that 1illustrated in Figure/ﬁfi. In pRrticular, the TIE region may be of

a height strictly sma11er/g?an unity arjund b=1 and/or it may include
. /
vertical segments of fipfte length. [*] Myre details can be found in Ap-

This whole S/{Etrum of nossibilities gat lies between inert

1ik-/

’the geometric distribution, an¥ the typical non inert

pendix A.

structures,
structures (ai/ Tlustrated in Figure 3.1) may appealonly in some con-
trived exampjfs for the impartial case we have discussgd so far. Howev-

er, they s;jh the rule rather than the exception for the\partisan games

Y/

we shall scuss in section 5.

i

J
® WhEn this happen, such vertical segments are to be counted as
included’ in the TIE region. So, for all intents and purposes, we may
considef the TIE region as closed and both the WIN and LOSS regions as
open (wfthin the unit square minus its rightmost side).

N
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APPENDIX

A. Strange non-inert internal structures.

A necessary condition for inertness is that the fixed point of K
be stable. [*] The following shows that this is not sufficient by giving
an explicit counter-example. This internal structure K can be used to
build real game structures G that do allow ties even though they yield
m<l (where m = - %g(t), as introduced in section 1). This is achieved y

taking b close enough to unity, as will be il1lustrated numerically.

Qur construction is based on the geometric distribution as intro-

duced at the end of section 3.

Ka(2) = g=rferrz

The geometric distribution K, itself is inert: a game structure & based

on it has no two-cycles whatsoever. Now, consider the internal struc-

ture:
n
K(z) = K (2) - x z(1-2){z-z) T (2-2;)(2';-2)
d 0 i=1 i i
* We are considering only impartial games here.
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where:

* x s a positive or negative number small enough to ensure that

all the coefficients im the expansion of K(z) are positive.

(m=t——L-does the job irrespective of the z;
&) |
values)

i
* Zy is the fixed point of 1-K4. That is zg = ﬂa}E! .

* The n numbers z; are distinct numbers strictly between 0 and zj.

*z's = 1-K4q(zy) (which implies that zi'= 1-Kq(z';) because of the

fundamental symmetry of 1-K; which makes the whole construc-

tion work so neatly).

By construction, z5 is the fixed point of 1-K; the n pairs

(Zi,z‘i) are the‘on1y two-cycles of 1-K besides (0,1). In addition:

If « is positive, then z5 is stable and 1-K has l-g-J stable two-

cycles.

If x s negative, then z; is not stable and 1-K has I.-g-] stable

two-cycles.

Now, unlike what happens with the plain geometric distribution,
the two-cycles do not disappear for a real! game structure
G=(1-b)p+b{1-K), provided b is close enough to unity. In fact one extra
stable two-cycle (0+<,1-<') is even created whenever the outermost two-

cycle of K is unstable.
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For example, we studied numerically the internal structure:

K(2) = Kylz) - 2l1-2)(z-(2-\ED (2= PG -2

where x = ..i%-, s1ight1y below the Targest acceptable value. The

values corresponding to the matched case (p = 2-\|Z) are tabulated in
Figure A.1. All entries are percentage probabilities. In addition, the
entry b=100% is to be interpreted as the Timit case when b is infinitely

close to 1. b=l being, of course, ruled out.

Figure A.1

Two atypical non-inert internal structures

- m ® = 1745 ! X = -1/35 |
% ﬁ (stable fixed point) i (unstable fixed point) i
! | , !
0 88579 | 68579 | s.579 | 8579 |
i 99.9701897 E'E 58.579 1 58.579 : 58.579 1  58.579 ;
E 99.9701899 | 6.114 |  96.853 | 58.579 | sa.s79 §
§ 99.9958 §§ 0.650; 99.675 i 53.579E 58.579 ;
| 99.999 Il 0.150}  99.925 | 51.2751  65.524 !
imo i'i 0 i 100 : 50.000 i 66.667 %
| | . | | !

Figure A.1 shows the two kinds of strange features internal struc-

tures with at Teast one non trivial two-cycle can exhibit. [*]

* Hére the only non-trivial two-cycle is (1/2,2/3}).
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First, as examplified by the case x = zrls"- the probabilities Pys PL
~and Pr may no longer be a continuous function of b. Ties have zero pro-
bability below a certain threshold of approximately b = .9997018982 but,
at or above that threshold, tfes occur with a probability greater than

90%. !

Second, as shown in the case x = - 4.15., the probability of ties may

not converge toward 1. Here, the probability Py is a continuous function
of b which is equal to zero below the threshold b=.9999580055 . It has

an infinite slope at that point and converges toward %.as b approaches

unity.
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B. Necessary and sufficient conditions for inertness.

Theorem 8.1
A partisanm internal structure (K,K') is inert if and only if there
exists a number § im 10,10 such that:

If x is smaller than EK

If x s larger than EK

1-K({1-K'(x}
1-K{1-K'(x)

) >x
} < x

This can be stated in a more pictorial way, namely:

Theorem B.2

An internal structure (K,K') is inert if and only if:

either the curve I" of egquation y=1-K(x) and the curve T' of

equation y=1-K'(x) coincide,

or the two curves I” and "' have only three points of in-
. tersection (namely (0,1),(1,0) and I = (EK,EK.)) and I” is
below I"' if and only if x is below §.

The reason why those conditions are necessary is a consequence
from Theorem 5.1. If they were viclated, the two curves I and I"' would
have to cross each other more than once in the interval 10,1 . As a
‘result, the two curves of equation y=G(x)} and x=G{y) would have more
than one point of intersection if the pqrameter b is chosen close enough

to unity. Ties would therefore occur, proving K not inert.

Those conditions are also sufficient to ensure the absence of ties

in the matched case where p = EK and p' = EK" since the curve of equa-
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tiomy = G'(x) is themr below I™ when x j_Ek, or, equivalently, when
Y Z_Ek- » and above it when X'ng. The converse holds true for the curve
of equation x = G(y) with respect to I''. Therefore, if the relative po-
sitions of T© and ' are as indicated in Theorem B.2, the two curves
[y = G{x)] and [x = G'(y)] can only have one point of intersection (at

X "Ek). Therefore ties do not occur.

The above necessary and sufficient conditions make a statement
that should be satisfied throughout the range of the abscissa x. In par-
ticular, it should hold in the neighborhood of x = EK- " This is only a
necessary condition. But it turns out to be a tight one which is virtu-
ally sufficient in practice. Non-inert structures that satisfy it are
rather difficult to come up. with (see Appendix A). Besides, one should
be aware of the great practical similtarity there is between ties and
games that are expected to last several thousand moves {Appendix A).

Theorem B.3 |

An  internal structure (K,K') is inert only  if

K BB <1
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C. Standard pruning transforms N and M.

Some modifications of the rules of a game do not alter the way the
game 1{s played. For example, chess is essentially a game whose goal is
to capture the opponent's king. [*] However the traditional rules say
that the actual capture should never be carried out. Instead, the game
stops whenever the Toser cannot avoid the capture of his king in the
next move. Moreover, experienced players routinely decide to stop a game
one move or more'before the checkmate. The game is hardly modified by

such conventions.

We call a convention that eliminates some legal moves while not

modifying the way the game is played a standard pruning transform.

Among the many possible standard pruning transforms we distinguish two
that have the property of preserving the general probabilistic scheme

described in this paper.

The standard pruning transform N, maps any game into a normal
game, while the image of a game through M is a misére game. We will

study N first.

The mapping N associates a normal game tree N(GT) to any given

game tree GT with the exception of the game <W> (whose very root is a

* 'Ne'aisregard various special rules, 1like the ‘'pat' rule, that
allow a game of chess to be drawn in a finite number of moves.
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terminal WIN).
Definition C.1
The standard pruning transform N is recursively defined as fol-

Tows:
* N{<L>) = <>

* If GT is an internal node whose options are all external WINs,

then its image N(GT) is a terminal LOSS node.

* If the root of GT is an 1internal node whose options besides

external WINs are Gy, Gp, ... ,Gp, then the options at the

roat of N(GT) are N(Gy), N(Gp), ... ,N(Gp).

To put it bTunt1y,bN(GT) is simply GT stripped of all its useless WIN
tip nodes. Now, it should be clear that, the WIN, LOSS or TIE status of
N(GT) is the same as that of GT. In fact, there is virtually no differ-
ence between GT and N(GT) as far as game-playing is concerned. This is
also true in a statistical sense and we have to expect virtualiy identi-
cal results whether we use a certain_probabi1ity distribution P or its

image P defined by

PIN(S)) =P{ S ! <> @S ) for any set S of game trees

If P is a partisan probability distribution {see section 5), then

so is P. More precisely, P obeys the normal play rute and allows n op-

tions to player A (resp. player A') with probability Fo (resp. F'p).
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F P S T
o>~ x X TiB
i=0
- m . -
e _ 1 ' n+1i i
frr"ﬁ"i=01=n+-i(1)o‘nue

where & = 1-§ = 1-(1-b)p and ' = 1-' = 1-(1-b')p’.

Those expressions express the fact that a node now has n Tegal op-
tions for player A', whenever it used to have n+{ options i of which

where WINs for player A. Therefore:

: 1
‘%”'&"

£ (z)

™M

1 n+iyai n
£ eyl 8z

e

m,

|. . m . P
=Btz = (Mlox)™g]

o ™i0

AM8

} @D
=-8+ L5 ' (o)™
I3 ET‘“FO m +8

Similarly,

Flz) = F(oc'z-s-g') - 8

So, any partisan statistics P has a normal equivalent P, whose

basic features are essentially jdentical.
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Theorem C.1

The normal equivalent of a partisan probability distribution of

internal structure (K,K') and external structure ({(p,p'),{b,b'))

is the partisanm probability distribution of internal structure

- o

(K,K') and external structure ((0,0),(b,b')), where:

K (o' z+3'}-K(B')

K(z) = T-KBM)
5 - b I-K(§I5

x
3 = l-x = (1-b)p

2 . K'(oz#3)-K'(8)
Ri(z) = P

BI = b -]S“ (E)

3 = lax' = (1-b')p'

Analytically, the relation between a statistic and its normal

equivalent essentially reduces to the change of variables X = x x + 3

and Y = 'y + 3'. For example, the relations y = G'(x) and x = G(y) can

be rewritten Y = G'(X) and X = G(Y).

The definition and analysis of the mapping M are parallel to that

of N.

M associates a misére game M(GT) to any game GT, with the excep-

tion of the game <L>,
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Definition g_.g_

The standard pruning transform M is defined as follows.
* M(<W>) = <W>

* If GT is an internal node with at Teast one option which is a

terminal LOSS, then its image M(GT) is a terminal WIN node.

* If the root of GT is an internal node whose options (GT,, GTy,

<+ , GT,) are not terminal LOSSes, then the options to the

root of its image M{GT) are‘M(GTl), M(GTp), ... ,M(GT,).

Te put it bluntly, 2 WIN in one move in GT becomes a terminal WIN
in M(GT). Like N, M transforms a partisan probability distribution P
into another partisan probability distribution P. P obeys the misére

rule and has a tree structure (F,F*) defined by

Flz) =L F(ra) -Fiyy +

Fr{z) =--71.-[F.“(Yz) -FUYY + )y

where Y = 1-(1-b)(1-p) and Y* = 1-(1-b')}(1-p').
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Theorem c.2

The misére equivalent of a partisam probability distribution of

internal

is the partisam probability distribution of internal

structure (K,K'), and external structure ({p,p'),{b,b"'))

structure

(K,K') and external structure ((1,1),(b,b')), where

tz) = KLY2)

Kz) =Xy

5 b KOO
k)

Yy = 1-(1-b)i1-p)

RI(Z) =Kl(y2)
51 = p' K'(Y)

rt = 1-(1-b"){1-p")

The pruning transforms N and M can be composed to yield other

transforms that will not alter the nature of the game either.

For exam-

ple, the transform N o M changes the hypothetical original rules for

chess, where the gamé stops with the capture of a king, into the conven-

tional ones. [*]

- * The author was taught chess, at the advanced age of seven,

by an

eight year old. His first game of chess did result in the capture of his

own king.
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