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Abstract

This talk provides an introduction to definitions and known facts relating

to the stabilization of parametrized families of linear systems using static

and dynamic controllers.  New results are given in the rational and

polynomial cases.

1. General discussion

We shall consider a set of problems which have appeared in algebraic system theory and whose
solutions involve tools of various different types.  These problems, in their simplest form, deal with
parametrized families of pairs ("systems") {(Aλ,Bλ), λ∈Λ}, where Aλ is an n×n and Bλ is an n×m matrix for
each λ (with n,m fixed integers).  To be found is a new parametrized family {Kλ, λ∈Λ} such that (1) a
given design criterion is satisfied by the closed-loop matrix Aλ+BλKλ for all λ, and (2) the Kλ depend in a
suitably ’nice’ form on the parameter. (For the purposes of this talk, the entries of all matrices take real
values, for each λ.)

For example, one design objective is that Aλ+BλKλ should (for each λ) have all its eigenvalues in the
inside of the unit circle (discrete-time stabilization); one nice form of parameter dependence if, for
instance, Λ is an Euclidean space ℜr (or an algebraic variety), is that Kλ be required to have entries which
are polynomials in λ. Many other design objectives and types of parametrizations will be mentioned
below. As a general rule the former will always deal with stability-related properties.  Regarding
parametrizations, we’ll talk about the continuous, (real-)analytic, rational, or polynomial cases; when doing
so, it will be implicit that the parameter set is respectively a topological space, a real-analytic manifold, or
in the last two cases an Euclidean space, and that the given family {(Aλ,Bλ)} is parametrized in this way.
One may also consider of course other situations, for example the smooth (=C∞) case, or polynomial and
rational families over algebraic varieties; for simplicity, we restrict attention to the above.  For any given
type of parametrization for the family {(Aλ,Bλ)}, we shall search for families of controllers parametrized in
the same way.  This insistence on a ’nice’ parameter dependence for {Kλ} (or its dynamic versions
described later) is what distinguishes the area from the more classical study of single systems.  Most
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results attempt in essence to establish local-global principles: does solvability for each individual λ imply
the existence of a nicely parametrized solution?

There are various motivations for studying the general type of problems mentioned here.  From a
purely mathematical point of view, these are a natural next step after the solution of their non-
parametrized versions, which constitute what a great deal of linear control theory is about. The system-
theoretic interpretation of the present setup is as follows.  The pairs (Aλ,Bλ) represent a discrete or
continuous time system

x(t+1) [or x⋅ (t)] = Aλx(t) + Bλu(t) (1)

whose general structure is known in advance but where certain parameters are a priori undetermined.
(There may also be an output or measurement specified, of the type y(t) = Cλx(t), in which case the
transposed family {(Aλ

T,Cλ
T)} becomes also of interest, as in the example given below.)

Parametrized equations 1 arise for instance in the case where the (Aλ,Bλ) correspond to linearizations
of a given nonlinear system at many different operating points, and one is interested in the design of
controllers for all the linear systems so obtained.  Such a situation appears frequently in aircraft control
("gain scheduling"), where controllers are precomputed for a large variety of operating conditions, with an
on-board computer choosing the appropiate controller to be used at any given time based on
environmental, geometric, flight-mode, and other factors, like pitch angle, air speed, angle of attack, and
so forth. An alternative approach to this precomputation and storage would be to try to apply the tools of
parametrized families to achieve the simultaneous design of these controllers, in the form of a
parametrized controller which regulates once its parameters are properly tuned.  Thus, only the functional
form of the controllers needs to be stored.  Together with an on-line identification procedure, this
becomes in effect a method for adaptive control; recent work ([E2]) makes this application more precise.
The resulting families will be typically analytic or rational, but other situations may appear too; for example
polynomially parametrized families appear when dealing with systems with finite Volterra series (see
[RU]).

The simplest control problem, that of stabilizing the above system by a static linear law u(t) = Kλx(t),
consists mathematically of finding a (nicely parametrized) family {Kλ} such that, say in continuous-time, all
eigenvalues of Aλ+BλKλ have negative real parts, for each λ in the parameter set Λ. A more interesting
problem is that of "pole-assignment", which consists of finding a family {Kλ} such that Aλ+BλKλ has
specified eigenvalues for each λ. (The terminology "poles" is due to the fact that the eigenstructure of this
matrix gives rise to the poles of the transfer function of the closed loop system.)

A specific, though somewhat artificial, example of where a parametrized control problem appears is
the following one.  A cart can move horizontally, in one dimension, controlled by a motor.  To its top is
attached an inverted pendulum.  The objective is to keep the pendulum in an upright position, using
suitable controls (horizontal forces on the car).  This is a standard textbook problem in control theory, and
is analogous to a rocket stabilization problem.  We shall assume that the mass M of the pendulum is
concentrated at its top, and will disregard friction effects.  The available observations will be the
displacement of the cart and the angular velocity of the pendulum.  Linearizing around the position
corresponding to a static cart and a static vertical pendulum, the equations can be written as

x⋅ (t) = Ax(t)+Bu(t), y(t) = Cx(t),

with A,B parametrized matrices as above, C a p×n matrix, m=1, n=4, p=2, and

0 1 0 0 0 (2)
0 0 -λ 0 1 1 0 0 0

A= 0  0  0  1 B= 0 C= 0 0 0 1
0 0 g+λ 0 -1



(see [FH,p.47]), where the state coordinates are respectively the position and velocity of the cart, and the
angle (with respect to the vertical) and the angular velocity of the pendulum.  We are assuming that the
pendulum has unit length, the cart has unit mass, g is the acceleration of gravity, and the parameter
λ=Mg is scalar, Λ=ℜ. The linearized model is controllable and observable for any λ (see below), so most
design techniques can be easily applied, yielding in particular dynamic stabilizers for the above system.
Here, however, we wish to consider the mass M of the pendulum, or equivalently λ, as a parameter, and
we ask if it is possible to design a family of control systems {∑λ} for 2, such that each ∑λ results in a
closed loop system with appropiate dynamic characteristics, and such that these controllers depend again
nicely on λ.

The results to be reviewed later insure that pole assignment (in particular, stabilization with arbitrary
degrees of convergence,) can be achieved, by regulators ∑λ of fixed dimension and depending
polynomially on λ, if and only if 2 is controllable and observable for all values of λ, real and complex. The
controllability constraint means that the controllability matrix (B,AB,A2B,A3B) has full rank; since its
determinant = g2 = nonzero constant, this is clearly satisfied.  The observability property deals with the
analogous matrix for the dual pair (AT,CT). This observability matrix (CT,ATCT,(AT)2CT,(AT)3CT)T has in
particular minors ∆1 = -λ2 (rows 1,3,5,7) and ∆2 = g+λ (rows 1,2,3,4); since these two polynomials are
relatively prime, the observability condition holds too.  In fact, it is absolutely trivial (because m=1) to
design a polynomially parametrized state feedback that achieves any desired pole location: if k=k(λ) is
desired so that A+BkT has a characteristic polynomial z4+α3z3+α2z2+α1z+α0, one may choose k1:=α0/g,
k2:=α1/g, k4:=α3+α1/g, and k3:=α2+g+(α0/g)+λ, so that k is a polynomial of degree 1 in λ. In order to
obtain a regulator that uses only the available measurements, we may proceed by constructing first a
"Luenberger observer" for (A,C), which reduces to the solution of a pole-assignment problem for the
transposed pair (AT,CT), and then combining this with the above feedback law.  The usual methods for
obtaining an observer, however, will not result in a polynomially parametrized observer.  For example,
since A(λ) is cyclic for all λ, one may try to find a v=v(λ) such that, for each λ, CTv is cyclic for AT,
reducing the construction to the single-output case ([WO]). But a simple calculation shows that no such v
exists in this case, and the usual generalization, "Heymann’s lemma," is not available over the polynomial
ring ℜ[λ]. Since Λ=ℜ, ℜ[λ] is a principal ideal domain, however, and the construction of an observer can
be completed, as discussed later.  We omit the calculations here, but remark that they involve a certain
amount of linear algebra over ℜ[λ], at the level of computations with Smith forms.

Another, more theoretical example, related to the "gain scheduling" idea mentioned earlier, of families
of systems appearing as linearizations of nonlinear systems around different operating points (in the style
of [BR]), is as follows.  Consider the problem of obtaining observers for the linear systems that result
when linearizing the 2-dimensional system x⋅ 1=u, x⋅ 2=x2+v, y1=x1x2+x1, y2=x1

2x2-x2, at the natural
equilibrium states (λ,0), λ∈ℜ. The duals of these systems have

0 0 1 0 (3)
A = B= .

0 1 λ λ2-1

It turns out that this is the example that we shall mention later in order to illustrate the fact that it is in
general impossible to obtain arbitrary characteristic polynomials for A+BK, with polynomially parametrized
K.

Finally, parametrized control problems are of interest in that they appear as one of the most
interesting instances of systems over rings, or generalized linear systems (g.l.s.), and the results for these
problems illustrate basically all the characteristics of that more general situation.  The more general study
of systems over rings deals with pairs of matrices (A,B) with entries on a commutative ring, not
necessarily a ring of real functions.  Since sheaf-theoretically rings can be represented in terms of
functions on their prime spectra, the study of families of systems provides much intuition about the more



general case. In other cases topological rings of various kinds are of interest, and systems over such
may be seen as families induced by the possible representations of the ring; see for instance the
references [B2], [GK], [BU].

It seems worth saying a few words about other applications of systems over rings.  It is well known
(and fairly obvious) that certain types of distributed linear systems can be written formally as 1 provided
that one allows the matrices A, B to have operator entries.  A typical example is that of delay-differential
systems, for which the derivative x⋅ (t) may depend not just on present values of states and inputs but also
on past values x(t-1), u(t-1), ..., etc.  Introducing a shift operator (λv)(t) := v(t-1), the delay equation can
also be modeled by an equation like 1 with the entries of A, B now polynomials in λ. (Polynomials in
several variables appear if there are noncommensurate delay lenghts.)  It is much less obvious that this
formal procedure can be useful in solving actual control problems.  An important contribution of E. Kamen
(ca. 1973) was to realize that in this way one may apply results of systems over rings, whose study was
initiated around that time ([RWK]).  Other motivations for the study of g.l.s. are in the modeling of certain
image processing algorithms and to model systems over the integers and residue rings.  A large literature
exists by now in the area; somewhat outdated surveys are [S1], [KN], and more up-to-date but much less
complete is [S3].  A couple of textbooks are in preparation, and one is to appear soon ([BBV]).  For
application areas like delay systems, g.l.s. methods, in conjunction with certain techniques of analysis,
offer an attractive alternative to methods based on functional analysis.  We shall be here concerned only
with families of systems, however.

2. Summary of the presentation

The organization of the talk is as follows.  In the next section we review basic definitions and
notations. After that, we shall cover various results, starting with those known under the most restrictive
conditions on families, and progressing to those that hold under minimal conditions. The appendix
contains proofs of new results.

The main concepts and results discussed are as follows (precise definitions to be given later). A
pointwise controllable (resp., asycontrollable) family is one for which each of the systems (Aλ,Bλ) is
controllable (resp., asycontrollable).  "Controllability" of a given (Aλ,Bλ) corresponds to the standard
system-theoretic notion of being able to control (in finite time) any state to any other state; it appears here
mostly as a technical condition on the rank of a matrix associated to Aλ and Bλ (the condition is the same
whether in discrete or continuous time).  "Asycontrollablity", often called "stabilizability", corresponds to
the possibility of finding, for each state x an infinite length control u(t), 0≤t<∞ which drives x asymptotically
to the origin; its precise algebraic characterization depends on whether we are dealing with discrete or
continuous time families.

In pole assignment problems we want to assign arbitrary eigenvalues to closed-loop dynamics, in
stabilization problems the objective is just to stabilize the system. Constant solutions are in terms of static
feedback u(t)=Kλx(t), dynamic solutions allow memory in the controller.

It is shown that, contrary to what could have been expected by analogy with the case of single
systems, in general pointwise controllablity is not sufficient in order to insure static pole assignment.
Somewhat surprisingly, it does suffice for concluding dynamic pole assignment.  (In the case of
polynomial families, a stronger property is needed for this later fact, however: controllability for complex
parameter values as well.)  In any case, if pointwise controllability holds, it is in general true that we can
stabilize with static feedback, except in the case of discrete time polynomial families.

If the family is only pointwise asycontrollable, it is possible to stabilize using static feedback in the



continuous and analytic cases, and to stabilize dynamically in all the others, except again for discrete time
polynomial families.

3. Definitions and notations

There are various technical conditions that we may impose on the family {(Aλ,Bλ), λ∈Λ}. The first
one, pointwise controllability, means that the controllability matrix

R(Aλ,Bλ):= [Bλ,AλBλ,⋅⋅⋅,Aλ
n-1Bλ] (4)

has full rank n, i.e. that the system (Aλ,Bλ) is controllable, for each λ. (From now on, the statements "for
each λ" or "for all λ" will mean always "for all λ∈Λ".) If (Aλ,Bλ) is only "stabilizable" for each λ, the family
is pointwise asy(mptotically)controllable. Recall that (Aλ,Bλ) is "stabilizable" if the system 1 has the
property that, for any initial state x(0) there is a control function u(⋅) such that the resulting trajectory x(t)
converges to 0 as t→∞. Of course, this depends on the interpretation of (Aλ,Bλ) (discrete or continuous
time), so to be more precise we should talk about "discrete" or "continuous" pointwise stabilizability;
however, the meaning will be clear from the context.  The "Hautus conditions" characterize these
pointwise properties in the following way.  Consider the matrix

S(Aλ,Bλ):= [zΙ-Aλ,Bλ] (5)

for each fixed λ, with z a complex variable. Then controllability of any given (Aλ,Bλ) is equivalent to 5
having full rank for every z∈C, and asycontrollability is equivalent to 5 having full rank for each z∉Cs,
where Cs = the interior of the unit circle in the discrete time case, and Cs = the open left-hand plane in the
continuous case.

Two other conditions are suggested from the theory of "systems over rings", and depend on the class
of (real-valued) functions P allowed in parametrizations.  For this exposition, P will be one of: C0(X),
continuous functions on a topological space X, Cω(X), real-analytic functions on a real-analytic manifold
X, ℜ(X), rational functions on X = ℜr with no poles in ℜr, or ℜ[X], polynomial functions on X = ℜr. (We
shall henceforth refer to the "cases Co, Cω, ℜ(X), ℜ[X]" respectively.)  All these P are seen as rings under
pointwise multiplication.  By a "family (of systems) over P" we mean a {(Aλ,Bλ), λ∈Λ}, such that, when
thought of as a pair of matrices (A,B) whose entries are parametrized by λ, all such entries are functions
of P. If P is not specified in a statement, the statement is meant to apply to all P as above.  The conditions
that we want to consider are then ring controllability and ring asycontrollability. Both can be defined in
various ways, the most intuitive being as controllability and "stabilizability" of systems of difference
equations over the appropiate rings; such definitions are given in [KS].  In particular, ring controllability
means that 4 has a right-inverse over the ring P, i.e. that there exists a matrix Q(λ) over P such that RQ =
n by n identity.

Since here our interest in these conditions is purely technical, we prefer another type of definition.
Consider the S in 5, now seen as a matrix over the polynomial ring P[z] obtained by adjoining an
indeterminate to P. Then, ring controllability of {(Aλ,Bλ)} (a family over P) means that S has a right inverse
over P[z].  Similarly, ring asycontrollability means that S has a right inverse over the ring Ps of stable
P-rational functions. This is the fraction ring of P[z] obtained by allowing denominators of the form θ(λ,z),
where θ is monic in z and stable (i.e.  all roots of θ(λ,⋅) are in Cs) for each fixed λ. A more elementary
way of saying the same thing is that there must exist a (polynomial) matrix Q(λ,z) over P[z] such that SQ
= θΙn, with θ as above.  Equivalences among various types of definitions are given for example in [HS1]
and in section 3 of [KS].  Of course, in both cases the ring notion implies the corresponding pointwise
concept.

It is easy to verify that in the cases P = Co, Cω, ℜ(X) pointwise controllability is equivalent to ring



controllability. This is because the problem of finding a right inverse over P to the matrix R in 4 is
equivalent to the problem of expressing a unit as a linear combination over P of the n-minors of R; since
the pointwise condition insures that these have no common zeroes, adding the squares of these minors
results in a nowhere vanishing function, which is a unit in the above cases.  Of course, this doesn’t work
in the polynomial case; in the ℜ[X] case ring controllability is equivalent to R being right invertible for all λ
complex. (A more elegant discussion of these points is in terms of [finitely generated] maximal ideals of
P; see [S1].) The relations between the ring and pointwise asycontrollability notions are more delicate;
we’ll come back to this point at the end of the talk.

There are various different stabilization-related design objectives that we shall study.  Each of these is
defined with respect to a fixed ring P as above.  The family (over P) {(Aλ,Bλ)} is coefficient assignable
(c.a.) (with static feedback) if for each polynomial θ(z)=θ(λ,z)∈P[z] monic in z and of degree n, there
exists a K in Pm×n (i.e., a family of m by n matrices {Kλ} parametrized in the same way as the original
family,) such that the characteristic polynomial of A+BK (calculated over P) is θ. Equivalently, the
characteristic polynomial of each matrix Aλ+BλKλ is the corresponding θ(λ,⋅). Pole-assignability (p.a.)
means that such K can be found for all monic θ that factor linearly over P, θ = (z-α1)⋅⋅⋅(z-αn), αi∈P.
(Weaker notions of pole assignability are discussed later.) (Discrete or continuous time) stabilizability
means that there exists a stable polynomial θ for which such a K can be found, where "stability" is
understood as before.  Finally, we shall talk about dynamic versions of these problems, meaning the
following. A family {(Aλ,Bλ)} is dynamically c.a. if there exists a nonnegative integer κ such that the new
family

Aλ 0 Bλ 0 (6)
~Aλ = ~Bλ =

0 0 0 Ικ

(having ~n:= n+κ and ~m:= m+κ) is c.a.; similar definitions apply to p.a. and stabilization.  The interpretation
of this is: assume that ~K is found so that ~A+~B~K has desired dynamic behavior (characteristic polynomial).
Writing ~K in block form, the "closed loop system" with dynamics ~A+~B~K corresponds (say in continuous
time) to the system

x⋅1 = (A+BK1)x1 + BK2x2 (7)

x⋅2 = K3x1 + K4x2,

that is, there is a new system, with state variables x2, whose inputs are the states x1 of the original
system, and which feeds a control u = K2x2 to the original system, such that the closed loop behavior is
as desired.  From an applied point of view, such a controller, easily implementable with digital technology,
is as acceptable, for most applications, as a "static" feedback u = Kx.  One of the surprising
characteristics of parametrized families of systems is that, as we shall see, in many cases there are
dynamic solutions but no static ones; this is in sharp contrast to the "classical" situation (single systems)
where, for state-feedback problems such as those considered here, static controllers are sufficient.

Some notation will be useful to help organize the labeling of remarks and results.  We will use a
4-tuple (a,b,c,d) where a = ’d’ or ’∆’ indicates continuous or discrete time respectively, b = ’C’ or ’D’
indicates static or dynamic feedback respectively, c = ’S’ or ’P’ is used to indicate that the remarks
concern just stabilization or pole-assignment (including c.a. and weaker versions of p.a.), and the last
entry indicates the class P for which the results apply.  A "*" in any position indicates that all options are
appropiate. These notations will be used informally, for easy reference.



4. Pole assignment and related problems

The strongest assumption that we can make about the family {(Aλ,Bλ)} is that of ring controllability.  In
fact, this condition is necessary for most objectives involving arbitrary modification of dynamics, like p.a.
and c.a. (but not for just stabilization), even if dynamic feedback is used; for simplicity we give the p.a.
version, but it is clear from the argument that many weaker notions of p.a. will still imply ring
controllability.

Proposition 1: Assume that the dynamic p.a. problem is solvable for the family {(Aλ,Bλ), λ∈Λ}. Then the

family is ring controllable.

Proof: We shall prove that each system (Aλ,Bλ) in the family is controllable, and in the case P =

ℜ[X] that this is even true for complex values of the parameters λ. By the remarks in the previous

section, this will imply the desired conclusion.  So consider any such system (Aλo
, Bλo

). Let κ be as in the

definition of dynamical p.a., and pick a set of real numbers {α1, ⋅⋅⋅, αn+κ} disjoint from the eigenvalues of

Aλo
. By assumption, the polynomial (independent of λ) θ := (z-α1)⋅⋅⋅(z-αn+κ) can be assigned for the

system 6, so in particular arguing pointwise it can be (dynamically) assigned for the given (Aλo
, Bλo

). (In

the polynomial case P = ℜ[X] one may still formally evaluate the feedback matrix ~K at complex λ to obtain

the same conclusion.)  It follows by a classical argument that this system is controllable: otherwise there

exists a basis in ℜn for which (Aλo
, Bλo

) has the block form

* * * (8)
0 F 0

with F of size at least 1, and the eigenvalues of F appear among those of any closed loop system of the

type 7, contradicting the pole placement result. QED

This remark out of the way, let’s concentrate now on sufficiency results, assuming ring controllability.
The first observation, which we will not explain in any detail, is that when m (number of controls) = 1
everything is as expected from the "classical" case.  This is because the controllability matrix R in 4 is
then a square matrix, and by assumption of ring controllability has a determinant invertible over P; thus
global changes of basis are possible just as for single systems, resulting in the construction of various
canonical forms, from which (static) c.a. is immediate.  (See for instance [ZA] for some facts about the
single-input case when somewhat less than ring controllability is available.)  This kind of argument can be
extended to the case where there is a square matrix, invertible over P, of the form

R* := [b1,b2,⋅⋅⋅,bm1
,Ab1,⋅⋅⋅,Abm2

,⋅⋅⋅,Ar-1b1,⋅⋅⋅,Ar-1bmr
] (9)

such that m1≥⋅⋅⋅≥mr, ∑mi=n, and the bi are columns of a matrix of the type BV, where V is a (square)
invertible P-matrix.  In the case of single systems (no parameters), such a matrix always exists, with V =
identity, and finding it is often the first step in obtaining a canonical form which allows an easy solution of
the c.a. problem (see for instance [KA]).  In the parametrized case, if such an R* exists, then the classical
arguments can be generalized with no difficulty whatsoever, because all changes of coordinates used in
obtaining canonical forms starting with R* are given by unimodular matrices; thus the c.a. problem is
solvable in that case.

In general, however, such a matrix will not exist (e.g. for the counterexamples given later), but the
above remark is nonetheless of interest for two reasons.  First, there is the result in [B1] that states that
(for appropiate P) a good R* will exist provided that the family {(Aλ,Bλ)} has constant Kronecker indices, in
other words, that the rank of the matrices [Bλ,⋅⋅⋅,Aλ

jBλ] be independent of λ for each j = 0, ⋅⋅⋅, n-1. Though
a highly restrictive condition, it does provide a nontrivial result, which depends on basic facts about vector



bundles in the topological case, and on the solution of Serre’s problem in the polynomial case.  (To be
more precise, [B1] deals with complex polynomial families, but the result can be proved for ℜ[X] and for
families over P = Co(X), X contractible.)  Another reason that 9 is of interest will be clear soon.

In relation to the remarks in the last paragraph, it is worth mentioning some recent results in [TK],
where a much weaker assumption than constancy of Kronecker indices is used to obtain (still under the
ring controllability hypothesis) a weak form of p.a.: the authors assume only that the rank of Bλ is
constant, and conclude that any constant polynomial of degree n can be assigned.  Their result applies in
the case Co(X), X contractible (and for certain rings of complex analytic functions); its proof is based on
algebro-geometric arguments concerning the existence of continuous sections of fibrations, applied to the
system of algebraic equations on K that give the desired characteristic polynomial.  Generalizations to
other rings P are unknown.

The nonconstancy of the rank of Bλ is in fact at the root of most known counterexamples relating to
p.a. and c.a. problems, via the argument used in [BSSV].  This argument, in its form given in [HS2], is
based on the following observation.  Here, a "unimodular" family of vectors {vλ} is a P-parametrized vector
such that vλ≠0 for all λ; a unimodular eigenvector of {Aλ} is such a {vλ} with the property that, for some
σ∈P, Aλvλ = σλvλ for all λ; (unimodular left eigenvectors are defined similarly); a "unimodular column" for
{Bλ} is a unimodular family of vectors of the form {Bλwλ}, for some (necessarily itself unimodular!)  {wλ}.

Lemma 2: If the family {(Aλ,Bλ)} is pointwise controllable and if {Aλ} has a unimodular left eigenvector

then {Bλ} has a unimodular column.

The idea of the proof rests upon the "Hautus controllability condition" in terms of the matrix S
introduced in 5.  Indeed, the rank condition, applied pointwise, implies that a left eigenvector vλ

T of {Aλ}
must be necessarily a "unimodular row" of {Bλ}: vλ

TBλ is nonzero for all λ. Thus Bλ(Bλ
Tvλ) is a

unimodular column of {Bλ}. QED

Now, if we produce a ring controllable polynomial family {(Aλ,Bλ)} such that {Bλ} has no unimodular
column even for P = Co, we will have established that, using the notational conventions introduced earlier,
(*,C,P,*) cannot be solved in general:

Theorem A. There is a ring controllable polynomial family which cannot be (statically) pole-assigned,

even if only continuous feedback is required.

Indeed, if for instance the constant polynomial (z-1)n-1z could be assigned over Co(ℜr), i.e. there is a
continuous {Kλ} such that D:= A+BK has this characteristic polynomial, then ker(Dλ

T) (being of constant
rank 1) is in a natural way a line bundle over ℜr, hence is trivial.  Thus there is a nowhere zero continuous
section of this bundle, which is the same as a left eigenvector (with P = Co(ℜr)) of D={Dλ}. Since the new
family {(Dλ,Bλ)} is again pointwise controllable (elementary linear system theory!), this contradicts via
lemma 2 the above assumptions about {Bλ}. Thus there can exist no continuous (hence no Cω, etc.,)
feedback assigning this polynomial.  Specific examples of such families are given in [BSSV] (see also
[TA] and [SH] for a more methodical approach); for instance,

0 1 λ2 λ2 (10)
Aλ = Bλ =

-1 0 -λ1 z

where z = -λ1-(1 - λ1
2 - λ2

2). A fixed point argument is used in [BSSV] to conclude that {Bλ} has no
unimodular columns.

Note that the above counterexample uses families over ℜ2. There is a good reason for this: In the



case of polynomial (or even rational) families over ℜ (scalar parameters), the result in [MO] insures that
the p.a. problem is always solvable. That proof can be easily extended to the real-analytic case over X =
ℜ ([BSSV]) and, with some more difficulty, to Co(ℜ) and some other cases ([HS2]).  The basic method for
assigning θ := (z-α1)⋅⋅⋅(z-αn) is to inductively find first a {Kλ} and a unimodular eigenvector of {Aλ+BλKλ}
corresponding to α1, and so on recursively for the rest of the αi’s. We illustrate only this first step.  The

controllability hypothesis insures that the preimage (α1Ι-Aλ)-1(imBλ) is nowhere zero; under suitable
assumptions on P this is sufficient to conclude that there are families of vectors {wλ} and {vλ}, the latter
unimodular, such that (α1Ι-Aλ)vλ = Bλwλ. Hence we may define {Kλ} so that Kλvλ = -wλ. In the ℜ[X] and
ℜ(X) cases, these families exist because P is a principal ideal domain, in the Cω(ℜ) case because P is an
elementary divisor ring, and in the Co(ℜ) case by some results on singular distributions.  A generalization
of this argument, using line bundles instead of unimodular vactors, is needed to obtain similar results for
functions on certain noncontractible spaces, as done in [HS2] for functions on the unit circle.

The above positive results refer to the p.a. case; for c.a. not even the case of "one-dimensional" P is
well-behaved. This was studied in some detail in [S1] and [BSSV]; the later reference shows (except for a
coordinate change) that the family in 3 cannot be coefficient assigned over P = ℜ[λ]. The polynomial
z2-(2λ)z+1 cannot be obtained by any feedback law, as established via a quadratic reciprocity argument.

Faced with these negative results, [HS1] began the study of the existence of dynamic solutions to the
c.a. problem. Only partial results were given there, however.  The proof that the case (*,D,*,*) is always
solvable (under the assumed ring controllability condition) is due to [EK]:

Theorem B. Ring-controllability is equivalent to dynamic pole assignability.

A particularly nice (and very simple!) proof of this fact is due to P.P. Khargonekar (see a time-varying
analogue in [KK2]), and is as follows.  Choose κ (in the definition of dynamic controllers) as n2. We claim
that the extended system 6 is coefficient assignable.  In order to prove this, it is enough to find a K={Kλ}
and a family of matrices {Lλ} such that the new family {(Fλ,Gλ)} := {(~Aλ+~BλKλ,~BλLλ)} admits a global basis
as in 9.  For then one can assign F+G~K = ~A+~BK+~BL~K = ~A+~B[K+L~K]. Assume then that C = {Cλ} is a right
inverse (over P) of the matrix R in 4.  Partition C (an nm by n matrix) in such a way that C1 is the matrix
obtained from its first m rows, C2 from the next m, etc.,

CT = [C1
T,C2

T,⋅⋅⋅,Cn
T] .

Let the added coordinates be denoted by blocks (of dimension n each) Z1,⋅⋅⋅,Zn. Now let K be in block

form (Kij) with K11:= 0 (size m by n), K12 (m by n2) be in terms of the above coordinates the combination

∑CiZi, K21 again 0, and K22 the n2×n2 matrix having shift block structure

0 Ι 0 0 . . 0
0 0 Ι 0 . . 0
. . . . .
. . . . .
0 0 0 0 . Ι 0
0 0 0 0 . 0 Ι
0 0 0 0 . 0 0

(blocks of size n×n). Finally, let Lλ be the (constant) matrix with m+n2 rows and n columns which is zero
except for an identity matrix in the last n rows.  Thus, {(Fλ,Gλ)} is the family



A BC1 BC2 . . BCn 0
0 Ι 0 . . 0 0
0 0 Ι . . 0 0
. . . . . . .
0 0 0 . Ι 0 .
0 0 0 . 0 Ι 0
0 0 0 . 0 0 Ι

(all blocks of size n×n). The matrix [G,FG,⋅⋅⋅,FnG] is then a square matrix with anti-diagonal blocks Ιn, and

thus is an R* as in 9 (with all mi=n, r=n+1, and V=Ι).

Note that the above solution results in a huge number κ; it is of course desirable to have this number
be as small as possible. For the Co(X) case, X contractible, this can be achieved, at least for a weak form
of p.a., with κ = m.  This fact follows from the result already quoted from [TK], regarding constant rank
families {Bλ}. Indeed, a {Kλ} and {Lλ} can be found to transform as before the extended system:

0 Ι 0
K = L =

0 0 Ι

(both constant) resulting in a family {(Fλ,Gλ)} := {(~Aλ+~BλKλ,~BλLλ} that is again ring controllable but for
which the family {Gλ} now has constant rank.

In general the question of how small a κ should be taken is interesting and relatively unexplored.
Using facts from K-theory one may obtain negative results by methods analogous to those used above to
show that p.a. is in general impossible with static feedback.  Basically the idea is to find controllable
systems for which the family {Bλ} not only does not admit unimodular columns but such that no large-
dimensional nonsingular sections exist for the column space of the corresponding extended {~Bλ}. We do
not know of any definitive results in this direction.

5. Stabilization problems for controllable families

In this section we collect results obtained still under assumptions of controllability, but only providing
stabilizability rather than pole or coefficient assignment.  Since p.a. properties are not desired, it is not
needed now to impose ring controllability; so we will only assume pointwise controllability.  Of course we
have the analogue of proposition 1; in fact this is proved in [KS]:

Proposition 3: Assume that the dynamic stabilization problem is solvable for the family {(Aλ,Bλ), λ∈Λ}.

Then the family is ring asycontrollable.

When assuming controllability in order to establish a conclusion about stabilization (not pole
assignment), we are in a sense requiring more than, on the basis of this proposition and the intuition
provided by the classical case, should be necessary. Notice however that controllability of the family
{(Aλ,Bλ)} implies also (easy exercise!)  controllability of any family of the type {(Aλ+αI,Bλ)}, for any real α.
If a stabilization result is applied to this new family, the conclusion for the original family is that
eigenvalues are being placed in the translated set Cs-α. In the continuous-time case, this means that the
original family can be stabilized with arbitrary degree of convergence. Conversely, if such a type of
stabilization is possible (for any α, find a {Kλ} such that all eigenvalues of A+BK are in Cs-α), the given
family must be controllable; this is clear from the proof of proposition 1.  (Analogous statements for
dynamic stabilization.) Thus, if instead of stabilization we had introduced "stabilization with arbitrary
degree of convergence", all results will still be true, and the assumption of pointwise controllability would



be necessary as well as sufficient. In any case, as seen in the previous section, p.a.  problems are not
usually solvable if one requires static solutions, even under such stronger assumptions.  On the other
hand, the cases (*,*,S,*) have positive solutions (for pointwise controllable families), with the exception of
the cases (∆,*,S,ℜ[X]):

Theorem C. Except for the discrete-time polynomial case, pointwise controllable familes can be

stabilized with static feedback.

An easy counterexample for the d.t. polynomial case is provided by the family (with m=n=r=1)
{(1,λ2+1)}. This cannot be stabilized by a static feedback, since for no possible polynomial k(λ) is the
polynomial 1+k(λ)(λ2+1) less than 1 for all λ∈ℜ. Note that in continuous time this can indeed be
stabilized: we may use for example k:= -2, which insures that 1+k(λ)(λ2+1) is always negative.  And in
either discrete or continuous time, for other P than polynomials we may divide by λ2+1 so that c.a. is
possible for this example.

In fact, the above example cannot be stabilized by dynamic feedback either, by the following
argument. In general, if a family over ℜ[X] is dynamically discrete-time stabilizable then the systems
obtained by evaluation at complex λ∈Cr are all asycontrollable. Indeed, let θ be the closed-loop
characteristic polynomial (degree n+κ). If discrete-time stable for all real λ, it must be constant as a
function of λ. This is because the possible coefficients of polynomials of any given degree whose roots
are in the unit circle form a bounded set.  Thus, when the parameters appearing in the Kλ used are
evaluated over C, the same constant stable θ is obtained, proving the claim.  We conclude that the
example in the previous paragraph cannot be d.t. stabilizable, because the complex system obtained
when λ=i is not asycontrollable.

The proof of Theorem C is due to many authors.  Consider first P = Co and Cω. There are basically
three known ways to prove the positive results in these cases.  The first, which will not generalize to the
other cases, is based on the smooth dependence of solutions to quadratic optimal control problems, and
was introduced in this context by [D1], [D2].  (See also [BT].)  Consider for instance the continuous-time
case, and the algebraic Riccati equation

QA + ATQ = QBBTQ - Ι,

to be solved for a family Q = {Qλ} each of whose members is a real symmetric matrix of size n.  Since
each (Aλ,Bλ) is controllable, and hence "stabilizable" in the classical sense, there is a unique solution Qλ
for each λ, and the feedback

Kλ := -Bλ
TQλ (11)

stabilizes each such system. So if we prove that Qλ depends smoothly on the data (Aλ,Bλ), we’ll have the
desired result over the above P. But smooth dependence can be concluded from an argument based on
the implicit function theorem; see the above references for details.  The argument in the discrete-time
case is entirely analogous, but using the A.R.E. corresponding to discrete-time systems.  Note that we
then have the desired stabilization result, for P = Co, Cω, assuming only pointwise asycontrollability.

Another approach, which works for the above cases as well as in the discrete-time rational case ℜ(X),
was taken by [KK1], based on a method due to [KL].  Consider first the discrete-time cases, and let W:=
RRT, where R is the matrix over P introduced in 4.  Since the original family is pointwise controllable, this
W is pointwise nonsingular, so in the cases P = Co, Cω, ℜ(X) we conclude that it is invertible over
P. Then, the feedback law K:= -BT(AT)nW-1An+1 will stabilize (see the above references).  Note that K is
indeed defined over P. In the continuous case, one uses a matrix analogous to R but involving an integral
(the controllability Gramian of the system), and the proof is analogous, and in fact standard (see for
instance the textbook [KA], exercise 9.2-11). However, the integration destroys the rational dependence
on parameters, and hence doesn’t apply to the ℜ(X) continuous time case.



To summarize, we are left with establishing the continuous-time ℜ(X) and ℜ[X] cases.  This requires
different techniques from the above.  (Note however that, on compact subsets of parameter space, the
Stone-Weirstrass theorem can be used to conclude polynomial stabilizability from the continuous case.)
It will follow from the material in the next section and the appendix that one may stabilize systems in these
cases provided that we allow for dynamic feedback. But static feedback will work too. This can be
established as in [S4], which is in turn based on the method introduced in [BA].  The following fact is
proved in the former:

Proposition 4: Let n,m be integers, and A=(aij), B=(bij) two matrices of distinct indeterminates, of sizes

n×n and n×m respectively.  There exist then:

• an m×n matrix K(A,B,γ) of real polynomials in the aij, bij, and another variable γ, and

• (scalar) polynomials p(A,B,γ) and s(A,B,γ) in the variables aij,bij, and γ,

such that: (a) when the variables aij, bij take values making (A,B) controllable, p(A,B,γ) is nonzero, for

every real γ, and (b) for any such values of the aij, bij, and for each γ, the matrix A+B(qK) has all

eigenvalues with real part less than -γ whenever q is a (real) number such that pq>s. QED

Consider now the case ℜ(X) (or, for that matter, Co, Cω), and the family {(Aλ,Bλ)}. Pick γ:=0 and
choose K, p, s, as in proposition 4. Substituting the expressions of the aij, bij as functions of λ into the
entries of K, p, s, we may assume that these are also in P. By (a), p(λ) has no real zeroes.  Thus it is
invertible over P, and q:= (s+1)/p is in P, so that qK is a stabilizing feedback as desired.  The polynomial
case is a bit more delicate, and depends on the fact that if p(λ) is a polynomial in the variables λ =
(λ1,⋅⋅⋅,λr) which is never zero and if s(λ) is also polynomial, then there is a polynomial function q(λ) such
that pq>s for all λ. Thus qK is a polynomially parametrized stabilizing feedback.  The existence of such a
q follows from the "Real Nullstellensatz", and is discussed in [BS].  (See also the material in the
Appendix.)

The proof of proposition 4 is based on the solution of the Lyapunov equation QA + ATQ = BBT, but
using a suitable translate of the original matrix A, and the use of a K analogous to that in 11.  We omit the
details here.  Reference [S4] includes the detailed computer results obtained, using a symbolic
manipulation system, when one applies this method to the example described in 10.

In the case of continuous-time pointwise controllable polynomial families, somewhat more than
stabilization is achievable.  For the case of single-input (m=1) systems, one can "almost" assign (by static
feedback) any n-1 poles, with the remaining pole being close to -∞; if m>1 this is in general impossible,
but a dynamic version is possible; a discussion is given in [S4]. While on the topic of dynamic
stabilization, note that in the ℜ(X) case a pointwise controllable family is necessarily also ring controllable,
and hence ring asycontrollable.  It will then follow from the results in the next section that in the ℜ(X) case
pointwise controllable families can be stabilized by dynamic feedback, even in the discrete-time case; as
we’ll see, however, a stronger result is possible, assuming only pointwise asycontrollability.

6. Asycontrollable families

Because of proposition 3 it is of interest to try to establish that asycontrollablity implies stabilizability,
at least dynamically.  For the cases Co and Cω there is no problem in this regard, since we had the results
based on Riccati equations, which did not require controllability: (*,*,S,{Co,Cω}) is solvable under the
pointwise asycontrollability assumption:

Theorem D. For continuous or analytic families, pointwise asycontrollability is equivalent to static

stabilizability.



Another positive result in this direction is that (*,D,S,*) is solvable for ring-asycontrollable families:

Theorem E. Ring-asycontrollability is equivalent to dynamic stabilizability.

This was proved in [E1] (a dual but weaker detectability result had been the main topic of [HS1]).
Very briefly, the main point here is that, if one translates the meaning of feedback for an extended system
into transfer-matrix terms, one is reduced to trying to solve an equation of the type

(zΙ-A)M(z) + BN(z) = Ι

over a ring Ps as in the definition of ring asycontrollability, but with the added constraint that M be in a

suitable sense invertible and NM-1 be "causal" or "proper".  The proof that one can indeed always satisfy
the added constraint given just the ring asycontrollability assumption, is based essentially on a matrix
division algorithm; see [E1], [E3], and the simplified version [RO] for details.

A natural question to ask is then, when does pointwise asycontrollability imply the ring notion?  In
[HS1] it was emphasized (in a more general systems over rings context) that one is really asking for a
characterization of the maximal ideals of the rings Ps, and in particular whether these maximal ideals are
in natural one-to-one correspondence to those ideals of P[z] that are kernels of evaluations at points
λ∈ℜr, z∉Cs. If such is the case, it will follow from local-global principles that the two notions of
asycontrollability coincide.  For instance, it is proved in [KS] that for r=1 (single-parameter families),
P=ℜ[X], and continuous time, indeed these notions coincide. In discrete time, however, the example
{(1,λ2+1)} given earlier is pointwise asycontrollable (since pointwise controllable) but not ring
asycontrollable, since as remaked earlier it cannot be stabilized by dynamic feedback.  In fact, we have
now proved that these notions do indeed coincide in all other cases, that is, (*,D,S,*) have positive
solutions (for pointwise asycontrollable families), with the exception of the case (∆,D,S,ℜ[X]), just as with
the results in the previous section.  It is only necessary to prove the continuous ℜ(X) and ℜ[X] cases, and
the discrete ℜ(X) case; these are treated in the appendix.  In summary:

Theorem F. Except for the discrete-time polynomial case, pointwise asycontrollable familes can be

stabilized with dynamic feedback.  Thus, except for that case, pointwise asycontrollability, ring

asycontrollability, and dynamic stabilizability are all equivalent notions.

Note the difference with Theorem C, which concludes static feedback but at the expense of
controllability of the family.  Further, for a particular system it is perfectly possible that no static stabilizing
feedback exist but that a dynamic one be available.  In fact, the following family (suggested to us by
M.Hautus) provides an example for the discrete time ℜ[X] case where ring asycontrollability holds but no
static feedback stabilizes: (with n=m=r=1) take {(λ,λ2), λ∈ℜ}. Here S = (z-λ,λ2), and we can solve the
equation SQ = z2 = stable, taking for Q the transpose of (z+λ,1). We don’t know of any counterexamples
showing that one cannot in fact find static stabilizers in the cases treated in the appendix, but it is likely
that such a stronger result will be false.

7. Concluding remarks

Many other problems besides stabilization have been studied for systems over rings, and they could
be specialized to the case of families; here I restricted attention to stabilization-related problems, but
references on others can be found for instance in [S1], [RS], [S2], [E2], [JO], [DH], [CP].  Also, it is of
interest to study the genericity of the various conditions obtained, like the results in [LO] for controllability
in the polynomial ring case.



There is another, more general, definition of "family of systems", which arose originally when dealing
with questions different from stabilization (see for example [HA] and [HP]).  In this definition, a family over
a topological space Λ is given by specifying a vector bundle E over Λ, a bundle homomorphism B:
Λ×ℜm→E (the first seen as a trivial bundle over Λ) and a bundle endomorphism A: E→E. Thus the
families considered in this talk correspond to the case of trivial E. Algebraically, the more general
definition deals with "systems over rings" with projective state spaces, while that used in this talk restricts
to "free systems".  In the recent work [HS2] the authors show how this more general notion of families is
important when dealing with stabilization problems, even if ultimately interested in the free case.
Specifically, when proving a pole assignability result for rings of functions on the unit circle, the natural
induction proof proceeds by working with certain line bundles associated to the given family, and their
complements, which give rise to families in this more general sense.

Because of the many possible assumptions on the original family {(Aλ,Bλ)}, and the possible design
objectives, even the number of actual problems fitting the loosely stated goals mentioned in the
introduction is larger than that treated here.  I apologize in advance to any authors whose work was
overlooked when preparing this talk.  As a corollary to the above disclaimer, it is clear that omission of a
problem does not qualify it as an "open problem" whose solution merits automatic publication.  Further,
the list of references that follows is far from being comprehensive, though we believe that those included
provide pointers to most of the literature.

As a final remark, note that in all the problems considered, controllers (the feedback matrices Kλ)
depend on the parameters λ; this is in contrast to the analogous, but technically completely different,
problem appearing in robust control (see e.g. [GO]) where the obtained regulator must be independent of
the parameters.

Acknowledgment. I’d like to thank Malo Hautus and Pramod Khargonekar for many useful
suggestions on ways to improve this presentation.

I. Appendix: Proofs of new results

We establish here that pointwise asycontrollable continuous-time polynomial or rational families, and
discrete time rational families, are in fact ring asycontrollable, and hence, by the results mentioned earlier,
can be dynamically stabilized.

We first prove a result about matrices over rings, which generalizes a number of facts concerning
pseudoinverses. For this paragraph and the next lemma, P is an arbitrary commutative ring, not
necessarily one of the function rings considered elsewhere.  Let Q = (qij) be an n×m matrix over P. For
any positive r ≤ min{n,m}, we denote by Ιr(Q) the ideal of P generated by all the r×r minors of Q. In
general, we let Q(α,β), where α and β are ordered sets of indices for rows and columns respectively,
denote the minor obtained from the rows/columns indexed by α, β. Thus Ιr(Q) is the set of all linear
combinations, with coefficients in P, of the Q(α,β) with α and β ordered index sets of cardinality r. If α =
(α1,⋅⋅⋅,αr) and ν is an integer, we write "ν∈α" to indicate that there is an index k such that αk = ν; this index
k is then denoted by α[ν]. If ν∈α, α\{ν} denotes the (r-1)-tuple obtained by deleting ν; if ν∉α, α∪{ν} is the
(r+1)-tuple obtained by inserting ν in the appropiate position of α. Finally, we also let Q(φ,φ):= 1 and
Ιs(Q):= {0} if s is larger than min{n,m}.

Lemma 5: Let Q be as above, and let θ be an arbitrary element of Ιr(Q). Then there exists a matrix H

over P such that

QHQ = θQ + L

for some matrix L all whose entries are in Ιr+1(Q).



Proof: This is an easy generalization of the argument given in [BH] as an explicit proof of the

result in [S5] about weak generalized inverses of matrices.  (The argument in [S5] could also be used, but

it would need to be modified in less trivial ways.)  Let θ = -∑mα,βQ(α,β) be an expresion in terms of the

generators of Ιr(Q) (we will omit summation indices when clear from the context).  Then, define H := (hij),

where

hji := ∑ (-1)α[i]+β[j]+1Q(α\{i},β\{j})mα,β (12)

with the sum over all ordered index sets, of cardinality r, α and β for which i∈α and j∈β. We must prove

that, for each indices ν, µ, (QHQ)νµ = θqνµ + L, with L in Ιr+1(Q). This is done exactly as in [BH] (which

deals essentially with the case θ = 1).  First note that, for any such ν, µ, and any fixed index sets as above

α, β,

∑ (-1)α[i]+β[j]+1qνjqiµQ(α\{i},β\{j}) + qνµQ(α,β) = L, (13)

(sum over all i∈α and j∈β) with L in Ιr+1(Q). This is proved as follows.  Let L := det(C), where C is

obtained by adjoining row ν and column µ to the matrix corresponding to α and β. Thus either det(C) = 0

(if ν∈α or µ∈β) or det(C) = ±Q(α∪{ν},β∪{µ}), so that L is as required.  The formula now follows by

expanding first in terms of the last row and then the last column.  Now just calculate (QHQ)νµ =

∑i,jqνjhjiqiµ. Substituting 12 into hji, and using property 13, this equals θqνµ + l∑mα,β. QED

For any family {(Aλ,Bλ)} and each 0 ≤ r ≤ min{n,m} denote Λr = Λr(A,B):= {λ∈Λ such that rank(Bλ)≤r}.

Note that Λo is the set of parameters where Bλ vanishes, and Λmin{n,m} = ℜr. Let N = N(B) be the
determinantal rank of B, i.e. the largest r such that Ιr(B) is nonzero; this is also the smallest r such that Λr
= ℜr. Since parametrizations over P are (at least) continuous and the rank condition is given by the
simultaneous vanishing of all (r+1)×(r+1) minors, Λr is always closed. When P = ℜ(X) or ℜ[X], Λr is in fact

an algebraic subvariety of Λ = ℜr.

We shall say that a fixed pair (F,G) is full(-control) if the column space of G is F-invariant, and that
{(Aλ,Bλ)} is a (pointwise) full family if for each λ the correponding (Aλ,Bλ) is full-control.  Being full is of
course an extremely restrictive condition: it says that whatever can be controlled can in fact be
"instantaneously" controlled.  The interesting point, to be made more precise later, is that for dynamic
feedback problems one may reduce problems to the full case. (To some extent, this is the idea behind
theorem (3.22) in [HS1].)  For reasons that will become clear later, we prefer to use the notation {(Aλ,Rλ)}
for full families.

Lemma 6: Assume that {(Aλ,Rλ)} is a continuous-time pointwise asycontrollable full family, with P = ℜ(X)

or ℜ[X], and that Aλ is stable whenever λ is in Λr-1. Then, there exists a family {Kλ} over P such that

Aλ+BλKλ is stable whenever λ is in Λr.

Proof: We apply lemma 5 with θ:= ∑(R(α,β))2 (sum over all possible r-minors), and Q:= R. Let H

be the matrix obtained there.  The feedback to be obtained will have the form

K := -γθH,

where γ is a polynomial to be chosen.  Let E:= RH.  Consider the function τ: ℜ→ℜ,

τ(ρ):= inf{g∈ℜ s.t. for g’>g and λ∈Λr with ||λ||2≤ρ2, Aλ-g’θ(λ)Eλ is stable} (14)

(||⋅|| indicates Euclidean norm on ℜr). Assume for now that this function is well defined, i.e. that for each ρ
the set in question is indeed nonempty.  Then τ is symmetric and is nondecreasing for ρ≥0. More

interestingly, τ is a semialgebraic function, in the following sense.  Consider the graph GR(τ) =

{(ρ,τ(ρ)),ρ∈ℜ}. Then this graph, as a subset of ℜ2, can be described by an equation in the first order



theory of the real numbers with addition and multiplication (the first-order theory of real-closed fields; see

for instance the survey in [RA] and references there).  It is a straightforward (but very tedious) exercise in

elementary logic to rewrite the definition of τ in terms of universal and existential quantification over real

numbers, and we omit this. Note that Λr can be described by algebraic equalities, which is essential here,

as well as that stability of a matrix can be described by a first-order statement over the reals, by writing

complex numbers in terms of their real and imaginary parts (or, by application of the Routh-Hurwicz

criterion). Further, in the rational case P=ℜ(X) it is necessary to take a common denominator of all

rational functions appearing, since division is not explicitely allowed in the language, but this presents no

difficulty.

The important fact is that, by the Tarski-Seidenberg theorem on quantifier elimination, it is also

possible to express this graph in quantifier-free form. In particular, following the algorithm in [CO], one

has that there exists a positive number ρo such that, for ρ > ρo, the graph of τ satisfies an algebraic

equation P(ρ,τ(ρ))=0, for some polynomial P(x,y).  Write P as a polynomial in y: P(x,y) = aµ(x)yµ + ⋅⋅⋅ +

ao(x). Taking if necessary a larger ρo, we may assume that aµ(x)2 > 1 for x > ρo. For any fixed x, all roots

of P(x,y) are bounded in magnitude by the rational function = µ + aµ(x)-2[(ao(x))2 + ⋅⋅⋅ + (aµ-1(x))2], and

hence by the polynomial φ(x) = µ + (ao(x))2 + ⋅⋅⋅ + (aµ-1(x))2. Thus, τ(ρ) < φ(ρ) for ρ>ρo. Since τ increases

for positive ρ, one may add a linear function to φ(ρ) to obtain a new polynomial φ’ such that τ(ρ) < φ’(ρ2)

for positive ρ. Let γ(λ):= φ’(||λ||2). It then follows from the definition of τ that Aλ-γ(λ)θ(λ)Eλ is indeed stable

for all λ in Λr.

We are left with proving that τ is well-defined.  Since the intersection of Λr and any ball of radius ρ
is compact, it is sufficient to prove that

(*) for each λ∈Λr there exists a neighborhood U of λ and a g≥0 such that, for each µ ∈ U∩Λr and each

g’>g, Aµ-g’θ(µ)Eµ is stable.

This is proved as follows.  First note the following property:

(**) If g≥0 and λ ∈ Λr\Λr-1, then each eigenvalue of Aλ-gEλ is either a stable eigenvalue of Aλ or is of the

form σ-θ(λ)g, with σ an eigenvalue of Aλ.

Indeed, E2 = θE + LH, so when λ is in Λr the last matrix vanishes and Eλ is annihilated by the

polynomial z(z-θ(λ)). If, further, λ∉Λr-1 then θ(λ)≠0, so that there exists for each such λ an invertible real

matrix T such that F:= T-1AλT and G:= T-1EλT have the block forms, respectively,

X Y θ(λ) 0 (15)

0 Z 0 0 ,

with Z a stable matrix.  The form for G is due to the fact that in this situation the minimal polynomial of Eλ
is z(z-ζ), ζ=θ(λ)≠0. The form of F is established as follows.  Since EλRλ = ζRλ, the column spaces of Rλ
and of Eλ coincide for this λ. Thus, (Aλ,Eλ) is again full, and is also asycontrollable ("stabilizable" in the

usual sense). So the same properties hold for the pair (F,G).  Since ζ is nonzero, this means that the

(2,1) block of F corresponding to the above form of G must indeed be zero.  By the stabilizability property,

Z must be already stable.  Finally, since the eigenvalues of Aλ-gEλ are those of F-gG, we conclude that

(**) is true.

We are now ready to prove (*), and hence complete the proof of the lemma.  Consider first the

case when λ∈Λr-1. Here let



U := {λ∈ℜr such that Aλ is stable}. (16)

Note that this is an open set, since the parametrization is continuous.  Further, the hypotheses of the

lemma imply that Λr-1 is contained in U. Let g:= 0.  Pick any µ ∈ U∩Λr and any g’>g.  If µ happens to be in

Λr-1 then Aµ-g’θ(µ)Eµ = Aµ (because θ vanishes on Λr-1), and is hence stable.  If µ is in U∩(Λr\Λr-1) then

by (**) the eigenvalues of Aµ-g’θ(µ)Eµ are either those of Aµ or left translates of such; in either case, they

are stable.

Now consider the case when λ∈Λr\Λr-1. Note that θ(λ)>0. Thus there exists a relatively compact

neighborhood U of λ where θ is bounded away from zero, say such that θ2 > c > 0 there.  Since U is

relatively compact, there is an upper bound d>0 on the real parts of the eigenvalues of Aλ for λ in U. Pick

g:= d/c.  Then (**) implies that (*) holds around λ. QED

It is important to note that the compactness argument used above was introduced only to prove the
nonemptyness of the set in question; the actual algorithm for elimination of quantifiers, when applied to
the corresponding first order formula, will result in the same conclusion.  So no approximations are used
in implementing the above.  (On the other hand, from a "practical" point of view the proof given is perhaps
not too interesting, since the elimination of quantifiers for real-closed fields is a process of very high time
complexity.)

There is an analogue in the rational discrete time case, but of course not in the polynomial case, as
the previously seen example {(1,λ2+1)} showed.

Lemma 7: Assume that {(Aλ,Rλ)} is a discrete-time pointwise asycontrollable full family, with P = ℜ(X),

and that Aλ is stable whenever λ is in Λr-1. Then, there exists a family {Kλ} over P such that Aλ+RλKλ is

stable whenever λ is in Λr.

Proof: The proof is similar to that of the above lemma, but there are a few technical

complications. The feedback K will now have the form

K := -T(RT+Ι)-1A,

where T is a rational family to be chosen.  Since RT commutes with (RT+Ι)-1, the closed loop matrix

A+RK when using this K will be (RT+Ι)-1A. The problem is then to find a family T such that

det(RT+Ι) ≠ 0 on all of ℜr, and (17)

(RT+Ι)-1A is stable (eigenvalues of magnitude < 1) on Λr. (18)

We shall proceed in two parts.  First we show that

(i) there is a matrix To of rational functions on ℜr (possibly with singularities) such that all eigenvalues of

(RTo)λ have nonnegative real part when λ∈Λr (so, in particular, det(RTo+Ι)≠0 on Λr) and (RTo+Ι)-1A is

stable (eigenvalues of magnitude < 1) on Λr,

and, if r<N (so that Λr≠ℜr,) we then establish that, for any fixed ε with 0<ε<1, and for each k with 0

≤ k ≤ N-r,

(ii) there exists a matrix Tk of rational functions on ℜr (possibly with singularities) such that (a) all

eigenvalues of (RTk)λ have real part > -ε whenever λ∈Λr+k, and (b) (RTk)λ = (RTo)λ when λ∈Λr.

The case k=N-r of the above will then provide a T = Tk that satisfies the desired properties 17 and

18. The proof of (ii) will be by induction on k; note that the case k=0 follows from (i).



The form of To will be as follows.  Let θ be as in the previous lemma, the sum of the squares of all

r-minors of R, and pick H, E=RH as there.  Then To:= γθH, where γ is a polynomial to be chosen.  We

introduce a function τ: ℜ→ℜ analogous to that in 14:

τ(ρ):= inf{g∈ℜ s.t., for each g’>g and each λ∈Λr with ||λ||2≤ρ2, all eigenvalues of g’θ(λ)Eλ have

nonnegative real part and (g’θ(λ)Eλ+Ι)-1Aλ is stable}

The same general properties of τ hold as with 14.  Note that one can rewrite the stability

eigenvalue constraint for each λ without any divisions, using cofactor matrices.  The proof is completed as

before, provided we can prove that τ is well-defined: a polynomial function γ that bounds τ from above will

then exist (and be constructible from the formula defining τ) and the resulting To will satisfy (i).  We need

to prove then the analogue of (*):

(2) for each λ∈Λr there exists a neighborhood U of λ and a g≥0 such that, for each µ ∈ U∩Λr and each

g’>g, (a) all eigenvalues of g’θ(µ)Eµ have nonnegative real part and (b) (g’θ(µ)Eµ+Ι)-1Aµ is stable}

The proof is again analogous to that of the earlier statement.  Note the following property:

(22) If g≥0 and λ ∈ Λr\Λr-1, then (a) each eigenvalue of (g’θ(λ)Eλ+Ι)-1Aλ is either a stable eigenvalue of Aλ
or is of the form (g’θ(λ)2+1)-1σ, with σ an eigenvalue of Aλ, and (b) each eigenvalue of θ(λ)Eλ is either 0

or θ(λ)2.

As before, E2 = θE + LH, so when λ is in Λr the last matrix vanishes and Eλ is annihilated by the

polynomial z(z-θ(λ)). If, further, λ∉Λr-1 then θ(λ)≠0, so that there exists for each given such λ an

invertible real matrix T such that F:= T-1AλT and G:= T-1EλT have the block forms, respectively, given in

15, with Z now stable in the discrete-time sense. Thus (b) is clear, and (a) follows from the fact that the

eigenvalues in question are those of (g’θ(λ)G+Ι)-1F.

We use this to prove (2). Condition (a) on the eigenvalues of g’θ(λ)Eλ is clearly satisfied globally

(on Λr) with g=0: on Λr-1, θ(λ) = 0 so the eigenvalues are all zero; on Λr\Λr-1, (22) insures that these are

(real and) nonnegative.  We now prove (b).  Consider first the case when λ∈Λr-1. Here let U be exactly

as with 16, except that stability is of course meant in the discrete time sense.  This is again an open set

containing Λr-1. As before, we choose g:= 0.  Pick any µ ∈ U∩Λr and any g’>g.  On Λr-1, (g’θ(µ)Eµ+Ι)-1Aµ
= Aµ and is hence stable. If µ is in U∩(Λr\Λr-1) then by (22) the eigenvalues of (g’θ(µ)Eµ+Ι)-1Aµ are either

those of Aµ or multiples of such by a number <1; in either case, they are stable.  Now consider the case

when λ∈Λr\Λr-1. Note that θ(λ)>0. Thus there exists a relatively compact neighborhood U of λ where θ is

bounded away from zero, say such that θ2 > c > 0 there.  Since U is relatively compact, there is an upper

bound d>0 on the magnitudes of the eigenvalues of Aλ for λ in U. Pick now g:= (d-1)/c.  Then (22) implies

that (2) holds around such λ too. We have then completed the proof of (i).

There remains to establish (ii), by induction on k.  As remarked earlier, the case k=0 is a

consequence of (i).  Assume then that (ii) is true for a given k.  Apply lemma 5, with θ:= sum of squares of

minors of size r+k+1.  Let H be as there, and denote E:= RH.  We shall find a Tk+1 of the form

Tk+1 = Tk + γθH,

where γ is a polynomial to be chosen.  Note that, since this θ vanishes on Λr+k, property (b) in (ii) is

automatically satisfied with any γ, by induction.  So we only need to guarantee invertibility.  The critical

observation now is that



On Λr+k+1\Λr+k, each eigenvalue of (RTk+gE)λ is either 0 or is of the form σ + gθ(λ), with σ an eigenvalue

of RTk.

Arguing as before, E can be brought into the block form of the second matrix in 15.  Using the

same similarity, RTk becomes a matrix as the first one in 15 but with Z=0.  This is because for each such

λ the column space of Eλ coincides with the column space of R, and hence includes the column space of

RTk. This proves the above observation.  Now consider τ: ℜ→ℜ defined by

τ(ρ):= inf{g∈ℜ s.t., for each g’>g and each λ∈Λr+k+1 with ||λ||2≤ρ2, all eigenvalues of (RTk)λ+g’θ(λ)Eλ have

real part > -ε}

Again this is definable in first-order terms, and admits a polynomial as an upper bound, as long as

we can prove the appropiate local result.  Around a λ in Λr+k we may chose the open neighborhood U:=

{λ∈ℜr such that all eigenvalues of RTk have real part larger than -ε}; by inductive hypothesis, this set

indeed contains Λr+k. For µ in U∩Λr+k+1, either the above matrix reduces to RTk (when µ∈Λr+k) or each

of its eigenvalues is either zero or a nonnegative translate of an eigenvalue of RTk, and so is >-ε. For λ in

Λr+k+1\Λr+k, pick a relatively compact neighborhood where θ is bounded away from zero; since the

eigenvalues σ of RTk are bounded on U, an appropiate g will exist such that σ+gθ(λ)2 is nonnegative

there. This completes the proof of the lemma. QED

Corollary 8: Assume that {(Aλ,Rλ)} is a pointwise asycontrollable full family, in continuous-time with P =

ℜ(X) or ℜ[X] or in discrete-time with P = ℜ(X). Then, there exists a family {Kλ} over P such that Aλ+BλKλ
is stable for all λ. In particular, {(Aλ,Rλ)} is ring-asycontrollable.

Proof: This is by induction on r on the lemmas.  For r=1, the hypothesis on Λr-1 holds, because if

a pair (A,0) is asycontrollable, then A must be necessarily stable.  So it is only necessary to remark that, if

{(Aλ,Rλ)} is pointwise asycontrollable and full, the same holds for any new family {(Aλ+RλKλ,Rλ)}. But

these are easily seen to be feedback invariant properties. QED

We now turn to the proof of the general case.  The following lemma is valid for any of the rings P
considered in this talk, and for both discrete and continuous time.

Lemma 9: Let {(Aλ,Bλ)} be a family for which the associated family {(Aλ,Rλ)} is ring asycontrollable,

where Rλ = R(Aλ,Bλ) is as in 4.  Then {(Aλ,Bλ)} is itself ring asycontrollable.

Proof: We argue spectrally as in [HS1].  Let M be a maximal ideal of the ring of stable rational

functions Ps introduced earlier, and consider the reductions modulo M of the matrices S(Aλ,Bλ) and

S(Aλ,Rλ), say S and S’ respectively.  Let k be the residue field Ps/M. Thus there are matrices F,G over k,

and a w∈k, such that

S = [wI-F,G]

S’ = [wI-F,G,FG,⋅⋅⋅,Fn-1G],

with F of size n by n.  Further, by assumption S(Aλ,Rλ) is right invertible over Ps, so the reduced matrix S’

is right invertible, i.e. full rank, over the field k. We want to prove that S is full rank over k; since M was

arbitrary, this will imply the desired right invertibility (over Ps) of S(A,B). But this is easy to establish: a

vector ν in the left nullspace of S is necessarily a left eigenvector of F and hence is also in the nullspace

of S’. QED



Lemma 10: Let Rλ be as above.  If {(Aλ,Bλ)} is pointwise asycontrollable, then {(Aλ,Rλ)} also is.

This is clear because the column space of Rλ includes that of Bλ.

Theorem 11: For pointwise asycontrollable families, the cases (d,D,S,{ℜ[X],ℜ(X)}) are solvable for

continuous-time and (∆,D,S,ℜ(X)) is solvable for discrete-time.

Proof: We must prove that pointwise asycontrollability implies the ring notion. By 9 and lemma

10, we may deal with {(Aλ,Rλ)}, which is full.  The result then follows from corollary 8. QED
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