THE LONDON SCHOOL
oF ECONOMICS AnD
POLITICAL SCIENCE

LSE Research Online

Giuseppe Moscarini, Fabien Postel-Vinay

Did the job ladder fail after the Great
Recession?

Discussion paper

Original citation:

Moscarini, Giuseppe and Postel-Vinay, Fabien (2013) Did the job ladder fail after the Great
Recession? CFM discussion paper series, CFM-DP2013-4. Centre For Macroeconomics,
London, UK.

Originally available from the Centre For Macroeconomics

Moscarini thanks the NSF for support to his research under grant SES 1123021.

This version available at: http://eprints.lse.ac.uk/58315/

Available in LSE Research Online: July 2014
© 2013 The Authors

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.Ise.ac.uk) of the LSE
Research Online website.

http://eprints.lse.ac.uk


http://www.centreformacroeconomics.ac.uk/Home.aspx
http://eprints.lse.ac.uk/58315/

Did the Job Ladder Fail After the Great Recession?*

Giuseppe Moscarini' Fabien Postel-Vinay*
Yale University and NBER UCL, IFS and CfM

August 2013

Abstract

We study employment reallocation across heterogeneous employers through the
lens of a dynamic job-ladder model, where more productive employers spend more
hiring effort and are more likely to succeed in hiring because they offer more. As a
consequence, an employer’s size is a relevant proxy for productivity. We exploit newly
available U.S. data from JOLTS on employment flows by size of the establishment.
Our parsimonious job ladder model fits the facts quite well, and implies ‘true’ vacancy
postings by size that are more in line with gross flows and intuition than JOLTS’ actual
measures of job openings, previously criticized by other authors. Focusing on the U.S.
experience in and around the Great Recession, our main finding is that the job ladder
stopped working in the GR and has not yet fully resumed.

1 Introduction

The persistence of high unemployment in the US and many other countries after the 2007-
2009 Great Recession (henceforth GR) is currently the central issue for macroeconomic policy
around the world. In previous work (Moscarini and Postel-Vinay 2009, 2012, 2013, resp.
MPV09, MPV12 and MPV13) we documented empirically and formulated a hypothesis to

explain the pattern of employment decline and recovery during and after a typical recession.
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In a nutshell, in a tight labor market high-paying, large employers overcome the scarcity of
unemployed job applicants by poaching employees from smaller, less productive and lower-
paying competitors, whose employment share then shrinks in relative terms. When the
expansion ends, large employers, that were less constrained, have more employment to shed
than small ones. In addition, the resulting high unemployment relaxes hiring constraints
on all employers, particularly the small ones that are less capable of poaching from other
firms. As a result, small employers downsize less in the recession and grow faster (still in
relative terms) in the early recovery. According to this hypothesis, in a prolonged phase of
high unemployment, as we witnessed since 2009, small firms should be leading the charge in
job creation, followed years later by upgrading to larger, better-paying employers.

In this paper, we confront this “dynamic job ladder” hypothesis with more demanding
empirical tests. We still adopt employer size as an empirical measure of the job ladder ‘rung’
based on the observed wage/size relationship. We go beyond net worker flows and consider
also the model’s implications for gross worker flows (hires, quits, layoffs) and vacancy postings
by employer size, measured by newly available semi-disaggregated data by establishment
size from the BLS’ Job Openings and Labor Turnover Survey (JOLTS). Specifically, we
calibrate the key flow equations of the job ladder model to fit the time series of net and gross
employment flows by employer size. We extend our investigation to examine the GR and its
aftermath, in comparison with previous cyclical episodes.

We reach the following conclusions. First, the dynamic job ladder model, a parsimonious
setup built on some very strong assumptions, such as homogeneous labor and time-invariant
heterogeneity in firm-level Total Factor Productivity, does a remarkable job at fitting the
dynamics of employment across size classes. The estimated hiring intensity by employer
size resembles vacancies by establishment size measured in the JOLTS, but resolves some
puzzling aspects of these data, specifically the lack of vacancies at the small employer end.

Second, a comprehensive assessment of the evidence indicates that the job ladder has
slowed down considerably since the GR. The drastic decline in labor market turnover affected
especially direct movements from smaller, lower-paying to larger, higher-paying employers.
Small employers suffered unusual job losses, relative to large employers and a typical reces-
sions, mostly through an increase in their layoffs, only partially compensated by resilient
vacancy posting and hiring.

We now provide the details. From an aggregate perspective, the GR impacted the labor
market as would any (deep) recession: job openings went down across the board, job finding
rates plummeted, and layoff rates spiked — albeit temporarily — around the Fall of 2008,
as the financial crisis came to a head. As a result, unemployment soared. As we argued
and documented in previous work and based on past recessions (MPV09, MPV12, MPV13),



this created conditions that were relatively favorable to small, low-paying, less productive
employers. High unemployment meant that there was plenty of cheap labor for them to hire.
The collapse in aggregate job market tightness, which largely persists to date, reduced not
only the workers’ exit rate from unemployment, as is well understood, but also the job-to-job
quit rate, meaning that employers at the bottom of the job ladder were losing fewer workers
to their larger, more productive, higher-paying competitors.

The available data on gross worker flows and job openings largely support this view. Job-
to-job transitions indeed went down markedly during the GR. The ‘poaching intensity’ (share
of new hires that come through a job-to-job transition) declined sharply during and after
the GR, especially so for larger employers. Finally, while the share of small establishments
in total job openings remained roughly stable throughout the GR (if anything, it went
up a little), the vacancy yield of small employers sky-rocketed, in sharp contrast to the
comparatively modest increase in the vacancy yield of large establishments.

Yet — and this is where the GR differs from past recessions — small employers fared
worse than large ones in terms of net employment growth. This poor relative job creation
performance, which is unusual relative to the previous three decades, was the result of a
brutal (temporary) increase in the layoff rate of small employers around the Lehman Brothers
episode (September 2008), the peak of the financial crisis. While at that point layoff rates
rose sharply at employers of all sizes, small establishments stood out, possibly because they
were hit especially hard by the credit crunch. Those among small employers that were still
hiring did so relatively easily, and benefited from relatively favorable conditions on the hiring
and retention margins, but that was not enough to offset the exceptionally large blow from
the credit crunch.

These findings suggest the following, to some extent novel, interpretation of the GR and
its aftermath. Small employers, especially existing ones, faced an unusual credit crunch that
led to a wave of layoffs, while the class of small employers as a whole, including entrants,
kept hiring at a healthy pace. The collapse in hiring by large employers froze job-to-job
upgrading, further taming the incentives of small employers to take advantage of abundant
unemployment to hire.

In Section 2 we summarize and extend the dynamic job ladder model from MPV13.
In Section 3 we present descriptive evidence on labor market flows across employers of
different sizes before, during and after the GR. In Section 4 we illustrate our methodology
to estimate/calibrate turnover parameters and hiring intensity by firm size in the dynamic
job ladder model to replicate the observed net and gross flows of employment by firm size.

In Section 5 we discuss our empirical results. Conclusions follow.



2 The dynamic job ladder: a model

2.1 Setup

Time t = 0,1, 2... is discrete. The labor market is populated by a unit-mass of workers,
who can be either employed or unemployed, and by a unit measure of firms. Workers and
firms are risk neutral, infinitely lived, and maximize payoffs discounted with common factor
B € (0,1). Firms operate constant-return technologies with labor as the only input and with
productivity scale w;p, where w; € () is an aggregate component, evolving according to a
stationary first-order Markov process @ (dw;y1 | w), and p is a time-invariant, firm-specific
component, distributed across firms according to a c.d.f. I" over some positive interval @, ]_9] )

The labor market is affected by search frictions in that unemployed workers can only sam-
ple job offers sequentially with some probability A\; € (0,1) at time ¢, and while searching
enjoy a value of leisure b;. Employed workers earn a wage, draw each period with probability
s € (0,1] an i.i.d. opportunity to search on the job, thus face a per-period sampling chance
of job offers of s)\;. Workers can only send one job application, hence can never receive more
than one offer, in each period. All firms of equal productivity p start out with the same labor
force. Each employed worker is separated from his employer p and either enters unemploy-
ment with probability &, (p) € (0, 1), that we assume non-increasing in p, or is immediately
reallocated to another job, drawn randomly from the available ones, without going through
unemployment, with probability p; € (0,1). The displacement shock d; (p) encompasses both
layoffs and quits to non employment that result in a measurable unemployment spell. The
reallocation shock p; captures such events as moves due to spousal relocation, or displace-
ments followed by immediate re-hiring by another employer. We maintain throughout the
assumption that the destruction rate and reallocation rate are exogenous and functions of
the aggregate productivity state &; (p) = d (p,ws), pr = p(w;), and the flow value of non
production b is constant.

The contact probability )\; is, in contrast, endogenous and determined as follows. A firm
can post a > 0 job adverts, or spend hiring effort a > 0, at a cost ¢ (a), with ¢(-) positive,
strictly increasing and convex, continuously differentiable. The firm’s hiring effort determines
its sampling weight in workers’ job search, while total hiring effort determines the rate at
which an advert returns contacts with workers. Specifically, let N, : []_9, ]‘9} — [0, 1] denote
the cumulated population distribution of employment across firm types. So Nj (p) is the
measure of employment initially at firms of productivity at most p, a given initial condition,
N; (p) is employment, and u; = 1 — N; (p) is the unemployment (rate) at time ¢. Let a; (p)
denote the adverts posted on the equilibrium path by a firm of productivity p, size L; 1 (p),
in aggregate state wy, N;_1. Defining aggregate firm hiring effort, A, = [ 5 a; (p) dl’ (p), and



letting 7; denote the probability that an advert receives at least one application, we have:
Ay = A [ = Nio1 (D)] + sANi—1 (B) + peNi-1 (D) = m (Ae, Nio1 (D)) (1)

where m (+) is a constant-return-to-scale matching function, increasing and concave in both
of its arguments. Conditional on a contact with some employer, from unemployment with
probability A; and from employment with probability p; + s\, the worker samples the pro-
ductivity of the job from the cdf

Filp) = A / ", (q)dr (q).

In each period, the timing is as follows. Given a state w;_; of aggregate labor productivity

and distribution of employed workers N;_i:

1. production and payments take place at all firms in state w;_;; the flow benefit b accrues

to unemployed workers;
2. the new state w; of aggregate labor productivity is realized;
3. firms post job adverts;

4. each employed worker receives an independent turnover shock, which can be of one of
three, mutually exclusive, types: with chance J; (p) exogenous separation to unemploy-
ment, with chance p; a random offer from the distribution F; of job adverts that the
worker is forced to accept, or with chance s\; a random offer from F; that the worker

can decline to retain his current job;
5. employed workers can quit to unemployment;
6. each previously unemployed worker receives an offer with probability A;.

Finally, we assume that the distribution of firm types, I', has continuous and everywhere
strictly positive density v = IV over @, ]5] , and that the initial measure of employment across

firm types, Ny, is continuously differentiable in p. Combining those two assumptions, we

dNo(p)/dp

obtain that the initial average size of a type-p firm, which is given by Lq (p) = )

,is a
continuous function of p.
2.2 Rank-Preserving Equilibrium

MPV13 study equilibrium in this economy without reallocation shocks (p; = 0) under the

following assumptions on the strategy space. Each firm chooses and commits to a Markov



employment contract, namely, a state-contingent wage depending on own productivity p,
initial own size L;_; and size distribution N;_;, and aggregate productivity w,. The objective
of the firm is to maximize the present discounted value of profits, given other firms’ contract
offers. The firm is further subjected to an equal treatment constraint, whereby it must pay
the same wage to all its workers. Workers cannot commit not to quit, and always accept
an offer, received either while unemployed or already employed, if doing so increases their
Bellman value over continuing in the current employment state.

When posting a contract, a firm of productivity p has to forecast how the value V (p, L;_1, N1, w;)
provided by the contract to the recipient workers will compare with the values offered by
other firms. This calculation is necessary to predict the effect of the contract offer on hiring
and retention, thus on the evolution of its size. Each firm must keep track of the entire
distribution of contract offers and of contracts currently in the hands of employed work-
ers. The size distribution N;_; summarizes this information in a Markov contract-posting
equilibrium, hence it is a payoff-relevant state variable.

Let L; (p) denote the size of a firm of type p at time ¢ on the equilibrium path. Labor

turnover takes a simple form when equilibrium has the following property:

Definition 1 (Rank-Preserving Equilibrium) An equilibrium is RANK-PRESERVING (RP)
if @ more productive firm always pays its workers more: Vi (p) =V (p, Ly_1 (p) , Ny—1,w;) is

increasing in p, including the effect of p on firm size, L;_1 (p).

MPV13 prove that the unique stochastic Markov equilibrium of this economy is Rank-
Preserving assuming no reallocation shocks, p; = 0, type-independent exogenous separations,

3¢ (p) = &, and relatively weak restriction on initial conditions:

Proposition 1 (Ranked initial firm size implies RPE) If more productive firms are
initially weakly larger (Lg (p) is non-decreasing in p), any symmetric Markov contract-posting
Equilibrium is necessarily Rank-Preserving, and the ranking of firms’ sizes is maintained
on the equilibrium path. In addition, more productive firms also spend more hiring effort:

as (p) = a(p, Li_1 (p) ,wi, Ny_1) is increasing in p.

These results extend to the case of random reallocation shocks (p; > 0) that do not change
the relative incentives of different employers, and of exogenous separations shocks with type-
dependent probability d; (p) that is non-increasing in firm productivity p. Therefore, if all
firms start of equal size, e.g. empty, equilibrium turnover in this economy always takes
the form of a job- ladder at all points in time. Workers being ex-ante homogeneous, an
unemployed worker always accepts a job offer. Once employed, he only accepts outside

offers from more productive firms than his current employer. On the equilibrium path, the



size L; (p) of a firm of type p evolves as follows:

Ly (P) = Ly (p) [1 — 041 (P) — Pt+1 — S)\t+1-7:t+1 (p)}
Aep1 [1 =N (D)) + sAeaNs (p) + peaNe (D)
it O3 TN @)+ hens )+ i (B) )

where F; (p) = 1 — F; (p) and cumulated employment is now N; (p) = fpp L, (q)dl (q).

In (2), a fraction ;41 (p) of the initial L;(p) workers are displaced exogenously into
unemployment, a fraction p; are forcefully reallocated to other employers, and a fraction
sAip1 sample a new offer, that they accept only if extended by a more productive/larger
employer, in accordance with the Rank-Preserving nature of the unique equilibrium. The
rest stay. The firm also hires, by posting a1 (p) adverts, each contacted with probability
Mt+1- The chance that this contact turns into a match is the proportion of all job seekers who
receive an offer (the denominator of the fraction) who are either unemployed, or currently
employed at firms less productive than p, or currently employed and forcefully reallocated
(the numerator).

Using (1), we can simplify

Ny (p) 1 _ () _ Fi (p)
AL =Nea P+ AN )+ pNea ) A 7 ()

Multiplying both sides of (2) by 7 (p), integrating them between p and p and using integration
by parts we obtain

Niv1 (p) = N (p) [1 - 5t+1 (p) = prs1 — 3)\t+17:t+1 (p)}
+ pee1iNe (P) Fror (p) + A1 [1 = Ni (D)] Fra (p)

where

_ 1 P
Or1 (p) = N, (p) : /p de1 () dN; (q)

is the average separation rate into unemployment from firms of productivity up to p. A
fraction 0y (p) + pre1 + sAhp1F i1 (p) of the employees below productivity p are separated,
and a measure p; 1 V; (p) are reallocated from employment and Ay 1 [1 — N; (P)] from unem-
ployment, and with chance F;.; (p) join a firm of productivity at most p.

In MPV13’s contractual environment, RP dynamics (2) are implemented by equilibrium
offers V; (p) and advertising rates a; (p) that solve a system of first-order conditions and Euler

equations of the firm’s optimal contracting problem.



2.3 The dynamic job ladder

Equilibrium contracts in MPV13 converge, absent aggregate uncertainty, to the stationary
wage posting equilibrium. The RP employment dynamics, however, are shared by a larger
class of models, in which more productive firms always offer more in equilibrium, under
different assumptions about the hiring technology or the contract space. One example is
Coles and Mortensen (2011), who relax two constraints imposed by MPV13, full commitment
and equal treatment, and solve for one RPE under a specific hiring cost function.

In this class of models, we can express RPE employment dynamics (2) in terms of the
employer’s rank in the productivity distribution, x = I" (p), rather than of its productivity p

itself, which will prove convenient in our empirical application. Let

N (z) =N, (T (2))
Fi(z)=1-F(x) = F (I (2))
6 (x) =6, (T ()
< 1 ! / /
t(z) = W/ﬂ Or41 (') AN (27)

denote, respectively, employment at, and fraction of job ads posted by, all employers below
the 2" quantile in the productivity distribution, which is also (by RPE) the 2" quantile in
the size distribution, and the separation rate into non-employment from a firm at or below

that quantile. We can then rewrite (2) as a dynamic job ladder equation

Ny (2) = Ny (2) [1 = 01 (2) = pra1 — sA1 Fiepa (7))
+ PN (1) Figr () + Apr [1 = Ny (1)] Fr (7). (3)

We will estimate turnover rates from this equation using data on employment stocks, net
and gross flows by rank of employers in the size distribution. Before doing so, we illustrate

the data and descriptive evidence of the empirical relevance of the job ladder model.

3 The dynamic job ladder: descriptive evidence

3.1 Data sources

We examine the cyclical reallocation of employment among firms and establishments, espe-
cially around the Great Recession, through the lens of the job ladder model. In equilibrium,
the TFP and size of an employer determine its rung on the wage ladder, which in turn pre-

dicts its gross flows of hires, separations to non-employment, and quits to other jobs, thus



also its net employment change. Because the size of an employer, unlike its TFP!, can be
accurately measured in the data under relatively weak assumptions, we focus on size, as well
as wage, as empirical counterparts of the job ladder rung.

The primary source of information on businesses from the BLS is the Quarterly Census
of Employment and Wages (QCEW) program. It publishes a quarterly count of employment
and wages reported by employers covering 98 percent of U.S. jobs, both private and public
sector, available at the county, MSA, state and national levels by industry. Information is
also published at annual frequency (covering the first quarter of the year) by establishment
size, in one of ten size classes, with lower bounds 1, 5, 10, 20, 50, 100, 250, 500, and 1,000

2 From this we draw the distribution of establishment counts, employment and

employees.
weekly earnings per worker, all averaged over the first quarter of the year, by establishment
size, for each year from 1990 to 2012 included, for the U.S. and all industries combined.?

The Statistics of US Businesses (SUSB) program at the Bureau of the Census publishes
annual data on total employment, payroll and (every five years) receipts by firm size, disag-
gregated in 17-20 size categories, from 1992 to 2010, 2004 excluded (the size classification is
coarser in 1992-1993). The Census defines a firm by grouping establishments by legal form
and control structure.

The Job Openings and Labor Turnover Survey (JOLTS) comprises about 16,000 estab-
lishments, a size-stratified sample from the QCEW frame, surveyed every month according
to a rotating panel structure. JOLTS measures job openings, hires, layoffs, quits, and other
separations at the establishment level. Recently, the BLS published this information also by
size of the establishment, in one of six size classes, with lower bounds equal to 10, 50, 250,
1000, and 5,000 employees. This dataset is central to our exercise. Importantly, JOLTS by
size class covers only the private sector, while aggregate JOLTS data cover also the public
sector, just like its QCEW frame. This is an important caveat for the GR, where the public
sector played a disproportionate role in first buffering employment losses and then dragging
on the employment recovery.

In disaggregated JOLTS data, an establishment is assigned to a size class according

to the maximum size it attained in the 12 months preceding its inclusion in the sample,

'In the US, information on sales at the firm level, necessary to compute TFP, is not available for a
representative sample of firms from all industries.

http:// www.bls.gov/cew /cewsize.htm accessed 2/23/2013.

3For earnings at the national level, all industries, we find two outliers, possibly the result of some coding
error in collating the semi-aggregated data, in size class “10-19 employees” in year 1999 and in size class
“1,000 employees and up” in 1995. We replace those two values of earnings with the average of the entries
in adjacent years for the same size class. Although this averaging introduces measurement error, the year-
over-year changes implied by the BLS original entries differ from all the rest of the sample by two orders of
magnitude.



independently of how its size changes during the year.* So, within each survey year we
know that the identity, hence (in our model) the productivity quantiles of establishments
in each size class are fixed. Because this size classification follows an “initial employment”
criterion, it is known to be subject to a mean reversion bias, which creates the illusion of a
negative size-growth relationship, possibly through a positive correlation between size and
quits. The job ladder predicts the opposite, negative correlation between size and quits, as
larger employers pay more and retain more workers. This issue is likely to matter more in
narrower size classes, at the bottom of the size distribution. We will return to this issue
when discussing size misclassification. Finally, in the analysis that follows, we will aggregate
the largest two size categories available in the JOLTS sample (1,000-4,999 and over 5,000
employees) into one single category (over 1,000 employees). We do this for two main reasons.
First, the largest size cutoff in the CEW sample described above is 1,000 employees. As we
get our establishment counts from CEW, we will need to merge information from CEW
and JOLTS, which constrains us to use size cutoffs that are available in both data sets.
Second, the 5,000+ category in JOLTS is very small (it accounts for less than 2.5% of total
employment in the JOLTS sample and probably covers very few establishments), and the
data pertaining to this category are somewhat noisy. The loss of information implied by our
aggregation of the largest two size classes into one is therefore arguably relatively minor.
Because JOLTS is a survey of employers, it provides a meaningful distinction between
layoffs and quits, but not between quits to (or hires from) non-employment and other em-
ployers. The key engine of the job ladder are job-to-job quits. We supplement JOLTS
with information on gross worker flows from the monthly Current Population Survey (CPS).
Specifically, we use the hazard rates of transition between Employment (E), Unemployment
(U) and Non-participation (N) estimated by Fallick and Fleischman (2004) from gross flows
(using monthly matched files), starting in January 1994 and updated by the authors through
February 2013. This series begins with the 1994 re-design of the CPS, which introduced a
question on the change of employer that made it possible to measure the EE hazard, and
which greatly improved the reliability of employment status and thus reduced margin error.
Finally, also from the worker side, we use the 1996-2008 panels of the Survey of Income
and Program Participation (SIPP), which provides information on employment status and
employer identity, and coarse information on establishment size class (three classes) at weekly

frequency for a representative sample of the U.S. workforce.

4JOLTS (re-)sampling dates are December 2000, December 2003, February 2005, March 2006, and every
March until 2013. A new JOLTS sample is put in place in the month following each re- sampling.
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3.2 The wage-size job ladder

We start by presenting evidence that larger employers pay more, so employer size is a mean-
ingful proxy for its rung on a job ladder. It has been long documented that employer size
correlates positively with wage rates, after controlling for observable worker characteristics
(Brown and Medoff, 1989). In this paper we focus on employer-level data and take the ex-
treme view that workforce quality is homogeneous across employer sizes, so that any wage
differential related to size can be thought of as a wage premium. This is in the spirit of
the model we presented earlier. If wage/size differentials reflected entirely different types of
workers at employers of different sizes, we would still have to explain why workers sort by

the size of their employer.

Establishment size class 1 11 I11 v Vv
1 to 4 (omitted)
5to09 —27.62 —17.01 559 —24.83 5.93
(0.001) (0.01) (0.02) (0.008) (0.02)
10 to 19 —13.62 —4.02 27.04 —8.04 34.82
(0.001) (0.01) (0.03) (0.01) (0.02)
20 to 49 3.80 23.45 50.05 5.70 52.37
(0.002) (0.01) (0.03) (0.01) (0.03)
50 to 99 28.61 38.38 64.23 29.81 68.96
(0.003) (0.02) (0.05) (0.02) (0.05)
100 to 249 55.22 48.12 73.24  55.15 81.47
(0.004) (0.03) (0.07) (0.02) (0.06)
250 to 499 101.94  76.23 88.30 102.19 82.21
(0.009) (0.06) (0.15) (0.05) (0.13)
500 to 999 158.14 112.73 95.43 156.93 70.93
(0.014) (0.10) (0.27) (0.08) (0.22)
1000 and up 272,12 226.22 174.40 263.51 131.98
(0.02) (0.14) 0.38 (0.12) (0.31)
industry dummies N 2-digit  2-digit N 5-digit
state dummies N N Y Y N
R? 0.94 0.87 0.56 0.60 0.78

Source: QCEW and authors’ calculations. Dependent variable: average weekly
earnings per worker in each establishment (1983%). Standard errors in parentheses.

All regressions include year dummies.

Table 1: The wage-size premium.

Table 1 reports the results of an establishment-level OLS regression of earnings per worker
on size and other establishment characteristics. The dependent variable is a measure of
real weekly earnings, the ratio between CPIl-deflated total quarterly payroll and average
employment among all establishments in the “cell”, for each year from 1990 to 2012 included.
The cell depends on the specification, and is indicated by which dummies we include among
the covariates. So the dependent variable varies across specifications, which are not directly

comparable. Size dummies and year dummies are always included. In specification II, each
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Fig. 1: Wage differential with respect to firms of size 1-4 employees.

cell includes all establishments in the same size class and 2-digit NAICS industry. In III,
each cell includes all establishments in the same size class, 2-digit NAICS industry, and
located in the same US state. And so on. Information on geographic location is available
only at the 2-digit industry level, due to potential disclosure risk. The regression is weighted
by the number of establishments per cell. The results clearly indicate a wage ladder, except
at the very bottom when not controlling for industry and location. Because average weekly
earnings in the omitted (smallest) size class are about $330, top-to-bottom pay differentials
between largest and smallest establishments are in the order of 80% in specification I, and
lower when controlling for industry and location. Employer-level TFP in our model may be
in part a result of the industry in which the employer operates, so controlling for industry
composition may not be appropriate.

Figure 1 reports evidence from the SUSB on wage/size premia at the firm level. We take
total annual payroll per worker for each size class, divide by that of the smallest class 1-4
employees, and subtract one. We omit the size class ‘0’ employees, which includes entrants,
because it reports payroll but not employment. The results speak for themselves. The wage
differential between the largest and smallest firms is less than 50%, significantly smaller than
or establishments, also taking into account that the largest firm size class starts at the higher

1,500 employees cutoff. As we will discuss later in more detail, this may be due to the fact
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that large firms that only comprise large establishments may be the highest-paying of all.
So, when combining them with equally large multi-establishment firms, their average pay

premium declines.

3.3 Employment reallocation in the Great Recession

We now document the evolution of employment in different size classes of employers in recent

years, with a special focus on the Great Recession.

Employment and establishment shares by size class. Figure 2 illustrates that em-
ployment shares by size of the establishment in QCEW are relatively stable over time, but
do exhibit the cyclical pattern documented by MPV12 for firms; namely, the share of larger
employers declines in the three recessions in the sample period. The GR is no exception.’
Our empirical exercise is based on the assumptions that the distribution of employers
by TFP is time-invariant and coincides with their distribution by size. For example, in
our theoretical model the median productivity employer is always of median size. One
implication of this assumption is that the distribution of establishment counts by size classes
should be relatively stable at business cycle frequencies. This is true in JOLTS size data by
construction of the dataset, so the identity of the establishments is fixed, at least within each
sampling year typically March to February. Across years, Figure 3 illustrates these shares
in QCEW, which is the frame from which JOLTS is drawn. Shares are in log scale to make
them visible, because the distribution of establishment counts is much more compressed at
the low end. We can see a very modest trend and cyclical component. By and large, the

distribution of establishment counts is stable, much more so than that of employment.

Gross and net flows by size class. Employment shares provide a limited view of the size
of the businesses that were most affected by the Great Recession. As we discussed in MPV12,
to avoid the so-called reclassification bias we need to study business dynamics by their initial
size. We showed there that the annual growth rate of employment at initially large (>1,000

employees) minus small (<50 employees) firms in the US is strongly negatively correlated

5We can draw the same information on employment shares by firm size, at a finer degree of size classifi-
cation, from two BLS datasets, where a firm is identified by a federal tax Employer Identification Number
(EIN). First, the Business Employment Dynamics (BED) program collects information on job flows and
stocks, from the same QCEW universe, at quarterly frequency starting in 1992, and presents them by size of
the parent company. Second, the Current Employment Statistics (CES) program is the well-known monthly
“pay-roll survey” of about 145,000 businesses and government agencies from the QCEW frame, representing
approximately 557,000 individual work sites. The survey provides timely and detailed industry data on
employment, hours, and earnings of workers on nonfarm payrolls. In both datasets, once again, the share of
employment at small firms is countercyclical. In the GR, it rose especially in the second, deeper half of the
downturn. Results are available upon request.
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Fig. 3: Shares of establishments by establishment size class.

14



Solid, left scale = Differential net JC (large minus small), MA-smoothed.
Dash, right scale = Unemployment rate, detrended.
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Shaded areas indicate NBER contractions.

Source: JOLTS, BLS, and authors’ calculations.

Fig. 4: Differential employment growth between establishment size classes.

with unemployment in 1979-2010. Here we zoom in on the Great Recession using higher
frequency, monthly data updated to cover the post-GR recovery. Figure 4 repeats the exercise
using JOLTS data by establishment size (we remark again that these are establishments, not
firms). It appears that small establishments were hit especially hard by the credit crunch.

To examine in more detail the nature of these patterns, we can examine gross worker
flows. This is a unique advantage of JOLTS and, to the best of our knowledge, we are the
first to document the behavior of these flows by employer size around the GR. By definition,
net employment growth in JOLTS equals hires minus the sum of layoffs, quits and other
separations (such as retirement). The latter category is small and fairly acyclical, thus
we focus on hires, layoffs and quits. Figure 5 plots hire rates (new accessions divided by
employment) by establishment size. Hire rates begin to decline before the GR. Surprisingly,
during the deepest phase of the financial crisis following the Lehmann Brothers episode, hire
rates collapse at the larger establishments and not at the smaller ones; they even briefly
spike up in the smaller class in late 2008-early 2009.

We will interpret the surprising fact revealed in Figure 5 through the lens of our model.
Given that we saw in Figure 4 that the smaller establishments fared worst in terms of net
employment growth, especially from the last quarter of 2008 on, it must be the case that

their separations rose disproportionately, and more than compensated their brisker hiring
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Fig. 7: Total employment-to-employment hazard.

pace. We in fact see in Figure 6 that layoff rates rose sharply and temporarily, more so the
lower the establishments.

Finally, we turn to quits. One disadvantage of JOLTS is that quits are not broken
down by destination, non-employment or other employers, two components that play distinct
and crucial roles in our job ladder model. Figure 7 plots the employment-to-employment
(EE) transition hazard from the matched files of the monthly Current Population Survey,
computed by Fallick and Fleischman (2004) and updated by the authors through February
2013. While the EE rate is clearly procyclical and dropped significantly during the GR, the
most striking aspect of the data is the declining trend. Off that trend, the decline in the
GR was not especially pronounced, and the recovery afterwards was significant. It is known,
however, that EE transitions include involuntary reallocation and other events that reduce
worker’s earnings. Therefore, per se they provide only limited information on the extent
to which workers climb the job ladder. Our theoretical model explicitly accommodates this
possibility through reallocation shocks p;.

The CPS has no information on the size of the worker’s employer. For that, we turn
to SIPP, starting with the 1996 panels. In Figure 8 we show the share of all hires that are
not from unemployment but directly from other employers, thus entail an EE transition,

by size of the hiring “workplace”, the phrasing in the SIPP question that we interpret to
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be an establishment. As predicted by the job ladder model, larger employers always hire
more from other firms, and especially so late in expansions when the market tightens and
competition for workers stiffens. In the GR, this share collapsed for all size groups. Since
total hires also declined sharply, this is the strongest evidence that the job ladder came to
a grinding halt. Taking the difference between the two series in Figure 9 and detrending

carries the point home even more clearly.

Vacancies by size class. We next turn to JOLTS again and describe the behavior of
measured job vacancies by size class. Figure 10 reports the time series of total job openings
for each JOLTS size class. Figure 11 further shows vacancy shares by size class, i.e. vacancies
in each size class divided by total aggregate vacancies. If recorded job openings were a good
measure of hiring effort (the function a; (p) in our job ladder model),% then the series plotted
on Figure 11 would represent the sampling probabilities of each size class. Next, Figure 12
show vacancy shares divided by the number of establishment in each class.” We refer to
those series as the vacancy weights by size class. The series on Figure 12 are normalized at
one in January 2001 to harmonize scales.

Figure 10 clearly shows that vacancies plummeted across the board during the GR, with
vacancy levels seeming to closely track each other across the various size classes. At first
glance, Figures 11 and 12 reinforce that impression, as the movements in vacancy shares
and weights appear small relative to the absolute decline seen on Figure 10 which, to a first
approximation, was uniform. On closer inspection, Figures 11 and 12 further suggest that
there is no evidence of a large impact of the financial crisis (post-September 2008) on small
establishments: the movements are relatively modest, and the 10-49 employee class shows
the largest change, but upwards.

Finally, Figure 13 shows the vacancy yield, namely the ratio between hires and vacancies
reported a month before, by establishment size. While it is known that during and after
the GR the aggregate yield rose enormously with unemployment duration, so it became as
easy for firms to fill vacancies as it was difficult for the unemployed to find work, Figure 13
shows that this phenomenon was more pronounced the smaller the establishment, and the
vacancy yield actually fell during the acute phase of the GR at the largest establishments.
This surprising fact is consistent with the collapse in hires from employment, on which larger

establishments rely more.

SThere are good reasons to believe that they are not, as we discuss below in Section 4.
"We take those numbers from CEW.
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4 The dynamic job ladder: calibration

4.1 Gross and net flows

We now return to our dynamic job ladder model and ask whether it can make sense of this
evidence. To calibrate the job ladder model, we use a minimum distance method. Our
target empirical moments are gross and net employment flows by size class of the employer
observed in JOLTS. Given our strong assumption that employer size is a relevant rung of the
job ladder, it is far from obvious that the job ladder dynamic Equation (3) can replicate actual
observations on gross and net flows, every month for 12 years. Among many restrictions,
our theory predicts that smaller employers should lose a larger proportion of workers to
job-to-job quits. Testing all joint restrictions of the job ladder equation is our main goal
here.

Beginning with net flows, we saw that total employment growth at employers of pro-
ductivity rank less than some given threshold x is governed by the RPE by the dynamic

Equation (3), repeated here for convenience:

Ny (2) = N (2) = = [041 (%) + pryr + A1 Fepa ()] Ni ()
+ per1Fiir () N (1) + Mg Fign (2) Uy (3)

This net flow equals total hires from non-employment UE, (z), minus total separations into
non-employment EU; (), minus total job-to-job quits QE, (x), plus total job-to-job hires.®
Focusing on the first three of those gross flows (the fourth one being redundant, given the

net flow), the job ladder model predicts:

UE; (z) = A1 Fipa (2) Uy (4)
EU, (2) = 6.1 N, (z) (5)
QF, () = pra1 N, () + shpss /O Foor () AN, (7). (6)

Apart from the parameter s (the search intensity of employed relative to unemployed work-
ers), Equations (3) to (6) involve six time series — &, (+), A, pi, Fi (+), N; (), and U; —, none
of which is directly observed in the data. We now explain how we map monthly empirical
observations from JOLTS on net employment growth, total layoffs, and total quits (which
combine quits to other employers and quits to non- employment) by establishment size into

our time series of interest, based on Equations (3)-(6).

8In the notation just laid out, we use the letter U to imply non-employment. The model is silent on any
possible distinction between unemployment and non-employment. We will return to this issue momentarily.
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4.2 Size and productivity ranks

All gross and net flows described in Equations (3)-(6) are functions of employers’ productivity
ranks, x. In the absence of a direct measure of employer productivity p, those ranks are not
directly observed in the data. Yet a powerful consequence of equilibrium being RP is that,
even though an employer’s size moves around over time, its rank in the distribution of sizes
stays constant and equal to its rank in the productivity distribution.

Assuming for the time being that size is correctly measured, and that establishment
size does reflect productivity in RPE (which means assuming that productivity p is an
establishment-specific parameter, an assumption that we will address momentarily), estab-
lishments in a given JOLTS size class k£ will be representative of all establishments with
productivity ranks between two cutoff values, = € [X;_1, Xz, with {X;}_ | an increasing
sequence in [0, 1], which remain fixed so long as the identities of establishments assigned
to size class k do not change. In JOLTS, each month except at re-sampling dates, 1/12 of
the survey respondents are replaced with ex ante identical establishments, which had the
same size and industry at the time of sampling. Under the assumption, which underlies
the gradual rotation scheme, that these are statistically equivalent establishments, we can
effectively treat the identities and size class membership of the JOLTS establishments as
constant between re-sampling times.

Therefore, the JOLTS sample provides observations at (almost) all dates of cumulated
employment N; (Xj), layoffs, and total quits (and, potentially, sampling weights F}; (X) —
see below), for K productivity quantiles {X, k},lle corresponding to as many size classes.” In
what follows, we should keep in mind that X, is the cutoff productivity quantile between
size classes k and k + 1. With K size classes, this implies that X = 1. We will also use the
convention Xy = 0. We now confront Equations (3)-(6) with the JOLTS sample.

4.3 Separations into non-employment

A survey of employers like JOLTS detects whether a separation is a quit or a layoff from
the viewpoint of the surveyed establishment. As workers are neither interviewed nor tracked
after separation, measured quits from establishments aggregate quits to unemployment and
quits to other jobs, a distinction that is central to the logic of the job-ladder model, where
the former are part of total separations into unemployment 0, (x) N; (z), and the latter are
upgrades. To estimate &, (z), we thus need some way to break down quits into those to

unemployment and those to other employers. To do so, we need worker-side information.

9As discussed earlier, the raw JOLTS sample has six establishment size classes: 1 to 9, 10 to 49, 50 to
249, 250 to 999, 1,000 to 4,999, and over 5,000 employees. For reasons discussed earlier, we lump the largest
two classes into one.
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Focusing first on the aggregate separation rate (z = 1), we seek to construct 0, (1)
based on Equation (5) as the ratio between the total monthly flow from employment to non-
employment (EU flow) EU, (1) and total employment V; (1). The total EU flow consists of
layoffs plus quits into non-employment. We supplement the JOLTS data with the transition
rates estimated from CPS by Fallick and Fleischman (2004), updated by the authors through
early 2013. For every month ¢ we compute the share of" of total transitions that are
employer-to-employer (EE), as opposed to transitions into non-employment (EU):

;' = CPEletCPS CPS -
EE; " + EU;
All EE transitions are quits in the job ladder model. Assuming that the CPS-based share

applies to the workers employed by the JOLTS sample of establishments, we multiply total
separations in JOLTS by 1 — of'" to obtain an estimate of aggregate separations into non-
employment, EU, (1), that is consistent with the JOLTS data. The corresponding aggregate
separation rate is then &;; (1) = EU; (1) /N, (1).1°

This procedure further gives us the share of aggregate EU separations that are quits.
As mentioned earlier, JOLTS has a measure of total layoffs and discharges, which we can
subtract from our newly constructed time series EU; (1) to obtain total quits into non-
employment in JOLTS. Introducing the ancillary — yet economically meaningful — pa-
rameters ¢, 1 (x), defined as the share of quits in total EU separations from employers of

productivity rank x, and

I 1 N / / /
s (2) = g | B (@) b ()4 @),

Orv1 ()

the same share of quits in EU separations from employers of productivity rank up to z,
we see that, in this notation, 1, (1) is the share of quits in aggregate separations into
non-employment, EU, (1), that we obtain from our procedure. The aggregate layoff proba-
bility is then &, (1) (1 T (1)), and the probability of quitting into non-employment is
8141 (1) 41 (1). Both of those, plus the total aggregate transition rate into non-employment
8141 (1), are plotted in Figure 14.'' While most of this Figure has the familiar feature of
a largely a-cyclical probability of transition into non- employment, the GR stands out as a
striking exception, with a sudden (and short-lived) surge in layoffs in the immediate after-

math of the collapse of Lehman Brothers in September 2008.

10To the best of our knowledge, ours is the first attempt to exploit information from both the employer
and the employee sides to draw empirically the distinction between the three main types of separations:
layoffs, quits to non-employment, and quits to other employers. Worker surveys such as CPS and SIPP
are notoriously plagued by noise in the layoff/quit distinction when the worker loses a job. Administrative
datasets do not typically contain information about the reason for separation.

AIl the raw JOLTS series are smoothed using a 6-month moving average around each point prior to
calibration, to remove the fairly large amount of high-frequency noise in those series.
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Fig. 14: Average separation rate into non-employment 5t+1 (1) and its components

The Fallick and Fleischman (2004) series are only available at the aggregate level. There-
fore, making our quit/layoff distinction operational at lower levels of aggregation (z < 1,
which we shall need later in the calibration) requires additional assumptions. The iden-
tifying assumption that we opt for here is that the probability with which workers quit
into non-employment, 1,1 (z) d;41 (), is independent of their employer’s productive type x.
That is to say, for all &, 141 (7) 641 (2) = Yyg1 (1) 841 (1).12 Because the theory requires
for RPE that the total separation rate into non-employment d;4; () be non-increasing in
productivity rank x, this assumption implies that both total separations and layoff rates
are decreasing in productivity (or size) rank x. Both implications hold in the JOLTS data.
This additional identifying assumption enables us to construct total separations into non-
employment from employers with productivity rank up to Xy, d;41 (Xi) Ny (X), for all cutoff
productivity quantiles X}, corresponding to the JOLTS size classes, as the sum of total lay-
offs from employers in size classes up to k (directly available from the JOLTS data), plus
total quits into non-employment from those employers, equal to 1,41 (1) 8,41 (1) N; (X}) by

12 Any assumption we make at this point is necessarily arbitrary to some degree. An alternative is to assume
that the share of EU separations that are quits is independent of productivity, i.e. that 1,1 () = 41 (1)
for all z. This implies that not only the layoff rate, but also the quit rate into non-employment is decreasing
in employer productivity /size, or rank thereof. Results based on this alternative assumption, available upon
request, are qualitatively identical, and quantitatively very close, to the ones we present here.
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assumption. Given observations on the cumulated employment distribution N; (X}), this
allows to directly estimate the total probability of transition into non-employment by size
class, 01 (X3).

4.4 Job finding probability

Equation (3) applied at the top quantile 2 = 1 gives the law of motion of aggregate employ-
ment: Nypq (1) = [1 = 8p1 (1)] Ny (1) + A1 Uy, where Uy = 1 — N, (1) is non-employment.
From this equation, we can back out the baseline job finding rate:

Nipr (1) = [1 =01 (1)] N (1) UE, (1)

g = )
t+1 7, U,

Construction of Ay from this equation thus requires knowledge of the stock of non-employed
job seekers, U;. Here again, we call on the Fallick and Fleischman (2004) CPS series, which
offers a breakdown of the total non-employment to employment flow (UE; (1) in our nota-
tion) into the flow from unemployment into employment and the flow from inactivity into
employment. Taking the (average) ratio of the latter over the former gives us an estimate of
the average relative job finding rate of inactive workers, relative to the unemployed. Calling
this relative job finding rate sy (so that the job finding probability of non-participants is
SoAi+1), we then construct the effective pool of non-employed job seekers as:

Ut B utCPS 1— GSPS utCPS
BtCPS 1 — utCPS )

N, (1) T—ucrs %

where utTS is the CPS unemployment rate and eSS is the CPS employment-population

ratio. The value of sy thus calibrated is 0.2, and the resulting job finding rate series is
plotted in Figure 15. While it exhibits the familiar cyclicality, including a vertiginous drop
during the GR, its level is fairly low because it includes transitions to employment from

inactivity, which are a small fraction of the stock of inactive individuals.

4.5 Sampling distribution and job-to-job quits

We now turn to the last gross flow predicted by the job ladder, namely job-to-job quits
QE, (z), given in Equation (6). We show how this equation, combined with the net flow
Equation (3) and with the JOLTS data, allows identification of the sampling distribution
Fy.1 (+), the reallocation shock p;y1, and the relative intensity of employed search, s.

One easy option to estimate the sampling distribution F;,; (-) would be to set it equal to
the observed distribution of job openings by size class, which is readily available from JOLTS.

However, the sampling distribution that is consistent with the model will only coincide with
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Fig. 15: Job finding rate \;i;

the empirical distribution of job openings if (a) job openings are measured accurately in
JOLTS, and (b) job opening counts are a good measure of actual hiring effort (in particular,
all vacancies have equal sampling weights). Both of these are questionable assumptions:
for example, Davis, Faberman and Haltiwanger (2010) have recently forcefully argued that
neither was true, especially at the low end of the establishment size distribution.

Luckily, the law of motion of employment in RPE offers an alternative solution to estimate
Fit1(+). Equation (3) defines the sampling distribution at cutoff productivity quantiles X},

and at all dates as:

Ft-l—l (Xk) -

[Net1 (1) = Niwt (Xi)] = (1= prs) [Ni (1) = Ni (X)) 4 01 (1) N (1) = o1 (Xe) N (X5)
per1 Ny (1) + sA 1 Ny (X)) + Mg1 Uy
(7)

that we will use to estimate sampling weights F; (), employed search efficiency s, and reallo-

cation shocks p;, using the time series for separation and accession probabilities 8,,; (X}) and
A¢, and the stock of non-employment from CPS, U, all estimated as above, plus the stock
of employment N; (Xj) in size classes up to k from JOLTS. Later, we will gauge how close
the estimated sampling distribution from (7) (consistent with RPE employment dynamics

by construction) is to the empirical distribution of job openings across size classes.
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Knowledge of the sampling distribution F; (-) allows the construction of total job-to-job
quits in any size class k which, following Equation (6), equal

X

QE; (Xi) — QE; (Xi—1) = per1 [Ne (Xi) — Ny (Xi—1)] + 3)\t+1/ Fiii (w)dN, (z),  (8)

Xk—1
the empirical counterpart of which is total quits in JOLTS size class k, minus quits into
non-employment from employers in that size class, which were estimated in subsection 4.3 as
Y1 (1) 811 (1) - [Ny (X,) — Ny (Xi_1)]. Fitting (8) to this JOLTS counterpart at each date
t and size class k allows, in principle, identification of both the (constant across dates and
classes) search intensity of employed workers s, and the (constant across classes) reallocation
shock p;.

This last statement must be qualified as follows. First, in order to limit the computational
cost of this calibration, and to attain more precise identification, we further restrict the
reallocation probability p; to equal a constant (p) times the baseline job finding rate ;.
While not strictly necessary, this restriction considerably reduces the number of parameters
to estimate, from one values of p; for each month in the sample (140 in total) down to a
single scalar, p. Second, Equation (8) is not directly implementable, as the transformed net
flow Equation (7) only gives the sampling distribution at the cutoff quantiles X}, whereas
in principle we would need it over its entire support to calculate the integral in (8). We will
approximate [} (-) for that purpose using shape-preserving spline interpolation between the
known nodes F}; (Xj).!

4.6 Misclassification

The issue. So far we assumed that an establishment’s size, as measured in JOLTS; is the
‘relevant” measure of size, in the sense that it reflects the relevant value of productivity p for
that establishment. There are at least two reasons to doubt that this is always the case. The
first one is random fluctuations in establishment size. While the job ladder model uses a large-
number approximation and treats establishment size as evolving deterministically over time,
in reality establishment size will fluctuate randomly around the mean value predicted by the
job ladder. If, at the time of JOLTS re-sampling, an establishment has an exceptionally high
(say) realization of the random component of its size, that establishment may be assigned
to the ‘wrong’ size class, i.e. a size class that reflects its transitory larger size rather than its
long-run smaller size. This will be especially true of smaller establishments, both because
the large-number approximation is less accurate for small establishment, and also because

the small size classes (1-9 and 10-49 employees) are narrower than the larger ones.

13Specifically, given that the relevant integration variable in (8) is NV;, we interpolate F; against Ny at each
date.
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The second reason to suspect that establishment size does not perfectly reflect the relevant
productivity parameter is that many establishments are part of multi-establishment firms.
Depending on the degree of decentralization and devolution in the parent firm’s management,
the relevant productivity parameter for those establishments may be at the level of the
parent firm, in which case the size measure that will reflect productivity is not the size of the
establishment, but that of the parent firm, which we do not observe in JOLTS. Indeed, in
MPV12 we document from the Census’ Business Dynamics Statistics that the average size of
an establishment grows with the size of the parent company, but levels at about 60 employees
when the size of the firm reaches 250, and is still about 60 for firms employing over 10,000
workers. So very large firms (national banks and retailers come to mind) own hundreds or
even thousands of separate, relatively small establishments, whose workers benefit from the
productivity and compensation policy of the parent company.

For both reasons, observed size classes in JOLTS and true ‘productivity classes’ (rungs
on the job ladder) may not coincide. We propose to tackle those two issues and reconcile
size and productivity classes by modeling misclassification explicitly. To avoid confusion,
we now introduce a distinction between size class k, defined based on the JOLTS sample
as the set of establishments whose observed size falls between two given cutoff values (e.g.
50 to 249 employees), and productivity class k, defined as the set of establishments whose

unobserved productivity rank falls within the quantile interval [Xj_q, Xj].

Modeling misclassification. Consider an establishment with productivity rank z. Sup-
pose that the ‘true’ (or model-predicted) size ¢, (r) = dN;(x) /dx is observed with time-
invariant probability 1 — 7 (x), while with probability 7 () what is observed is the true size
¢ (2') of an establishment with productivity rank 2’ drawn at random from some distribu-
tion M, which, to attain identification, we assume to be independent of x and time. To
lighten notation, we now drop the time index, but we should keep in mind that employment
measures, observed or reclassified, are time-varying, while reclassification probabilities 7 and

weights M are assumed to be constant over time.

Size classes with misclassification. Next consider size classes. We can define size
class k as the set of all establishments whose observed size ¢° falls within some interval
[0(Xk_1),¢(X)]. Establishments assigned to size class k are either establishments with pro-
ductive ranks x € [Xj;_1, Xj] whose true size is observed, or they are from the share of all

establishments that are misclassified as establishments with ranks z € [X;_1, Xj]. Observed
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employment in size class k is therefore:

ngt:/ S @)l (a:)dx—i—mk/o 7 (2) 6, () da, ()

Xg—1

where my, = M (X)) — M (Xx_1). Class weights m;, in the misclassification distribution are
unknown, and added to the set of parameters to calibrate.

To gain some tractability and amenability to calibration, we further restrict misclassifi-
cation probabilities to be constant within productivity classes, i.e. we impose 7 (z) = 7, for
z € [Xj_1, Xi]. With this approximation,' (9) becomes:

K

(o]
Ny = (1 — ) gt + My, Z T Mokert
E=1

where ng, = Ny (Xi) — Ny (Xg_1) is true employment in productivity class k. This implies:

nyy 1—m +mm mami e TR M1 ni¢ nig
ng, Tm2 1 —mg + mama e TRM2 nat not
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which in turn implies that ‘true’ employment in productivity class k can be inferred from

observed employment in size class k as:

nit nit
=M.
nKt n%e,

Measurement equations with misclassification. The transition rates A;, d; are esti-
mated only off aggregate magnitudes and do not depend on misclassification. With our
assumption of a productivity-independent probability of quitting into non-employment, nei-
ther does said probability (i (1), (1)). Misclassification, however, does affect observed
job-to-job quits from establishments in class k. To see how, note that observed total quits

from employers in productivity class k are:

Qe = /X k (P41 (1) 041 (1) + prya + she1 Foga (2)] (1= 7 (2)) AN, ()
+ mk/o (g1 (1) 641 (1) + prg1 + A1 Fiog ()] 7 (@) dNg (2)

Under the assumption of misclassification probabilities that are constant in each productivity

class and time-invariant, 7 (z) = m, for # € [Xj_1 Xj], the expression for total observed quits

14Note that this is necessarily an approximation, as the boundaries of size classes in terms of productivity,
the Xj’s, are likely to change at each JOLTS re-sampling date.
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from class k& becomes:

Xp ) B
Qu=01- Wk)/ (D41 (1) 041 (1) + puga + sAe1 Figa (2)] AN, ()
Xk—1
X o K Xy o
+ (1= m) sAip / Fiypr (@) AN, (2) + sAepimy Yy m / Fipy (2) dNy ()
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so we obtain:
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where M is the conversion matrix defined in (10). Denoting the k™ element of the vector in

*

the r.h.s. of this last equation by Q%, and dividing by employment in productivity class k

we thus have that

Xe dN; (z *
S/\H-l/ Ft+l (33') t( ) = i (11)

Xp_1 Nt Nt
This equation highlights the importance of introducing misclassification in our JOLTS data.
The Lh.s. of (11) is the conditional expectation of F,y; (x) within productivity class k.
The r.h.s. of (11) is a measure of the rate of job-to-job quits from the size class that are
motivated by better offers. The job-ladder model predicts unambiguously that both sides
of the equation should be decreasing in size class k: larger employers are more productive,
pay more and have an easier time retaining employees. Because 141 (1) 5t+1 (1) 4+ ppaq is
constant across size classes k, this requires total quits from size class k to be lower the higher
the size class. In the JOLTS data by establishment size, which is split in six size classes, the
observed quit rate, Q¢,/ng, actually increases between size classes k = 1 and k£ = 2 in all

months and often also between k = 2 and k = 3.

4.7 Implementation: summary

For given reallocation shocks p;, search efficiency s and misclassification probabilities and
weights M, using observations on employment stocks and total quits by size class, we can
calculate Q7,, and the cumulated sampling weights at size cutoffs F; (X}) from (7) (using
n; = M~'n?). We then look for values of p;, s, and M that minimize the distance between

both sides of (11) over the entire sample period.'

15Tn so doing, as mentioned before, we approximate the integral in the Lh.s. of (11) by interpolating F;
between the nodes Xj. Moreover, we add a penalty term to the criterion that we minimize in the estimation
(the norm of the difference between the two sides of (11)) to avoid large values of p; that would imply
negative corrected net quits ()7, at some dates, for the highest productivity class K.
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5 Results

We find that no misclassification scheme can easily remedy the basic fact that the total quit
rate from the smallest establishment size class in JOLTS, “1-9 employees”, is significantly
lower than that from the second-largest class, “10-49 employees”. In the data, it appears that
a large group of small establishments have unexpectedly (based on the job-ladder model)
low rates of attrition; therefore, their size is not an accurate reflection of their productivity
or desirability. The reason may be that small employers are largely of a different nature
than larger one, and more likely to ‘break ranks’ and not comply with the job ladder. For
example, these small establishments may be young and growing and not have joined yet their
long-run size class.!'® At the other end, the largest class of establishments with more than
5,000 employees has a very small sample size in JOLTS and is therefore somewhat noisy.
For both reasons, we aggregate size classes into K = 4 classes: 1-49, 50-249, 250-999,
and at least 1,000, and calibrate the model on these four. This partition, albeit coarser, still
allows for significant heterogeneity, and can be fit quite well by the job-ladder model. While
we acknowledge the simple job ladder model’s inability to accurately describe quits at the
lower end of the size distribution as an unambiguous failure of the model, we still argue that
this model, given its parsimony, does a remarkable job of simultaneously fitting the level and

cyclicality of both gross and net unemployment flows by size class.

5.1 Parameter estimates

Estimates of the various rates of separation into non-employment and of the job finding rate
were already shown in Sub-sections 4.3 and 4.4, respectively. In this sub-section, we report
estimates of the remaining scalar parameters, namely the relative intensity of reallocation
shocks p = p;/\; and search by employed workers s, and the elements of the conversion
matrix M, i.e. the misclassification probabilities (7, ,7x) and weights (mq, -+, mg).
All those values are gathered in Table 2.

The misclassification probabilities in Table 2 suggest that, when misclassified, a high-
productivity employer (from productivity class K = 4) has a large (0.679) probability of
being mistaken for a smaller establishment. The misclassification weights further show that,
when thus misclassified, a high-productivity employer is almost always mistaken for an es-
tablishment from size class 1 (1-49 employees). Finally, the probabilities for employers with
low or intermediate productivity levels to be misclassified are estimated to equal zero. This

finding is consistent with an interpretation of misclassification as arising primarily from the

16 As a manifestation of a similar phenomenon in the Danish matched employer-employee dataset IDA,
the wage-size relationship is monotonically increasing except at the very beginning, as very small firms pay
higher wages than slightly larger ones. We thank our discussant Rasmus Lentz for pointing out this parallel.
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Productivity class k 1 2 3 4
Size range 1-49  50-249 250-999 1,000 plus
Tk 0 0 0 0.679
my 0.915 0.086 0 0

p 0.015 Sample mean of pA; = 0.002
5 0.213 Sample mean of s)\; = 0.031

Table 2: Parameter estimates

establishment /firm distinction, as some very large — and productive — firms are split into
many small establishments, typically no larger than 50 employees.

The relative search intensity of employed workers is estimated at s = 0.213, a value which
is in the region (although somewhat on the high side) of typical estimates based on micro
data. This puts the sample mean monthly probability of receiving an outside offer to 0.031.
Finally, the reallocation shock intensity is estimated to equal p = 0.015. This value may
seem small when compared, for instance, to the value of s, however it still implies that the
share of EE transitions that are reallocations (as opposed to ‘voluntary’ transitions), is 50%

on average. This share is calculated as the sample mean of

pAeV: (1)
pAN: (1) + s fol F(z)dN, (z)

The relatively large value of this share, given the relatively high odds of receiving an outside
offer vs. a reallocation shock (s:p is about 14:1), indicates that many offers are rejected by
employed workers. This, in turn, is a consequence of the fact that the sampling distribution
of productive types F; (-) is skewed toward the lower end of its support. We now turn to the

analysis of that distribution, and the corresponding EE quit patterns.

5.2 Establishment sampling weights and quit patterns

Figure 16 plots the r.h.s. of (11), namely the estimated values of s\, 1F (Xy), for k =
1,---,4 (solid lines), together with the L.h.s. of (11), Q%,/nk: (dashed lines), thus offering
a pictorial assessment of the job ladder’s capacity to fit the quit patterns by establishment
size observed in the JOLTS sample. Figure 17 further plots the estimated sampling c.d.f.
F (Xy) for k= 1,---,4 (solid lines), together with F7OMTS (X, (dashed lines), the empirical
c.d.f. of job openings, directly taken from the JOLTS data, corrected for misclassification
using the probabilities and weights as explained earlier in this section. The vertical dotted
lines on Figure 17 indicate JOLTS re-sampling dates.

We can see in Figure 16 that our calibration ensures that the sampling distribution

constructed by fitting the RPE dynamic Equation (7) to net employment flow data from
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Shaded areas indicate NBER contractions.
Vertical dotted lines indicate JOLTS re—sampling dates.
Source: JOLTS, CPS, and authors’ calculations.

Fig. 17: The sampling distribution.

Shaded areas indicate NBER contractions.
Vertical dotted lines indicate JOLTS re—sampling dates.
Source: JOLTS, CPS, CEW and authors’ calculations.

Fig. 18: Calibrated class sampling probabilities.
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Fig. 20: Calibrated average class sampling weights, normalized 01/2001 = 1.
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JOLTS is by and large consistent with the gross flow data on quits over the decade covered
by JOLTS. Although the data exhibit a slight downward trend in the EE quit rates of the
highest two productivity classes (3 and 4) which the model fails to fully capture, and the
model tends to underestimate the difference between the EE quit rates of classes 3 and 4, we
still conclude that the model, including its correction for the misclassification of employers
into size classes, offers a remarkably good description of this data, especially considering its
parsimony.!” In particular, EE quit rates, once corrected for misclassification, are indeed
neatly ordered by productivity class, as predicted by the job ladder model. We stress that
this outcome was not at all guaranteed ez-ante.

A further striking lesson from Figure 16 is that job-to-job exit rates from all but the
highest productivity class declined sharply during the GR, especially at the lower end, and
remained low thereafter. Again, our simple job ladder model captures this pattern well,
albeit with a slight lag for the lowest productivity class, £ = 1. This is one of our central
findings: the GR was a time when job-to-job quit rates declined sharply, not only in the
aggregate as it was already known, but especially from smaller, less productive employers.
Because these are always the main source of job-to-job reallocation, we conclude that workers
almost stopped climbing the job ladder during the GR, and the recovery was almost absent.

Looking more closely at the calibrated sampling distribution (Figure 17), we first see that
the observed distribution of job openings, F?OUS (.), vastly underestimates our calibrated
F, (+) for all productivity classes, but more severely so at the lower end of the productivity
distribution. This is (qualitatively) consistent with the findings of Davis, Faberman and
Haltiwanger (2010), who report that 41.6 percent of all hires occur at establishments with
zero posted job opening in the micro data underlying JOLTS, with that proportion ranging
from 76.9 percent for the small JOLTS size class down to roughly 7 percent for our largest
size class. Second, there is a very slight upward time trend in the sampling distribution at
all cutoff points X,.1® This is consistent with the empirical observation that the average size
of US establishments has declined over recent decades (while that of the average firm has
increased, so misclassification in the sense that affects our data has arguably become worse).

Next, Figure 18 shows the sampling probabilities of each productivity class (i.e. Fy 1 (Xy)—
Fy11 (Xy—1) for all k), while Figures 19 and 20 show average sampling weights, i.e. the sam-

pling probabilities divided by the number of employers in each class.!® Sampling weights

170One particularly restrictive assumption is that of a constant intensity of employed search, s, across
productivity classes. An extended model where workers would choose their search intensity facing a convex
cost of search would have it that workers employed at higher productivity employers would search less
intensely, as the returns to search are lower for those workers.

18A linear time trend is found positive and statistically significant for all k£ in both Fy,; (X}) and

FtJJrOlLTS (Xkr)~

19Consistently with our procedure to correct for misclassification, we use the number of establishments in
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on Figure 20 are normalized to one in January 2001 to harmonize scales. The non-rescaled
series, shown on Figure 19, are nicely increasing with productivity class, as predicted by the

job ladder model (more productive employers post more vacancies, Prop. 1).

5.3 Discussion

We now take stock of our results. Taken together, Figures 18, 19 and 20 indicate that
the sampling weights and probabilities of high-productivity employers increased during both
recessions, while those of low-productivity employers declined. This fact in itself is striking
in the light of MPV12’s finding that recessions are times when small (or low-productivity)
employers are growing relative to large ones. It also suggests that the vacancy yield of small
employers must have increased by much more than that of large ones during recessions, a
hypothesis that finds some support in the raw data (Figure 13). Perhaps even more striking
is the sudden reversal of this pattern at the end of 2008, immediately after the Lehman
Brothers episode: at that point, both the sampling probability and the sampling weight
of the high-productivity class collapse, while those of the lowest-productivity class soar, in
relative terms. This, combined with a very low baseline job finding rate A, (Figure 15)
suggests that high-productivity firms essentially stopped hiring at that point, and that what
little hiring took place did so at the lower-productivity end of the population of employers.
This in indeed what we observe in Figure 21 when plotting JOLTS hire rates by employer
size after reclassifications. Even more than in the raw data (Figure 5), hire rates rise sharply
and temporarily at the lower end of the size distribution, while upgrading to better jobs slow
down considerably, as evidenced by the durably low EE quit rates that ensued (Figure 16).
In short, the job ladder failed, especially the upper rungs.

To better understand the sources of this shift in relative hiring effort, in Figure 22 we
plot the time series of layoff rates for each of our four size classes after reclassification.

As is well-known, at the aggregate level, layoff rates spiked considerably during the GR,
although they were back to normal by late 2009. Therefore, layoffs significantly contributed
to the increase in unemployment during the GR, but the persistence of high unemployment
in the four years after the end of the GR is entirely accounted for by the failure of job finding
rates to recover and the persistent increase in unemployment duration. Less well-known, and
in fact novel, is the evidence that we report on layoff rates by size (and, after correction for
misclassification, by productivity) class. Even more so than in the raw data (Fig. 6), after
reclassifying establishments into productivity classes so as to fit the job ladder model, in

Fig. 22 the spike in layoff rates is much sharper among low-productivity employers. The

each size class in CEW, corrected for misclassification using the conversion matrix M, as our measure of the
number of employers in each size class.
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Shaded areas indicate NBER contractions.
Source: JOLTS and authors’ calculations.

Fig. 21: Hire rates by establishment productivity class, corrected for misclassification.

Average layoff rate by size class, corrected for misclassification.
Shaded areas indicate NBER contractions.
Source: JOLTS and authors’ calculations.

Fig. 22: Layoff rates by establishment productivity class, corrected for misclassification.
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contemporaneous shift in vacancy rates towards the bottom of the size distribution that
we documented earlier suggests that the employers that were least affected by the GR,
especially after September 2008, took advantage of rising unemployment to hire; because in
the job ladder model small, low-productivity employers are more dependent on the reservoir
of unemployed, they responded more, i.e. cut their vacancies by less. In addition, recall
that the job ladder has a hard time fitting the raw data at the very low end of the size
distribution, as quit rates from very small establishments are low relative to those in the two
subsequent size classes. This observation suggests very significant heterogeneity among small
establishments. Some are small because unproductive. Others are temporarily small but very
productive and attractive because still growing. Indeed, Fort, Haltiwanger, Jarmin, and
Miranda (2012) draw a sharp distinction between the cyclical dynamics of net employment
growth at young and old small firms in Census data, that break down net employment flows
by age and size, but lacks information on gross workers flows. So it appears that the small
class as a whole shed much more employment by actively laying workers off, but also hired
more by taking advantage of high unemployment and the dynamism of young employers.

To summarize: during the GR all employers temporarily raised their layoff rates, expe-
rienced slower attrition, and reduced their vacancy postings and hire rates; small employers
laid off more and simultaneously reduced less their hiring effort, even hired more, but also
experienced more of the decline in job-to-job quits, because hires at the top almost vanished;
the job ladder slowed down at the bottom and almost stopped at the top.

We can briefly speculate on the reasons behind these events. One distinguishing feature
of the GR, relative to previous recessions, was the credit crunch in late 2008 and early
2009, which may have impacted especially small employers. Our evidence is consistent
with a credit crunch that affected more existing businesses, particularly the older and less
productive ones, than new entrants and young growing but still small businesses. After
the financial crisis exploded in Fall 2008, businesses, especially small ones, had a hard time
finding and revolving working capital to pay their workers, so they had to actively reduce
their workforce through layoffs, in part because attrition through quits to other employers
and nonemployment collapsed. The contemporaneous reduction in vacancy postings that
affected disproportionately large employers does not support more traditional theories of
credit constraints, where firms, especially small ones, have a hard time securing new financing

to invest and create new jobs.
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6 Conclusions

We study employment reallocation, both through unemployment and directly from job to
job, across employers of different productivities. We focus on the US economy around the
Great Recession. In order to impose structure on our empirical investigation, we formulate a
dynamic job-ladder model, where more productive employers spend more hiring effort and,
conditional on contacting another worker, are more likely to succeed in hiring because they
offer more. As a consequence, an employer’s size is a relevant proxy for productivity. We
use newly available monthly time series from JOLTS on employment net and gross flows by
size of the establishment. We find that a parsimonious job ladder model fits the facts quite
well, and implies ‘true’ vacancy postings by size that are more in line with gross flows and
intuition than JOLTS’ actual measures of vacancies, previously criticized by other authors.
Our main finding is that the job ladder stopped working in the GR and never fully resumed.
Job-to-job quits, especially from the bottom of the size/productivity distribution, collapsed,
further reducing the incentives of small employers to post vacancies and hire unemployed
workers to offset attrition. We speculate on the possible causes of this frozen reallocation,
and conclude that the employment recovery in the US still has much mileage to cover, not

only quantitatively but also qualitatively.
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