Type Systems for Closure Conversions

John Hannan

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802 USA

Abstract. We consider the problem of analyzing and proving correct
simple closure conversion strategies for a higher-order functional lan-
guage. We specify the conversions as deductive systems, making use of
annotated types to provide constraints which guide the construction of
the closures. We exploit the ability of deductive systems to specify con-
cisely complex relationships between source terms and closure-converted
terms. The resulting specifications and proofs are relatively clear and s-
traightforward. The use of deductive systems is central to our work as we
can subsequently encode these systems in the LF type theory and then
code them in the Elf programming language. The correctness proofs can
also be coded in this language, providing machine-checked versions of
these proofs.

1 Introduction

Closure conversion is the process of transforming functions containing free vari-
ables into a closures, a representation of a function that consists of a piece of code
for the function and a record containing the free variables occurring in the orig-
inal function. This process consists not only of converting functions to closures
but also of replacing function calls with the invocation of the code component of
closures on the actual parameter and the closure itself (which will contain values
for the free variables). Closure conversion is a critical step in the compilation
of higher-order functional languages, and different closure conversion strategies
can have remarkably different run-time behaviors in terms of space utilization.
Reasoning about these conversions can become complicated as the conversion
themselves become more complicated. We believe that a means for analyzing
various conversion strategies will provide a useful tool for understanding and
correctly implementing closure conversion.

1.1 Contribution

The main contribution of this paper is the development of type systems to spec-
ify and prove correct various closure conversion strategies. In particular, the
type systems are reasonably simple and clearly express the relationship between
source terms and closure converted terms. We specify the conversions as deduc-
tive systems axiomatizing judgments which relate expressions containing func-
tions and those containing closures. These systems make critical use of annotated

48

types to provide constraints which guide the construction of the closures. The
use of deductive systems is critical to this work, as we subsequently encode
these systems into the LF [7] type theory and then the Elf programming lan-
guage [11], providing both experimental implementations of closure conversion
but also machine-checked proofs of correctness. In the current paper we focus
only on the deductive systems, but most of the systems presented here have been
implemented and proved correct in Elf. We include only the deductive systems
and statements of the relevant correctness theorems. For the full proofs and the
Elf code implementing the closure conversions and specifying the proofs see the
full version of the paper, available as a technical report from our institution.

The kinds of closure conversions addressed in this paper are simple, but the
methods developed demonstrate the capabilities of type systems for describing
closure conversions. Recent work on space efficient closure representation has
demonstrated the efficiency possible if closures are carefully constructed using
a variety of information [12]. While we have not yet considered such advanced
closure conversion representations, we believe that our approach will provide a
useful tool for reasoning about and proving correct such techniques.

1.2 Related Work

The problem of correctness for closure conversion has recently been addressed
in [14]. The approach used in that work includes a flow analysis to generate con-
straints which ensures that the closure conversion algorithm generates closures
that consistently use the correct procedure calling protocol in the presence of
multiple calling protocols (for example, one protocol for use with closures as
procedures and one for use with A-abstractions as procedures). Based on tech-
niques from abstract interpretation, their approach requires the introduction of
an abstract notion of terms and evaluation (their “occurrence evaluator”) and
the relationship between their original language and this abstract version. An-
notations are then added to provide constraint information and they prove that
their conversion satisfies these constraints. Their proof of correctness, however,
only shows what we called soundness in [6]: if the source program evaluates,
then the converted term does too. (Wand proved the converse using different
techniques in [13].) Our initial motivation was to demonstrate how equivalent
results could be produced using type systems.

The idea of using type systems to specify constraints of programs and to guide
the translation of programs has been successfully used by Tofte and Talpin to
describe region inference for Standard ML programs. Region inference detects
blocks of storage that can be allocated and deallocated in a stack-like fashion.
Their use of annotated types has motivated some of our techniques for annotating
function types with information regarding the free variables required to call the
function.

Related work on compiler correctness includes [3] where compiler optimiza-
tions based on strictness analysis are proved correct. This work, however, con-
siders CPS translations and definitions that resemble denotational semantics.

49

1.3 Organization of Paper

The remainder of the paper is organized as follows. In Sec. 2 we introduce a basic
closure conversion specification and a verification of its correctness. In Sec. 3 we
extend the basic conversion to a selective one and demonstrate how its correct-
ness is a direct generalization of the basic case. In Sec. 4 we extend the selective
conversion to one in which not all free variables need be included in a closure.
Finally in Sec. 5 we conclude by mentioning some additional conversion strate-
gies and our intent to verify them. In the appendix we give a brief introduction
to the LF type theory and its application to specifying deductive systems.

2 Simple Closure Conversion

We begin by considering a simple closure conversion specification in which every
function is converted into a closure.

2.1 Source and Target Languages
We consider just the simply typed A-calculus as the source language:
E:=z| .E|EQEFE

in which F; @Q FEs represents application. For our first presentation of closure
conversion types play no role, and so we can also consider this method as applying
to an untyped language. But in subsequent sections we rely heavily on types and
a typed language.

The target language of closures consists of the following:

M:u=zx|n#C|C|MQ, M
C:=c| [Ac.hz. M, L]
L:=-|LM

in which E; @, Fs represents application in which the value of F; will be a
closure. The meta-variables M, C' and L range over terms in the target lan-
guage, closures (and closure variables), and lists of target terms, respectively.
The M-abstraction of the source language is replaced by the closure construction
[Ac.Ay.M, L] in which the bound variable ¢ corresponds to the closure itself, the
bound variable y corresponds to the bound variable of the A-abstraction, M
corresponds to the body of the A-abstraction and L is a list of the free variables
of the A-abstraction. (We refer to c as the closure-bound variable of the closure.)
We include the bound variable ¢ to approximate the structure of closures as
described in [2] in which a closure is invoked by fetching the first field of the
closure and applying it to its arguments including the closure itself.

We represent variables in two ways: locally bound variables (i.e., variables
bound by the nearest enclosing lambda abstraction in a source term) are rep-
resented as in the source language; non-locally bound variables are represented

50

by the term n#C in which n is a positive integer (de Bruijn index) and C' is
either a closure or a closure-bound variable. For example, the term Ax.Ay.(z y)
is represented in the target language by the term

[Acr-Aw.([Aez-Ay.((1#c2) y), (- @)]),]

For both the source and target languages we can provide an operational
semantics, each given by a set of inference rules which can be directly represented
as LF signatures. Both semantics implement call-by-value to weak-head normal
form. For the source language we introduce the judgment e — v and axiomatize
it via the following two rules:

Ae.E —¢ e .E

E; —s \x.E' Ey —, Vs E'Va/a] =5V
E1 @E2 —g 1%

For the target language we introduce the judgment e <—; v and axiomatize
it via the following rules:

[Ae.Ay. M, L] <4 [Ae.Ay. M, L]

My <= [Aedy.M', L] My — Vy M'[V§/yl|[[Ac. y.M', L] [c] — V'
My Q. My —, V'

nth N LV’
N# [Medy.M, L] —, V'

The judgment (nth N L V) expresses the relation that the N** element in the
list Lis V.

This specification of evaluation using closures focuses on the access of free
variables in function bodies, but not on the mechanism by which values are
stored into the record component of the closure. In the specification above, the
substitution M’[Va/y] replaces all occurrences of y in M’ with value V2. As y
may occur in the record component of a closure, this substitution can have the
effect of loading the value V into any number of closures. While this is hardly
realistic, this convention makes the specification particularly simple and easy to
analyze. Our future goal is to provide further refinements of this specification to
reflect more accurately the manipulation of closures.

51

2.2 The Closure Conversion Specification

To specify closure conversion we could have introduced a type system for source
terms in which the type of a function explicitly provides information about the
shape of the desired closure for the function. Then the translation from source to
target languages would be trivial. We can, in fact, combine these two operations
(typing and translating) into a single deductive system, in which types play a
reduced role due to the presence of contextual information.

We specify closure conversion as a translation from source to target lan-
guages. We introduce the judgment £ = M which denotes the property that
source term E closure converts to term M. As we need some additional informa-
tion to specify the conversion, we also introduce the judgment (L, x,c) > F =
M; L’ in which L and L’ are lists of target language terms (typically variables),
x is a source language term (typically a variable), ¢ is a closure (or closure vari-
able), E is a source term and M is a target term. The judgment can be read as
follows: L is the list of variables (or terms substituted for these variables) that
occur free and must therefore be included in an enclosing closure; x is the bound
variable of the nearest enclosing A-abstraction; c is the closure variable of the
nearest enclosing closure (to be constructed); F is the source term to be con-
verted; M is the converted term; and L’ is the (possible) extension of L which
includes the free variables of M. Note that the first judgment £ = M is really
just a special case of the second judgment where the sets L and L’ are empty. We
prefer to use two distinct judgments as it simplifies and clarifies the correctness
proofs. Note also that while z and y in rules (1.2) and (1.4) denote variables in
the source and target languages, respectively, in the remaining rules occurrences
of x, y, z and ¢, though suggestive of variables, can range over arbitrary terms
of the appropriate syntactic class (source term, target term or closure).

Finally, we need a third judgment, L t> x — N; L’ which is used to generate
a de Bruijn index N for a variable x. This judgment relies on the property that
bound variables are distinct in the given source term. The judgment can be
understood as follows: starting with (target) variable list L, source variable x
closure converts to the N** variable of L. The list L’ is different from L if only
if the variable y to which x converts is not already in L. In this case, y is added
to the end of L, creating L’. The complete system for basic closure conversion
is given in Fig. 1.

The first two rules specify the top-level conversion. In rule (1.2) the universal
quantification of the variables z, y, and ¢ ensures that these variables are arbi-
trary (and do not already occur in any assumptions). (In our implementation
in EIf this property is automatically maintained from our use of higher-order
syntax and IT-quantification of these variables.) Note that the variable x may
occur free in FE and the variables y and ¢ may occur free in M. The variables are
bound by the universal quantifiers in the antecedent of the rule and are bound
by A-abstractions in the conclusion. This manipulation of variables, motivated
by the higher-order syntax used in our implementation, eliminates any need for
variable conventions or renaming. We use implication to introduce the hypoth-
esis x = y (an instance of the judgment £ = M), instead of maintaining an

52

explicit context of information. Again, our implementation supports this opera-
tion and structuring the rule in this way simplifies the correctness proofs. The
operation L 4+ L’ denotes the new list of variables obtained by appending to L
those elements of L’ (in order) not already occurring in L.

The structure of these rules, in particular, the use of universal quantification
and implication is critical when we encode these rules into an LF signature and
Elf program and apply the Propositions-as-Types analogy. Then, for example,
the judgment VaVyVe(r = y O (-, x,¢) > E = M; L), when viewed as a
type denotes a functional type taking four arguments (terms for x, y, and ¢, and
an object of type x => y). Thus a deduction of this judgment, when viewed as
an object, represents a function which when applied to terms E’, M’, C’ and
an object representing the deduction £’ = M’, yields an object representing a
deduction of (-, E',C") > E[E' /x] = M[M'/y,C"/c]; L.

2.3 Verifying the Conversion

We are now in a position to state the correctness criteria for our closure con-
version specification. First we state two lemmas about the auxiliary judgments
L>x— N;L'and (L,x,¢) > E = M; L"

Lemmal. For all lists L, L', source term E, target term M and natural number
N,ift L> Ew— N;L' and+ (nth N L' M) then+ E = M.

The proof is by induction on the structure of the deductions for the judgment
L>FEw— N;L.

Lemma2. 1. For all source terms E,V,x, target term M, lists L, L', and clo-
sure term (or variable) C, if b E —sV and 't (L,x,C) > E = M; L’ then
there exists a V' such that - M —; V' and -V = V’;

2. For all source terms E, x, target terms M, V', lists L, L', and closure term
(or variable) C, if - (L,z,C) > E = M;L’ and = M —; V' then there
exists a V such that - E —,V and -V = V.

The proof is straightforward by induction on the structure of the deduction
for E <, V and then by cases on the structure of the deduction for (L,x,c) >
E= ML

Finally, we can state the main theorem.

Theorem3. 1. For all source terms E,V and target term M, if - B —sV

and - E = M then there exists a V' such thatt- M —, V' and+-V = V';

2. For all source term E and target terms M, V', ift E = M andt+ M —; V'
then there exists a 'V such that - E —,V and FV = V".

This kind of correctness statement is in the same spirit as one of the correctness
statements for the compiler found in our earlier work on compiler correctness

[6].

93

Ey — M; Ey — M,
(El @EQ) — (Ml @c MQ)

VaVyVe(r =y D (-, x,c) > E = M; L)
M. E = [Ae.\y.M, L]

(L,z,c) > By = My; L/ (L' z,c) > By = Mo; L"

<L, x, C> > (El Q EQ) — (Ml Q, MQ), L”

VaVyVe(r =y D (,x,¢)> E = M; L")
(L',) > Ae.E = [Ae. Xy M, L'|; L+ L

=y
(Lyz,c)> o= y; L

L\>Z|—>N,L/
(Lyz,c) > 2= (N#c); L' (2 #)

=1y
> 1 ()

=1y
(L,y) >z 1;(L,y)

L>xzw— N;L'
(L,y) >z — N+1; (L', y)

Fig. 1. Basic Closure Conversion

3 Selective Closure Conversion

54

As pointed out in [14], avoiding closure creation plays an important role in gen-
erating efficient code for higher-order languages. In the basic closure conversion
specification of the previous section, all source language functions were convert-
ed to closures. We consider here the possibility of selective closure conversion in
which source language functions are not converted to closures, but rather left as
functions. Our focus in this section is not so much on determining exactly when
closures need not be converted, but rather on demonstrating that both closures
and functions can be handled together, ensuring that applications in the target
language are constructed with the proper procedure calling conventions.

The approach taken in [14] uses a relatively complex flow analysis, related
to some abstract interpretation techniques. Using a type system, we provide a
straightforward account of selective conversion. Instead of explicit constraints
we have types, and type inference provides the means for resolving constraints
imposed by these types. For demonstration purposes, we consider only one case
in which a source language function is not translated into a closure: when the
function contains no free variables.

3.1 Extending the Languages

We begin by considering the types for our languages and by extending the target
language. The types consist of some collection of base types and two kinds of
function types:

Tiu=a|ToT | T—eT

A X-abstraction will be given type 71— if it should not be closure converted.
A X-abstraction will be given type 13— .73 if it should be closure converted.

The target language is extended by including A-abstractions and a second
form of application:

M=z |n#c| M. M,L] | MQ, M | \e. M | M M

We extend the operational semantics for the language with the two rules:

Ml —¢)\yM M2 — ‘/2 M[‘/Q/y] —t 14
Ml M2 —¢ 1%

3.2 Adding Selective Conversion

The closure conversion specification is modified in a few ways. First, we include
the source language type in the judgments E = M, (L,z,¢) > E = M; L/,
and L > x — N;L'. The judgments become £ = M : 7, (L,xz,¢) > E =
M :7;L,and L > x — N : 7; L'. Second, the original rules for translating \-
abstractions and applications use the function type 7 —.7% to indicate that the
A-abstraction is converted to a closure and the application contains an operator
that should evaluate to a closure. Finally, we add two new rules for when a
A-abstraction does not convert to a closure and the corresponding rules for the
new application. The complete system is given in Fig. 2.

The rules for converting applications differ only in the type given to the
operator. The new rules (2.3) and (2.7) for converting A-abstractions differ from
the original ones (in which closures are created) by requiring that the list of free
variables occurring in the term be empty. This is enforced by the occurrence of
‘> on the right-hand sides of the antecedents in these two new rules.

To ensure that this conversion produces terms that make proper use of clo-
sures we have the following consistency lemma.

95

ElﬁMl I(T1—>T2) EQﬁMQITl
(El@EQ) — (Ml @MQ) 1T

ElﬁMlt(Tl—QTQ) EQﬁMQITl
(El @EQ) — (Ml @c MQ) 1T

VaVyVe(r = y:1 D (,x,c) > E = M : 79;)
Ae.E = \y.M : (11—72)

VaViyVe(r = y:11 D (,z,¢) > E= M :79; L)
Me.E = ey M, L] : (11—c72)

(Lyz,c)> Fy = M; : (n—m); L/ (L',z,c)> Ey = My :7y;L"

<L,CC,C> > (El@EQ) — (Ml @MQ) : TQ;L//

(Lyz,c) > By = M; : (m—cme); L' (L x,¢) > B = My : 715 L")

(2.5)

<L,CC,C> > (El@EQ) — (Ml @c MQ) :TQ;LN

VaVyVe(r = y:m D (,x,c)> E = M :71;")
(L2’ , Y > Ae.E = \y.M : (1—72); L

VaVyVe(r = y:11 D (,x,¢c)> E = M :7;L')

(L',) > A\e.E = [Ae.Ay.M, L] : (m—cem2); L+ L

T=y:T
(Lyz,c)>x=y:7;L

Lz— N:7 L' (2 4 2)
(Lyx,c) > z = (N#tc): 7; L' i

T=Yy:T
a1y

T=Y:T
(Lyy)>x—1:7;(L,y)

L>x— N:7; L/
(Lyy) > x— (N+1) : 75 (L, y)

(2.6)

(2.11)

(2.12)

(2.13)

Fig. 2. Selective Closure Conversion

56

Lemmad4. For all source term E and target term M,

1. ifr E= M :11—719 and M —; V' then V' = \y.M’ for some M’';
2. ifF E= M : 11—¢1p and M < V' then V' = [Ae.\y.M'] for some M'.

The proof is straightforward by induction of the structure of deductions. The
fact that closed A-abstractions need not be converted to closures is obvious and
this lemma ensures that we can selectively convert A-abstractions and still have
correct procedure call protocols.

3.3 Verifying the Conversion

Adapting the proof of correctness for basic closure conversion to selective closure
conversion is straightforward and the Elf program representing the proof is only
slightly longer than the proof for basic conversion.

Theorem 5. 1. For all source terms E,V and target term M, if - E —s V
and - E = M : 7 then there exists a V' such that - M —; V' and
FV=V':7;

2. For all source term E and target terms M,V', if - E = M : 7 and +-
M —, V' then there exists a V such that+ E —,V and -V = V' : 1.

4 Lightweight Closure Conversion

The point of a closure is to provide a function body with access to non-local
variables at the time the function is called. In particular the function call which
originally bound some of these variables may have returned by the time this
closure is accessed. If, however, certain variables can be shown only to be ac-
cessed during the evaluation of the function body which bound them, then these
variables do not necessarily need to be included as part of a closure, as their
bindings will be available elsewhere. We can exploit this idea and reduce the
number of variables included in a closure, possibly eliminating the need for a
closure entirely in some cases. Detecting when this is possible requires detailed
analysis of the expression being closure converted.

In related work we have developed a static escape analysis for A-terms [5].
This analysis, presented as a type system, determines when a bound variable can
escape its scope at run time, i.e., when the variable may be accessed even after the
function in which it was bound has returned. This situation occurs when bound
variables occur inside of function bodies and these functions can be returned as
values of the function for which the variable is a formal parameter. An example
illustrates this relatively simple idea. Consider the function Az.Af.fx. If this
function is applied to some value v, then the result of the function call will be
the closure consisting of the function A\f.f x and the binding x — wv. In this case,
x is the bound variable of a function, but this variable continues to exist after
returning from the function.

o7

A variable simply occurring in the body of another function is not a sufficient
condition to imply that it escapes. Consider the term Az.((Af.fx)(Ay.y)). By
some simple observations of this term, we can see that the occurrence of x in
the body will not escape its scope.

Our analysis uses a judgment of the form I' > F : 7 = E® in which I
is a type context, F is a source term, 7 is an annotated type, and E?® is an
annotated term. The annotated target language is a typed A-calculus, but it
includes two forms for each construct in the source language: one regular form
and one annotated form.

Mu=zx|z® | M| N2> M| MQM|MQ°M

A term of the form A*z®.M indicates that the variable x° cannot escape from
its scope. The term M @°® N indicates that the value of the term M will be a
function whose bound variable cannot escape its scope.

The analysis essentially determines which lambda abstractions and applica-
tions in the source term can be annotated in the target term. For example, the
two term given above could be annotated as

AT ffz and Azt (5. f5 29) O yf)).

The annotations in the first term indicate that f* cannot escape its scope but
that = may. The annotations in the second term indicate that no variables can
escape their scope. In [5] we use this information to provide a stack-based im-
plementation of a functional language by first translating it into an annotated
form. Annotated variables are allocated space on a run-time stack and can be
deallocated when a function returns. Closures are only created at run time.

Applying this analysis to closure conversion we can observe that the only
variables required for a function closure are those variables that occur free in
the function and can escape their scope. If they can escape their scope, then their
binding will not necessarily be part of the “global” environment at the time the
function body is evaluated. Variables that cannot escape (those annotated after
analysis) can be allocated on a stack (because they can be safely deallocated upon
returning from the corresponding function call) and their values can always be
accessed, when required, from this stack. Closures which do not contain such
non-escaping variables are called lightweight closures in [14], though they do
not focus directly on whether variables escape their scope. They refer to these
non-escaping variables as dynamic variables.

We can specify such lightweight closure conversion as the composition of
our escape analysis and an extended version of the conversion specification giv-
en in the previous section. Note that we could also combine these two into a
single specification, but for clarity we will keep the two distinct and focus on-
ly on the extended version of closure conversion using annotated terms. The
specification for lightweight conversion includes the previous rules for selective
conversion (Fig. 2) and the additional rules of Fig. 3. The first five rules sim-
ply treat annotated A-abstractions, applications and local variables as before in
selective conversion. Rule (3.6) provides the essential difference. In this case,

o8

non-local, annotated variables are not included in the set of variables used for
constructing closures. The variables are simply translated into the appropriate
target language variables. Compare this rule with (2.10).

ElﬁMl I(T1—>c7'2) EQﬁMQ T (3 1)
(El @*® EQ) — (Ml @c MQ) 1T)
VesVyVe(a®* =y 11 D (2% ¢)> E= M :1o; L) (3.2)

Na® E = [Ae Ay M, L] : (T1—c72)

(Lyxz,c)> Fy = My : (n—.e); L (L',z,¢) > By = My :1; L

(
<L7:C’C> > (El @S EQ) —t (Ml @C M2) :To; L// \33)
VosVyVe(z® = y:m D (,28%,¢) > E= M :71; L) (3.0
L., 0) o X" E = Dedy M LT: (n—em)i L+ L7

T =y:T

(Lyaxs,c)>a =y :7; L (3.5)
2= y:T

: (= # @) (3.6)

(Lyz,c)>2° = y:T7;L

Fig. 3. Lightweight Closure Conversion

When using lightweight closures we do not explicitly pass dynamic variables
to functions which need them (as done in [14]). Instead we expect an implemen-
tation to exploit the availability of the variables (actually, the values bound to
them), located in some global store such as a stack. Some simple calculations
allows each function to determine the location at run time of these dynamic
variables on the stack [5].

To adequately characterize the correctness of lightweight closure conversion
we would need to introduce an operational semantics for our closure language
that provides a finer specification of storage than given by the one in Sec. 2. We
leave this for future work.

5 Conclusions and Future Work

We have presented a series of closure conversion specifications using type sys-
tems. The systems are relatively simple and for basic and selective conversion we

99

have constructed a machine-checked proof of correctness in Elf. A corresponding
proof for lightweight conversion is in progress.

We are applying our technique to other strategies for closure conversion, with
the expectation of constructing clear specifications for these strategies and also
correctness proofs. OQur goal is to model the space-efficient closure representa-
tions constructed in the Standard ML of New Jersey compiler[12]. An important
aspect here is to represent closures in a manner which allows storage to be deal-
located or reclaimed as soon as data is no longer needed. Before attempting these
more complex closure representations and conversion strategies we need a solid
understanding of some of the basic issues and techniques of closure conversion,
and a suitable framework for expressing and reasoning about them. The current
work provides such initial experience.

A common program transformation, prior to closure conversion is CPS trans-
lation which produces A-terms which closely reflect the control-flow and data-flow
operations of a traditional machine architecture. We have specified and proved
correct the translation from source program to CPS program using the same
approach given here, using deductive systems to specify operational semantics
and the CPS translation. The proof is straightforward and captures the essential
notion of continuations. We have not, however, combined this translation with
closure conversion. This is the subject of future work.

We intend to analyze more detailed translation strategies that incorporate
caller-save registers and callee-save registers as described in [2, 12]. Doing this
will require more complex analyses but we expect that using type systems we can
adequately express them. We intend to analyze and prove correct the notion of
safe for space complexity as described in [2]. To accomplish this we will consider
a variety of static analyses on programs including lifetime analysis and closure
strategy analysis (which determines where to allocate each closure).

References

1. Andrew Appel and Trevor Jim. Continuation-passing, closure-passing style. In
Conf. Rec. of the 16th ACM Symposium on Principles of Programming Languages,
pages 293-302, 1989.

2. Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

3. Geoffrey Burn and Daniel Le Métayer. Proving the correctness of compiler opti-
misations based on strictness analysis. In Maurice Bruynooghe and Jaan Penjam,
editors, Programming Languages Implementation and Logic Programmig, volume
714 of Lecture Notes in Computer Science, pages 346-364. Springer-Verlag, 1993.

4. T. Coquand. An algorithm for testing conversion in type theory. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 255-279. Cambridge University
Press, 1991.

5. John Hannan. A type-based analysis for stack allocation in functional languages.
Submitted, May 1995.

6. John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 407-418. IEEE Computer Society Press, 1992.

60

7. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143-184, 1993. A preliminary version appeared
in Symposium on Logic in Computer Science, pages 194-204, June 1987.

8. S. Michaylov and F. Pfenning. Natural semantics and some of its meta-theory in
Elf. In Lars Hallnés, editor, Extensions of Logic Programming, pages 299-344.
Springer-Verlag LNCS 596, 1992. A preliminary version is available as Technical
Report MPI-1-91-211, Max-Planck-Institute for Computer Science, Saarbriicken,
Germany, August 1991.

9. Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Science, pages
313-322. IEEE Computer Society Press, June 1989.

10. Frank Pfenning. An implementation of the EIf core language in Standard
ML. Available via ftp over the Internet, September 1991. Send mail to elf-
request@cs.cmu.edu for further information.

11. Frank Pfenning. Logic programming in the LF logical framework. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University
Press, 1991.

12. Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In
Proceedings of the 1994 ACM Conference on Lisp and Functional Programming,
pages 150-161. ACM, ACM Press, 1994.

13. Mitchell Wand. Correctness of procedure representations in higher-order assem-
bly language. In Proceedings of the Mathematical Foundations of Programming
Semantics ’91, volume 598 of Lecture Notes in Computer Science, pages 294-311.
Springer-Verlag, 1992.

14. Mitchell Wand and Paul Steckler. Selective and lightweight closure conversion. In
Conf. Rec. 21st ACM Symposium on Principles of Programming Languages, 1994.

A Overview of LF

We briefly review the LF logical framework [7] as realized in Elf [9, 10, 11]. A
tutorial introduction to the Elf core language can be found in [§].

The LF calculus is a three-level calculus for objects, families, and kinds. Fam-
ilies are classified by kinds, and objects are classified by types, that is, families
of kind Type.

Kinds K ::=Type| Hx:A. K
Families A ::=a | Ilx:Ay. Ay | Ax:Ar. Ay | AM
Objects M ==c| x| \x:A. M | My M,

Family-level constants are denoted by a, object-level constants by c¢. We also
use the customary abbreviation A — B and sometimes B «— A for Ilx:A. B
when = does not appear free in B. Similarly, A — K can stand for I[Tx:A. K
when = does not appear free in K. A signature declares the kinds of family-level
constants a and types of object-level constants c.

The notion of definitional equality we consider here is based on n-conversion.
Type-checking remains decidable (see [4]) and it has the advantage over the
original formulation with only (-conversion that every term has an equivalent
canonical form.

61

The Elf programming language provides an operational semantics for LF.
This semantics arises from a computational interpretation of types, similar in
spirit to the way a computational interpretation of formulas in Horn logic gives
rise to Pure Prolog. Due to space limitations, we must refer the reader to [8, 9, 11]
for further material on the operational semantics of Elf.

Throughout this paper we have used only deductive systems to present solu-
tions to problems. Each of these systems, however, has a direct encoding as an
LF signature (a set of constant declarations), and hence, also an Elf program.
In particular, an Elf program corresponding to a verification proof, when type-
checked, provides a (mostly) machine-checked version of the proof. For lack of
space we have not provided the LF signatures or Elf programs corresponding to
the systems given in the paper, but the ability to construct these is a critical
aspect of our work. The Elf language provides a powerful tool for experimenting
with, and verifying, various analyses.

We give here only a brief description of how the deductive systems and proofs
described in the paper can be encoded as LF signatures. From there, the encod-
ing of signatures into Elf programs is a direct translation: each signature item
becomes an Elf declaration.

We represent a programming language (that we wish to study) via an ab-
stract syntax consisting of a set of object constants for constructing objects of
a particular type. For example, we introduce a type tm of source programs and
collection of object constants for building objects of type tm. We use a higher-
order abstract syntax to represent functions and this simplifies the manipulation
of programs with bound variables.

We represent judgments such as e < v via a type family eval : tm—tm—type.
For given objects e : tm and v : tm, (eval e v) is a type.

We represent inference rules as object level constants for constructing objects
of types such as (eval e v). For example, an inference rule

A A As
Ao

would be represented as a constant ¢ : ITxy : By - -+ Tz, : Bp(A;—A3—A5— Af)
in which A is the representation of judgment A; as a type and the z; : B; are the
free variables (implicitly universally quantified) of the inference rule. Using such
constants we can construct objects, for example, of type (eval e v), representing
the deduction e — wv.

Finally, we represent inductive proofs (with the induction over the structure
of deductions) as signatures in which each constant represents a case in the
inductive proof. For example, to prove a statement of the form “judgment A
is derivable iff judgment B is derivable” then we define a new judgment or
type family, for example thm : A— B—type to express the relationship between
objects of type A and objects of type B. Base cases in the inductive proof
translate to axioms (objects of base type) while inductive step cases translate to
inference rules (objects of functional type). See [6] for examples of this technique.

62

