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Abstract

Data caches in general-purpose microprocessors often

contain mostly dead blocks and are thus used inefficiently.

To improve cache efficiency, dead blocks should be identified

and evicted early. Prior schemes predict the death of a block

immediately after it is accessed; however, these schemes yield

lower prediction accuracy and coverage. Instead, we find that

predicting the death of a block when it just moves out of the

MRU position gives the best tradeoff between timeliness and

prediction accuracy/coverage. Furthermore, the individual

reference history of a block in the L1 cache can be irregular

because of data/control dependence. This paper proposes a

new class of dead-block predictors that predict dead blocks

based on bursts of accesses to a cache block. A cache burst

begins when a block becomes MRU and ends when it becomes

non-MRU. Cache bursts are more predictable than individual

references because they hide the irregularity of individual

references. When used at the L1 cache, the best burst-based

predictor can identify 96% of the dead blocks with a 96%

accuracy. With the improved dead-block predictors, we eval-

uate three ways to increase cache efficiency by eliminating

dead blocks early: replacement optimization, bypassing, and

prefetching. The most effective approach, prefetching into

dead blocks, increases the average L1 efficiency from 8% to

17% and the L2 efficiency from 17% to 27%. This increased

cache efficiency translates into higher overall performance:

prefetching into dead blocks outperforms the same prefetch

scheme without dead-block prediction by 12% at the L1 and

by 13% at the L2.

1. Introduction

Prior studies have shown that data caches have low effi-

ciency [2], [26]; only a small fraction of cache lines actually

hold data that will be referenced before eviction. Tradition-

ally, a cache line that will be referenced again before eviction

is called a live block; otherwise it is called a dead block.

Cache efficiency can be improved if more live blocks are

stored in the cache without increasing its capacity. Improved

cache efficiency reduces cache-miss rate and improves system

performance.

The root cause of low cache efficiencies is that blocks die,

reside in the cache for a long period of time with no accesses,

and then are finally evicted. With LRU replacement, upon the

last access to a block, multiple replacements to that set must

occur before the dead block is evicted [7], [19], which can

take thousands of cycles. This last access may occur after

only several accesses, or worse, immediately upon the first

time the block is loaded into the cache.

To achieve better efficiency, dead blocks should be iden-

tified early. The earlier a dead block is identified, the more

opportunity there is to improve cache efficiency. A block turns

dead on its last access before its eviction from the cache. The

identification of a dead block should be done between the last

access to the block and its eviction from the cache. Since the

hardware does not know with certainty which access to a

block is the last access, the identification of a block as dead

is a speculative action called dead-block prediction.

Three approaches for dead-block prediction have been

proposed: trace-based, counting-based, and time-based. Lai

et al. were the first to propose the concept of dead-block

prediction and a trace-based predictor [16], which predicts a

block dead once it has been accessed by a certain sequence

of instructions. They use the predictor to trigger prefetches

into the L1 data cache. Hu et al. later proposed a time-based

predictor [7], also to trigger prefetches into the L1 data cache.

Time-based predictors predict a block dead once it has not

been accessed for a certain number of cycles. Kharbutli et

al. proposed a counting-based predictor [14], which predicts

a block dead once it has been accessed a certain number of

times. They use the predictor to optimize cache replacement

policy and to bypass zero-reuse blocks.

Most prior dead-block predictors predict the death of a

block immediately after the block is accessed, as shown in

Figure 1(a), which shows a sequence of accesses to three

blocks, A, B, and C, in the same set of a two-way associative

cache. P(A) in the figure indicates a prediction about whether
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Figure 1. Predicting dead blocks at different times

block A has died. While this approach identifies dead blocks

as early as possible, it sacrifices prediction accuracy and

coverage because a block just accessed may be accessed

again soon. There is a tradeoff between the timeliness and

accuracy/coverage of dead-block prediction. The earlier the

prediction is made, the more useful it is. On the other hand,

the later the prediction is made, the less likely it is to

mispredict. In this paper, we quantify this tradeoff by making

dead-block predictions at different points during the dead time

of a block. Making dead-block predictions when a block just

becomes non-MRU, as shown in Figure 1(b), gives the best

tradeoff between timeliness and prediction accuracy/coverage.

Prior dead-block predictors also update the history of a

block every time the block is referenced. A prediction about

whether a block has died is made based on the individual

reference history of each block. However, how a block is

accessed in the L1 cache may depend on the control-flow path

the program takes, the value or offset of the referenced data in

the block, and other parameters. These variations can cause

the individual reference history of a block to be irregular

and cause problems for existing dead-block predictors. To

address this problem, we propose a new class of dead-block

predictors for the L1 cache that predict dead blocks using

the cache burst history of each block. A cache burst begins

when a block moves into the MRU position and ends when

it moves out of the MRU position. In these new dead-

block prediction schemes, the contiguous references a block

receives in the MRU position are grouped into one cache

burst. In Figure 1, block A receives two cache bursts. A

prediction about whether a block has died is made only when

it becomes non-MRU, using the block’s cache burst history.

Because cache burst history hides the irregularity in individual

references, it is easier to predict than individual reference

history for L1 caches. The downside of this approach is

that dead-block predictions are made later than the point at

which blocks actually die (the last reference). Cache bursts

can be used with trace-based, counting-based, or time-based

predictors. This paper evaluates cache bursts as a strategy for

improving counting-based and trace-based predictors.

Cache bursts only work well at the L1 cache. For the

L2, counting-based predictors work best. We improve upon

a previously proposed counting-based prediction scheme by

addressing its limitations caused by reference count variation.

Compared to prior schemes, the new predictors show

significant improvement in prediction accuracy and coverage

while only lose approximately 1/n
th

of the dead time, where

n is the associativity of the cache. When used in a two-way

L1 cache, a trace-based cache burst predictor can correctly

identify 96% of the dead blocks with a 96% accuracy and

a counting-based cache burst predictor can correctly identify

86% of the dead blocks, also with a 96% accuracy. For a

16-way L2 cache, the improved counting-based predictor can

identify 67% of the dead blocks with a 89% accuracy.

These improved dead-block predictors are used in several

ways to improve cache efficiency. Like prior work, they are

used for replacement optimization and for bypassing zero-

reuse blocks at the L2 cache and for prefetching into dead

blocks at the L1 cache. They are also used for prefetching

into dead blocks at the L2 cache, which has not been studied

by prior work. The results show bypassing and replace-

ment optimization offer mostly overlapped benefit, with both

techniques achieving similar results of approximately 5%

performance improvement on the same set of applications.

In contrast, prefetching into dead blocks increases the L1

efficiency from 8% to 17% and the L2 efficiency from 17%

to 27%. The improved cache efficiency translates into higher

overall performance: prefetching into dead blocks outperform

the same prefetch scheme without dead block prediction by

12% at the L1 and by 13% at the L2.

2. Prior Work on Dead Block Prediction

Dead block prediction can be performed in software [23],

[28] or in hardware [1], [7], [14], [16]. Software solutions

pass hints about dead-block information collected through

profiling or compiler analysis [23], [28] to the hardware.

They are more accurate but usually have lower coverage.

Hardware solutions can be classified into two categories: data-

address based [7] and PC based [1], [14], [16]. Compared to

data-address based approaches, PC-based approaches require

much lower storage overhead. Based on the state the predictor

maintains to make predictions, hardware solutions can be

classified into three categories: trace-based, counting-based,

and time-based.

Lai et al. were the first to propose the concept of dead-block

prediction [16] and a trace-based dead-block predictor for the

L1 cache, called DBP. Because we use DBP in this paper to

refer to dead-block prediction in general, to avoid confusion,

we use the name Reference Trace Predictor (RefTrace) to

denote this predictor.1 RefTrace records the sequence of

instructions that have referenced a block by hashing the

PCs of these instructions together. A history table is used

to learn which trace values (sequences of references) result

in dead blocks by observing the trace value of each evicted

block. Blocks brought into the cache by the same instruction

1. RefTrace was evaluated on directly mapped caches in [16]. This paper
uses it on set-associative caches. In contrast to this study which evaluates
RefTrace in the MRU position, [4] evaluated RefTrace in the LRU position.



but referenced along different paths will have different trace

values upon eviction. The different sequences of references

conceptually form a tree embedded in the history table, with

the root of the tree being the instruction that caused the

miss and each leaf indicating dead blocks. Each entry in the

history table indicates the likelihood that the corresponding

trace value will result in a dead block. Aliasing can occur if

one sequence, which results in dead blocks in some cases, is

a prefix of other longer sequences.

Kharbutli and Solihin later proposed a counting-based

dead-block predictor called Live Time Predictor [14], for L2

caches. In this paper, we use the name RefCount to denote

that it is a counting-based predictor. In RefCount, each block

in the cache is augmented with a counter that records both

how many times the block has been referenced and the PC

of the instruction that first missed on the block. When the

counter reaches a threshold value, the block is predicted

dead. The threshold is dynamically learned using a history

table by observing the reference count and recorded PC of

each evicted block. Compared to RefTrace, RefCount uses

only the PC of the instruction that brought a block into the

cache to make predictions, and can not distinguish blocks

that are brought into the cache by the same instruction but

are referenced by different instruction sequences.

Hu et al. proposed a time-based dead-block predictor,

Timekeeping (TK) [7], for the L1 cache. TK dynamically

learns the number of cycles a block stays alive and if the block

is not accessed in more than twice this number of cycles, it

is predicted dead. Abella et al. proposed [1] another time-

based predictor to turn off dead blocks dynamically in the L2

cache. They observed that both the inter-access time between

hits to the same block and the dead time correlate with the

reference counts of a block. They also predict a block dead

if it has not been accessed in a certain number of cycles, but

the cycle count is derived from how many times the block

has been accessed. Compared to time-based predictors, trace-

based and counting-based predictors are easier to implement

in hardware and incur less overhead. Also, the traces and

reference counts of blocks are more closely correlated to the

memory-reference behavior of a program than the cycle count

between accesses to the same block.

These predictors are used in various cache optimizations,

including prefetching, replacement, bypassing, power reduc-

tion, and coherence protocol optimizations.

Prefetching: Lai et al. [16] and Hu et al. [7] used dead-

block prediction to trigger prefetches into dead blocks in

the L1 data cache. They found triggering prefetches on

dead-block predictions improves the timeliness of prefetching

compared to triggering prefetches on cache misses. Ferdman

and Falsafi later extended the work in [16] to store correlation

patterns off-chip and stream them on-chip as needed [4],

which makes it possible to perform correlation-prefetching

with large correlation tables.

Replacement: Kharbutli and Solihin [14] used dead-

block prediction to improve the LRU algorithm by replacing

dead blocks first, and also for bypassing the cache. Other

approaches optimize LRU replacement without dead-block

prediction: Wong and Baer modified the LRU algorithm by

replacing blocks with no temporal locality first [29], Kampe et

al. proposed an Self-Correcting LRU algorithm [12] to correct

LRU replacement mistakes, whereas Qureshi et al. proposed

to adaptively place missing blocks into the LRU instead of

the MRU position when the working set is larger than the

capacity of the cache [20].

Bypassing: Prior work has also used bypassing [6], [10],

[11], [22], [27] to improve cache efficiency. Tyson et al. pro-

posed bypassing based on the hit rate of the missing load/store

instruction [27]. Johnson et al. proposed bypassing based on

the reference frequency of the data being referenced [11]

but put bypassed blocks in a separate buffer parallel to the

cache. Jalminger and Stenström proposed bypassing based on

the reuse distance of the missing block [10]. González et al.

proposed to bypass L1 data cache blocks with low temporal

locality [6].

Power reduction: Dead block prediction has also been

used to reduce leakage by turning off dead blocks. Kaxiras

et al. used dead-block prediction to turn off blocks in the L1

D-cache [13]. Abella et al. proposed to turn off blocks in the

L2 cache dynamically [1]. Both schemes predict how many

cycles have to pass before a block can be turned off without

affecting performance. Dead block prediction can also be used

in drowsy caches [5], to decide which blocks should switch

to the drowsy state.

Coherence protocol optimization: Cache coherence pro-

tocols can also benefit from dead-block prediction. Lebeck

and Wood proposed dynamic self-invalidation [17] to reduce

the overhead of the cache coherence protocol by invalidating

some of the shared cache blocks early. Lai and Falsafi later

proposed a last-touch predictor [15] that uses PC traces

to predict when shared cache blocks should be invalidated.

Somogyi et al. studied using PC-traces to identify last stores

to cache blocks [25].

3. Cache Efficiency

The concept of cache efficiency was first proposed by

Burger et al. in [2], where cache efficiency is defined as the

average fraction of the cache blocks that store live data. For

any cycle during the execution of a program, some fraction of

the blocks in the cache are live. The arithmetic mean of these

live block fractions across the execution time of a program,

or cache efficiency, can be computed as:

E =

∑A×S−1

i=0
Ui

N × A × S
(1)



In Equation 1, A is the associativity of the cache, S is the

number of sets, N is the execution time in cycles, and Ui is

the total number of cycles for which cache block i is live.

Application
DL1 efficiency L2 efficiency

Baseline Optimized Baseline Optimized

swim 0.02 0.36 0.06 0.10
mgrid 0.08 0.24 0.18 0.23
applu 0.07 0.23 0.03 0.07
gcc 0.05 0.10 0.34 0.55
art 0.01 0.10 0.12 0.69
mcf 0.04 0.07 0.05 0.14

ammp 0.08 0.14 0.05 0.08
lucas 0.01 0.06 0.01 0.04
parser 0.33 0.33 0.32 0.33

perlbmk 0.40 0.40 0.17 0.21
gap 0.07 0.12 0.07 0.09

sphinx 0.09 0.10 0.34 0.52
corner turn 0.02 0.12 0.04 0.05

stream 0.01 0.21 0.03 0.16
vpenta 0.01 0.01 0.80 0.80

GeoMean 0.08 0.17 0.17 0.27

Table 1. Cache efficiency of a 64KB, 2-way DL1 and a
1MB, 16-way L2 measured using sim-alpha

Cache efficiency measures the portion of the cache that

actually holds useful data; the remaining portion holds useless

data and can be vacated to store useful data. Table 1 shows

the cache efficiency of a set of SPEC2000 benchmarks and

several other benchmarks measured using sim-alpha [3],

which models an Alpha 21264 processor. The geometric mean

of the baseline cache efficiency for the L1 data cache and L2

cache, shown in the columns labeled “Baseline” of Table 1, is

only 0.08 and 0.17 respectively, indicating the poor utilization

of the caches and significant opportunities for improvement.

The reason cache efficiency is low is that the time a block

stays alive in the cache is usually much shorter than the time

that it is dead. The interval between the last access to a block

and its eviction from the cache is called the dead time of the

block. Likewise, the interval between the first access to a

block, i.e., the access which brings the block into the cache,

and the last access before its eviction, is called the live time.

Prior work has shown that the dead time is usually at least

one order of magnitude longer than the live time [7].

To improve cache efficiency, a cache must identify dead

blocks early and replace them with useful blocks. By identi-

fying dead blocks early with the best dead-block predictors

we evaluated for the L1 and L2 caches and replacing them

with new blocks through prefetching (discussed later in this

paper), the L1 efficiency more than doubles and the L2

efficiency improves by 60%, as shown in the columns labeled

“Optimized” in Table 1.

4. Identifying Dead Blocks Based on Cache

Bursts

Accesses to the L1 and L2 caches have different charac-

teristics. For example, accesses to the L2 cache are filtered

by the L1 so L2 accesses have little spatial locality within a

block while L1 accesses can have high spatial locality. These

differences should be considered when designing dead-block

predictors for each cache level. In this section, we propose

new dead-block predictors for the L1 and L2 respectively.

4.1. Cache Burst Predictors: Tolerating Irregularity

of Individual References in the L1 Cache

All prior dead-block predictors try to find regular patterns

in the individual reference history of each block. However,

individual reference histories can be volatile and irregular

because how a block is accessed may depend on the control

flow path the program takes, the value or offset of the

referenced data in the block, and other parameters, all of

which can change dynamically and may not show any regular

patterns (RefTrace can handle control flow dependence to

some extent). This is especially true for the L1 cache because

the irregularity can be filtered out by the L1 cache and

may not be observed by the L2 cache. Figure 2 shows two

examples of reference variance.

Figure 2(a) shows how control-flow irregularity can lead

to irregular reference history. Suppose the first access to p→
value always misses and p→value will not be referenced

after the iteration. Depending on whether p→value is zero,

the block which has p→value can be accessed either once or

twice. However, it is not possible to find a regular pattern in

the individual reference history of each block because some

of the blocks are referenced only by the load instruction while

others are referenced by both the load and the store.

Figure 2(b) shows how data alignment variation can cause

the same problem. Suppose the cache block size is 64 bytes

and the access to A[i].a always misses. Because of data

alignment differences, A[i].a and A[i].b can be located in

the same block or in two adjacent blocks. If they are located

in the same block, the block will be accessed twice before������ ��� ��	� 
��	� �

 �����	� ���	� ������������������ ��� � ������������ � � �� � � ������ �������� �� � ����
 � � ������� ������� � �
�����
!"#
 ���
!"#
 �����
 � 
!"	�$��� ����
Figure 2. Examples of irregular accesses to L1 blocks



eviction. Otherwise, the block that has A[i].a will only be

accessed once. Again, it is not possible to find a regular

pattern in the individual reference history of each block that

has A[i].a because some blocks will be accessed only by one

load instruction and others will be accessed by both loads.

This irregularity in individual reference history can cause

problems for existing dead-block predictors: neither RefCount

nor RefTrace can handle the two examples in Figure 2 well

because neither can predict exactly after which access a block

becomes dead.

The problem with trying to find regular patterns in the

individual reference history of each block is that the predictor

observes events at excessively fine granularity. Because L1

cache accesses tend to be bursty in the sense that several

accesses to the same block are usually clustered in a short

interval, an effective strategy is to predict dead blocks by

cache bursts instead of individual references. We formally

define cache bursts as follows:

Definition A cache burst is the contiguous group of cache

accesses a block receives while it is in the MRU position of

its cache set with no intervening references to any other block

in the same set.

Although the references within a cache burst may be irregular,

the cache-burst history can still be regular. Examining the

two examples using bursts, there still is a regular pattern.

In Figure 2(a), the block containing p→value will become

dead after exactly one cache burst, regardless of whether p→
value is zero. In Figure 2(b), the block containing A[i].a will

also become dead after exactly one cache burst, regardless of

whether A[i].b is located in the same block.

Based on this observation, we propose a new class of

dead-block predictors that predict based on cache bursts, not

references, of each block. Cache bursts begin when a block

moves into the MRU position and end when it moves out of

the MRU position, at which point a dead block prediction is

made, typically 1/nth
into the dead time, where n is the set

associativity.

A Burst Counting Predictor (BurstCount) uses the same

structure as a reference counting predictor except that it

counts cache bursts instead of individual references. When

a block is filled into the MRU position of its set, its burst

count is set to 0. The burst count is incremented only when

the block moves from a non-MRU position into the MRU

position. If the block is accessed in the MRU position, the

burst count does not change. A prediction is made only when

a block becomes non-MRU.

Similarly, a Burst Trace Predictor (BurstTrace) uses the

same structure as a reference trace predictor. The difference

is that BurstTrace predicts dead blocks based on the sequence

of cache bursts a block has received. In BurstTrace, the trace

of a block is updated only when the block moves into the

MRU position. If it is accessed in the MRU position, the
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Figure 3. (a) Reference count distribution; (b) Burst

count distribution

trace does not change. A prediction is made only when the

block becomes non-MRU.

Figure 3 shows that burst history is more regular than

reference history in the L1 cache. Figure 3(a) shows the

reference count distribution of the blocks brought into the L1

D-cache by the same instruction in sphinx. This particular

instruction causes the most misses in the L1 D-cache. The

X axis is the reference count. The Y axis shows for a given

reference count, what percentage of the blocks (out of all the

blocks brought into the cache by this instruction) die after that

number of references. Figure 3(b) shows the corresponding

burst count distribution for the same instruction. The figures

indicate burst count is much more predictable than reference

count in the L1 D-cache.

Besides the higher dead-block prediction accuracy and

coverage, burst-based predictors also have much lower power

overhead than reference-based predictors. A reference-based

predictor needs to read the history table and update the state

of the accessed block on every cache access. In contrast,

a burst-based predictor only reads the history table when

a block becomes non-MRU and updates the state when it

becomes MRU.

By references By bursts

Trace RefTrace [16] BurstTracePrediction
Counting RefCount [14] BurstCountmetric

Time TimeKeeping [7], IATAC [1] Future work

Table 2. A taxonomy of dead-block prediction schemes

The introduction of cache bursts adds a new dimension

to the design space of dead-block predictors. Based on

the metric used to make dead-block predictions, dead-block

predictors can be classified into trace-based, counting-based,

and time-based. Based on how the state of a block is updated,

dead-block predictors can be classified into reference-based

and burst-based. Table 2 classifies the possible dead-block

predictors using this taxonomy.

4.2. Tuning Reference Counting for the L2 Cache

While burst-based predictors work well for the L1 cache,

they do not benefit the L2 cache because most of the irregu-

larity in individual references has already been filtered out by

the L1. Prior work [14] found counting-based predictors are



better suited for the L2 than trace-based predictors because

the filtering effect of the L1 prevents trace-based predictors

from seeing the complete reference history of a block. One

problem with counting-based dead-block predictors is refer-

ence count variation: blocks brought into the cache by the

same instruction can receive different number of references

in the cache.

To handle reference count variation, RefCount uses a

confidence bit in each entry of the history table: when a block

is evicted from the cache, its reference count is compared with

the threshold stored in the history table. The confidence bit

is set if the new reference count equals the old threshold and

cleared otherwise. The threshold in the history table will not

be used for prediction if the confidence bit is cleared.

One problem with this mechanism is that it can clear

the confidence bit unnecessarily: the confidence bit will be

cleared whenever a smaller reference count follows a larger

reference count. In an extreme case where the reference count

alternates between two different values, the confidence bit

will never be set. A better way to handle such cases is to

continue to use the larger reference count as the threshold

without clearing the confidence bit, if the smaller reference

count is only temporary. This can be achieved by an additional

counter, filter cnt, and a saturating counter, sat cnt. A smaller

reference count is first stored in filter cnt and changes the

threshold only when sat cnt saturates.

Another issue is how to keep the history information

current. As shown in Figure 4(a), in RefCount, each block

copies the threshold and confidence bit from the history

table when the block is filled into the cache and uses the

copied information to make predictions thereafter. However,

the threshold and confidence bit stored in each block can

become outdated as the history table gets updated. A better

approach is to remove the threshold and confidence bit stored

in each block. Instead, when the predictor predicts, it uses the

threshold and confidence bit from the history table, which has

the most up-to-date information. This optimization reduces

the area overhead but increases the frequency the history

table is accessed. The increased accesses to the history table

adds little energy overhead because the L2 cache is accessed

only when L1 caches miss. Additionally, when used at the L1

valid dead_cnt filter_cnt sat_cnt

History table

1 6 (4) 6 (4) 1

Cache block

valid dead_cnt

History table

1 6 (4)

(a) Structure of RefCount (b) Structure of RefCount+

PC reuse_cnt
10 6 (4)

dead_cnt valid
16 (4)

Cache block PC reuse_cnt
10 6 (4)

dead

1

Figure 4. Differences between RefCount and Ref-

Count+. RefCount+ stores threshold and confidence bit
in history table to keep them up to date; also uses

filter cnt and sat cnt to filter out noise

cache, the frequency of history table lookups are mitigated in

the burst scheme because predictions are made only when a

block becomes non-MRU.

With the inclusion of these two changes, we call the

resulting predictor RefCount+, as shown in Figure 4(b).

4.3. Timeliness vs. Accuracy/Coverage: When to

Predict

One question not answered by prior work is the best time to

make dead-block predictions. The dead time of a block begins

with the last access to the block and ends with its eviction

from the cache. Dead block prediction can be made at any

point in this interval. Almost all prior dead-block prediction

schemes predict whether a block has died immediately after

it is referenced, when the block is still in the MRU position.

Higher prediction accuracy and coverage can be achieved if

dead-block predictions are made later because it is less likely

to make premature predictions. At the same time, predictions

made closer to the end of a block’s dead time are less useful

because they leave the majority of the dead time exposed.

Figure 5 shows the accuracy and coverage of the Ref-

Count+ predictor when dead-block predictions are made at

different depths of the LRU stack after a block’s last access.

The results are obtained using sim-alpha with a 4-way, 64KB

L1 cache. Other parameters of the simulation are listed in

Table 4. The X axis shows the average number of cycles

between the last access to a block and its movement into

each position of the LRU stack. The last number on the X
axis is the average number of cycles between the last access

to a block and its eviction from the cache, i.e., the dead

time. As expected, accuracy increases as predictions are made

later. Coverage also increases because delaying the prediction

does not miss any opportunity to identify dead blocks and

the increase in accuracy causes more dead blocks to be

correctly identified. The “knee” of the curves is located at

way one of the LRU stack, indicating that predicting when a

block just becomes non-MRU gives the best tradeoff between

timeliness and accuracy/coverage. The same study of a 16-

way L2 cache shows a similar trend except that the difference

in prediction accuracy and coverage between way one and the

LRU position is larger because of the higher associativity.

4.4. Evaluation: Dead Block Prediction Accuracy

and Coverage

We compare the prediction accuracy and coverage of

various dead block predictors. Coverage is measured as the

number of blocks evicted from the cache that are correctly

predicted dead divided by the total number of cache evictions.

Accuracy is measured as the number of correct dead-block

predictions divided by the total number of dead-block predic-

tions ever made by each predictor. The evaluation uses both
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cache

Overhead
L1 L2

RefTrace BurstTrace RefCount RefCount+ BurstCount RefTrace RefCount RefCount+

History table entries 1K 1K 2K 1K 1K 64K 2K 2K

History table (bits) 2K 2K 14K 14K 14K 128K 10K 20K

Per-block (bits) 10 10 21 17 17 16 17 13

Total overhead(bytes) 1.5K 1.5K 4.4K 3.9K 3.9K 48K 35K 29K

Table 3. Overhead of different dead-block predictors

Issue width 6-way out of order(4 integer, 2 floating point)

Inst. window 80-entry reorder buffer, 32-entry Load/Store queue
each

L1 I-cache 64KB, 2-way LRU, 64B cacheline, 1-cycle w/ set
prediction

L1 D-cache 64KB, 2-way LRU, 64B cacheline, 3-cycle

L2 cache 1MB, 16-way LRU, 64B cacheline, 12-cycle

Main memory 200-cycle, 16B bus width

Table 4. Configuration of simulated SP machine

single-threaded benchmarks running on a single processor and

multi-threaded benchmarks running on a CMP.

We first compare the overhead of each predictor, listed in

Table 3. The overhead of each predictor includes the history

table and the extra bits added to each block. The size of

RefCount is scaled down from [14] to make it comparable

with other predictors. It uses a 2K-entry history table; the

index into the table is a hash with 8 bits from the PC and 3

bits from the block address. When calculating the predictor

overhead, we assume a 64KB L1 D-cache and a 1MB L2

cache, both with 64-byte blocks.

4.4.1. Single-threaded workloads. The results for single-

threaded workloads are collected using sim-alpha [3]. Table 4

shows the configuration of the simulated machine.

Besides the 11 benchmarks from SPEC 2000, we also

use two benchmarks from Versabench [21] (corner turn

and vpenta), a speech recognition application (sphinx), and

stream [18]. For each benchmark, we simulate up to 2 billion

instructions identified by SimPoint [24].

Table 5 lists the prediction coverage and accuracy of each

predictor used at the L1 D-cache. We can draw several

conclusions from Table 5. First, both burst-based predictors

(BurstTrace, BurstCount) significantly outperform the corre-

sponding reference-based predictors (RefTrace, RefCount+):

BurstTrace makes 50% more correct predictions than Ref-

Trace with higher accuracy, and BurstCount makes 25%

more correct predictions than RefCount+ with the same

accuracy. The improvement in dead-block prediction comes

with much reduced power consumption and no increase in

area. Second, the optimizations to RefCount lead to better

prediction coverage with higher accuracy: RefCount+ makes

13% more correct predictions than RefCount, with higher

accuracy (96% vs. 91%). Third, of the five predictors listed

in Table 5, BurstTrace incurs the smallest overhead but has

the best coverage and accuracy, making it the best predictor

for the L1 D-cache.

Table 6 shows the coverage and accuracy of the L2

dead-block predictors. We only compare reference-based

predictors because burst-based predictors do not work as well

at the L2 cache. Here, the two counting-based predictors

(RefCount, RefCount+) both outperform the trace-based pre-

dictor (RefTrace), corroborating the findings in [14]. Of

the two counting-based predictors (RefCount, RefCount+),

RefCount+ has significantly higher accuracy (89% vs. 64%)

and also higher coverage because of its ability to handle ref-

erence count variation better, as discussed in subsection 4.2.

Additionally, RefCount+ also incurs the smallest overhead,

making it the best choice for the L2 cache.

4.4.2. Multi-threaded workloads. We also present results

for a set of server and parallel workloads collected using

MP-sauce [9]. MP-sauce is an execution-driven, full-system

simulator derived from IBM’s SimOS-PPC. The timing

model is based on sim-outorder in SimpleScalar with addi-

tional changes to model CMPs. The main parameters of the

simulated machine are listed in Table 7.

We evaluate three commercial applications (SPECWeb99,

TPC-W, and SPECjbb) and five scientific applications from

SPLASH-2 [30].



Application
RefTrace BurstTrace RefCount RefCount+ BurstCount

coverage accuracy coverage accuracy coverage accuracy coverage accuracy coverage accuracy

swim 0.90 0.96 1.00 1.00 0.78 1.00 0.97 1.00 1.00 1.00
mgrid 0.68 0.82 0.98 0.97 0.65 0.96 0.83 1.00 0.91 0.99
applu 0.45 0.74 0.98 0.96 0.75 0.93 0.78 1.00 0.95 0.99
gcc 0.65 0.94 0.97 0.99 0.69 0.97 0.74 1.00 0.93 0.99
art 0.96 0.95 0.99 0.99 0.91 1.00 0.90 1.00 0.97 0.99
mcf 0.75 0.82 0.99 0.97 0.47 0.98 0.54 0.99 0.93 0.98

ammp 0.54 0.69 0.94 0.90 0.55 0.95 0.68 0.95 0.77 0.95
lucas 0.90 0.92 0.97 0.98 0.99 1.00 0.96 1.00 0.88 0.99
parser 0.17 0.45 0.85 0.84 0.20 0.69 0.29 0.78 0.54 0.83

perlbmk 0.28 0.85 0.85 0.92 0.54 0.57 0.57 0.80 0.60 0.77
gap 0.42 0.77 0.96 0.98 0.39 0.97 0.41 1.00 0.88 0.99

sphinx 0.47 0.66 0.95 0.93 0.27 0.81 0.37 0.89 0.79 0.92
corner turn 1.00 0.96 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

stream 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
vpenta 0.98 1.00 1.00 1.00 0.79 0.99 0.98 1.00 0.99 1.00

GeoMean 0.61 0.82 0.96 0.96 0.61 0.91 0.69 0.96 0.86 0.96

Table 5. Coverage and accuracy of DL1 DBPs (Single-threaded workloads)

Application
RefTrace RefCount RefCount+

cov. accu. cov. accu. cov. accu.

swim 0.61 0.75 0.94 0.99 0.96 1.00
mgrid 0.69 0.80 0.74 0.93 0.85 0.98
applu 0.67 0.80 0.82 0.97 0.88 0.98
gcc 0.23 0.20 0.40 0.34 0.47 0.86
art 0.91 0.97 0.89 0.89 0.92 1.00
mcf 0.51 0.72 0.61 0.93 0.73 0.95

ammp 0.58 0.54 0.52 0.43 0.51 0.72
lucas 0.73 0.68 0.95 1.00 0.98 1.00
parser 0.18 0.21 0.15 0.14 0.23 0.56

perlbmk 0.88 0.69 0.80 0.91 0.85 0.92
gap 0.38 0.46 0.98 0.99 0.98 1.00

sphinx 0.28 0.54 0.40 0.33 0.37 0.79
corner turn 0.41 0.40 0.55 0.43 0.40 0.85

stream 0.78 0.76 0.98 1.00 0.99 1.00
vpenta N/A N/A N/A N/A N/A N/A

GeoMean 0.51 0.55 0.63 0.64 0.66 0.89

Table 6. Coverage and accuracy of L2 DBPs

(Single-threaded workloads)

# of processors 16

Issue width 4-way out of order

Instruction window 64-entry RUU, 32-entry Load/store queue

L1 I-cache 64KB, 2-way LRU, 64B cacheline, 2-cycle

L1 D-cache 64KB, 2-way LRU, 64B cacheline, 2-cycle

L2 cache 1MB private per core, 8-way LRU, 64B
cacheline, 13-cycle

Coherence protocol Snoop-based MOESI

Main memory 200-cycle

Table 7. Configuration of simulated MP machine

Because of the cache coherence protocol, the definition

of prediction coverage for multi-threaded workloads differs

slightly from the definition used for single-threaded work-

loads. Multiprocessor coverage is measured by the total

number of blocks predicted dead when evicted from the cache

or invalidated by the coherence protocol divided by the total

number of evictions and invalidations.

Table 8 shows the prediction coverage and accuracy of

each predictor used at the L1 data cache. For multi-threaded

benchmarks, the benefit of using burst history over individ-

ual access history is more pronounced: BurstTrace makes

70% more correct predictions than RefTrace and BurstCount

makes 40% more correct predictions than RefCount+, both

with higher accuracy. Again, RefCount+ significantly outper-

forms RefCount with higher coverage and accuracy because

of its ability to handle reference count variation better. Of

the five predictors, BurstTrace is still the best choice because

of its highest coverage, lowest overhead, and close to highest

accuracy.

Table 9 shows the prediction coverage and accuracy of

the L2 dead-block predictors. For the two counting-based

predictors (RefCount, RefCount+), the prediction coverage

and accuracy are much lower compared to those for the

single-threaded workloads. This effect results from cache

invalidations caused by the coherence protocol, which makes

prediction harder. Although RefCount+ still has the highest

accuracy and significantly outperforms RefCount, its cover-

age is only about 27%. Another phenomenon is that RefTrace

has the highest coverage of the three predictors. This effect is

also caused by the cache coherence protocol: the L2 caches in

a CMP sees more accesses (upgrade requests, for example)

from the L1 which would otherwise be filtered by the L1

cache in a single processor.

Application
RefTrace RefCount RefCount+

cov. accu. cov. accu. cov. accu.

SPECweb 0.59 0.78 0.35 0.44 0.22 0.86
SPECjbb 0.46 0.58 0.32 0.40 0.23 0.67
TPC-W 0.45 0.74 0.31 0.38 0.27 0.89
barnes 0.32 0.69 0.20 0.09 0.19 0.81
FFT 0.38 0.58 0.10 0.29 0.37 0.57
lu 0.62 0.69 0.52 0.10 0.37 0.92

ocean 0.50 0.83 0.33 0.55 0.34 0.92
radix 0.42 0.59 0.11 0.38 0.23 0.54

GeoMean 0.46 0.68 0.25 0.28 0.27 0.76

Table 9. Coverage and accuracy of L2 DBPs

(Multi-threaded workloads)



Application
RefTrace BurstTrace RefCount RefCount+ BurstCount

coverage accuracy coverage accuracy coverage accuracy coverage accuracy coverage accuracy

SPECweb 0.30 0.85 0.57 0.86 0.26 0.78 0.37 0.93 0.52 0.93
SPECjbb 0.15 0.69 0.59 0.89 0.24 0.65 0.28 0.88 0.51 0.92
TPC-W 0.09 0.62 0.41 0.89 0.14 0.42 0.16 0.82 0.37 0.88
barnes 0.36 0.68 0.81 0.93 0.29 0.59 0.24 0.75 0.50 0.85
FFT 0.67 0.91 0.73 0.94 0.58 0.90 0.62 0.99 0.60 0.95
lu 0.81 0.85 0.81 0.90 0.81 0.88 0.66 0.98 0.75 0.98

ocean 0.56 0.88 0.78 0.95 0.32 0.93 0.61 0.98 0.73 0.97
radix 0.86 0.82 0.78 0.89 0.58 0.84 0.58 0.90 0.61 0.88

GeoMean 0.37 0.78 0.67 0.91 0.35 0.72 0.39 0.90 0.56 0.92

Table 8. Coverage and accuracy of DL1 DBPs (Multi-threaded workloads)

5. Using Dead Block Prediction To Improve

Performance

There are several distinct ways to use dead-block prediction

to improve performance. A conservative approach, including

replacement optimization and bypassing, only evicts dead

blocks early to give other blocks more opportunities to get

reused. A more aggressive approach prefetches new blocks

into dead blocks to reduce future demand misses.

5.1. Evicting Dead Blocks Early

With LRU replacement, blocks with poor locality can stay

in the cache too long and cause blocks with good locality to

be replaced. Once a block is dead, it can be evicted from

the cache before it becomes LRU. Early dead-block eviction

gives other blocks that are located lower on the LRU stack

more opportunities to get reused. However, if these blocks do

not receive additional references, evicting dead blocks early

does not improve performance.

One form of early dead-block eviction, replacement opti-

mization, has been studied by prior work [14]. In replacement

optimization, on a cache miss, the hardware first checks if

any block in the set has already been predicted dead. If

so, the dead block that is closest to the LRU is picked for

replacement. If no dead block in the set is found, the LRU

block is replaced.

A more aggressive form of early dead-block eviction, cache

bypassing, targets blocks that will not be referenced if they

are placed into the cache. Programs that exhibit poor locality

or have a working set larger than the capacity of the cache

have many such zero-reuse blocks. 32% of the blocks brought

into the L1 cache and 40% of the blocks brought into the

L2 cache for the single-threaded benchmarks studied in this

paper are never reused. Dead block prediction can be used

to identify these zero-reuse blocks; if a block causing a miss

is predicted dead, it will not be written into the cache.

We evaluate several early dead-block eviction schemes,

the speedups of which are shown in Figure 6. Like [14],

all schemes are applied to the L2 cache because evicting

dead blocks early at the L1 cache gives only marginal
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Figure 6. Speedups of using dead-block prediction for
replacement/bypassing with a 1MB L2 cache

speedups. The “RefCount:Replace+Bypass” scheme, as de-

scribed in [14], uses the RefCount dead block predictor for

replacement and bypassing: on a miss, it first tries to find a

dead block for eviction; if no dead block exists, it bypasses

the missing block if it is predicted dead; otherwise, the

LRU block is chosen for eviction. The “RefCount+:Replace”

scheme uses the RefCount+ dead-block predictor just for

replacement: on a miss, it first tries to find a block that is

predicted dead; if no such block exists, the LRU block is

replaced. The “RefCount+:Bypass” scheme uses RefCount+

just for bypassing: if a missing block is predicted dead, it is

not written into the cache. The “RefCount+:Bypass+Replace”

scheme is similar to “RefCount:Replace+Bypass” but uses

RefCount+ for both replacement and bypassing.

Figure 6 indicates the four schemes achieve similar

speedups of approximately 5% on average. The figure also

indicates that the benefits of using dead-block prediction

for bypassing and replacement are mostly overlapped: if a

program benefits from bypassing, it also benefits similarly

from the replacement optimization. Doing bypassing and

replacement optimization at the same time does not bring

much additional performance improvement.

5.2. Improving Prefetching

Early dead-block eviction by itself has the limitation that

successful bypassing or early replacement of dead blocks does



not always reduce the cache-miss rate. For programs that do

not benefit from early dead-block eviction, a more aggres-

sive technique, which replaces dead blocks with prefetched

blocks, can be used.

While prefetching can be performed without dead-block

prediction, using dead-block prediction to trigger prefetches

has two benefits. First, dead blocks provide ideal space to

store prefetched blocks without causing pollution. Second,

the long dead time gives sufficient time for prefetched blocks

to arrive at the cache before they are referenced.

One issue ignored by prior work that uses dead-block

prediction for prefetching is how to track prefetched blocks

so that the dead-block predictor can predict when these

blocks become dead. The prefetch engine can bring many

blocks into the cache and these prefetched blocks are not

associated with any instruction in a program. Since all the

dead-block predictors we study in this work use the PC to

make predictions, prefetched blocks will not be predicted

dead, preventing further prefetches from being triggered. To

address this problem, an extra bit, pc valid, is added to

each block to differentiate prefetched blocks from blocks that

are caused by demand misses. For prefetched blocks, the

pc valid bit is initially set to zero. When a prefetched block

is accessed for the first time, its pc valid bit is set to one and

the PC of the current instruction is used to update the hashed

PC stored along with the block.

Next, we investigate using dead-block prediction to

prefetch into dead blocks at the L1 and L2 caches.

5.2.1. Baseline prefetch engine. We use an existing prefetch-

ing scheme, tag correlating prefetching (TCP) [8] as the

baseline prefetch engine. TCP is a correlating prefetcher that

was proposed to reduce the penalty of L1 misses but places

prefetched data in the L2 cache to avoid polluting the L1

cache. With dead-block prediction at the L1 cache, prefetched

data can be directly placed into the L1 cache. Figure 7 shows

how TCP works. Each set maintains the two most recent tags

that caused misses to the set. On a miss, a hash of the two

tags in the miss history of the accessed set is used as index

into the correlation table. If a match is found, the predicted

tag is used with the index of the set to form a prefetch address.

The correlation table is updated on every cache miss.

As a correlating prefetcher, TCP can learn arbitrary repet-

itive miss patterns. TCP also exploits the property that the

same sequence of tags are often accessed in different sets, an

effect known as constructive aliasing. Constructive aliasing

enables TCP to learn access patterns more quickly.

The prefetch engine is configured as follows: both the L1

and L2 correlation tables are 2-way associative. The L1 table

has 1024 sets and the L2 table has 8192 sets. Each entry

in the table is 36 bits. Hence, the L1 correlation table is

9KB and the L2 correlation table is 72KB. Table 4 shows the

parameters of the simulated machine.

Tag0 Tag1 Tag2

+

Per-set tag miss history New missing tag

Next_tag CntTag Next_tag CntTag

=? =?

2-way tag correlation table

Prefetch tag

Figure 7. Baseline Tag Correlating Prefetch Engine

5.2.2. Using Dead Block Prediction to Improve L1

Prefetching. Using dead-block prediction to trigger

prefetches into the L1 cache was first proposed by Lai et

al. in a scheme called Dead Block Correlating Prefetching

(DBCP) [16]. DBCP triggers prefetches when dead blocks

are identified in the L1 cache, not when the L1 cache

misses, to reduce pollution and improve the timeliness of

prefetching. DBCP requires a large correlation table (a 2MB

table for a 32KB directly-mapped L1 D-cache) because it

records correlation of full block addresses, compared to

Tag Correlating Prefetching, which records correlation of

cache-line tags and needs a much smaller table (9KB for a

64KB two-way L1 cache). Tag correlation is smaller because

one entry of tag correlation can represent multiple entries

of full block address correlation, at the cost of potential

aliasing.

Figure 8 compares the speedups of three L1 prefetching

schemes. The baseline TCP prefetches on L1 misses and

places prefetched blocks into the LRU position. The second

scheme uses the RefTrace dead-block predictor with the

baseline TCP. It prefetches when blocks become dead and

places prefetched blocks into the space of the dead blocks.

This scheme resembles the DBCP scheme because it uses

the same dead-block predictor but differs from DBCP in

the prefetch engine. The third scheme is similar to the

second one except it uses BurstTrace, which works best at
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Figure 9. Speedups of L2 prefetching schemes with a
1MB L2 cache

the L1 cache. Figure 8 shows using dead-block prediction

to trigger prefetches improves performance for almost all the

applications. It also shows BurstTrace outperforms RefTrace

when used with the baseline prefetch engine, because of

its better dead-block prediction capability. On average, the

baseline prefetch engine improves performance by 11%,

adding RefTrace improves performance by 16%, and adding

BurstTrace improves performance by 23%.

5.2.3. Using Dead Block Prediction to Improve L2

Prefetching. Dead block prediction can also be used to trig-

ger prefetches into L2 caches, which has not been evaluated

in prior dead-block prediction work. Applying dead-block

prediction to L2 prefetching differs from L1 prefetching in

several ways. First, the L2 cache is more tolerant of pollution

but L2 misses are much more expensive. Therefore L2

prefetching should be more aggressive. Second, dead-block

prediction at the L2 cache has much lower coverage (66%)

than at the L1 (96%). This means one third of the dead blocks

are not identified by dead-block prediction and triggering

prefetches only when dead blocks are identified will miss

many opportunities to prefetch. Therefore, besides issuing

prefetches when dead blocks are identified in the L2 cache,

additional prefetches are issued when the L2 cache misses, to

cover the otherwise missed opportunities of those dead blocks

that are not identified by dead-block prediction.

Figure 9 shows the speedups of two L2 prefetching

schemes: the baseline TCP, which prefetches on L2 misses,

and the baseline TCP augmented with RefCount, which

prefetches both when L2 misses and when blocks become

dead in the L2 cache. The figure shows using RefCount to

trigger additional prefetches improves performance by 23%

compared to the performance improvement of 10% by the

baseline prefetch engine.

6. Conclusion

The efficacy of the cache is determined by the amount of

useful data it stores, not the capacity of the cache. In this

paper, we propose several dead-block predictors that identify

dead blocks with better accuracy and coverage than prior

schemes and use these predictors to eliminate dead blocks

and increase the efficacy of the cache.

For both the L1 and L2 caches, predicting the death of a

block when it becomes non-MRU, not immediately after it

is accessed, gives the best tradeoff between timeliness and

prediction accuracy/coverage. Because of the differences in

L1 and L2 accesses, a dead-block predictor should maintain

different state in each block to make better dead-block

predictions at the L1 and L2 cache.

For the L1 cache, a dead-block predictor should maintain

state about cache bursts, not individual references, to make

predictions. Cache bursts are more predictable because they

hide the irregularity of individual references. Therefore,

burst-based predictors can correctly identify more dead blocks

while making fewer predictions. The best burst-based predic-

tor can identify 96% of the dead blocks in the L1 D-cache

with a 96% accuracy.

For the L2 cache, a dead-block predictor should maintain

state about reference counts to make predictions. To cope

with reference count variation, we optimize an existing

predictor by using more up-to-date history information to

increase prediction accuracy and filtering out sporadic smaller

reference counts to increase prediction coverage. The im-

proved predictor can identify 66% of the dead blocks in the

L2 cache with a 89% accuracy.

We used dead-block prediction to improve performance

through replacement optimization, bypassing, and prefetch-

ing. Replacement optimization and bypassing eliminate dead

blocks only on demand misses whereas prefetching aims

to eliminate dead blocks whenever they are identified. On

average, replacement optimization or bypassing improves

performance by 5% while prefetching into dead blocks

brings a 12% performance improvement over the baseline

prefetching scheme for the L1 cache and a 13% performance

improvement over the baseline prefetching scheme for the L2

cache. These results indicate that it is possible to increase

cache efficiency by storing useful data in the space of dead

blocks. On the other hand, even after these optimizations,

the average cache efficiency is still low (17% for the L1 and

27% for the L2), due to the following reasons: dead blocks

identified too late, wrong dead-block predictions, dead blocks

not identified, the time spent waiting for correctly prefetched

blocks to arrive, and useless prefetches. It remains to be seen

how better prefetching schemes can push the cache efficiency

even higher.
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