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Summary

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from
plant resins added of salivary enzymes, beeswax, and pollen. The biological activities de-
scribed for propolis were also identified for donor plant’s resin, but a big challenge for the
standardization of the chemical composition and biological effects of propolis remains on
a better understanding of the influence of seasonality on the chemical constituents of that
raw material. Since propolis quality depends, among other variables, on the local flora
which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest
season effect on the propolis’ chemical profile is an issue of recognized importance. For
that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale
quality control processes in the most demanding markets, e.g., human health applications.
For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE)
of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, au-
tumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further
machine learning and chemometrics techniques were applied to the UV-Vis dataset aim-
ing to gain insights as to the seasonality effect on the claimed chemical heterogeneity of
propolis samples determined by changes in the flora of the geographic region under study.
Descriptive and classification models were built following a chemometric approach, i.e.
principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported
by scripts written in the R language. The UV-Vis profiles associated with chemometric
analysis allowed identifying a typical pattern in propolis samples collected in the summer.
Importantly, the discrimination based on PCA could be improved by using the dataset of
the fingerprint region of phenolic compounds (A = 280-400nm), suggesting that besides
the biological activities of those secondary metabolites, they also play a relevant role for
the discrimination and classification of that complex matrix through bioinformatics tools.
Finally, a series of machine learning approaches, e.g., partial least square-discriminant
analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be com-
plementary to PCA and HCA, allowing to obtain relevant information as to the sample
discrimination.
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1 Introduction

Propolis is a resinous substance collected by honeybees Apis mellifera from various plant
sources and added to salivary enzymes, beeswax, and pollen. Bees use propolis to seal open-
ings in their honeycombs and to protect them against microorganisms and insects. Many studies
have reported a broad spectrum of propolis’ biological activities, such as cytotoxic, antiherpes,
free radical scavenging, antimicrobial, and anti-HIV activities [1, 2]. More recently, a classi-
fication system has been proposed where Brazilian propolis samples fit into 12 groups based
on their physiochemical traits and botanical origins [3]. The botanical origin of propolis is
extremely important to guarantee raw materials of superior quality to supply demanding mar-
kets as cosmetics and pharmaceutical drugs. The biological activities described for propolis
were also identified for resin donor plant, however a common challenge for the standardization
of propolis samples is to understand the influence of seasonality on its chemical composition,
which, in its turn, can modify its biological actions [4]. Previous studies of our research group
(unpublished data) have identified a series of compounds in propolis produced in highland areas
(i.e., Sao Joaquim county - altitude 1,360m) in Southern Brazil, which could be hypothetically
associated to the native flora [5], giving rise to a typical propolis chemotype.

In this study, a bioinformatics approach was used, applying multivariate statistical techniques
(principal component analysis - PCA and hierarchical clustering analysis - HCA) and machine
learning to a UV-Visible scanning dataset (n = 73 samples, A = 280-800 nm) of propolis hy-
droalcoholic extracts (HE) samples. The analytical strategy herein adopted aimed to gain in-
sights as to the claimed chemical heterogeneity of propolis samples collected over the seasons,
in connection with the changes in the flora of the geographic region under study. Currently, the
development of descriptive and classification models based on fast, cheap, and robust analytical
techniques such as UV-Vis spectrophotometry is of interest to the pharmaceutical industry, for
instance, since more detailed techniques (liquid or gas chromatography, coupled or not to mass
spectrometry detectors) present important constraints for the routine analysis and quality con-
trol of complex matrices like propolis. On the other hand, the large amount of data afforded by
UV-Vis scanning spectrophotometry and the eventual similarity of the spectral profiles of the
samples turns the adoption of bioinformatics tools compulsory to obtain relevant and additional
information.

2 Materials and Methods

2.1 Propolis samples and selection

Propolis samples from A. mellifera (n = 73) were collected in Sdo Joaquim county (28° 17’ 38”
S, 49° 55’ 54” W, Santa Catarina state, Southern Brazil) during 2014 in the summer, spring,
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autumn, and winter and during 2015 in two seasons, i.e., summer and autumn. The samples
were classified by visual analysis according to their colors as red, green, brown, and light
brown propolis, taking into account that the resins collected by bees present a color peculiar to
the plant donor.

2.2 Propolis extraction and UV-visible scanning spectrophotometry

The preparation of HE was performed as described by Popova et al (2004), with modifications
[6]. Propolis samples (500 mg) were added of 25mL ethanol 70% (v/v) and incubated (24h,
darkness). The extracts were filtered on cellulose support under vacuum, completing the final
volume to 25 mL with EtOH 70% (v/v). The UV-visible spectra of propolis HE were performed
by adding a 50uL aliquot of the extract (EtOH 70%) in 3mL of EtOH 70%. Absorbance values
were recorded on a UV-visible spectrophotometer (Gold Spectrum lab 53 UV-Vis spectropho-
tometer, BEL photonics, Brazil) using a spectral window of 280 to 800 nm (2 nm resolution/-
data point).

2.3 Chemometric analysis and machine learning

The UV-Vis data set of the propolis HE was processed considering the definition of the spectral
window of interest (280-800nm), baseline correction, normalization, and optimization of the
signal/noise ratio (smoothing). Further, the data matrix was exported to Excel®datasheet as a
.csv format file and subjected to multivariate statistical analysis, using PCA and HCA. For that,
scripts were written in R language (v. 3.1.1) using tools developed by our research group and
some functions from the packages Chemospec [7] and HyperSpec [8]. PCA and HCA can help
one to extract relevant features from a given dataset, minimizing the redundant information and
characterizing the relationship between the variables studied.

For machine learning analysis, classification models were built to try to discriminate the propo-
lis samples by their harvest season. Three models were chosen, e.g., partial least square-
discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees (as imple-
mented in the rpart package from R), using a repeated cross-validation with 10 folds, with
10 repetitions. The models’ parameters were optimized considering 10 different values, using
error estimation procedures implemented in the caret R package. The scripts, raw data and
chemometric analysis are available in supplementary material in the site: http://darwin.
di.uminho.pt/metabolomicspackage. The report of analysis generated from the
scripts provided by the R Markdown are available in http://darwin.di.uminho.pt/
metabolomics/dataset/Maira_PropolisUV.
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3 Results and Discussion

3.1 UV-Vis scanning spectrophotometry and chemometric analysis

Propolis is not used as a raw material directly in industry; rather, it is preprocessed by remov-
ing inert material, wax, dirt, and insoluble material, followed by the extraction of its bioactive
compounds with suitable solvents. This process must preserve bioactive compounds, particu-
larly phenolic ones. The UV absorption at 290-400 nm is typical of phenolic compounds such
as flavonoids [9] and all the spectral profiles (280-800 7m) of the studied samples showed ab-
sorbance signals in that spectral window (Fig. 1), indicating that the extraction solution (EtOH:
water, 70: 30, v/v) was able to recover the phenolic compounds from propolis. Besides, the
spectral profiles showed to be somewhat similar, suggesting a homogeneous chemical compo-
sition among the samples, despite their collecting season. Thus, the UV-Vis spectral dataset
was used for calculation of the principal components and for hierarchical clustering analysis,
in order to tentatively classify the propolis samples into homogeneous groups according to the
harvest season.
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Figure 1: UV-Vis spectral profile (\ = 280-800 »m) of seventy-three hydroalcoholic extracts (70 %
EtOH, v/v) of propolis samples collected in Sao Joaquim county during 2014, in all seasons (sum-
mer, spring, autumn, and winter) and during 2015 in two seasons (summer and autumn).

Hierarchical clustering analysis (HCA) was applied to the UV-Vis dataset (A = 280-800 nm).
In this analysis, the objects in each cluster tend to be similar, but different from objects in
other clusters, with no initial information on group composition [10]. The Euclidean distance
between two samples was used as the similarity metric, while the method unweighted arithmetic
average (UPGMA) was used for the hierarchical clustering process. In the method UPGMA,
the highest similarity identifies the next cluster to be formed, estimating the arithmetic average
of the similarities or distances between a candidate object and each of the cluster members.
In the case of a previously formed cluster, the calculation is between all members of the two
clusters. All objects receive equal weights in the computation [11]. The resulting tree revealed
samples discriminated into two main groups, the first one having samples collected in the four
seasons, but with few samples collected in the summer (Fig. 2). The second group, however,
contain almost exclusively propolis samples produced in the summer, revealing an interesting
separation.
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Further, by applying HCA to the UV-Vis dataset (A = 280-800 nm) added of the 2015 sam-
ples (summer and autumn) the summer propolis samples did not group so well as previously
observed (Fig. 3). The differences between the two hierarchical analyses may be linked to
the extensive chemical variability that plants might present, as result of secondary metabolites
biosynthesis pathways sensitive to the regulatory effects of many environmental factors as, for
example, climate and interactions with insects and pathogens [12]. The chemical composition
of propolis is directly related to the donor plant resin. In its turn, the chemical profile of the
donor plant may suffer directly from changes in the climate as observed over the seasons in
Southern Brazil, mostly in highlands areas such as the site of the present study. Indeed, in Sao
Joaquim county, the greatest production of propolis occurs in the summer, coinciding with the
budding of new plant species potentially donors of resin. In the other seasons, the propolis pro-
duction drops because of the low temperatures and of the caducifolious habit of several plant
species [13].
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Figure 2: Hierarchical clustering dendrogram (UPGMA method) of fifty-five samples from South-
ern Brazil, collected during 2014 in all seasons: summer, spring, autumn, and winter.
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Figure 3: Hierarchical clustering dendrogram (UPGMA method) of seventy-three samples col-
lected in Sao Joaquim county during 2014, in all seasons (summer, spring, autumn, and winter)
and during 2015 (summer and autumn).

In order to get a better understanding of the harvest season effect indicated by HCA, the UV-
Vis dataset was used for the calculation of the principal components (PCA). The main objective
of the PCA is to reduce the size of the data without loss of information. PCA turn variables
with high correlation in latent variables uncorrelated, allowing the separation and extraction
of relevant information [10]. In general, the results of PCA and HCA are complementary and
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when employed in tandem constitute an interesting tool to construct reliable models [14]. The
first two components PC1 (68.0%) and PC2 (13.9%) explained 81.9% of the total variance
of the dataset (Fig. 4) for samples collected in 2014 seasons. By expanding the model and
including the contribution of the PC3 (12.2%), it was possible to cover 94.1% of dataset’s
variability. The PCA results have confirmed the sample discrimination by seasons into two
groups, as observed in the HCA. The summer samples dispersed in the two components, while
the remaining ones overlaid and centered on the graphic. Similarly to HCA, after adding the
2015 samples (summer and autumn) to the PCA model (Fig. 5), it was not possible to classify so
well the summer samples in a distinct group, the most samples are overlaid and centered on the
graphic. For this analysis the first two components PC1 (64.56%) and PC2 (17.6%) explained
82.16% of the total variance of the dataset. Regarding the color variable of the samples, both
HCA and PCA did not allow discriminating the samples (data not shown).
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Figure 4: (A) Principal components analysis (PCA) scores scatter plot of the UV-Vis spectral pro-
file (\ = 280-800 nm) of propolis samples collected in 2014 (summer, spring, autumn, and winter)
in Sao Joaquim county, Southern Brazil. (B) Amplification of the overlapping samples in PCA.
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Figure 5: Principal components analysis (PCA) scores scatter plot of the UV-Vis spectral profile
(A =280-800 »m) of samples collected during 2014, in all seasons and 2015 (summer and autumn).

Since phenolic compounds have been claimed as the most important bioactive metabolites in
propolis, in a second approach we investigated the harvest season effect on the phenolic compo-
sition of that biomass. Thus, the UV-Vis dataset in the region of absorption of those secondary
metabolites, i.e., 280-400 nm, was used for further HCA and PCA. Again, two groups were de-
tected by HCA (Fig. 6) and PCA (Fig. 7) and both methods discriminated the summer propolis
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samples as a result of their phenolic composition. In the PCA model, the first two components
comprised for 92.8% of the total variance of the data set, suggesting that phenolic compounds
seem to be an interesting class of metabolites for discrimination of propolis. Indeed, taking
into account the improved discrimination shown in the PCA results using the UV-Vis finger-
print region of phenolic compounds, one could speculate that by targeting those compounds in
propolis extracts better classification models would come about.
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Figure 6: Hierarchical clustering dendrogram (UPGMA method) of the fingerprint region of ab-
sorbances of phenolic compounds (UV-Vis, \ = 280-400 nm) of samples collected over all seasons
in 2014 and 2015 (summer and autumn) in Sao Joaquim county.
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Figure 7: Principal components analysis scores scatter plot of the fingerprint region of ab-
sorbances of phenolic compounds (UV-Vis, A = 280-400 nm) of samples collected over all seasons
in 2014 and 2015 (summer and autumn) in Sao Joaquim county.

These findings are of interest for the purpose of quality control processes of propolis extracts
in industry, based on the fact that most of their well-known pharmacological activities rely on
those secondary metabolites. In general, the majority of phytochemicals belong to the groups
of phenolic compounds, alkaloids, and terpenes [15]. Nonetheless, flavonoids, phenolic acids
and their ester derivatives are the major metabolites found in propolis [16]. For instance, the
European propolis is characterized by their prominent amounts of flavonoids, which are not of-
ten found in tropical samples [17]. In the later, prenylated phenylpropanoids are often present,
the best known is the (3,5-diprenyl-4-hydroxycinnamic acid) [18], a high valuable compound
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(£ 315/10mg) also known as Artepillin C®, who has been patented for the treatment of tu-
mors [19, 20]. Baccharis dracunculifolia is a native plant to Brazil commonly found in Minas
Gerais state (Southeastern Brazil) and source of a green resin, the main source of Artepillin
C® [21, 22]. Considering the interaction between B. dracunculifolia and A. mellifera, the best
period to produce propolis rich in Artepillin C® is from December to April, i.e., summer time
in south hemisphere [23]. In this context, one can note the importance of identifying the sea-
sonality effect on the propolis chemical profile and its resulting quality as source of important
secondary metabolites. Finally, despite the fact that UV-Vis scanning spectrophotometry is a
fast, cheap, and reliable analytical technique, the amount of data afforded makes unfeasible the
selection of propolis samples according to their spectral profile by visual inspection, turning
the bioinformatics tools mandatory for the recovery of important features for the classification
of heterogeneous samples into similar groups.

3.2 Machine learning

Machine learning techniques have become popular in recent years for decision support, predict-
ing events, and data analysis. In this context, supervised models using classification algorithms
inductors such as partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors
(kNN) and decision trees were built to discriminate Sao Joaquim propolis according to the sea-
sonality. PLS-DA is a classic PLS method where the variable y is categorical and represents the
class samples. Using the class information, PLS-DA tends to improve the separation between
two groups of samples. It is commonly used to classification and selection of biomarkers [24].
For the kNN algorithm (k-Nearest Neighbors) when a new object is presented to the classifica-
tion, a set of similar examples is retrieved from the training set, being used to classify the new
object. These similar examples, have the shortest distance in the dimensional space and there-
fore the algorithm is known as the “nearest neighbor” [25]. The rpart algorithm is associated
with the inductors algorithms of classification trees, that implements the CART methodology
(Classification and Regression Trees). Classification trees are binary and its growth is limited
to 31 (thirty one) depth levels, the algorithm also implements pruning process to minimize the
error estimate [26]. Machine learning was applied to the UV-Vis dataset (A = 280-800 nm) and
the PLS-DA, kNN, and decision tree models showed an accuracy of 67.5%, 77.5% and 81.4%,
respectively, for predictive analytics of seasonality (Tab. 1). Repeated cross-validation with 10
folds and 10 repetitions was used as parameters for estimating the models’ performance. The
Kappa statistic, a measure of how closely the instances classified by the classifier matched the
actual data label and the accuracy found are shown in Tab. 1.

Table 1: Accuracy and kappa indexes using PLS-DA algorithms, k-Nearest Neighbor, and rpart as
classification inductors for propolis’ UV-Vis data set (A= 280-800 ym). The last two columns show
the standard deviation of the accuracy and Kappa statistics.

’ \ Accuracy \ Kappa \ Accuracy SD \ Kappa SD ‘

pls 0.67497 | 0.50574 0.09191 0.13401
knn | 0.77486 | 0.66985 0.07874 0.11435
rpart | 0.81435 | 0.72467 0.08599 0.12595
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Further, the variable importance analysis revealed that mostly the absorbances in the phenolic
spectral window seemed to be more useful for prediction (e.g., A= 284-288 nm; 342-343 nm;
and 364-366 nm). This findings prompted us to repeat the machine learning analysis but just
considering the UV-Vis data set of the phenolic region in the spectrum (A = 280-400 nm). The
performance of the classification models (Tab. 2) was slightly inferior to the previous analysis
(Tab. 1), but it is indicative that eventually only the absorbance signals of the phenolic region
seems to be sufficient for propolis classification.

Table 2: Accuracy and kappa indexes using PLS-DA algorithms, k-Nearest Neighbor, and rpart
as classification inductors for UV-Vis data set (A= 280-400 »m). The last two columns show the
standard deviation of the accuracy and Kappa statistics.

’ \ Accuracy \ Kappa \ Accuracy SD \ Kappa SD ‘

pls 0.66691 | 0.47750 0.06198 0.09703
knn | 0.74258 | 0.61540 0.08085 0.11903
rpart | 0.78989 | 0.68993 0.08383 0.12182

In this context, over the past years, UV-Vis spectrophotometry has been an analytical technique
to guarantee quality control of chemically complex matrices as propolis and plants extracts for
metabolomic studies. Characteristics of the absorption spectra indicative of the chemical com-
position of the sample may be used as the basis for the construction of descriptive and predictive
models, including machine learning. Thus, the selection of specific sample characteristics can
be used to improve the accuracy of the classification model or by establishing a subset of classes
discriminating characteristics [27]. The propolis profile is well known for its high chemical het-
erogeneity considering the huge biodiversity of plant species found in some producer regions
[28] in Brazil, e.g., Atlantic Rainforest in Santa Catarina state, Southern Brazil. Because of
this, the effect of flora composition on the propolis’ chemical profile has great influence and we
could expect a high chemical heterogeneity among samples from distinct geographic regions
where propolis has been collected.

Studies using UV-Vis scanning spectrophotometry to obtain the chemical profiles of propo-
lis HE found 100% of accuracy using the PLS-DA algorithm model for predictive analysis of
regions (South and Southeast Brazil [9]). Similarly, nuclear magnetic resonance (NMR) of
propolis samples has showed to be effective to classify that biomass in relation to its geograph-
ical region. Through the use of large NMR data set and data mining techniques the construction
of descriptive (PCA) and predictive (PLS-DA) models achieved a good performance, i.e., ac-
curacy ~ 83% [27].

4 Conclusions

The UV-Vis spectrophotometric profile approach associated with chemometric analysis (PCA
and HCA) allowed identifying a different grouping pattern in samples of propolis produced
during the summer season over the other seasons, inferring the importance of the seasonality
effect on the propolis chemical profile and its resulting quality as source of important secondary
metabolites. The classification model based on chemometrics herein described could even be
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improved by using the dataset of the fingerprint region of phenolic compounds, suggesting that
besides their biological activities they are also compounds relevant for the discrimination and
classification of that complex matrix through bioinformatics tools. The use of machine learning
tools showed to be complementary to the descriptive PCA and HCA models, allowing to obtain
a better classification of the studied samples.
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