A Study of Self-Plagiarism in Computer Science

University of Arizona TR03-02

Christian Collberg

Stephen Kobourov

Joshua Louie

Thomas Slattery
Department of Computer Science,
University of Arizona, Tucson, AZ 85721.
{col | berg, kobourov, jdl oui e, thomass} @s. ari zona. edu

Abstract

We present a web spider that crawls through the web
sites of the top fifty Computer Science departments,
downloading research papers to search for instances
of self-plagiarism by Computer Science professors.
Instances of self-plagiarism for each author are re-
ported so that they may be investigated in order to
determine if they are truly fraudulent papers.

1 Introduction

Self-plagiarism is the use of ones own previously
published materials in the creation of a new pub-
lished material without crediting the previous paper
as a source. The use of self-plagiarism allows for
a bloated number of research papers to be produced
without doing additional work to create new papers.
As a result, fundamentally identical papers can be
created and passed off to different journals all for
the purpose of increasing the academic recognition
of the researcher. However, such practices do not
benefit the research society as a whole, in that many
more papers are produced, with less new and excit-
ing material to spur on new ideas. Instead the pool
of papers becomes cluttered with papers on the same
topics, but with different names.

The purpose of this experiment is to find out if
there are any professors at top Computer Science
universities that engage in this practice. The basic
concept is to run a web spider to traverse the top
50 computer science departments and find the fac-
ulty pages. For each faculty member, download each

professor’s papers. After converting them to text, run
a text analysis program to check for self-plagiarism
and report any offending professors and their papers.
Those reported would have to be checked by hand to
ensure that the similarities are, in fact, due to aca-
demic dishonesty. See Figure 1.

2 Related Work

CORA, a Computer Science Research Paper Search
Engine [2], most closely resembles the type of spider
that we are using. CORA made use of smart spiders
to crawl computer science web sites and record the
papers located within. The major difference between
that spider and the one we are using is that our spider
is designed to dynamically search for one professor’s
work at a time, and not crawl the entire site before
hand to get all the information first.

The Stanford Copy Analysis Mechanism
(SCAM) [3], is a comparison utility for detect-
ing identical documents or documents with a high
degree of overlap. SCAM uses a registration server
to which original documents can be registered by
their authors. Attempts to register illegal copies
of already registered documents can be detected.
Additionally, web crawlers can be used to search
for documents and compare them against registered
documents in a manner somewhat similar to our
system.

rrrrerey

XT

Web Spider

¥
*
¥
i
i

-

w .
b
]

) —p

e

M

Text
Comparison

‘ HTML Report

Figure 1: Overview of the system.

3 TheWeb Spider

The programming language WebL [1] was used in
the development of the web spider. WebL’s man-
ual defines itself as a “language and system is de-
signed for rapid prototyping of Web computations.
It is well-suited for the automation of tasks on the
WWW?1.” It has modules to enable the program-
mer to quickly develop a web spider. The produc-
tion of a web spider that successfully locates pro-
fessors’ pages and downloads the papers has to be
constrained heavily to escape several major problems
that come when looking for papers:

Remaining on the professor’s page: When exam-
ining a page, what is an acceptable page to go
to and what is not?

Research papers only: When preparing to down-
load a file, it there anyway to know if it is a
research paper or not?

Seemingly infinite link graph: When traversing
links on a single professor’s web site, when
should the spider give up?

Slow downloads: If downloading a 30Mb paper,
with a transfer rate of less than 1Kb, should the
spider bother downloading it?

Ideally speaking, a web spider would start at the
homepage of the professor and traverse all links

downloading all the research papers for that profes-
sor. If seen as graph problem, this would be fea-
sible if and only if the graph had one source, the
professor’s home page, and no edges going outside
of his page. In the real web, a professor’s page has
many links that extend to other pages ranging from
the classes he teaches to interesting pages all over
the web. Attempting to try all links would result in
the spider going far away from its target area and
the time to process one professor could be seemingly
infinite along with downloading hoards of irrelevant
papers.

Several constraints were placed to limit where
the spider could go. The first was to check for
links containing the words publication, paper, or re-
search. These links would most likely have the de-
sired materials. If no links could be found with any
of the key words, then searching would be done in
a breadth-first search through all of the professor’s
links. Another limitation put on the spider was that
the only links that could be traversed were ones that
existed on the same main site. That is, if the pro-
fessor were at http://cs.university.edu/
“professor, the spider would only check sites
whose links contained the name university. Attempt-
ing to further constrain this to require the link to con-
tain possibilities such as cs.university.eduor
“professor suffer many losses since some pro-
fessors work in multiple departments, and others

don’t place all their pages hierarchically under their
initial home page.

The spider also allows a single level below the
home page of checking as well. While this limits
the sites that the spider can go to, it still has the pos-
sibility of entering other professors’ sites in the same
university. However, this is hard to prevent, as there
is no distinctive mark that determines the owner of a
page.

Many papers are located on the professors’ web
sites in usual formats of . pdf, .ps, and .doc. In-
stead of attempting to determine if a paper is a re-
search paper or not, the spider simply downloads
them all. After downloading all the files and con-
verting them to text, a filter program is run to remove
all files that did not convert properly and those that
are not research papers. The rule for research papers
is that they must contain an abstract or introduction,
and also a references or bibliography section. This
process was the same as used with CORA to find re-
search papers, and experiments showed that it had
roughly a 95% accuracy rate. Attempts to discern
from the web whether or not papers are research pa-
pers is limited since there are no distinguishing fea-
tures in the link or in the paper name as to the nature
of the paper.

Another issue with the web is the fact that a single
professor’s site may contain many levels of pages,
which results in hundreds and possibly thousands of
checks and page loads in search of his papers. The
spider is set with a timer that records when a profes-
sor’s site is first being checked. Each time the spider
gets ready to download a paper, search a new page or
visit another page, it checks the time. If the time is
too long, it stops downloading, instead finding new
pages and visiting them. The issue of downloading
a large paper through a small connection and wast-
ing large amounts of time is hard to check. The web
spider thus has the unfortunate problem that it has to
wait for the files to be downloaded, and this might
waste the time allocated to searching the particular
professor’s web site. The only safety against this is
that the web spider has a collection of threads doing
the crawl. Thus, with a few threads, if one gets stuck
on a big file being downloaded on a slow connection,
the others can continue searching for additional pa-
pers.

4 Text Comparison

The text comparison utility, which was implemented
in Java, is a completely independent module from the
web spider. After the web spider has finished down-
loading and converting all of the papers for a partic-
ular professor, the text comparison utility is executed
on the directory containing those papers. The util-
ity performs pairwise comparison of all papers in the
directory. When finished, it produces an HTML re-
port file in the same directory. The report file lists in
descending order all pairs of files with their respec-
tive percentages (above an adjustable threshold) of
detected similarity. See Figure 2.

4.1 Comparison Algorithm

One of the first things to consider was the question
of what exactly constitutes plagiarism. Any block of
directly copied text is obviously plagiarism, but there
are many other cases to consider:

Cosmetic changes: Minor cosmetic changes to text,
such as the addition or removal of punctuation
or spacing should not affect the comparison.

Reordered text: Paragraphs or sentences from pa-
per A can be copied but placed in a different
order in paper A’. If the bulk of the content is
the same, however, this should still be detected.

Reworded text: Rewording of text without signifi-
cant change to the meaning, such as the substi-
tution of a few words for synonyms or swapping
clauses of a sentence, should be caught. While
not nearly as severe as directly copying text, a
significant amount of this should still register as
plagiarism.

In addition to worrying about what sorts of sim-
ilarities amount to plagiarism, there are also an al-
most endless number of criteria upon which two texts
can be compared to detect violations. The primary
goal of the utility was accuracy in detecting instances
of plagiarism, but a certain degree of efficiency was
necessary as well. Papers in plaintext format in ex-
cess of 200kb were not uncommon, but even the pair-
wise comparison of 50+ average-sized documents
(~50kb) is a very lengthy O(n?) operation. More

-

| File Edit View Go Bookmarks Tools Window Help

| % file///home/collberg/tmp/WeblL/files
I u{"ﬂﬂ‘ 4 Home (3 Radio (%] Netscape O Search “IEW““"_'
21| " file///hame/co..es/reporthtml |
Papers from : http://www.cs.myuni.edu/prof

| 100%: hitp:/ferere.cs. myuni.edu/~prof/popl34.ps against hitp://srerw.cs. myuni.edu/~prof/popl34.ps
100%: hitp:/fwrerw.cs. myuni edu/~prof/fpos pe against hrtp./farare. cs. myund edu~prof/fpoa pdf

100%: http:/frarw.cs. myuni.edu/~prof/sigr pdf against http:/fererer.cs. myuni eduf~proffsigraph9s. pdf

| 89%: hitp:/fwrww.cs myuni edu/~prof/optimize pdf against http./frere. cs. myuni eduf~profioptim ize. ps

70%: hitp:/ferarw.cs. myuni.edu/~prof/focs02. pdf against hitp./frerw.cs. myuni, edu/~prof/focs02.ps

Figure 2: Reports are presented in a standard browser.

. File Edit Yiew Go Eookmarks Teels Window Help

I | % file///home/collberg/tmp/WebL/files/socehtml (0

/@ “ﬁ“ﬂ" | AIM 4% Home G Radio [%] Netscape < Search JBookmarks
& file///home/co../files/xochtml |

() ==>

- - - - - = - . - -

- — = W W e g R T e e W e— - am—_— v W

- s R w R e - e = s G W s »

W e e A B ——— A — g e S e

i D R —— G — W . — . — o e @R e ey
. — g - — G b = . N A —

‘(2\ ==>
O 6 4 S0 [secemestooe s onid |

Figure 3: The system allows for two papers to be examined in more detail. Similar paragraphs are color
coded and presented in a standard browser.

complex algorithms, such as attempting to align the
documents, were considered. However, the highly
likely possibility that the text will be reordered ren-
ders alignment a relatively poor choice for a primary
algorithm. Since plagiarized text from one document
could appear anywhere and in any order in a sec-
ond document, a brute-force comparison algorithm
seemed to be the best choice. A great deal of opti-
mization is possible to improve the speed of the al-
gorithm, but a certain degree of brute force is neces-
sary to find all occurrences of plagiarism. The final
algorithm consists of three main parts:

1. parsing the text documents into paragraphs and
sentences in a canonical form;

2. performing a highly optimized, brute-force,
pairwise comparison of the parsed documents;
and

3. producing an HTML report of the results.

4.2 Parsinginto Canonical Form

In the first phase, each text file is parsed into a Doc-
ument object with a list of Paragraph objects, each
of which then has a list of Sentence objects. The
text file is expected to contain the URL of the origi-
nal file on the first line, which is extracted first, fol-
lowed by a separate paragraph on each line. Each
line after the first then becomes a Paragraph. Sen-
tences are considered to be anything delimited by the
characters I . ? ;. Paragraphs with less than four
sentences are discarded, since they are most likely
just section headings, parts of formulas, or other ran-
dom and insignificant text. If a Paragraph has at
least four sentences, the resulting text for the Sen-
tences is converted to lowercase and then parsed into
words. Words are considered to be anything delim-
ited by whitespace or any of the following charac-
ters: v . ?2 " \N<>:;; [1{}Y(C)/
Any whitespace or delimiting characters are removed
and only the list of words is retained. Words from
a short, pre-defined list deemed insignificant to the
meaning of a sentence (such as a, an, the, this,
and that) are discarded. Similar to Paragraphs, any
Sentence with less than four words (after removing
insignificant ones) is discarded. Most “sentences”

with less than four meaningful words are not ac-
tual sentences—those that happen to be real sentences
are too short to hold much content and thus are not
of much interest for comparison. Rather than stor-
ing enormous numbers of small strings, the words
are represented as integers. A global hash of words
to their corresponding integer values is maintained
across the program. As a sentence is parsed, each
word is looked up in the table. If it already exists,
that value is used. Otherwise, the word is inserted
into the table with a new, unique value. Each Sen-
tence then maintains a list of its unique words (as
integers in sorted order); the sum of the integer val-
ues of all its words; and the original sentence, as a
string in canonical form with a space between each
word.

4.3 Comparison Algorithm

After all documents have been parsed, all pairs of
documents are “scored” for the level of similarities
found between them. All pairs of paragraphs in the
two documents are scored against each other by a
pairwise comparison of their respective sentences.
The results then filter up, with paragraphs earning
points based upon the number of similar sentences
and their levels of similarity and the document earn-
ing points based upon the amount of detected pla-
giarism in each paragraph with a total score above a
certain threshold.

Sentences are compared for similarity on two lev-
els. Sentences that are identical earn the maximum
score possible; sentences that are highly similar to
one another earn a score somewhere between 50-
100% of the possible score, depending on the amount
of similarity. Comparing sentences for equality is
easy and highly optimized. Before even looking
at the words in a sentence, the ”"sums” of the two
sentences—calculated while parsing—are compared. If
they are not the same, it is known immediately that
the sentences are not identical. While occasional
overlap of the values of these sums does occur be-
tween sentences that are different, it is rare enough to
eliminate almost all unnecessary comparisons. Only
if the sums and word counts of two sentences are
identical are the actual strings compared.

Sentences are considered similar if the intersection

of their sets of unique words is the same size or only
slightly smaller than the sets themselves. Since the
lists of unique words are maintained in sorted order,
binary searching can be used to efficiently calculate
the size of the intersection of the sets. This compari-
son is also optimized to be performed only when sig-
nificant similarities may exist. Sentences that have a
major discrepancy in the sizes of their unique word
sets are ignored, as are any sentences that have very
small sets of unique words.

4.4 Reporting Results

After pairs of papers have been scored against each
other, they are given a percentage to represent the
approximate level of plagiarism found between the
two. The score for a document represents roughly
the number of sentences worth of plagiarism found
in the document. The percentage divides that number
by the average length of the papers and multiplies by
100. Once all pairs of papers have been compared,
the list of papers and their respective percentages is
sorted in descending order and the results are written
out to an HTML file in the directory. The top of the
file gives the URL for the root page from which the
papers were downloaded. Following that is the list of
percentages with links to the corresponding papers in
their original format.

5 FutureWork

In the future, the spider will probably be able to find
better papers if the entire computer science site is
crawled. All papers would be downloaded and con-
verted. Those would be filtered and then would be
parsed and sorted into the appropriate professor’s
directories. The spider would implement a better
schema such as reinforcement learning, with fewer
time and traversal constraints. At its current state, a
number of valid papers are missed as well as a num-
ber of invalid papers gathered.

There is a great deal that could still be added to the
comparison utility. It currently has a very good bal-
ance of accuracy and efficiency, although there are
still optimizations that could be made to increase the
speed. The greatest improvement, though, would be
to allow the criteria for comparison to be adjusted, so

that the user could make the decision between speed
and an even higher level of accuracy. There are an
almost limitless number of statistics that could be ex-
amined to more accurately—or quickly—spot possible
plagiarism. Some interesting criteria could include

e the number of words that occur very infre-
guently in each document, yet occur in both,
and

e the percentage of overlap between the unique
word sets for both complete documents.

Another improvement to the comparison utility
would be to allow more thorough comparison and
scoring across all documents, rather than simple pair-
wise comparison. It is probably of greater value, for
instance, to see the total amount of plagiarism in a
document from five others than to see five separate
comparisons.

Conclusions

We have presented a web spider and a text compari-
son utility designed to detect self-plagiarism among
Computer Science academics.

Acknowledgments

Christian Collberg was partially supported by the
NSF under grant CCR-0073483. Stephen Kobourov
was partially supported by the NSF under grant
ACR-0222920. Joshua Louie and Thomas Slattery
are in the undergraduate program in the Department
of Computer Science at the University of Arizona.

References

[1] T. Kistler and H. Marais. WebL — A program-
ming language for the web. In Proceedings of
WWW7, pages 259-270. Elsevier, 1998.

[2] Jason Rennie and Andrew Kachites McCallum.
Using reinforcement learning to spider the Web
efficiently. In Ivan Bratko and Saso Dzeroski,
editors, Proceedings of ICML-99, 16th Interna-
tional Conference on Machine Learning, pages

335-343, Bled, SL, 1999. Morgan Kaufmann
Publishers, San Francisco, US.

[3] Narayanan Shivakumar and Héctor Garcia-
Molina. SCAM: A copy detection mechanism
for digital documents. In Proceedings of the Sec-
ond Annual Conference on the Theory and Prac-
tice of Digital Libraries, 1995.

