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Abstract
Two of the main ways to protect security-sensitive resources
in computer systems are to enforce access-control policies
and information-flow policies. In this paper, we show how
to enforce information-flow policies in AURA, which is a
programming language for access control. When augmented
with this mechanism for enforcing information-flow polices,
AURA can further improve the security of reference monitors
that implement access control.

We show how to encode security types and lattices of
security labels using AURA’s existing constructs for autho-
rization logic. We prove a noninterference theorem for this
encoding. We also investigate how to use expressive access-
control policies specified in authorization logic as the poli-
cies for information declassification.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
flow controls, Access controls

General Terms Languages, Security

Keywords Access control, Authorization logic, Informa-
tion flow control, Declassification, Security type system

1. Introduction
Almost all computer systems contain security-sensitive re-
sources that need to be protected from untrusted applica-
tions. These include files, network connections, and private
data such as a user’s password or credit card number. Two
of the main mechanisms for protecting these resources are
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access control and information-flow analysis. Access con-
trol aims to prevent unauthorized principals—human users
or other computer systems—from gaining access to the re-
sources. Enforcing information-flow policies focuses on pro-
tecting the confidentiality of private data and makes sure
that attackers cannot guess secrets by observing the behav-
ior of multiple runs of a program [21, 26]. In this paper,
we investigate how to enforce information-flow policies in
AURA [29, 16], a language for access control. When aug-
mented with this mechanism for enforcing information-flow
polices, AURA can further improve the security of reference
monitors that implement access control.

We begin by a brief overview of information-flow analy-
sis and AURA, a language for access control.

Enforcing information-flow polices To protect the confi-
dentiality of information, researchers design advanced type
systems to enforce that secret input data cannot be leaked
by observation of a system’s public output. The key idea in
information-flow type systems (see the survey by Sabelfeld
and Myers [26]) is that program data are given security types
that indicate their security levels. For instance, if a secret in-
teger is protected at security level H, we give this integer
the type intH . The type system will guarantee that there is
no information flow from high-security data to low-security
data in well-typed programs. This property is referred to as
noninterference.

However, information-flow policies that disallow any in-
formation flow from high security to low security are too
draconian for real computer systems. Computer systems
need to leak some amount of secret information to be use-
ful. One classic example is the login program that compares
user input with the password stored in the system, which is
a secret. The boolean result of the comparison is not a secret
because the login program has to either allow or deny ac-
cess to the user. Therefore, attacker can always know if the
password he typed in is the correct one or not. Another com-
mon example is that the average of all employees’ salaries is
released, but each individual salary has to be kept secret. Re-
cently, there has been much work on controlled declassifica-
tion of secret information [31, 22, 25, 18, 27, 10, 20, 6, 7, 8].
In the presence of declassification, the noninterference prop-
erty does not hold.



AURA, a language for access control To ensure that only
allowed principals can access protected resources, access-
control requirements must be carefully defined and enforced.
An access-control policy specifies whether a request by a
principal to access a resource should be granted.

To clearly specify access-control policies and reason
about them formally, researchers have developed authoriza-
tion logics [5, 11, 13, 1, 2]. In logic-based access-control
systems, logical proofs constructed using access-control
policies serve as capabilities for accessing resources.

In these authorization logics, the formula A says P ex-
presses principals’ beliefs. A says P states that principal A
believes that P is true. For instance, Alice says SkyIsPurple
means that principal Alice believes that the sky is purple.
SkyIsPurple is an assertion affirmed by a principal Alice.
However, it is not necessarily the case that SkyIsPurple is
true or that other principals believe it.

One desirable property of authorization logics is that prin-
cipals should not interfere with each other’s beliefs. Without
explicit delegation, what a principal A believes should not be
affected by other principals’ beliefs. Such properties are also
referred as noninterference properties [3, 14].

AURA is a language for implementing reference moni-
tors for logic-based access control. AURA provides built-in
support for specifying access-control policies. More specif-
ically, the type system of AURA contains a constructive au-
thorization logic based on DCC [2]. Programmers can ma-
nipulate authorization logic proofs as they do other language
constructs. If implemented in AURA, a safe interface to ac-
cess resources requires as an additional argument, a proof at-
testing that the access complies with the access-control poli-
cies. For example, a function playFor, which plays a song
s on behalf of a principal p, might have the following type,
which requires a proof that p is permitted to play s:
(s :Song)→ (p :prin)→ pf (self says MayPlay p s)→ Unit.

Enforcing information-flow policies in AURA Our work
is inspired by the work on building a library for light-weight
information-flow security in Haskell [24]. In that work,
information-flow types are encoded as a Haskell data type
(Sec s t) where s is the security level. Sec is implemented
as a monad and a module system guarantees that attackers
cannot extract secrets hidden in the monad.

We use very similar high-level ideas to encode information-
flow types in AURA. Our advantage over the Haskell ap-
proach is that we can use constructs for AURA’s authoriza-
tion logic for the encoding. The main idea of our encoding
is that we use principals to represent security labels, and
the type for a secret of type t protected at level H can be
encoded as (x : pf H says Reveal) → t. Intuitively, without
H’s private key, no one can create an assertion of the type
H says Reveal and therefore secrets protected at level H can
not flow to public channels.

The noninterference theorem of such encoding depends
upon the noninterference properties of the authorization

logic. Furthermore, expressive access-control policies speci-
fied in authorization logic can be used to specify the policies
for declassification.

Contributions and roadmap This paper makes the follow-
ing contributions.

• We show how to encode information-flow types using
authorization logics based on prior work [29, 16].
• We prove the basic noninterference theorem of our en-

coding. The key components of the proof are mechanized
in the proof assistant Coq [12].
• We investigate through examples how declassification

can be governed by access-control policies.

The rest of the paper is organized as follows. In Section 2,
we review AURA. In Section 3, we explain how to encode
information-flow types using AURA’s data types and the says

monad. Next, in Section 4, we show how to prove the nonin-
terference theorem for our encoding. Then, in Section 5, we
extend our encoding and proof of noninterference to accom-
modate lattices of security labels. In Section 6, we investi-
gate declassification. In the end, we discuss related work in
Section 7.

2. AURA – A Language for Authorization
and Audit

In this section, we give an overview of AURA to set up the
background for the encoding of information-flow types in
the next section. We will only discuss the high-level ideas.
Technical details about the design of AURA can be found in
our previous work [29, 16].

AURA is intended to be used to implement reference
monitors for access control in security-sensitive settings. A
reference monitor mediates access by allowing or denying
requests to a resource (based, in this case, on policy specified
in an authorization logic). For demonstrating key features of
the language, we use an AURA implementation of a jukebox
server as a running example.

2.1 Language Features
AURA is a call-by-value polymorphic lambda calculus.
AURA consists of a “term-level” programming language for
carrying out computation and a “proof-level” assertion lan-
guage for writing proofs of access-control statements. AURA
uses Type to classify the types of computations, and Prop to
classify the types of proofs.

Authorization logic AURA allows programmers to define
propositions like MayPlay using assertions. The following
definition for MayPlay states that MayPlay takes a principal
and a song as arguments and constructs a proposition.

assert MayPlay : prin → Song → Prop



While assertions are similar in flavor to datatypes with no
constructors, there is a key difference: there is no pattern-
matching statement associated with these assertions. Asser-
tions such as MayPlay are only used as constants affirmed
by principals to specify access-control polices.

In AURA, a says P is a proposition stating that principal
a believes that proposition P is true. There are a few differ-
ent ways to create a proof for a says P in AURA. We can
construct a term of type a says P from a proof p of P using
the operation return a p. We can also create the proof by
chaining other proofs about a’s beliefs using the bind opera-
tion written as (bind x : Q = q in p). Here x stands in for the
proof of Q encapsulated by q and p is a proof of a says P
using x.

For example, consider the principals a and b, the song
freebird, and the assertion MayPlay introduced earlier. The
statements

ok : a says (MayPlay a freebird)
delegate : b says ((p : prin)→ (s : Song)→

(a says (MayPlay p s))→
(MayPlay p s))

assert that a gives herself permission to play freebird and b
delegates to a the authority to allow other principals to play
the song. These two terms may be used to create a proof of
b says (MayPlay a freebird) as follows:

bind d : ((p : prin) → (s : Song) →
(a says (MayPlay p s)) → (MayPlay p s))

= delegate
in return b (d a freebird ok).

Such a proof could be passed to the playFor function if self
is b, or it could be used to form a larger chain of reasoning.

In addition to uses of return and bind, AURA allows for
the introduction of proofs of a says P without corresponding
proofs of P by providing a pair of constructs, say and sign,
that represent a principal’s active affirmation of a proposi-
tion. The value sign(a, P) has type a says P; intuitively, we
may think of it as a digital signature using a’s private key on
proposition P.

Only the principal a—or, equivalently, programs with
access to a’s private key—should be able to create a term
of the form sign(a, P). We thus prohibit such terms from
appearing in source programs and introduce the related term
say P, which represents an effectful computation that uses
the runtime’s current authority—that is, its private key—
to sign proposition P. When executed, say P generates a
fresh value sign(self, P), where self is a built-in principal
representing the current run-time authority.

It is worth noting that a principal can assert any propo-
sition, even False. Because assertions are confined to the
monad—thanks to the noninterference property of DCC—
such an assertion can do little harm apart from making that
particular principal’s own assertions inconsistent.

Dependent types AURA incorporates dependent types:
proofs in authorization logic can depend upon data, which
allows for precise specification of access-control policies.
For instance, the type of the proof that the playFor function
requires is tied to the principal and the file arguments that
playFor takes.

To simplify the meta-theory, AURA does not employ
type-level reduction during type checking; and types only
depend on values (i.e., well-formed normal forms). For in-
stance, if S is a type constructor of the type (x : Nat) →
Type, then S (1 + 2) cannot be given a type in AURA be-
cause 1 + 2 is not a value; but S (1) has the type Type.

To make use of equalities obtained by run-time compari-
son of two values, AURA offers a type-refining equality test
on atomic values—for instance, principals and booleans—as
well as an explicit type cast between constructs of equiv-
alent types. For example, when typechecking if self =
a then e1 else e2, the fact that self = a is automati-
cally made available while typechecking e1 (due to the fact
that prin is an atomic type). Therefore, in e1 proofs of type
self says P can be cast to type a says P and vice-versa.

The proof monad AURA uses the constant pf : Prop →
Type to wrap access-control proofs as program values. Sim-
ilar to the says monad, we can construct terms of the type
pf P by using returnp pwhen p is a proof of P ; or bindp x =
q in p to chain proofs together 1.

Such a separation between proofs and computations is
necessary to prevent effectful program expressions from ap-
pearing in a proof term. The type of sayP is pf (self saysP ).
If sayP was given type self saysP , it would be possible to
create a bogus “proof” λx :Prop.sayx; the meaning of this
“proof” would depend on the authority (self) of the program
that applied the proof object.

Summary of syntax To simplify the presentation of AURA,
it makes sense to unify as many of the constructs as possible.
We thus adopt a lambda-cube style presentation [9] that uses
the same syntactic constructs for terms, proofs, types, and
propositions. A summary of AURA’s core syntax is shown
below.

Terms t : : = x | ctr | . . .
| λx : t1.t2 | t1 t2 | (x : t1)→ t2
| match t1 t2 with {b} | 〈t1 : t2〉

Branches b : : = · | b | ctr ⇒ t

In addition to the above common features (λ-abstraction,
application, constructors, pattern matching, type cast, etc.),

1 In formal definitions, to distinguish the bind and return operation for says
monad from those for pf monad, we annotate the bind and return with a
subscript s for says monad and p for pf monad. However, the type checker
can easily tell them apart; therefore, in AURA programs, bind and return are
overloaded for both monads.



the AURA-specific syntax is shown below.

t : : = . . . | Type | Prop | Kind | prin | a saysP
| pf P | self | sign(a, P ) | sayP
| returns a p | binds x = e1 in e2
| returnp p | bindp x = e1 in e2
| if v1 = v2 then e1 else e2

AURA’s value forms are as follows. We use metavariable
v to denote values. We write val(e) to mean that e is a value.

v : : = x | λx : t.e | ctr v1 · · · vn | self | sign(v, p)
| returns v p | binds x = p in q | returnp v

Signatures: data declarations and assertions Program-
mers can define bundles of mutually recursive datatypes and
propositions in AURA just as they can in other programming
languages. A signature S collects these data definitions and,
as a consequence, a well-formed signature can be thought of
as a map from constructor identifiers to their types.

For instance, we can define the boolean type as follows:

data Bool : Type {
| tt : Bool
| ff : Bool
}

Data definitions may be parametrized. For example, the
familiar polymorphic list declaration is written as follows:

data List : Type → Type {
| nil : (t : Type) → List t
| cons : (t : Type) → t → List t → List t
}

AURA’s type system conservatively constrains Prop def-
initions to be inductive by disallowing negative occurrences
of Prop constructors. Such a restriction is essential for con-
sistency of the logic, since otherwise it would be possible to
write loops that inhabit any proposition, including False.

2.2 Metatheory
The term typing judgment in AURA is written S; E ` t :
s, where S is the signature containing definitions of data
structures and assertions and E is the environment mapping
variables to their types. We write S ` � to denote the well-
formed judgments for signatures, and S ` E to denote
the well-formed judgments for environments. The small step
operational semantics is denoted by e 7→ e′.

We proved previously [16], the following properties of
AURA. They will be useful in proving the noninterference
properties of the information-flow type encoding in Sec-
tion 4.

Theorem 1 (Preservation). If S; · ` e : t and e 7→ e′, then
S; · ` e′ : t.

Theorem 2 (Progress). If S; · ` e : t then either val(e) or
exists e′ such that e 7→ e′.

Theorem 3 (Typechecking is decidable).

• If S ` � and S ` E, then ∀e, ∀t, it is decidable whether
there exists a derivation such that S; E ` e : t.
• If S ` � then ∀E it is decidable whether there exists a

derivation such that S ` E.
• It is decidable whether there exists a derivation such that

S ` �.
We also proved that the Prop fragment of AURA is

strongly normalizing. This theorem will allow us to con-
clude that despite the intricate dependencies on data, the
authorization logic fragment is still logically consistent.

In AURA’s core language, the proofs are computation
free, meaning that we do not have reduction rules on proofs.
For instance, binds x = p in q is a value. This is because the
proofs are only meaningful as witnesses to access-control
policies; and the reduction of proofs by reference monitors
would not contribute significantly to the functionality of the
system. We define proof reduction rules for the proofs in
AURA, which will further reduce a “value” in the core lan-
guage to a normal form according to the new reduction rules.
We proved the following strong normalization theorem, de-
tails can be found in the companion tech report [17].

Theorem 4 (The proofs in AURA are strongly normalizing).
If S; · ` e : P , and S; · ` P : Prop, then e is strongly
normalizing under the reduction rules for proofs.

The noninterference proof also uses the following lemma
stating that AURA’s operational semantics is deterministic.

Lemma 5 (AURA’s operational semantics is deterministic).
If e 7→∗ v1 and e 7→∗ v2 and val(v1), val(v2) then v1 = v2.

3. Encoding Information Flow Types
In this section, we explain how to use AURA’s authorization
logic constructs to encode information-flow types. These
types are indexed by the security level, at which data is pro-
tected. For lucid explanation of the main ideas, we assume
there is only one security level H and all secrets are pro-
tected at level H. We will extend this encoding in Section 5
to accommodate standard lattices for security labels.

In our encoding, security labels as treated as principals.
To support the definitions of security lattices (here the lattice
only contains one security label), we extend AURA’s signa-
ture to allow the definitions of constants of the type prin for
declaring security labels. We can declare H as follows:

const H : prin

Next, we define the assertion Reveal.

assert Reveal : Prop

In this simple encoding, we use a value of the type
pf (H says Reveal) as the capability to access secrets pro-
tected at level H. Reveal is the same kind of assertion as
MayPlay shown in the previous section. In AURA, there is
no term witnessing the proof of Reveal; therefore, a proof of
H says Reveal can only be created by principal H actively



affirming it by signing Reveal using its private key. Further-
more, we assume that H is not the run-time authority self,
whose private key is the only private key that programmers
have access to. With the above two conditions, we know that
programmers cannot produce a term that is a proof of the
proposition H says Reveal. We define a data type for secrets
protected at level H below:

data SecH : Type → Type {
| mkSec : (t : Type)

→ (pf(H says Reveal) → t)
→ SecH t

}

SecH is a polymorphic type constructor. For instance,
SecH Bool is the type for boolean expressions protected at
H. The data constructor mkSec takes two arguments. The first
argument is a type t. The second argument is a function that
when applied to a term of type pf (H says Reveal), yields
the secret of type t. The secret data is in effect guarded
by a capability of type pf (H says Reveal). For example,
s = λx :pf (H says Reveal).3 is a secret integer protected at
level H. If there is a value v of the type pf (H says Reveal),
evaluating s v will reveal the secret 3.

A term e of the type pf(H says Reveal) belongs to the
Type universe, meaning e is a computation. In AURA, pro-
grammers could write a non-termination computation Ω of
the type pf(H says Reveal). However, this does not compro-
mise our secret hidden in s, because AURA is call-by-value.
Any attempt to execute sΩ and extract the term of type t
from s will result in non-termination.

The only way to get hold of a value of type pf(H says
Reveal) is when constructing another secret of type (SecH s)
using mkSec s (λk : pf (H says Reveal).e). Here k is a capa-
bility for access secrets protected at H, and k is available
in e. This means that terms of type SecH t operate like a
monad; a computation that manipulates a secret has to have
type SecH t. We can encode the standard return and bind op-
eration for SecH t monad.

To create an expression of type SecH t from an expression
of type t, we can use the following Return function.

Return : (t : Type) → (d : t) → (SecH t) =
λt : Type. λd : t. mkSec t (λkey : pf(H says Reveal).d)

1 Bind : (t : Type) → (s : Type) → (d : SecH t)
2 → (f : t → SecH s) → SecH s
3 = λt : Type.λs : Type.λd : SecH t. λf : t→ SecH s.
4 mkSec s
5 (λk : pf(H says Reveal).
6 (match d with {
7 | mkSec→
8 λdt : (pf(H says Reveal) → t).
9 match (f (dt k)) with{

10 | mkSec→
11 λds : (pf(H says Reveal) → s).(ds k) }
12 }))

To operate on secrets, we can use the Bind function
shown below. Given an expression d of type SecH t, and
a function f that takes an expression of type t and produces
an expression of type SecH s, Bind will apply f to the secrets
in d and produce a term of type SecH s.

In the body of Bind, we need to apply function f (line 3)
to the secret hidden in d. To extract the secret in d, we need
a capability of type pf (H says Reveal). We can use such a
capability k (line 5) in the body of the function we construct
between line 5 and 12. We know d = mkSec H dt by pattern
matching on d on line 6. The term dt k has type t because dt
has type pf (H says Reveal)→ t (line 8). dt k is the secret in
d. The function application f (dt k) on line 9 has type SecH s.
We need to construct a term of type s, because the function
between line 5 and 12 has type pf (H says Reveal)→ s. We
pattern match on (f (dt k)) (line 9 – 11) and use k on line 11
to reveal the secret of type s.

Our encoding hides the expression that is a secret under
a lambda abstraction, and because AURA does not evaluate
under lambda abstractions, the computation in SecH t is lazy.
A secret will not be evaluated until a capability for accessing
the secret is provided.

4. Proof of Noninterference
To demonstrate that our encoding indeed protects secrets
properly, we prove the noninterference theorem for our en-
coding. The main part of the proof is mechanized in Coq.
The only paper proof is the proof of the noninterference
property of AURA’s authorization logic.

A noninterference proof is a proof of program equiva-
lence. We want to prove that two programs containing dif-
ferent secrets should behave the same to the public observer.
Here we use the termination-insensitive definition. We only
enforce the equivalence between two programs when they
both terminate. We use the squared semantics proof tech-
nique introduced by Pottier and Simonet [23]. The main idea
of this approach is to define an extended language with a pair
expression. The execution trace of a pair expression cap-
tures a pair of execution traces that could potentially con-
tain different secrets. Proving the noninterference theorem
is reduced to showing that two execution traces containing
different secrets result in the same value in the extended lan-
guage. Some of the challenges of using this techniques are
1) deciding where to introduce the pair expression so that the
operational semantics can capture a pair of evaluation traces
containing different secrets, and 2) introducing the pair ex-
pression in AURA in such a way that it works correctly with
Aura’s other language features such as dependent types.

The rest of this section is organized as follows. First, in
Section 4.1, we introduce the design of AURA-PAIR, AURA
extended with a pair construct. Next, in Section 4.2, we build
connections between AURA and AURA-PAIR through a set
of lemmas mapping the typing and evaluation relations be-



tween the two languages. Finally in Section 4.3, we discuss
the proof of the noninterference theorem.

4.1 AURA-PAIR

We define AURA-PAIR by extending AURA with an expres-
sion denoting a pair of AURA expressions.

4.1.1 Syntax
We use meta-variables t̂ and ê to denote terms in AURA-
PAIR, and use t and e to denote AURA terms. A summary
of the syntax of AURA-PAIR is shown below. In addition to
all the constructs in AURA, the definition of t̂ includes a new
construct 〈t1 | t2〉. Since we syntactically require that t1 and
t2 are terms from AURA, nested pair expressions are ruled
out by this definition.

AURA-PAIR Terms
t̂ : : = x | ctr | λx : t̂1.t̂2 | t̂1 t̂2 | (x : t̂1)→ t̂2

| · · · | 〈t1 | t2〉
AURA-PAIR Values
v̂ : : = λx : t̂.v̂ | · · · | 〈v1 | v2〉

We also extend the values to include pair values, where
each component in the pair is a value in AURA.

Before we define typing rules for AURA-PAIR, we intro-
duce a few auxiliary definitions. First, we define a floor func-
tion that takes a term in AURA-PAIR and returns an AURA
term that corresponds to either the left (i = 1) or the right
(i = 2) part of the pair.

bt̂ci = t bxci = x bcci = c

bctrci = ctr bt̂1 t̂2ci = bt̂1ci bt̂2ci
· · · b〈t1 | t2〉ci = ti

For most constructs, the floor function is pushed into
the sub-terms. For the pair expression, we return the sub-
components of the pair right away. For simplicity of pre-
sentation, we assume there is an implicit injection from an
AURA term to an AURA-PAIR term. In our Coq proof, we
defined such a function explicitly.

Since the pair expressions are not allowed to be nested in
AURA-PAIR, we define a special capture-avoidance substi-
tution for AURA-PAIR as follows.

û[t̂/x] = û′

(û1 û2)[t̂/x] = (û1[t̂/x]) (û2[t̂/x])
· · ·
(〈u1 |u2〉)[t̂/x] = 〈u1{bt̂c1/x} |u2{bt̂c2/x}〉

For most cases, the substitution is standard. For the pair
expression (last rule above), we use the term substitution in
AURA, and substitute the floor of the term to be substituted
(t̂) for the variables in the sub-components of the pair (u1

and u2). Notice that ui{bt̂ci/x} is an AURA term. If we
substitute an expression containing a pair into another pair
expression, this substitution will make sure that the resulting
expression does not contain nested pairs.

4.1.2 Operational Semantics
We use ê 7→p ê′ to denote the small-step operational se-
mantics of AURA-PAIR. Most evaluation rules are the same
as the ones in AURA. The interesting reduction rules for
AURA-PAIR are shown in Figure 1. For the APP rule, we use
the special substitution defined above. Three additional rules
are defined for evaluating the pair expression. The first two
evaluate the terms inside a pair using the reduction rules in
AURA. The last one lifts the pair when an application occurs.
In Pottier and Simonet’s original system, there is one lifting
rule for each beta redex. We only have one such lifting rule
for AURA-PAIR despite the fact that AURA has many beta
redexes such as (match (c v1 · · · vn) t with {b}). The rea-
son is that the typing judgments for AURA-PAIR restrict the
appearance of the pair expression to function applications.
This drastically simplifies the design of AURA-PAIR since
we eliminated unnecessary lifting rules.

val(v̂)

(λx : t̂.ê) v̂ 7→p ê[v̂/x]
APP

e1 7→ e′1

〈e1 | e2〉 7→p 〈e′1 | e2〉
PAIR-1

e2 7→ e′2

〈e1 | e2〉 7→p 〈e1 | e′2〉
PAIR-2

val(v1) val(v2) val(v̂3)
〈v1 | v2〉 v̂3 7→p 〈v1 bv̂3c1 | v2 bv̂3c2〉

LIFT

Figure 1. Operational Semantics

4.1.3 Typing Rules
The typing judgment for AURA-PAIR is written S; E `p ê : t̂.
The only new typing rule is the rule for the pair expression,
shown below. All other rules are the same as those in AURA.

S `p E S; bEci ` ti : b(x :u1)→ u2ci
S; · `p (x :u1)→ u2 : k

@v such that val(v) and S; · ` v : bu1ci
S; E `p 〈t1 | t2〉 : (x :u1)→ u2

PAIR

We assign an arrow type (x : tk) → t to the pair expres-
sion, because the pair expression represents a pair of secrets,
which have type (pf (H says Reveal) → t). The first argu-
ment of the arrow is the capability that cannot be forged. We
enforce this by requiring that there is no value of such type
under an empty context. Each sub-component of the pair is
type checked under the floor of the result type. The floor op-
eration is crucial for us because AURA is dependently typed,
and the types may contain pair expressions as well.

It is strange to have a negation in the typing rules. The
PAIR rule is still inductively defined because we are using
the already-defined AURA’s typing relation, and we have
proven the decidability of the typing relation in AURA. Fur-
thermore, this type system is never meant to be used to check
programs. It is used to illustrate the noninterference proper-
ties of AURA. We do not have to consider the efficiency of
using such a typing rule.



We proved progress and preservation theorems for AURA-
PAIR. Since we already have Coq proofs for AURA, it was
not too hard to change the proofs to prove the soundness
of AURA-PAIR. In Pottier and Simonet’s original paper,
only preservation of the extended language is proven. The
progress property simplifies the noninterference proof since
we do not need to consider situations where AURA-PAIR
might get stuck.

Theorem 6 (Preservation). If S; · `p ê : t̂ and ê 7→p ê′, then
S; · `p ê′ : t̂.

Theorem 7 (Progress). If S; · `p ê : t̂ then either val(ê) or
exists ê′ such that ê 7→p ê′.

4.2 Connections Between AURA and AURA-PAIR

The point of defining AURA-PAIR is to compare two AURA
programs. Here we establish the connection between pro-
grams in AURA and AURA-PAIR at both the typing and op-
erational levels.

First, we establish the mapping between the special sub-
stitution in AURA-PAIR and the substitution in AURA.

Lemma 8 (Floor of Substitution).
bê2[ê1/x]ci = bê2ci{bê1ci/x}

Lemmas 9 and 10 concern the mapping of typing rela-
tions between AURA and AURA-PAIR. Lemma 9 states that
if an expression ê is well-typed in AURA-PAIR, then both its
left and right projection are well-typed in AURA. Lemma 10
states that a well-typed term in AURA is also well-typed in
AURA-PAIR. We define bEci to be the point-wise lifting of
the floor function on the environment E.

Lemma 9 (Typing Soundness of AURA-PAIR).
If S; E `p ê : t̂ then S; bEci ` bêci : bt̂ci.
Lemma 10 (Typing Completeness of AURA-PAIR).
If S; E ` e : t then S; E `p e : t.

The next two lemmas concern the evaluation behavior.
The first lemma, Lemma 11, states that if a term ê in AURA-
PAIR evaluates to a value v̂, then both the left and right
projection in ê should evaluate to values in AURA. This
lemma tells us that AURA-PAIR adequately represents two
traces of evaluation in AURA. The next lemma, Lemma 12,
states that if both of the right and left projection of ê evaluate
to values in AURA, then ê should evaluate to a value in
AURA-PAIR. This lemma tells us that AURA-PAIR faithfully
models the termination behavior of AURA.

Lemma 11 (Soundness of the Evaluation of AURA-PAIR).
If S; · `p ê : t̂ and ê 7→∗p v̂ then bêci 7→∗ bv̂ci
Lemma 12 (Completeness of the Evaluation of AURA–
PAIR). If S; · `p ê : t̂ and bêci 7→∗ vi where vi is a value
and i ∈ {1, 2} then ∃û such that ê 7→∗p û and û is a value.

4.3 Noninterference
We use the following macros throughout this section.

HKey = pf (H says Reveal) SecHB = SecH Bool
We define a function CTROF(S, T ) that takes a signature

S and a type constructor T as arguments and returns the
list of data constructors associated with T . For instance,
CTROF(S,Bool) = {tt, ff}, if S contains the definition of
Bool.

As we have mentioned in previous sections, the key idea
of the encoding is to use HKey to guard secret data. We state
this in the following lemma.

Lemma 13 (Secret). @v, val(v) and S; · ` v : HKey.

Proof. By contradiction. We use the strong normalization result
of AURA, and the fact that programmers cannot generate the value
sign(H,Reveal).

Assume S; · ` v : HKey
By Canonical Form, HKey = pf (H says Reveal),

v = returnp q (1)
By Inversion of S; · ` v : HKey,

S; · ` q : H says Reveal (2)
By Strong Normalization results of AURA,

q 7→∗ q′ and q′ is in normal form (3)
By Canonical Form, and q′ 6= sign(H,Reveal),

q′ = returns H c and S; · ` c : Reveal (4)
By Canonical Form,

c ∈ CTROF(S,Reveal) = { } (5)
Contradiction

The lemma assures us that no one can fabricate a value
that has type HKey.

We prove the following noninterference theorem.

Theorem 14 (Noninterference). If S;x : SecHB ` e : Bool
and given any two values v1, v2 such that S; ` v1 : SecHB
S; ` v2 : SecHB and e{v1/x} 7→∗ w1 and e{v1/x} 7→∗ w2

where w1, w2 are values, then w1 = w2.

The proof is shown in Figure 2. To clearly present the
structure of the proof, we write the proof in two columns.
The left column contains statements in AURA and the right
one contains statements in AURA-PAIR. The arrows between
the two columns are labeled with lemmas from Section 4.2
that connect the properties of AURA and AURA-PAIR. The
statements in gray boxes are assumptions of the noninterfer-
ence theorem. The statement in the framed box is the con-
clusion.

The proof starts from the left column. First, we exam-
ine the values v1 and v2 and extract the sub-terms fi, which
contain secrets guarded by HKey. Next, using Lemma Se-
cret (Lemma 13), we conclude that there is no value of type
HKey, which allows us to go to the AURA-PAIR side and
construct a value pair 〈f1 | f2〉. Now the evaluation of ex-
pression e[v̂/x] captures the two evaluation traces contain-
ing different secrets. We stay on the AURA-PAIR side until
we know that e[v̂/x] evaluates to a value û using the Evalu-
ation Completeness Lemma (Lemma 12). Using the Evalua-



AURA
(A1) S; · ` vi : SecHB where i ∈ {1, 2}
By Canonical form lemma, A1
(A2) ∀i ∈ {1, 2} vi = mkSec Bool fi

and S; · ` fi : (x :HKey)→ Bool
By Lemma 13(Secret)
(A3) @v, val(v) and S; · ` v : HKey

(A7) S;x : SecHB ` e : Bool

(A11) e{vi/x} 7→∗ wi where i ∈ {1, 2}

(A13) e{vi/x} 7→∗ bûci where i ∈ {1, 2}
By Lemma 5, A11, A13
(A14) bûci = wi

(A17) w1 = w2 = ctr

AURA-PAIR

(B4) S; · `p 〈f1 | f2〉 : (x :HKey)→ Bool
(B5) let v̂ = mkSec Bool 〈f1 | f2〉
(B6) S; · `p v̂ : SecHB
(B8) S;x : SecHB `p e : Bool
By Substitution Lemma, B5, B6, B8
(B9) S; · `p e[v̂/x] : Bool
By Lemma 8 (Floor of Substitution) A2 B5
(B10) be[v̂/x]ci = e{vi/x}
(B12) e[v̂/x] 7→∗p û and û is a value

By Preservation
(B15) S; · `p û : Bool
By Canonical Form
(B16) û = ctr, (ctr = tt or ff)

-

Lemma 10 (Typing Completeness)

-Typing rule PAIR -

-Lemma 12 (Completeness)

� Lemma 11 (Soundness)

� Use the definition of floor

Figure 2. Proof of non-interference theorem

tion Soundness Lemma, we go back to AURA and conclude
that e{vi/x} evaluates to the floor of û. Because AURA’s re-
duction rules are deterministic (Lemma 5), we know that wi

is the same as the floor of û. Now, we go to the AURA-PAIR
side and gather more facts about û. Because value û is of
type Bool, we know that û has to be either the data construc-
tor tt or ff. Because the floor of a constructor is itself, we
know that both w1 and w2 have to be the same constructor.

5. Extension to Lattices
So far, we only considered single-level security where all
secrets are protected at H. It is useful to have multi-level
security where information is protected at several different
security levels. For instance, a document could be classified
as top secret, secret or public. We use a security lattice
〈L,v〉 to model multi-level security. L is a set of labels
and v is a partial order on labels in L. The information-flow
policy captured by the security lattice is that if `1 v `2, then
information protected at `2 is more secret than information
protected at `1, and information can only flow from `1 to `2.

We extend our encoding to enforce information-flow poli-
cies specified by security lattices. Throughout this section,
we consider a two-point security lattice with labels: H and L,
and the partial order between them: LvH. The techniques
for encoding the security lattice and proving noninterference
can be carried over to handle more general security lattices.

5.1 Extended Encoding
Both H and L are constants of type prin. The partial order
L v H is encoded using delegation in authorization logic as

L2H : L says (H says Reveal → Reveal)
In an implementation of the lattice in AURA, L2H can

be the expression sign(L,H says Reveal→ Reveal). It is an
active affirmation by principal L by signing the proposition
H says Reveal→ Reveal using its private key.

Using L2H and hk : pf (H says Reveal), we can construct
a term of the type pf (L says Reveal) as follows:

lk : pf (L says Reveal) =
bind h : H says Reveal = hk in
bind del : (H says Reveal → Reveal) = L2H in
(return (return L (del h)))

Whenever we have a capability to reveal secrets protected
at level H, we can obtain a capability to reveal secrets pro-
tected at level L.

We define the type constructor of security types below.
The type constructor Sec takes as the first argument, the
security level at which data is protected.

data Sec : prin → Type → Type {
| mkSec : (l : prin) → (t : Type)

→ (pf (l says Reveal) → t)
→ Sec l t

}
Using the above definition, we can define the type for

booleans protected at security level L as Sec L Bool, and the
type for booleans protected at security level H as Sec H Bool.

The encodings of return and bind are similar to the ones
in Section 3. The only difference is that we need to propagate
the security label in the encoding.

Return : (l : prin) → (t : Type) → (d : t) → (Sec l t) =
λl : prin.λt : Type. λd : t.

mkSec t (λkey : pf(l says Reveal).d)

Bind : (l : prin) → (t : Type) → (s : Type) → (d : Sec l t)
→ (t → Sec l s) → Sec l s

= λl : prin. λt : Type.λs : Type.λd : Sec l t.λf : t→ Sec l s.
match d with {
| mkSec→

λdt : (pf(l says Reveal) → t).
mkSec l s (λkey : pf(l says Reveal).

match (f (dt key)) with{
| mkSec→
λds : (pf(l says Reveal) → s). ds key
})

}



We can treat secrets protected at level L as if they are
protected at level H, since there are more information-flow
restrictions on data protected at level H than at level L.
We define a function LtoH that takes an expression of type
Sec L t and return an expression of the type Sec H t.

1 LtoH : (t : Type) → Sec L t → Sec H t =
2 λt : Type.λd : Sec L t.
3 mkSec H t
4 (λphk : pf(H says Reveal).
5 match d with {
6 | mkSec →
7 λdl : (pf (L says Reveal) → t).
8 dl (bind hk : (H says Reveal) = phk in
9 bind del : (H says Reveal → Reveal) = L2H

10 in return (return L (del hk)))
11 })

The body of LtoH changes the capability guarding the se-
cret in d from pf(L says Reveal) to pf(H says Reveal). We
start by using mkSec to construct a term protected at H. On
line 4, the variable phk is the new capability associated with
the secret data in d. The pattern-matching expression be-
tween line 5 and 11 constructs a term of type t by revealing
the secret in d. To do so, we need a capability of the type
pf (L says Reveal). We obtain such capability between line
8 and 10 by using L2H, which is the delegation from L to
H and variable phk, which is the capability to access secrets
protected at H (defined on line 4). The bind expression be-
tween line 8 and 10 is the same as lk we defined earlier in this
section. The secret of type t hidden in d is revealed by apply-
ing dl (line 7) to the capability of type pf (L says Reveal),
constructed at line 8– 10.

5.2 Noninterference
The encoding in Section 5.1 also has the noninterference
property. Intuitively, by the noninterference properties of
the authorization logic, we cannot prove H says Reveal
from L says (H says Reveal → Reveal) and L says Reveal.
Therefore, when constructing computations protected at
the security level L, we cannot use any data protected
at level H, which are guarded by a capability of type
pf(H says Reveal).

Our proofs rely on the strong normalization results on
AURA’s authorization logic (Theorem 4). The idea is that
any AURA term of type H says Reveal can be normalized
using proof reduction rules to a normal form, and we prove
that no normal form has type H says Reveal.

We define the normal forms for proofs below.

Normal Forms
nf : : = λx : t1.nf | c nf1 · · · nfn | returnp nf

| returns nf1 nf2 | sign(self, nf)
| binds x = nfe in nf | self
| binds x = sign(self, nf) in nf | nfe
| Kind | Type | Prop | prin | pf t
| (x : t1)→ t2

Elimination Normal Forms
nfe : : = x | nfe nf | con

The last two lines of the definition of nf are types. AURA
has no reduction rules at the type level, so all the types are
in normal form. The two binds expressions are stuck com-
putations. Other stuck computations, such as x y, that are
not binds expressions, are denoted by nfe. We make a dis-
tinction between stuck computations that are binds expres-
sions and those are not because we have a special com-
muting reduction rule on terms of the form binds x =
(binds y = t1 in t2) in t3 see [17] for details .

The constants denoted by con include principals such
as H and L defined for the lattice. We treat L2H that de-
fines the partial order between L and H as a constant as
well. This is because ordinary programmers cannot get
hold of either H or L’s private key, so the normal form of
the programmer’s code cannot include expressions of the
form of sign(H,P ) or sign(L,P ). When treating L2H as an
opaque constant, the definitions of nf and nfe above gen-
erate the same normal form for programmers’ code that
makes use of L2H as a constant and that treats L2H as
sign(L,H says Reveal→ Reveal).

We prove the following lemma, which is analogous to
Lemma Secret (Lemma 13). This lemma assures us that we
cannot construct a term witnessing H says Reveal, even if
we assume L can make arbitrary assertions.

Lemma 15. Secret H key
if ∀con ∈ dom(S), S(x) = prin, or S(x) = L says t,

• E :: S; · ` nf : t then t 6= H says Reveal, and t 6= Reveal
• E :: S; · ` nfe : t then t = L saysP or t = prin

Proof (sketch): By mutual induction on derivation E .
The signature we care about is SS, which contains the def-

inition of data type Bool, Sec, assertion Reveal, and constants
representing the two-point security lattice.

SS = data Bool : Type ...,
assert Reveal : Prop,
data Sec : prin → Type → Type ...,
const H : prin, const L : prin,
const L2H : L says (H says Reveal → Reveal)

As a corollary of Lemma 15, we can prove that we cannot
construct a term of type pf(H says Reveal) from the lattice
definitions and L says Reveal.

Lemma 16 (H Secret).
@v, val(v) and SS, const LK : L says Reveal; · ` v : HKey.



Proof (sketch): Using the strong normalization result and
Lemma 15.

We use the following macros for the rest of this section.

LKey = pf (L says Reveal) SecLB = SecLBool
HKey = pf (H says Reveal) SecHB = SecH Bool

This noninterference theorem below states that with two
different secret inputs protected at security label H, the out-
put values at level L are the same. The statement of the non-
interference theorem with security lattices becomes more
complicated because now we have to state that if two input
values are the same for observers at security level L, then
the output values of type SecLB are the same for observers
at security level L. We indicate the presence of L observers
by including a constant LK of the type (L says Reveal) in
the signature for type checking the input values vi. This
is equivalent to saying that the observers at level L can
see any secrets protect at level L, because returnp LK has
type pf (L says Reveal). We cannot simply use the syntactic
equality to state the equality of two values of type SecLB,
because those values contain sub-terms that are functions.
We need to specify that those functions evaluate to the same
values when applied to the same arguments.

Theorem 17 (Noninterference).
If SS;x : SecHB ` e : SecLB and given any two val-
ues v1, v2 such that SS, const LK : L says Reveal; · ` vi :
SecHB and e{v1/x} 7→∗ wi where w1, w2 are values, then
wi = mkSecLBool fi and if (fi (returnp LK)) 7→∗ ui where
ui are values, then u1 = u2.

The structure of the proof is very similar to the one shown
in Figure 2. Due to space constraints, we omit the details.
We explain two points in the proof: where Lemma Secret
(Lemma 16) is used, and why the outputs are compared in
the presence of LK.

In the proof, we know by the Canonical Forms Lemma
that vi = mkSecH Bool gi. Lemma Secret (Lemma 16)
allows us to construct a well-typed pair 〈g1 | g2〉 in AURA-
PAIR. This means that g1 and g2 are secrets given the current
context and, therefore, could be put into a pair.

In the end, we know that e[v̂/x] 7→∗p s and wi = bsci.
By canonical forms, we know that s = mkSecLBool q,
and SS, const LK : L says Reveal; · `p q : LKey → Bool.
With LK in the signature, the canonical form will tell us that
q has to be a lambda abstraction. Without LK, q itself could
be a pair of functions. For observers at level L, q could not
have been a pair because q does not contain information of
higher secrecy than L.

6. Declassification
Information-flow polices that do not allow any information
flow from high security to low security are typically too re-
strictive for practical use. To build useful systems, we often
find it necessary to leak some amount of secret information.

In this section, we explore through several examples the de-
sign space for using access-control policies to specify de-
classification policies in AURA.

6.1 Simple Declassification Policies
Escape hatches We can define a declassify operation simi-
lar to escape hatches [25]. The declassify function will reveal
a secret protected at level H. If we assume that declassify
is running under the authority H, the term say Reveal is a
capability for revealing the secret, and we can implement
declassify in AURA as follows.

declassify : Sec H t → Maybe t
= λd : Sec H t.

match d with
| mkSec →

λdt : pf(H says Reveal) → t.
if H = self
then Just (dt 〈(say Reveal) : pf (H says Reveal)〉)
else Nothing

Since H is the same as self, in the true branch of the
if expression we can use the explicit type cast to give the
expression (say Reveal) the type pf (H says Reveal), which
is used to reveal the secret hidden in d.

When More interestingly, we can use access-control poli-
cies to specify when information leaks are allowed. We can
provide the following generic declassification interface:

declassify : Sec H t → pf (H says Reveal) → t

declassify takes two arguments: a secret protected at level
H and the capability to reveal secrets protected at level H.
declassify returns the secret hidden in the first argument.

We can define access-control policies that can be used
to construct a proof of pf (H says Reveal). For instance,
pol1, below, specifies that if payment has been made, then
the secret can be released. We use Cashier to represent
the principal that controls the payment process. Paid is an
assertion defined in the same way as Reveal.

pol1 : H says (Cashier says Paid → Reveal)

We can further define policies to specify when Cashier
will affirm that payment has been made. For example, the
following policy states that if PNCBank affirms that deposit
has been made to account (Num), then Cashier will agree
that payment has arrived.

polc : Cashier says (PNCBank says (Deposited Num)
→ Paid)

Alternatively, we could give the declassification interface
the following more informative type.

declassify : Sec H t → pf (Cashier says Paid) → t



Who We can also specify to whom information is released.
In the following example, we allow privileged users to ac-
cess secret information. We use Sys to denote the principal
System, who is in charge of deciding who are privileged
principals. The predicate Privileged p means that principal
p is a privileged principal and is defined below.

assert Privileged : prin → Prop

Policy pol2 allows the capability to access secrets pro-
tected at level H to be obtained by constructing a proof of
Sys says (Privileged p).

pol2 : H says (Sys says (Privileged p)→ Reveal)

The declassify interface that allows privileged principals
to access secrets protected at H is shown below.

declassify : (p : prin) → Sec H t
→ Sys says (Privileged p) → t

The first argument of declassify is the principal to whom
the information is released. The second argument is a secret
protected at H. The third argument is a proof that Sys be-
lieves that p is a privileged user. The body of declassify uses
pol2 and returns the secret.

6.2 More Elaborate Policies
Refinement of secrets We can refine our encoding so that
instead of using a single capability for all secrets, we can
define different classes of secrets guarded by different capa-
bilities. For example, the salaries of employees in the Engi-
neer College are secrets. However, there are several differ-
ent kinds of employees. We can use different capabilities to
guard graduate students’ salaries (pf (H says GradSalary)),
postdocs’ salaries (pf (H says PostDocSalary)) and profes-
sors’ salaries (pf (H says ProfSalary)).

Here, GradSalary, PostDocSalary and ProfSalary are all
assertions defined in the same way as Reveal. Now the se-
curity types need to indicate the class of secrets as well. For
instance, instead of Sec H t, we use Sec H Reveal t.

We can write policies to declassify certain kinds of se-
crets. For example, the following statements declare that the
Dean believes that postdocs and grad students are temporary
employees. Predicate (tmpE P) means that P is a proposition
used for guarding the salary info of temporary employees.

s1 : Dean says (tmpE PostDocSalary)
s2 : Dean says (tmpE GradSalary)

The following declassification interface downgrades all
information about temporary employees.

declassify : (R : Prop) → Sec H R t
→ Dean says (tmpE R) → t

Nonces One problem with the declassification interfaces
shown so far is that a replay attack could cause unwanted
information leaks. For instance, in the example where a

proof of pf (Cashier says Paid) is required for the release
of secrets, an attacker can use an old proof to learn all the
secrets protected by pf (H says Reveal).

A standard way to prevent such replay attacks is to in-
clude a fresh nonce in the proofs, thereby preventing old
proofs from being re-used. We can refine our encoding and
include a nonce in the declassification interface.

data Nonce : Type{
| n1 : Nonce
...
}

assert Paid : Nat → Prop
declassify : (n : Nonce) → Sec H t

→ pf (Cashier says (Paid n))
→ Maybe t

A trusted nonce-generation function becomes part of the
declassification interface. It produces a fresh nonce m for
each declassification. In the body of the declassify func-
tion, the nonce a user passes in is checked against the stored
current nonce for equality. Only when they are equal, the
proof passed in by the user can be casted to a proof of
pf (Cashier says (Paid m)), where m is the value of the
stored current nonce. Therefore, an old proof with an ex-
pired nonce will not reveal the secret. We are in effect im-
plementing a release-once policy.

However, the stored current nonce also becomes part of
the trusted declassification interface. This means that imple-
menting this version of the declassify function requires mu-
table state, which is not supported by AURA at this time.

6.3 Discussion
We have not studied the formal properties of these declassifi-
cation policies. We suspect that the noninterference property
of the authorization logic will allow us to express proper-
ties such as: ”if a leak happens then certain principals must
have made certain assertions”. This kind of property would
be useful for auditing purposes.

AURA does not support a module system or key man-
agement for run-time keys. Each process is associated with
one run-time authority. This made it difficult to specify that
declassify has to be run in trusted space and cannot be ex-
ploited by attackers. Furthermore, AURA’s lack of support
for mutable state prevents us from implementing declassifi-
cation policies involving nonces, as shown in the example.
If we were to add state to AURA, our encoding would need
to be refined to consider possible information leaks from
state changes. We speculate that techniques from prior work,
such as those usef for building a library for light-weight
information-flow security in Haskell [24] would apply. We
leave these investigations for future work.

7. Related Work
Information flow type systems There has been much work
on using language-based approaches to protect the confiden-



tiality of information (Cf. [30, 15, 21, 32, 28]). Most of these
works use security-label indexed types to indicate the secu-
rity level of the data, and type systems enforce information-
flow policies. Abadi et al. pointed out that information-flow
analysis is a dependency analysis, and the noninterference
property holds in the dependency core calculus (DCC) [4].
In DCC, security types are treated as security-label indexed
monads. Abadi later showed that DCC can be used as a cal-
culus for access control [2]. When DCC’s monads are in-
terpreted as principal-indexed types expressing principal’s
beliefs, DCC is isomorphic to an authorization logic. AURA
contains a constructive authorization logic based on DCC
in its type system [29, 16]. However, the principal-indexed
monads in AURA cannot be used directly as security types.
For example, we cannot use H says int as the type for an in-
teger protected at level H. This is because AURA has two
separate universes: one for logical proofs and propositions,
which is pure; and the other for computations which may
have effects such as non-termination. The separation is nec-
essary for maintaining the soundness of AURA’s authoriza-
tion logic. The says monads are logical assertions, whereas
the security types are the types for data and computations.
This paper provides an encoding of security types for data
using the principal-indexed types.

Another approach to enforcing information-flow polices
is to encode security types as libraries for existing func-
tional languages, notably Haskell. Li et al. showed how
to enforce information-flow policies in Haskell by encod-
ing information-flow types using the arrow combinator [19].
A light-weight encoding of information-flow types using
Haskell’s type classes and abstract data types is later pre-
sented by Russo et al. [24]. Both of these encodings rely on
Haskell’s type classes and abstract data types to ensure that
the information-flow policies are enforced. Our encoding re-
lies on the noninterference properties of the authorization
logic to enforce information-flow policies. One significant
technical contribution of our work is that we proved a non-
interference theorem for our encoding using the squared se-
mantics approach [23], and that all aspects of our proofs re-
lated to the squared semantics are mechanized in Coq. To our
knowledge, the noninterference proof in Russo’s work [24]
is done for an abstraction of the implementation. There is no
formal proof about whether the abstraction faithfully mod-
els the implementation. Our proof of noninterference is done
for the implementation itself, which had not been done. We
acknowledge that Haskell is significantly more complicated
than AURA, and our encoding does not consider side effects
such as mutable references or IO, because AURA does not
have these features. Another important contribution of our
work is that we studied aspects of using access-control poli-
cies to declassify information.

Noninterference proofs of authorization logics The non-
interference theorems of our encoding rely on the nonin-
terference properties of AURA’s authorization logic. We

need to demonstrate that there is no value of the type
pf (H says Reveal) (stated in Lemmas 13 and 16), which is
a form of the noninterference property of the authorization
logic in AURA. The first noninterference proof of a construc-
tive authorization logic was done by Garg [14]. In Garg’s
proofs, the sub-formula properties of a cut-free sequent cal-
culus are used to identify the assumptions that contribute
to the conclusion. We could not use Garg’s noninterference
results directly because Garg’s logic has different rules than
ours, and it is first-order, while AURA’s logic is second-
order. In our proof, we use the strong-normalization results
of the authorization logic in AURA. We examine all the pos-
sible normal forms of proofs that could be constructed using
existing assumptions for encoding the lattice, and conclude
that certain proofs are not possible. The statements of our
noninterference theorem of the authorization logic (Lem-
mas 13 and 16) are not as general as Garg’s. Encoding dif-
ferent lattices need different formulas, and we need to prove
a lemma similar to Lemma 16 for each lattice. However, the
techniques of our proofs are general enough for constructing
proofs for other lattices. What’s interesting in our work is
that we demonstrate how to apply the noninterference prop-
erty of an authorization logic to encoding information-flow
types that have noninterference property.

Abadi also proved noninterference for CDD [3], a cut
down version of DCC. However, in CDD, the lattice of
principals does not correspond to delegation between them.
We use explicit delegation between principals to encode
lattices. Consequently, the noninterference proofs of CDD
are not really applicable in our setting.
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