
Information Acquisition for Capacity Planning via

Pricing and Advance Selling: When to Stop and Act?

Tamer Boyacı∗ and Özalp Özer†
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Abstract

This paper investigates a capacity planning strategy that collects commitments to purchase

before the capacity decision, and uses the acquired advance sales information to decide on the

capacity. In particular, we study a profit-maximization model in which a manufacturer collects

advance sales information periodically prior to the regular sales season for a capacity decision.

Customer demand is stochastic and price-sensitive. Once the capacity is set, the manufacturer

produces and satisfies customer demand (to the extent possible) from the installed capacity, during

the regular sales period. We study scenarios in which the advance sales and regular sales season

prices are set exogenously and optimally. For both scenarios, we establish the optimality of a

control band or a threshold policy that determines when to stop acquiring advance sales information

and how much capacity to build. A numerical study shows that advance selling can improve the

manufacturer’s profit significantly. We generate insights into how operating conditions (such as the

capacity building cost) and market characteristics (such as demand variability) affect the value of

information acquired through advance selling. From this analysis, we identify the conditions under

which advance selling for capacity planning is most valuable. Finally, we study the joint benefits

of acquiring information for capacity planning through advance selling and revenue management

of installed capacity through dynamic pricing.1
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1 Introduction

Capacity investments, such as construction of semiconductor fabrication or power plants, share four

important characteristics. First, capacity investments are often very expensive and irreversible.

The cost of unused capacity can be only partially recovered (if at all) by salvaging at a minimum

value. Second, demand for the capacity is uncertain at the time of the capacity decision. Demand

uncertainty is often quite significant because the capacity decision is taken well in advance of the

sales season. Third, adjusting capacity during sales and production is often difficult or impossible.

Hence, the amount of capacity built defines how much can be produced and sold during the sales

season. Fourth, management often has some leeway about the timing of when to build capacity. The

latest time to install capacity is the beginning of the sales period minus the construction leadtime

necessary to build the capacity. Many strategic investments share these common characteristics (see,

for example, Dixit and Pindyck 1994).

In an environment driven by demand uncertainty, a “build it and they will come” strategy requires

a capacity provider to bear considerable risk in making the expensive capacity investment. In this

paper, we explore a different strategy. We allow some customers to commit to buying prior to the

capacity decision and the provider to build the capacity later; i.e., “let them come and build it later”.

In the sequel, we refer to the capacity provider as the manufacturer because she also produces and

delivers the final product.

Advance selling is a strategy that can help the manufacturer enhance its understanding of the

market potential for her product and reduce demand uncertainty. By offering the product at a time

preceding the regular sales period, the manufacturer can capture some of the market demand in

advance, and thereby moderates overall demand uncertainty. In addition, the amount of advance

purchase commitments provides the manufacturer with information on the market demand potential

of the product, and enables her to plan capacity according to more accurate demand information. She

also starts collecting revenue earlier. Advance selling strategy may be attractive to some customers

as well. By committing earlier to purchase, customers reserve their products and therefore are

not vulnerable to possible capacity shortages. Furthermore, customers may garner discounts for

committing early (as also discussed in Neslin et al. 1995).

When the manufacturer postpones the capacity investment to acquire advance sales information,

she may face an additional trade-off due to capacity building costs. There are always leadtimes

associated with obtaining sites, equipment and other resources when the manufacturer builds new

capacity. When these investments are delayed, the manufacturer may face a tighter deadline for

building capacity, which would result in a non-decreasing capacity cost structure due to various

expediting costs (e.g., second shift premium, premium transportation). Alternatively, if expediting
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is not possible (i.e., the leadtime is constant), then the manufacturer runs the risk of completing the

capacity installment after the start of the sales season, in which case she may lose some potential

revenue. This can also be cast as a non-decreasing capacity cost structure.

Advance selling strategy is commonly used in the service sector. The prime example is the airline

industry. However, as Xie and Shugan (2001) point out, advance selling does not require industry-

specific characteristics; it can be used to enhance profits provided that customers can purchase the

service at a time preceding consumption, which is possible for most services. New technology such as

electronic tickets, on-line prepayments and smart cards enable more service providers to experiment

with advance selling. Customers can buy advance tickets to concerts, sports events, festivals. They

can book hotel rooms, buy railroad tickets, and acquire some other services in advance. The advance

sales information is often used to plan and manage capacity. For example, conference organizers

offer early registration at discounted prices and use this information in planning the hotel rooms to

reserve, meeting rooms to book, as well as catering.

Advance selling is also used in the manufacturing sector although it is not as prevalent as in

the service sector. This may be due to the presence of organizational silos which often decouples

demand management and capacity planning. Recent advances in information technology and man-

agement practices, however, are enabling firms to coordinate actions across functional areas such as

marketing and operations. Some manufacturers in high technology and apparel industries started

to use advance selling strategy to better plan for capacity and production. For example, Ericsson,

a telecommunications equipment manufacturer, recently explored this strategy to improve its long-

range forecasting for planning the capacity of a new factory for its third-generation (3G) wireless

network equipment. Accordingly, the company announced the date for the launch of its 3G stations.

Before securing the capacity, Ericsson “presold” 3G wireless base stations to some of its customers

such as NTTdocomo, the regional cellular phone operator in Japan.2 Apparel manufacturers have

also been using early sales information to decide on production. To do so, this industry developed

several initiatives to reduce cost of excess inventory and shortage. Fisher and Raman (1996) discuss

how apparel manufacturers, such as Sport Obermeyer, commit part of production capacity to certain

SKUs after observing some initial demand. Zara uses early market sales information to preposition

and decide how much sewing capacity to reserve (Fraiman and Singh 2002). Advance selling is also

used in construction projects. Commercial developers sell some units at an advance sales price be-

fore construction begins. Revenue from advance sales is used partially to finance the construction.

This information can also be used to decide whether to purchase additional land and build more

units. Another example is from e-tailers (such as Amazon.com) that collect pre-orders for certain
2On September 2002, Christer Lundberg from Ericsson presented an advance selling strategy for long range fore-

casting during the Ericsson Supply Chain Academy conference in Sweden.
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items before their market introduction. As discussed at the outset, the trade-off between delaying

a decision and proactively acquiring information (such as demand) versus deciding early (such as

building capacity up front) is inherent to many strategic investment decisions. The present paper

takes a step in the direction of providing an understanding of this trade-off in capacity planning.

In summary, our primary objective is to determine the effectiveness of advance selling in con-

junction with a “let them come and build it later” capacity strategy. In particular, we study a

manufacturer who decides on the level of capacity to build for a product that faces price-sensitive

stochastic demand. The manufacturer has one opportunity to invest in capacity before the sales sea-

son starts. The amount of capacity built defines the upper bound on how much the manufacturer can

produce and sell during the sales season. By delaying the capacity decision and offering advance sales,

the manufacturer can mitigate the demand uncertainty and obtain additional information about the

market potential. We also consider the manufacturer’s pricing problem. We study the case in which

the manufacturer determines advance sales and sales season prices optimally, as well as the case

in which these prices are exogenously specified. For each scenario, we establish the optimality of

control band policies that prescribe the optimal time to stop collecting advance sales information.

Under this policy, the manufacturer monitors the prevailing advance sales information including the

total number of commitments to date, and if this quantity falls within the control band, it is opti-

mal to stop advance selling and to decide on the capacity. Otherwise, the manufacturer continues

advance selling. Through an extensive numerical study, we compare the optimal expected profits

with and without advance selling, and show that an advance selling strategy can increase expected

profit significantly. We also quantify the value of knowing exactly when to stop advance selling.

Our study generates managerial insights on how the value of information acquired through advance

selling is influenced by the operating and market characteristics, by quantifying the profit-impact of

such characteristics. Consequently, we identify the conditions under which advance selling offers the

most value (e.g., when demand uncertainty or cost of building capacity is high). Finally, we study

the joint benefits of acquiring information for capacity planning through advance selling and revenue

management of installed capacity through dynamic pricing. Modeling and studying this scenario

bridges the revenue and capacity management literature.

2 Literature Review

There is an extensive body of research dealing with capacity management in different environments.

When product lifecycles and sales seasons are long and production leadtimes are short, adjustment

of the capacity level over time could be possible. Examples for such products are cement and

steel. For such products, Manne (1967) establishes optimal expansion policies for a market with

stochastic growth patterns. Luss (1982) provides a comprehensive review of joint capacity expansion

4



and production management problems. This literature assumes steady growth in demand. More

recently, Angelus and Porteus (2002) characterize an optimal policy for simultaneous management

of capacity and production, whereby stochastic demand can reduce over time. Bradley and Glynn

(2002) study a continuous version of a simultaneous capacity and inventory decision problem. Lovejoy

and Li (2002) study capacity decisions for hospital operating rooms that consider the objectives of

patients, surgical staff and hospital administration. Van Mieghem (2003) provide an extensive review

of the recent capacity literature, in which demand is always modeled as an exogenous process. As

pointed out by Van Mieghem (2003), the capacity literature has not paid much attention to the more

realistic demand models which are partially exogenous and partially endogenous. The present paper

takes a step in this direction.

When the capacity cannot be adjusted during the sales horizon, and when the capacity is per-

ishable after the sales horizon, the firm can increase expected profit through dynamic pricing and

revenue management. Bitran and Caldentey (2003) and Elmaghraby and Keskinocak (2003) provide

comprehensive reviews of this topic. The textbook treatment of this literature can be found in Talluri

and van Ryzin (2004) and Phillips (2005). This literature takes capacity as given and maximizes

revenue by adjusting prices over time based on the level of left-over capacity and price-sensitive cus-

tomer arrival rates (e.g., Gallego and van Ryzin 1994, Feng and Gallego 1995, Bitran and Mondschein

1997). Carr and Lovejoy (2000) provide an alternative method in which the capacitated firm selects

a portfolio of demand distributions from a set of potential customer segments. All these authors also

point out that frequent price adjustments could be costly and hence should be exercised with care.

In the manufacturing sector, where customer relationships are important, selling capacity and the

product at different prices is generally not considered to be a relationship-preserving strategy. In

our basic model, a finite number of price adjustments are made prior to the capacity decision, but

once advance selling stops and the capacity is set, the sales price remains uniform for all remaining

customers. In this way, we retain focus on the capacity planning problem, which constitutes the core

of our study. Nevertheless, we also consider an extension that allows installed capacity to be sold

via dynamic pricing. This extension bridges capacity planning with revenue management through

an advance selling strategy.

A recent line of research in dynamic pricing investigates the effect of demand parameter learning

(Braden and Oren 1994, Aviv and Pazgal 2005a,b, Araman and Caldentey 2008 and the references

therein). This line of research focuses on the pricing problem for which the perishable capacity at

the beginning of a regular sales season is given. These authors extend the pricing model of Gallego

and van Ryzin (1994) in various interesting directions, in particular, to account for learning demand

parameters. They provide methods to compute optimal (and close-to-optimal) prices for left over

inventory until all remaining capacity is sold. Araman and Caldentey (2008) introduce the option
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of stopping sales before consuming all capacity if the value function is lower than an exogenously

specified profit level (which can be interpreted as the reservation profit obtained from selling an

alternative product). Unlike these papers, we do not assume that capacity level at the beginning of a

regular period is given. Instead we focus on pricing schedules that collect commitments to purchase

earlier, i.e. during advance sales periods, and use this information to decide on the capacity at the

beginning of the regular sales season. These studies explicitly examine the role of demand parameter

learning in a Bayesian context, whereas we do not. Nevertheless, in our concluding remarks, we

discuss how the proposed model can also account for such a learning process.

There is also a large body of research that studies how capacity can be used effectively through

managing production and inventory. In this literature, capacity is an upper bound on production

quantity and it is exogenously specified (see Aviv and Federgruen 1997, Özer and Wei 2004 and

references therein). Within this line of research, there is a growing literature that studies advance

demand information and its use in capacity constrained production and inventory systems. (see,

Özer and Wei 2004, Hu et al. 2004, Gayon et al. 2008, Wang and Toktay 2008). These papers

establish optimal production policies for various environments and show, for example, that advance

demand information is a substitute for capacity. This literature takes advance demand information

as exogenous to the system. For an inventory system with ample capacity, Weng and Parlar (1999)

and Chen (2001) explore the cost and benefit of price incentives to induce time-and-price-sensitive

customers to place advance orders. Prasad et al. (2008) consider a newsvendor retailer serving

heterogenous customers with uncertain future valuations of a product, and explore the benefits of

advance selling at discounted prices.

Another group of researchers study how advance purchase or selling affects the allocation of

inventory risk within a supply chain (Dana 1998, Cachon 2004, Netessine and Rudi 2006, Taylor

2006, Özer et al. 2007, Dong and Zhu 2008 and references there in). Although advance selling

strategy forms the common ground, the primary focus of this stream is different from ours. Modeling

inventory decisions within a supply chain under exogenous stochastic demand, these papers focus

on allocation of inventory risk and supply chain performance, division of profits, incentives and

coordination. In contrast, we investigate how pricing and advance selling can be used to manage

demand for the purpose of capacity planning.

The rest of the paper is organized as follows. In § 3, we describe the basic elements of our model.

In § 4 and § 5, we establish the optimality of control-band policies for offering advance sales for

the exogenous and optimal pricing strategies, respectively. In § 6, we present a numerical study and

generate managerial insights regarding the value of an advance selling strategy for capacity planning.

In § 7, we provide an extension where installed capacity can be sold via dynamic pricing. In § 8,

we conclude and suggest directions for future research. Proofs of all propositions are deferred to the
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appendix.

3 The Model

3.1 Preliminaries

We consider a planning horizon with T time units that consists of the regular sales season and the

prior capacity planning period. We do not make any assumptions about the length of each period.

The regular sales season is indexed as T. Periods 1, ..., T −1 represent possible advance sales periods,

during which the firm can collect advance commitments from customers before the capacity decision

is made and the start of the regular season, hence the term advance selling. The manufacturer faces

random, price-sensitive stochastic demand in each period.

The manufacturer has one opportunity to invest in capacity before the regular sales season starts.

When the manufacturer stops offering advance sales in period t, she builds capacity at unit cost ct,

based on the acquired advance sales information. The remaining demand is served during the regular

sales season. The installed capacity defines the upper bound on how much the manufacturer can

produce and sell during the sales season. If the manufacturer under-invests in capacity, she loses

potential sales revenue. If she over-invests in capacity, she incurs a unit cost cu for unused capacity

at the end of the sales season. The unit production cost is denoted as cp.

Let L denote the nominal leadtime for capacity construction. By expediting the building process,

the manufacturer can reduce this leadtime to L. Consequently, the latest time for the manufacturer

to decide on the capacity level to build is the beginning of period T − L. For expositional clarity,

we assume L = 0, which means that the manufacturer can postpone the capacity decision until the

beginning of the sales season T. A positive L can easily be incorporated into the model without

changing the nature of the results. As noted earlier, expediting the building of capacity typically

results in additional costs, implying that the capacity costs {ct} should be non-decreasing. Although

this is plausible, we do not posit such an assumption as it is not required in our analysis.

Note that by delaying the capacity investment decision, the manufacturer can acquire demand

information through advance selling and use this information for better capacity planning. She also

collects revenue earlier. Hence, she may earn interest on advance sales. However, the manufacturer

may incur additional costs if this delay results in higher construction costs. The revenue collected

later is also discounted. Furthermore, depending on the advance sales prices, she also runs the risk of

selling capacity at a lower profit margin. In the presence of such multiple trade-offs, the manufacturer

needs to address two key questions: (i) How much advance sales information is sufficient to decide

on the capacity? and (ii) given this information, what is the optimal capacity level? To answer
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these questions, we develop a dynamic programming formulation of the manufacturer’s problem and

determine the optimal time for ending advance selling and building capacity.

We also consider the manufacturer’s pricing decision. In particular, we study two fundamental

pricing strategies that differ in the degree of pricing control the manufacturer can exert during the

advance sales and the regular sales periods. First, we study the exogenous pricing scenario in which

the manufacturer has predetermined sequence of prices for the advance sales periods as well as the

regular selling season. These prices may represent a mark-up or a mark-down structure (see, for

example, Feng and Gallego 1995 or Bitran and Mondschein 1997). This prevalent case is modeled

by taking an arbitrary sequence of prices (p1, ..., pT ) as given. Next, we study the optimal pricing

scenario in which the manufacturer determines the advance and regular sales prices optimally in

addition to the capacity decision. We note, however, that our primary focus is to investigate a new

capacity planning strategy with advance selling; pricing decisions are secondary in nature.

For each of the pricing strategies, the manufacturer’s decision process is as follows. At the begin-

ning of each period t < T , the manufacturer first observes the prevailing advance sales information

and the total revenue from advance sales. Based on this information, she decides to either: (i) stop

advance selling and build capacity; or (ii) delay the capacity investment for one period and continue

advance selling at an optimally set price (resp., or an exogenously set price depending on the pricing

policy we address). If she stops, she determines the optimal level of capacity based on the advance

sales information and the remaining uncertain demand in the market, and sets the regular sales price

(resp., or takes this price as given). At the beginning of regular sales season, i.e., t = T , if the

capacity investment decision has not already been taken, the manufacturer is forced to build the

capacity. As before, she determines the optimal level of capacity and sets the regular sales price

(resp., or takes it as given). Next, we describe the demand model, the updating mechanism, and the

manufacturer’s expected profit.

3.2 Demand Model

We model market demand using an iso-elastic, price-sensitive aggregate demand model with a mul-

tiplicative form of uncertainty. Demand in each period depends on the uncertain potential market

size ξt, the price pt charged in that period, the cumulative commitments qt, and relevant historical

information3 µ̄t available at the beginning of period t. The pair (qt, µ̄t) defines the advance sales

information available at the beginning of period t. The actual demand in period t has the form:

Dt(pt|qt, µ̄t) = ft(qt, µ̄t)ξtp−bt .

3This information could be the vector of past prices p̄t ≡ (p1, ..., pt−1) offered up until that period or some function

of them. It could also include any other relevant information excluding qt.
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The price elasticity b is assumed to be the same across periods for ease of exposition. The poten-

tial market size ξt in each period is uncertain. They are independent random variables that have

increasing failure rates (IFR) with support on [0,∞).

The non-stationary function ft(qt, µ̄t) ≥ 0 models the information that the commitments qt,

in relation to the history µ̄t, provides about future demand. It captures the predictive value of

commitments. We call this the market signal imparted by the advance sales information regarding

the demand potential of the product. Based on the level of this signal, future demand is scaled up

or down. For t = 1, q1 ≡ 0, µ̄1 ≡ ∅ and hence f1(q1, µ̄1) ≡ 1. We assume that ft(qt, µ̄t) is linear

increasing in qt for any given µ̄t and for all t > 14. Based on the information available at time zero,

E[ft(qt, µ̄t)] = 1 for any selection of past prices p̄t = (p1, ..., pt−1) and for all t > 1.5 This property

implies that at time zero before the manufacturer starts to gather advance sales information, she

expects demand in any period t to be E[ξt]p−bt , which is independent of prices charged in periods

s < t. This property ensures that the manufacturer cannot use prices to artificially increase the

potential market size for the product. When the manufacturer engages in advance selling, however,

the acquired information can have predictive value regarding current and future demand. Depending

on the demand realization, next period’s market signal ft+1(qt+1, µ̄t+1) can be lower or higher than or

equal to ft(qt, µ̄t). We do not impose any assumption on its evolution.6 Our framework and structural

results are robust to various forms of market signal function and evolution. This flexibility enables

us to model a variety of scenarios as discussed later. In § 6 and § 8, we provide specific market

signal functions including those arising from Bayesian learning models and show that they satisfy

the above assumptions. Hence, in the rest of the paper, we do not restrict ourselves to a specific

form but instead study the problem given the above general functional form.

The evolution of demand is as follows. At the beginning of period t, if the manufacturer decides

to offer advance sales, the uncertainty ξt is realized as εt, and accordingly the actual demand dt =

ft(qt, µ̄t)εtp−bt is observed. The cumulative commitments and the history are updated as qt+1 = qt+dt,

and µ̄t+1 = φ(µ̄t, pt, dt) for some function φ(·).7 If the manufacturer decides to stop offering advance
4Linear increasing means that higher commitments signal the potential for stronger future demand. For example,

Carlson (1983) studies apparel sales data of a department store and shows that given the regular and mark-down prices,

post-mark-down sales rate is a linear function of pre-mark-down sales rate. Some Bayesian learning models satisfy this

assumption as well.
5Note that E[ft(qt, µ̄t)] can equal to any constant. Without loss of generality, we take the constant to be 1.
6Similarly, its expected value E[ft+1(qt+1, µ̄t+1)] taken at time t can be higher or lower than or equal to ft(qt, µ̄t).

This models a scenario where the current market signal is only a partial determinant of (expected) future demand. In

the more extreme case, E[ft+1(qt+1, µ̄t+1)] = ft(qt, µ̄t) for any price pt, which models a scenario where the predictive

value of the current market signal is very strong. In this case the manufacturer expects the current signal to sustain

at the same level, regardless of the price charged.
7The specification of φ(·) depends on the definition of µ̄t. For example, it may not be necessary to know both pt

and dt to update µ̄t.
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sales, the remaining customers are served during the regular sales season. This remaining demand is

a function of the current market signal ft(qt, µ̄t), the remaining potential market size χt ≡
∑T
j=t ξj ,

the price p charged in the selling season, and is given by Xt(p|qt, µ̄t) ≡ ft(qt, µ̄t)χtp−b. Since IFR

property is closed under convolutions (Barlow and Proschan 1975), χt is also IFR. Notice also that

χt is stochastically decreasing in t.

3.3 The Manufacturer’s Expected Profit

When the manufacturer continues advance selling in period t, she collects the revenue ptdt. Consider

an arbitrary period t ∈ {1 . . . T}, and suppose that at the beginning of period t the manufacturer has

decided to stop advance selling and invest in capacity. The manufacturer already has qt committed

customers at some past prices. At the beginning of period t, the total revenue obtained from

advance selling, i.e.,
∑t−1
k=1 pkdk is deterministic. The manufacturer is required to serve the committed

customers, so she would set the capacity level Qt above qt to also meet the remaining demand

Xt(p|qt, µ̄t) she will face during the selling season at price p. For this reason, it is convenient to write

Qt = qt+St, where St ≥ 0 denotes the surplus capacity. The manufacturer’s expected (undiscounted)

profit at the time when she stops advance selling and invests in capacity for a given qt and µ̄t is

Πt(p, St|qt, µ̄t) =
t−1∑
k=1

pkdk + πt(p, St|qt, µ̄t)− (cp + ct)qt, where (1)

πt(p, St|qt, µ̄t) = (p− cp)E[min {Xt(p|qt, µ̄t), St}]− ctSt − cuE[St −Xt(p|qt, µ̄t)]+. (2)

Note that x+ ≡ max{0, x}, and the expectation is taken at time t with respect to the remaining

uncertain market demand Xt(p|qt, µ̄t). Note that maximizing (1) is equivalent to maximizing (2)

when the optimization is over the surplus capacity. Next we analyze the manufacturer’s problem of

acquiring information through advance selling and pricing for capacity planning. We start with the

exogenous pricing case followed by the case where prices are determined optimally.

4 Exogenous Prices

Consider an arbitrary sequence of prices P = (p1, p2, ..., pT ), where prices p1 through pT−1 are

for advance selling periods and pT is the price for the regular sales season. At the beginning of

period t, the manufacturer observes the advance sales information (qt, µ̄t) and decides whether or

not to continue advance sales. If the manufacturer decides to stop advance sales, she determines

the optimal surplus capacity S∗t to build. We assume pT ≥ cp + ct for t ≤ T . This assumption

ensures that the manufacturer makes positive profit from customers who buy during the regular

sales season. Otherwise, there is no reason to build capacity more than the total commitments qt.8

8The manufacturer can also ensure positive return from advance purchasers by requiring prices to be such that

pt ≥ cp + maxt=1,...,T {ct} for all t. This assumption, however, is not required for our analysis.
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The manufacturer determines S∗t by maximizing the profit function in Equation (2), which yields

S∗t ≡ min{S | P (Xt(pT |qt, µ̄t) > S) =
ct + cu

pT − cp + cu
}.

The resulting optimal expected (undiscounted) net profit from the remaining customers is then

π∗t (qt, µ̄t) = πt(pT , S∗t |qt, µ̄t).

By letting s∗t = S∗t /ft(qt, µ̄t), we can rewrite π∗t (qt, µ̄t) as π∗t (qt, µ̄t) = ft(qt, µ̄t)Γ∗t , where

Γ∗t = (pT − cp)E[min
{
χtp
−b
T , s∗t

}
]− cts∗t − cuE[s∗t − χtp−bT ]+. (3)

The manufacturer’s optimal capacity level is Q∗t = qt + S∗t and optimal total expected profit is

Π∗t (qt, µ̄t) = Πt(pT , S∗t |qt, µ̄t) =
t−1∑
k=1

pkdk + π∗t (qt, µ̄t)− (cp + ct)qt.

Next we formulate the dynamic program to determine the optimal time for the manufacturer to

stop acquiring advance sales information. The state space is given by the cumulative commitments

qt and the history µ̄t. We introduce an auxiliary state (N) in the commitment space to indicate that

the capacity decision has already been taken; i.e., qt = N if the capacity decision has been made,

and qt 6= N otherwise. Let ut(qt, µ̄t) denote the manufacturer’s action in period t:

ut(qt, µ̄t) =

 uc, continue advance sales at price pt,

us, stop advance sales, set price to pT and capacity level to Q∗t .
(4)

At the end of period t, the cumulative commitments and the history are updated as

qt+1 =

 qt + dt, if qt 6= N and ut(qt, µ̄t) = uc,

N, if qt 6= N and ut(qt, µ̄t) = us, or qt = N ,

µ̄t+1 =

 φ(µ̄t, pt, dt), if qt 6= N and ut(qt, µ̄t) = uc,

µ̄t, if qt 6= N and ut(qt, µ̄t) = us, or qt = N .

Let us now introduce α ∈ (0, 1] as the discount factor.9 Revenue is realized at the end of the period

when customers place advance orders and at the end of the regular sales period when remaining

customers purchase. The costs are incurred in the sales period. All results remain valid if revenues

from advance orders are collected at the time of delivery and/or capacity costs are incurred when

the investment decision is taken. The reward function for t ∈ {1, . . . , T − 1} is given by

gt(qt, µ̄t) =


ptdt, if qt 6= N and ut(qt, µ̄t) = uc,

αT−t {π∗t (qt, µ̄t)− (cp + ct)qt} , if qt 6= N and ut(qt, µ̄t) = us,

0, otherwise,

9A constant α implies that the discount factor is stationary overtime and the length of the periods are not too

different. Otherwise, period specific discount factors αt can be used.
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and for t = T , it is given by

gT (qT , µ̄T ) =

 π∗T (qT , µ̄T )− (cp + cT )qT , if qT 6= N ,

0. otherwise.

The function gt(qt, µ̄t) records the revenue from two sources. The first source is from customers who

purchase in period t when the manufacturer decides to continue advance selling (i.e., ut(qt, µ̄t) = uc).

This revenue source is from advance purchases. The second source is the expected revenue from

satisfying the remaining market demand (as much as possible) minus the cost of building capacity

and the cost of production (i.e., ut(qt, µ̄t) = us). The manufacturer’s problem is to maximize the

total expected profit discounted to the first period:

max
u1,u2,...,uT

E

[
T∑
t=1

αt−1gt(qt, µ̄t)

]
,

where the expectation is taken at time zero over Dt(pt|qt, µ̄t) for all t. The solution to this problem

is obtained by the following functional equation:

JT (qT , µ̄T ) =

 π∗T (qT , µ̄T )− (cp + cT )qT , if qT 6= N then uT (qT , µ̄T ) = us (forced decision),

0, if qT = N ,
(5)

and for t = 1, . . . , T − 1 we solve

Jt(qt, µ̄t) =

 max{αT−t[π∗t (qt, µ̄t)− (cp + ct)qt], E[ptDt(pt|qt, µ̄t) + αJt+1(qt+1, µ̄t+1)]} if qt 6= N,

0 if qt = N,
(6)

where the expectation is taken at time t with respect to Dt(pt|qt, µ̄t). When the maximum in

Equation (6) is attained by αT−t[π∗t (qt, µ̄t)− (cp + ct)qt], it is optimal to stop advance selling, set the

regular sales price to pT and set the capacity level to Q∗t , otherwise it is optimal to continue advance

selling at price pt.

For a more clear representation of the above optimal stopping problem we define Vt(qt, µ̄t) =

Jt(qt, µ̄t)−αT−t[π∗t (qt, µ̄t)− (cp+ ct)qt], and substitute Vt(qt, µ̄t) +αT−t[π∗t (qt, µ̄t)− (cp+ ct)qt] for Jt

in Equations (5), (6) and subtract αT−t[π∗t (qt, µ̄t)− (cp + ct)qt] from both sides of these equations to

obtain an equivalent formulation. The resulting dynamic program for t = 1, . . . , T − 1, is given by

Vt(qt, µ̄t) = max{0, Ht(qt, µ̄t) + αE[Vt+1(qt+1, µ̄t+1)]}, where (7)

Ht(qt, µ̄t) ≡ E[{pt − αT−t(cp+ct+1)}Dt(pt|qt, µ̄t)+αT−t{π∗t+1(qt+1, µ̄t+1)− π∗t (qt, µ̄t)}]

−αT−t(ct+1−ct)qt, (8)

and VT (qT , µ̄T ) = 0. Under this formulation, if Ht(qt, µ̄t) + αE[Vt+1(qt+1, µ̄t+1)] > 0, it is optimal

to continue advance selling. Note that the function Ht(qt, µ̄t) can be interpreted as the myopic

expected profit that the manufacturer can make by delaying the capacity decision one more period
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and collecting advance sales without considering the possible benefit of continuing advance selling

beyond period t + 1. The function αEVt+1(qt+1, µ̄t+1) is the additional expected profit due to the

impact of “continue” decision, i.e., advance selling during future profits.

To characterize an optimal policy, we define H̃t(qt, µ̄t) ≡ Ht(qt, µ̄t) + αE[Vt+1(qt+1, µ̄t+1)] and

identify if and when H̃t(qt, µ̄t) crosses the zero line. For t = 1, q1 ≡ 0 and µ̄1 = ∅, and hence the

decision is based on V1(0, ∅). For t = 2, ..., T − 1, we define

Lt(µ̄t) = min
{
qt|qt ≥ 0 : H̃t(qt, µ̄t) ≤ 0

}
, (9)

and we set Lt(µ̄t) = −∞ if min{qt|qt ≥ 0 : H̃t(qt, µ̄t) ≤ 0} = 0 and Lt(µ̄t) = ∞ if min{qt|qt ≥ 0 :

H̃t(qt, µ̄t) ≤ 0} = ∅. Similarly, we define

Ut(µ̄t) = max
{
qt|qt ≥ 0 : H̃t(qt, µ̄t) ≤ 0

}
, (10)

and we set Ut(µ̄t) =∞ if max{qt|qt ≥ 0 : H̃t(qt, µ̄t) ≤ 0} = ∅.

Theorem 1 The following statements hold for all t ∈ (1, T ):

1. The function H̃t(qt, µ̄t) is convex in qt for any µ̄t,

2. A state dependent control band policy is optimal; the optimal decision is

u∗t (qt, µ̄t) =

 us if Lt(µ̄t) ≤ qt ≤ Ut(µ̄t),
uc if qt < Lt(µ̄t) or qt > Ut(µ̄t),

3. The function Vt(qt, µ̄t) is convex in qt for any µ̄t.

Theorem 1 shows that a state-dependent control band policy is optimal. Under this policy, given

the history µ̄t, the manufacturer optimally stops advance selling when the cumulative commitments

fall between the control bands, i.e., qt ∈ [Lt(µ̄t), Ut(µ̄t)]. When the cumulative commitments are

lower than Lt(µ̄t), it is optimal to continue acquiring information about future market potential

through advance sales. In this case, the benefits of delaying capacity decision (e.g. acquiring demand

information, resolving part of market uncertainty and collecting revenue) outweighs the costs (e.g.,

higher cost of building capacity, risk of selling at a lower profit margin later, and earning a discounted

revenue). When the cumulative commitments is higher than Ut(µ̄t), the commitments signal a strong,

significantly more than expected, expanding future market potential. Such a strong market potential

allows the manufacturer to have one more opportunity to sell at a different price point by postponing

the capacity investment decision for another period when doing so is not too costly. We note that the

proposition do not rule out the cases when the upper threshold is very large or infinite. Intuitively,
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when commitments have no predictive value or it is too costly to delay, one may expect the upper

threshold to be infinity. The next theorem formalizes this observation and identifies the conditions

under which a threshold policy is indeed optimal.

Theorem 2 The following statements hold for all for t ∈ (1, T ).

1. Suppose that the advance commitments have no predictive value (i.e., ft(qt, µ̄t) = 1 for all qt,

µ̄t and t). If ct+1 > ct ∀t, then a threshold policy is optimal.

u∗t (qt) =

 us if qt ≥ Lt,
uc if qt < Lt .

If ct+1 = ct ∀t, then the optimal policy does not depend on the advance sales information, and

the functions H̃t(·, ·) equal constants H̃t for each t. In this case, the optimal stopping time is

the first t ∈ [1, T ] such that H̃t = 0.

2. Suppose that ct+1 is sufficiently larger than ct for all t. Then a state-dependent threshold policy

is optimal.

Theorem 2 shows that even when commitments carry no predictive value10 ; i.e., ft(·) = 1 for all t,

it can be optimal to engage in advance selling. Recall that the manufacturer collects revenue earlier

by advance selling. Hence, she earns interest on advance sales. She also reduces demand uncertainty

by inducing customers to place early orders, reducing her risk of excess capacity and shortage. Yet,

delaying capacity decision is costly when the construction cost is increasing, i.e., ct+1 > ct. The

theorem characterizes when it is optimal for the manufacturer to stop advance selling. It also shows

that if it is optimal to stop advance selling when the commitments exceed the threshold Lt, then

it is never optimal to continue advance selling for total commitments above this threshold. So,

Part 1 shows that in the absence of predictive value of commitments, there is no reason for the

manufacturer to reverse the stopping decision. In this case the manufacturer also does not need to

keep the history µ̄t in account. She only needs to know the cumulative commitments as the cost of

building capacity depends on t and hence qt. Hence, an optimal stopping policy for advance sales

is a threshold policy, and is state independent. In addition, if the cost of capacity does not depend

on t, then the manufacturer does not need to track cumulative commitments either. Part 2 also

shows that a threshold policy is optimal when the capacity cost in period t+ 1 is sufficiently larger

than that of period t for all periods. In short, the optimal policy is provably a threshold one when

commitments have no predictive value or when capacity cost increases excessively over time.
10We remark that the optimal policy remains to be a control-band when predictive value is very strong, i.e. when

expectation E[ft+1(qt+1, µ̄t+1)] taken at time period t equals to ft(qt, µ̄t) for any price path.
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5 Pricing for Advance Sales & Regular Season

We study a manufacturer who sets the advance sales prices and the price for the regular sales season.

We first characterize the manufacturer’s optimal pricing and capacity decisions and the resulting

profits when she stops advance selling. We conclude by characterizing the optimal advance sales

prices and the optimal stopping policy.

Theorem 3 Suppose that the manufacturer decides to stop advance selling and to build capacity in

period t with an existing level of cumulative commitments qt and history µ̄t, and that cp ≥ cu. Let

zt = St
ft(qt,µ̄t)p

−b
t

. Then, there exists a unique optimal regular sales price pst given as

pst = pt(z∗t ) =
(

b

b− 1

)(
cp +

ctz
∗
t + cuE[z∗t − χt]+

z∗t − E[z∗t − χt]+

)
, (11)

where z∗t is the unique solution of P (χt > zt) = ct+cu
pt(zt)−cp+cu

. The resulting optimal surplus capac-

ity is S∗t = ft(qt, µ̄t)z∗t (pst )
−b and optimal expected profit from remaining customers is π∗t (qt, µ̄t) =

ft(qt, µ)Γ∗t , where

Γ∗t =
1
b

(pst )
−(b−1) (z∗t − E[z∗t − χt]+

)
. (12)

The optimal capacity level is Q∗t = qt + S∗t and optimal expected undiscounted profit Π∗t (qt, µ̄t) is

Π∗t (qt, µ̄t) = Πt(pst , S
∗
t |qt, µ̄t) =

t−1∑
k=1

pkdk + π∗t (qt, µ̄t)− (cp + ct)qt. (13)

Theorem 3 provides closed-form solutions for both optimal surplus capacity and sales price during

the regular season. Note that the manufacturer uses the market signal, hence the advance sales

information, to set the optimal capacity level. Intuitively, the manufacturer is prompted build

optimal surplus capacity to account for the market signal accordingly. As a result, the manufacturer’s

expected profit from the remaining customers is already takes into consideration the market signal.

Hence, the optimal regular sales prices pst do not need to depend on the advance sales information.

To elaborate more on the structure of the optimal prices for the regular selling season, we establish

the following basic properties:

Theorem 4 Suppose that the manufacturer has decided to stop advance selling in period t. The

optimal regular sales season price satisfies pst > cp + ct. Furthermore, pst is increasing in ct, cp and

cu. Consequently, the optimal capacity level Q∗t is decreasing in ct, cp and cu.

This result shows that when setting the selling season prices, the manufacturer guarantees herself

a positive margin from sales. This margin ensures that the optimal surplus capacity S∗t is positive.

Intuitively, when the manufacturer has the ability to set the regular sales price, she would set the
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price such that building surplus capacity is profitable. Furthermore, the higher the costs, the higher

the prices charged to customers. Higher prices reduce demand, and prompt the manufacturer to

build less capacity.

To derive the manufacturer’s optimal stopping policy and the optimal advance sales prices, we

modify the dynamic programming in §4. For t < T , the functional equation is given by

Vt(qt, µ̄t) = max
{

0, max
pt∈Rt

E
[(
pt − αT−t(cp + ct+1)

)
Dt(pt|qt, µ̄t) + αT−t

(
π∗t+1(qt+1, µ̄t+1)− π∗t (qt, µ̄t)

)]
−αT−t(ct+1 − ct)qt + αE[Vt+1(qt+1, µ̄t+1)]

}
, (14)

≡ max
{

0, max
pt∈Rt

{Ht(pt, qt, µ̄t) + αE[Vt+1(qt+1, µ̄t+1)]}
}

(15)

≡ max
{

0, max
pt∈Rt

Rt(pt, qt, µ̄t)
}

(16)

≡ max{0, H̃t(qt, µ̄t)}, (17)

and VT (·, ·) ≡ 0. The expectations are taken at period t with respect to ξt. Rt is a convex set of

possible advance sales prices for each period t. Let pct denote the optimal advance sales price in

period t. To state the optimal stopping result, we define if and when H̃t(·, ·) crosses the zero line. As

before, these points are Lt(µ̄t) and Ut(µ̄t), which are defined as in (9) and (10), respectively.

Theorem 5 The following statements hold for all t ∈ (1, T ):

1. The function Rt(pt, qt, µ̄t) is convex in qt for any pt and µ̄t,

2. The function H̃t(qt, µ̄t) is convex in qt for any µ̄t,

3. A state-dependent control-band policy is optimal; i.e.,

u∗t (qt, µ̄t) =

 us if Lt(µ̄t) ≤ qt ≤ Ut(µ̄t),
uc if qt < Lt(µ̄t) or qt > Ut(µ̄t),

4. The function Vt(qt, µ̄t) is convex in qt for any µ̄t.

This result shows that the structure of the optimal stopping policy for acquiring advance sales

information remains the same when the manufacturer determines advance and regular sales prices

optimally. The actual threshold values, however, depend on sales prices. Optimal advance sales prices

and thresholds can be determined numerically, for example, by a backward induction algorithm.

6 Numerical Study

We conduct a numerical study to illustrate the impact of different operating and market/demand

factors on the advance selling policy and on the manufacturer’s profit using a specific a market signal
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function. We base this analysis on the scenario in which the manufacturer sets advance and regular

sales prices optimally in addition to the capacity.

6.1 A Specific Market Signal Function

So far, we have characterized the optimal advance selling policy under a generic market signal

function. The manufacturer keeps track of the total commitments qt and the history µ̄t in order to

specify and update the market signal and demand. Hence, the dimension of the state space depends

on the functional form of ft(qt, µ̄t). In certain cases, it may increase as time progresses, for example,

when one needs to keep track of all past prices. Nevertheless, when µ̄t is a scalar representing

summary statistics of the advance sales information then the state space is given by the two-tuple

(qt, µ̄t), achieving state-space reduction. Consider the following market signal function, which we use

in our numerical experiments:

ft(qt, µ̄t) = 1 + θ

(
qt − µ̄t
µ̄t

)
= (1− θ) + θ

qt
µ̄t

for t = 2, ..., T , (18)

where µ̄t =
∑t−1
j=1E[ξj ]pj−b and θ ∈ [0, 1) is a constant. Note that given the past prices (p1, ..., pt−1),

the manufacturer’s estimate of the demand for each period t, based on the information available at

time zero, is E[ξt]pt−b. Hence, before acquiring any advance sales information, i.e., at time zero, the

manufacturer expects to collect µ̄t units of commitments by period t. Note that when the expectation

is taken at time zero, E[ft(qt, µ̄t)] = 1 for all t and any price path. Depending on the demand

realizations, however, the actual commitment level qt can exceed or fall below the expected amount

µ̄t and the market signal fluctuates around 1. If qt exceeds µ̄t, the manufacturer has collected more

advance sales than she initially expected, and vice versa. In consequence, next period’s expected

market signal can be higher or lower than ft(qt, µ̄t). The parameter θ ∈ [0, 1) is akin to a smoothing

constant in forecasting, and defines the extent of correlation between the market signal provided

by advance sales and future demand. Note that as the manufacturer continues advance selling, the

cumulative commitments and the summary statistics for advance sales information are updated as

qt+1 = qt + dt = qt + ft(qt, µ̄t)εtp−bt and µ̄t+1 = µ̄t + E[ξt]pt−b, respectively.11

11Note that the market signal can also be expressed recursively; i.e., ft+1(qt+1, µ̄t+1) = ft(qt, µ̄t) +

θεtp
−b
t (ft(qt, µ̄t)µ̄t − qt) . We observe that when qt > µ̄t (which implies ft(qt, µ̄t) > 1), next period’s expected market

signal E[ft+1(qt+1, µ̄t+1)] is still larger than 1, but is less than ft(qt, µ̄t). Hence, although the manufacturer has sold

more than she initially expected, she does not necessarily expect the future demand to arrive at exactly the same

strength. In other words, there is smoothing of the advance sales information provided by the market signal function,

the extent of which is determined by θ. The opposite scenario qt < µ̄t can be interpreted similarly.
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6.2 Numerical Study Setup

Market Signal and the Predictive Value of Commitments: We use the market signal function

ft(·, ·) specified in Equation (18). The extend of correlation between advance purchase commitments

and future demand is measured through the smoothing constant θ. When θ = 0, demand in each

period is independent of prior commitments, and as θ → 1, the signal provided by the commitments

is a very strong indicator of future demand. A strong dependence between past and future demand

could be observed, for example, in fashion products and apparel industry. In contrast a low level of

θ would likely apply more to mature consumer products.

Customer Time Preferences: We model ξt+1 as an independent random variable with a

distribution identical to the distribution of (1 + k)ξt for t > 1 and k ∈ (−1, 1). Note that k (k > −1)

is a measure of customers’ time preference for purchasing decisions. When k > 0 (resp., k < 0), more

customers prefer to purchase later (resp., earlier), indicating a higher (resp., lower) anticipation in

the market for potential shortages in capacity. In other words, when k > 0 the distribution of the

future period’s market potential ξt+1 is stochastically larger than the previous period’s ξt. When

k = 0 there is no clear time preference. Hence, we refer to k as the “late purchase tendency”. We

also model ξt as Normally distributed random variables with mean [(1 + k)t−1/
∑T
j=1(1 + k)j−1]µ

and standard deviation (1 + k)t−1/
√∑T

j=1(1 + k)2(j−1)]σ. Hence, the total market potential
∑T
t=1 ξt

is Normally distributed with mean µ and σ, and is independent of k.

Capacity Cost: The unit cost of capacity ct is of the form ct = c0 + δt, where c0 is the base cost

of capacity and δ (δ ≥ 0) is the measure of how this cost increases as the sales season is approached.

By varying c0 we investigate the effects of overall cost of capacity, whereas different δ values indicate

the importance of time in building capacity.

Price Sensitivity and Set of Advance Sales Prices Rt: The price sensitivity of customers

in the model is measured by the parameter b. The set Rt has n > 0 finite number of prices that

are uniformly distributed in the region [(1 − a)pst , (1 + a)pst ], where a > 0 and pst is defined in

Equation (11); i.e., Rt = {(1 − a)pst , . . . , p
s
t , . . . , (1 + a)pst}. We include the optimal price for the

regular selling season pst among the possible prices to be offered during advance selling period. For

practical motivations of considering discrete prices, see Gallego and van Ryzin (1994).

6.3 Measures of Interest

In addition to the optimal policy, the manufacturer can follow two advance selling strategies. One

extreme is to set the regular sales price and capacity in period 1 without advance selling. We refer

to this scenario as “no advance selling” scenario, for which the corresponding expected profit Gno is
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given by αT−1Π∗1(0, ∅), where Π∗1(0, ∅) is defined in Equation (13). The other extreme is to continue

advance selling until the last advance sales period, T−1. We refer to this one as “full advance selling”

scenario. The corresponding expected profit Gf is obtained by policy evaluation in which the decision

ut(qt, µ̄t) is forced to be uc instead of choosing the maximum in Equation (17). The expected optimal

profit G∗ is given by V1(0, ∅) in Equation (14). The difference between the optimal strategy and the

first extreme is the expected value of advance selling or value of information acquisition. To quantify

this value, we report Ino = [(G∗ − Gno)/Gno]x100%. The profit difference between the optimal

strategy and the second extreme is the expected value of knowing when to stop advance selling or

value of optimal advance selling. To quantify this measure, we report If = [(G∗ − Gf )/Gf ]x100%.

Figure 1 illustrates the resulting expected profits under optimal advance selling, no advance selling

Value of
Advance
Selling

Value of
Knowing
When to
Stop
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3.5
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Figure 1: Expected Profits and Thresholds for T = 5, µ = 1000, σ = 80, cu = 2, cp = 3, c0 = 1.2,

δ = 0.18, k = 0, b = 2, α = 0.95, θ = 0.3, a = 0.1 and n = 7.

and full advance selling. The resulting percentages are Ino = 10.93% and If = 1.02%. For this

example, the expected profit to advance sell and build capacity later is 50.85, which is larger than

45.84 the profit of stopping and building capacity in the first period. The figure also illustrates the

optimal lower threshold Lt(µ̄t) as a function of expected commitments µ̄t when t = 2. For example,

if the manufacturer expects more commitments at the beginning of period two (such as µ̄2 = 3),

and the quantity committed so far is low (such as q2 = 2), then it is optimal to continue advance

selling. Note also that the threshold increases with µ̄2. Intuitively, the manufacturer is more likely to

continue advance selling and acquiring information when the expected commitments is high. We note

that the upper threshold Ut was large relative to the Lt and the mean demand, or it was infinite in our

structured numerical study. However, it is possible to construct cases where both Lt and Ut are finite,

and are relatively close to each other. For example, when T = 5, cp = 3, cu = 2, c0 = 1.2, δ = −0.1,

b = 2, µ = 1000, σ = 80, θ = 0.3, α = 1, k = 0, for the pricing policy P = (4.2, 4.1, 4.0, 3.9, 4.65),

the optimal control band for the second period is L2 = 11.33 and U2 = 24.66, resulting in optimal

expected profit 18.79, and Ino = 4.06% and If = 4.78%.
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6.4 Effect of the Environment

We quantify the effect of various operating and market/demand factors on the optimal advance

selling strategy. In particular, we investigate how these factors affect the optimal expected profit,

the value of advance selling and the value of knowing when to stop. We use the following parameters

in the base scenario: T = 5, µ = 1000, σ = 100, cu = 2, cp = 3, c0 = 1.2, δ = 0.3, k = 0, b = 2,

α = 0.95, θ = 0.3, a = 0.1 and n = 7. For this base case, the expected optimal profit is G∗ = 48.02

and the value of advance selling is Ino = 4.75% and the value of knowing when to stop is If = 4.73%.

To have a balanced view, we chose the base parameter set such that these two measures of value are

equal. We change one parameter at a time, while keeping the others constant.

Impact of Overall Market Uncertainty: We test the effect of the coefficient of variation of

the total market demand potential by varying σ ∈ [40, 110]. The results are illustrated in Figure 2.

The expected profit decreases with higher demand variability. This is consistent with known results

for the traditional newsvendor problem. We also observe that the value of information acquisition (or

advance selling) increases with market uncertainty while the value of knowing when to stop decreases.

Intuitively, when the market uncertainty is high, the value of acquiring information through advance

selling is high and hence, stopping closer to the last period is more likely to be an optimal policy. In

most cases, the two measures If and Ino would be complements. While one is increasing the other

will be decreasing. These observations suggest that advance selling mitigates the adverse effect of

demand uncertainty.
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Figure 2: The Impact of Overall Market Demand Variability(σ)

Impact of Capacity Cost Structure: Figure 3 illustrates the effects of the “incremental”

cost of capacity as measured by δ (i.e., how rapidly cost of building capacity increases as the regular

sales season nears). In general, increasing capacity construction costs reduces profit. Note also that

the value of information acquisition through advance selling is also decreasing with δ. Essentially,

large δ penalizes late construction. If the late construction is too expensive, the optimal solution

is to build capacity sooner than later and not to acquire information. From the above results we
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conclude that the value of information acquisition is greater when time is not a major constraint for

the manufacturer in building capacity.
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Figure 3: The Impact of Incremental Cost of Capacity (δ)

Figure 4 illustrates the effects of “base” capacity cost c0 (i.e., how expensive capacity cost is in

general). Note that the manufacturer’s profit naturally decreases as capacity becomes more costly,

but the reduction in profits is even higher when the manufacturer does not offer advance sales.

Consequently, the benefit of advance selling actually increases as base capacity cost increases. These

results show that the value of information acquisition is higher when capacity is more expensive

relative to the penalty cost of late construction.
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Figure 4: The Impact of Base Capacity Cost (c0)

Impact of Predictive Value of Commitments: Figure 5 shows the impact of the predictive

value of commitments, as measured by the smoothing parameter θ. Observe that as θ increases,

the value of advance selling first increases. However, when θ is very high, the commitments send

strong signals of future demand, indicating a potential for high mean and variance. High uncer-

tainty reduced the expected profit, the value of information acquisition as well as knowing when to

stop. Consequently, advance selling is most beneficial when the predictive value of commitments is

moderate. Note, however, that the absolute scale of changes is quite small.

Impact of Customer Time Preferences: The value of information acquisition is also related
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Figure 5: The Impact of Predictive Value of Commitments (θ)

to whether customers anticipate shortages or not. In the event of potential shortages in supply,

customers would be more tempted to commit to advance purchases, and also to commit earlier in

time. Figure 6 demonstrates the influence of customers’ time preferences through the late purchase

tendency parameter k. As more customers tend to commit earlier (smaller k), the profit and the

value of information acquisition increases. Figure 6 supports the claim that advance selling yields a

higher benefit when there is more anticipation of capacity shortages in the market.
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Figure 6: The Impact of Customer Time Preferences (k)

Impact of Price Sensitivity: Figure 7 illustrates the effects of customer price sensitivity. When

customers are more price-concerned, the manufacturer’s profitability is reduced. This results in lower

value of information acquisition. Note also that when the customers are not price sensitive, acquiring

information until the last period becomes more likely. Hence the expected value of knowing when

to stop advance selling decreases. These observations suggest that low customer price sensitivity is

another condition for maximizing the gains from advance selling.

These numerical results help identify that advance selling and “let them come and build it later”

is a profitable strategy, in particular, when: (i) demand uncertainty is high; (ii) more customers

anticipate capacity shortages in the market; (iii) building capacity is expensive, but timing is not a

major concern; (iv) commitments have moderate predictive value about market potential; and (v)
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Figure 7: The Impact of Customer Price Sensitivity (b)

customer price sensitivity is relatively low. We note that, with these conditions, one can construct

cases where the value of advance selling Ino is arbitrarily high.

6.5 Optimal Prices

To quantify the value of advance selling and the value of knowing when to stop in the previous

section, we compute, for each period, the optimal advance selling price pct and the optimal regular

season price pst when the manufacturer decides to stop advance selling.
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Figure 8: Optimal Advance Selling and Regular Season Prices

Figure 8 plots the optimal prices as a function of commitments qt for a given expected commitment

level µ̄t = 2.2 when t = 2. The base data set is the same as in Figure 1. Note that the optimal market

price ps2 does not depend on the commitments (Theorem 3). The optimal advance selling price pc2,

however, is increasing in the number of commitments. This is because having more commitments

suggests a stronger market and allows the manufacturer to charge higher advance selling prices.

Figure 8 also depicts the evolution of the prices over time for different commitment levels, qt = 0.7µ̄t,

qt = µ̄t, qt = 1.3µ̄t for each t, corresponding to low, medium and high level of commitments. For

t = T = 5, the manufacturer is forced to build capacity. As before, for a given t, pct is non-decreasing

in qt (high commitments induce high advance sales prices). Furthermore, both the advance sales

prices and the regular season prices are increasing over time. Finally, note that the advance sales
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prices are always lower than the regular season prices, implying that the customers committing to

buy earlier are garnering discounts.

Figure 9 depicts the optimal advance sales prices as the incremental cost of building capacity

δ changes for different commitment levels qt = 0.7µ̄t, qt = µ̄t and qt = 1.3µ̄t. Note that for any

given t where pct is not reported, it is optimal for the manufacturer to stop advance selling in that

period. It is possible to infer from Figure 9 that for any capacity cost structure, higher level of

commitments, induce the manufacturer to stop advance selling earlier. Generally speaking, increasing

the incremental cost of capacity δ results in higher advance selling prices. The exceptions are due to

discretization of the advance selling price set Rt, which are set based on the optimal regular season

price pst . When δ changes, so does the set of advance prices considered at that period, which can

result in non-monotonic results. Consequently, the optimal advance sales prices can display non-

monotonic behavior over time as well (although within a fairly restricted range). We note that the

changes in other cost or market parameters have rather predictable effects on optimal prices, and

hence are omitted for brevity.
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Figure 9: Optimal Advance Sales Prices as δ Changes for qt = 0.7µ̄t, qt = µ̄t and qt = 1.3µ̄t

6.6 Computational Aspects, Algorithmical Complexity, and a Heuristic

In determining the optimal advance selling prices, we search n uniformly distributed prices in the

range [(1 − a)pst , (1 + a)pst ] for each period t. Figure 10 illustrates the optimal expected profit as a

function of number of prices n and the price range a. We highlight two observations. First, the

expected profit increases with either factors. Essentially, increasing n and a is equivalent to relaxing

the constraint set, which in turn increases the optimal expected profit. Second, note that the marginal

return on profit is decreasing with these factors. For example, when a = 0.1 considering 7 or more

prices does not change the profit significantly. Hence, there is a decreasing return to considering

larger price sets, which require significantly more computational effort.

The algorithm to solve the general case is of complexity O(nT ), which implies that finding optimal

advance and regular season prices is a computationally expensive task. For this reason, we examined
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Figure 10: The Impact of Price Set R

heuristic pricing policies. Recall that pst is the optimal price for the regular sales season when the

manufacturer stops collecting commitments at period t. Consider a heuristic advance sales pricing

policy under which the manufacturer charges the same price pst even when she continues to collect

commitments in period t. The computational effort required to numerically solve this heuristic is

the same as that of the exogenous pricing case (i.e., O(T )). We have tested the performance of this

heuristic for different values of δ, c0 and σ, and used regression to compare the heuristic profit to the

optimal profit (for details refer to Appendix A). The resulting that R2 was close to 1 for all factors,

suggesting that the heuristic can safely be used to investigate the impact of parameter changes. The

average optimality gap across all experiments was also very small (0.535%).

7 Dynamic Pricing to Sell Capacity

Our objective here is to investigate the trade-off between two strategies that mitigate the adverse

effect of demand uncertainty: (1) information acquisition for capacity planning through advance

selling and (2) revenue management of installed capacity through pricing during the regular sales

season. To do so, we study a manufacturer who, in addition to employing advance selling and

pricing to determine the capacity level, sets prices dynamically to sell the installed capacity during

the regular sales season. The manufacturer first acquires information through pricing and advance

selling. When it is optimal to do so, she stops collecting advance sales information and uses this

information to optimally build capacity. During the regular sales season, the manufacturer sells

the installed capacity through dynamically setting prices. Note that this selling process combines a

strategic pricing and capacity decision with an operational pricing decision. Hence, the time scale

and periods for a strategic versus tactical level decision could be different. All actual sales and

deliveries take place in the regular sales season during which the manufacturer is allowed to adjust

prices M times, M ≥ 1.12

12An alternative way to model is to assume that the manufacturer can change prices in periods t + 1, ..., T where t

is the stopping time. Our structural results remain valid under this model as well.
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In order to solve this problem, we have to embed a second-stage dynamic program that prescribes

the optimal dynamic pricing policy and the resulting profit during the regular sales season for a given

level of capacity, and then determine the optimal capacity level. Since the manufacturer has M

opportunities to adjust prices over the regular sales season, let At,m, m = 1, ..,M denote the random

market demand potential she will face in the m-th pricing epoch (or sub-period). We assume that

At,m’s are independently distributed IFR random variables with support on [0,∞). Recalling that χt

is the remaining demand potential the manufacturer serves after stopping advance selling, for logical

consistency, it is desirable that the distribution of
∑M
m=1At,m is the same as the distribution of χt.

Denoting the price charged in the m-th epoch as pT,m, the random demand during the m-th pricing

epoch is DT,m(pT,m|qt, µ̄t) = ft(qt, µ̄t)At,mp−bT,m. Note that our original model corresponds to the case

when M = 1. For a given pricing policy P = (pT,1, ..., pT,M ), the manufacturer’s expected profit from

remaining customers during the regular sales season is

Γt(St, qt, µ̄t|P) =
M∑
m=1

(pT,m − cp)E[min{Sm, DT,m(pT,m|qt, µ̄t)}]− cuE[SM −DT,m(pT,m|qt, µ̄t)]+,

=
M∑
m=1

pT,mE[min{Sm, DT,m(pT,m|qt, µ̄t)}] + (cp − cu)E[SM −DT,m(pT,m|qt, µ̄t), ]+ − cpS1,

= ft(qt, µ̄t)

(
M∑
m=1

pT,mE[min{sm, At,mp−bT,m}] + (cp − cu)E[sM −At,mp−bT,M ]+ − cps1

)
,

≡ ft(qt, µ̄t)Γ̃t(st|P),

where we define Sm ≡ St for m = 1, and Sm+1 = [Sm−At,mp−bT,m]+ for m > 1, and sm ≡ Sm/ft(qt, µ̄t).
The second equality holds because total sales during the regular season plus the remaining capacity

equals the total capacity at the beginning of regular sales season, i.e., S1 =
∑M
m=1 min{Sm, DT,m}+

[SM − DT,M ]+. The objective is to solve Γ̃t(st) = minP∈P Γ̃t(st|P) where P denotes the set of all

policies. Finding Γ̃t(st) involves solving the following dynamic program:

Γ̃mt (sm) = max
pT,m
{pT,mE[min{sm, At,mp−bT,m}]+E[Γ̃m+1

t ([sm−At,mp−bT,m]+)]} for 1≤m<M, (19)

Γ̃Mt (sM ) = max
pT,M
{pT,ME[min{sM , At,mp−bT,M}]+(cp−cu)E[sM−At,mp−bT,M ]+}, (20)

where the expectation is with respect to the random variable At,m in each period m. Notice that by

definition Γ̃t(st) ≡ Γ̃1
t (s1).

The manufacturer’s optimal net profit from remaining customers when she stops advance selling in

period t and sells the surplus capacity St is sold via dynamic pricing is given by ft(qt, µ̄t)[Γ̃t( St
ft(qt,µ̄t)

)−
(ct + cp) St

ft(qt,µ̄t)
] = ft(qt, µ̄t)[Γ̃t(st) − (ct + cp)st] = ft(qt, µ̄t)[Γ̃1

t (s1) − (ct + cp)s1]. Optimizing over

also the capacity level, the manufacturer’s optimal net profit from remaining customers becomes

π∗t (qt, µ̄t) = ft(qt, µ̄t)[Γ̃t(s∗t )− (ct + cp)s∗t ] = ft(qt, µ̄t)[Γ̃1
t (s
∗
1)− (ct + cp)s∗1]. (21)
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Defining Γ∗t ≡ Γ̃t(s∗t ) − (ct + cp)s∗t , we have a similar structure as in Equation (3), i.e., π∗t (qt, µ̄t) =

ft(qt, µ̄t)Γ∗t . This implies that all of the preceding results regarding the optimal stopping policy for

acquiring advance sales information hold with the profit π∗t (qt, µ̄t) replaced by its new definition

above. We formalize this in the next theorem, which we state without proof.

Theorem 6 When the manufacturer sells installed capacity by dynamically adjusting prices, the

optimal stopping policy for advance selling is a state-dependent control-band policy.

The above result establishes the structure of the optimal policy. Yet, computing policy parame-

ters, such as the optimal prices and thresholds, remains as a difficult task. Essentially, the problem

is a two-stage, nested, stochastic dynamic programs with multiple decision epochs and continuous,

multi-dimensional state spaces. The first stage is the optimal stopping problem whose solution de-

pends on the second stage dynamic program specified in Equations (19)-(20). Even this second stage

problem is a challenging one to solve numerically. Monahan et al. (2004) study a similar problem

as the second-stage DP and report that efficient results can only be obtained when cp = cu. For this

case, they show that Γ̃mt (sm) = r∗m(sm)n, where

r∗m = max
z

z − E[z −At,m]+ + r∗m+1E([z −At,m]+)n

zn

s∗1 = (
nr∗1

ct + cp
)b,

Γ̃t(s∗t )− (ct + cp)s∗t =
1− n
n

(ct + cp)(
nr∗1

ct + cp
)b,

where n = 1− 1
b and r∗M+1 = 0. Hence, π∗t (qt, µ̄t) = ft(qt, µ̄t)Γ∗t , where Γ∗t = 1−n

n ( nr∗1
ct+cp

)b.

We use this result to numerically solve the second stage dynamic program and embed its solution

to the optimal stopping problem and solve for the optimal advance sales prices and stopping thresh-

olds. Figure (11) illustrates the results of a numerical study in which At,m is Normally distributed

with same mean and variance across all m. The parameters of this example is the same as the base

set, except σ = 40 and δ = 0.2.

Three observations are worth noting. First note that the expected profit is increasing with the

number of pricing opportunities. The percentage increase in expected profit between having M = 7

pricing epochs to having 1 is 1.25% = (65.83− 65.02)/65.02. Second, the marginal increase in profit

is decreasing. Third, the expected value of advance selling is decreasing, but the marginal decrease

is also decreasing. This observation suggests that dynamic pricing during regular sales season is only

a partial substitute for dynamic pricing during advance sales periods. Altogether, these observations

suggests that using a small number of price adjustments or even a single price during the regular

sales season is reasonably close to optimal, considering also the fact that such price adjustments are
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costly due to transaction costs (e.g. due to advertising new prices). Similar observations for this

second-stage problem are also reported in Gallego and van Ryzin (1994).
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Figure 11: Multiple Pricing Opportunities to Sell Capacity During the Regular Sales Season

8 Summary and Discussion

In this paper, we study the strategy of obtaining information about market potential through advance

sales for a better capacity decision. In particular, we consider a manufacturer who collects revenue

and information through advance selling prior to building capacity. Using advance sales information,

the manufacturer sets the capacity and satisfies the remaining demand during the regular season as

much as possible subject to the available capacity. We establish the optimal pricing strategy both

for the advance and regular selling seasons, and the optimal capacity to build. We also establish the

optimality of a control band policy that prescribes when to stop collecting advance sales information.

This policy is also optimal when prices are set exogenously (e.g. as mark-up or mark-down schedules).

Through a numerical study we quantify the expected value of this capacity planning strategy under

different market and operating conditions. We show that advance selling and “let them come and

build it later” is a profitable strategy, in particular, when: (i) demand uncertainty is high; (ii) more

customers anticipate capacity shortages in the market; (iii) building capacity is expensive, but timing

is not a major concern; (iv) commitments have moderate predictive value about market potential;

and (v) customer price sensitivity is relatively low. We also show that the extreme strategy of

collecting full advance selling information or not collecting any information leads to inferior solutions

in comparison to the optimal pricing strategy. These results suggest that the practice of advance

selling is of most value for industries such as high technology, apparel and pharmaceutical. For

example, telecommunication and semiconductor industries face high capacity building costs. They

often introduce new products for which the market uncertainty is also high relative to commodity type

products. Finally, we study a scenario in which the manufacturer continues to sell installed capacity

through dynamic pricing. Modeling this scenario bridges the revenue and capacity management

literatures. We show that selling capacity by dynamically adjusting regular sales prices increases the

expected profit but only to a limited extent. Next, we revisit a few aspects of our framework.
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Other Market Signal Functions: In our numerical examples we have utilized a specific form

of the market signal function, which smoothed the predictive value of cumulative commitments

over time. As noted earlier, it is possible to envision a case where next period’s expected market

signal is the same as the current level (i.e., E[ft+1(qt+1, µ̄t+1)] = ft(qt, µ̄t)) for any selected price

pt. In other words, the evolution of the market signal is a Martingale. This would correspond to

an extreme case where the current market signal is a firm indicator of future demand, such that the

manufacturer expects the current signal to sustain regardless of the price charged. As an example,

consider the following scenario where the manufacturer tracks the value ft of the market signal itself,

and recursively updates it:

ft = (1− θ)ft−1 + θ
dt−1

E[ξt−1]p−bt−1

= (1− θ)ft−1 + θft−1
εt−1

E[ξt−1]
(22)

In this case, the manufacturer needs to know only ft to update the market signal and the cumulative

commitments qt to determine its profit and optimal course of action. This does not suggest, however,

that ft is independent of the qt. As a matter of fact, substituting qt − qt−1 for dt and accordingly

taking µ̄t = (ft−1, qt−1, pt−1), (22) can be equivalently stated as ft(qt, µ̄t) = (1−θ)ft−1+θ qt−qt−1

E[ξt−1]pt−1
−b ,

which is linear increasing function of cumulative commitments qt. Also, at time zero, E[ft(qt, µ̄t)] = 1

for any given t and price path. Hence, our structural results on the form of the optimal policy for

acquiring advance sales information apply to this Martingale evolution model as well.

It is also possible to envision a case where the market signal depends only on the cumulative com-

mitments qt and not on past prices or other historical information. In this case, the linear increasing

signal ft(qt) would model strictly the “word-of-mouth effect” created by the cumulative number of

early purchasers. This type of dependency of future demand on past sales is a common feature in new

product diffusion models (as in Bass 1969). This case may occur when the manufacturer announces

the prices privately to each potential customer without revealing historical information. Residential

real estate developers sometimes use such a selling strategy. Alternatively, such a market signal

function could approximately model a case where early customers are relatively insensitive to prices.

Our structural results in §4 and §5 would apply to this case as well, with the added simplification

that the optimal control band policies would be state-independent.

Connection with Demand Learning Models: Although there is no formal learning of de-

mand parameters in our demand model, the functional form of the market signal makes it applicable

to a class of Bayesian models. Bayesian models of demand learning involve a multiple period hori-

zon whereby the demand in each period follows a known distribution with an unknown parameter

or vector of parameters (say, ω). There is a known prior distribution of ω, which is updated on

the basis of a sufficient statistic St as time progresses and demand realizes. For a certain class of

conjugate family of distributions, St is cumulative past sales qt or a function of it, and its effect on

the demand distribution can be factored out as a scaling function in the same spirit as our market
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signal function ft(·, ·). This approach was first used by Scarf (1960) to solve the dynamic inventory

management problem efficiently, and was later extended by Azoury (1985). Next we provide some

specific examples to illustrate the applicability of our framework and results in this setting. We refer

the reader to Azoury (1985) for a full account of the required conditions, details and other examples.

Suppose that the market demand potential in each period ξt are independent with distribution

ξt = ktξ, where kt’s (
∑T
t=1 kt = 1) are known scalars. Consider the case kt = 1

T and an exogenous,

fixed pricing scheme pt = p for t = 1, ..., T. This implies the demands across periods are independent

and identically distributed. When the distribution belongs to the Gamma family with unknown

scale parameter ω that also has a gamma prior distribution, cumulative sales qt is the sufficient

statistic for updating demand (hence µ̄t = ∅ for all t). Furthermore, the Bayes estimate of demand

in period t can be written as ft(qt)Dt, where ft(qt) = a + qt and a > 0 is a known constant, and

the distribution of Dt only depends on t (Scarf 1960, Azoury 1985). Notice that ft(qt) is increasing

linear in qt. Consequently, our optimal policy results in §4 apply to this scenario. When kt and pt

are non-identical (but still exogenous), defining k′t = ktp
−b
t , we have ξt = k′tξ, which are independent

but no longer identically distributed. In this case, qt is no longer a sufficient statistic; it is necessary

to know the history of past demand realizations (hence qt’s), causing a significant increase in the

dimensionality of the state-space.13 When prices are decision variables, it becomes necessary to track

past prices that define the scalars k′t. Nevertheless, given the history of past prices and commitments,

the scaling function can be expressed as a linear function of qt, which implies that our state-dependent

optimal policy results apply. The details are deferred to Appendix C.

Other Price Functions: In a multiplicative demand environment, there are alternatives to the

iso-elastic price function d(p) = p−b. This form facilitates the derivation of unique optimal regular

sales prices pst in Theorem 3. As shown in Song et al. (2008), the uniqueness is guaranteed when the

curvature of d(p), given as d(p) d
′′(p)
d′(p)2 , is increasing in p and is not too large (see their Assumption

2 for details). A large class of price functions including the iso-elastic one fit into this category.

Some other examples include d(p) = (a − bp)γ (a > 0, b > 0, γ > 0), d(p) = ae−bp (a > 0, b > 0),

d(p) = a− pb (a > 0, b > 1), and a− e−bp (a > 0, b > 0). Hence all the results remain valid for more

general price functions. The only complication would arise when the installed capacity is sold via

dynamic pricing because the iso-elastic function facilitates solving the second stage DP numerically.

Other Pricing Strategies: The flexibility to set advance and regular sales prices optimally

would generate the highest profits for the manufacturer. However, as also noted earlier, there are

some practical scenarios in which these prices are pre-determined by the manufacturer or the market.

13The sufficient statistics is St =
∑t−1

j=1
(dj/k

′
j) where dj is the realized demand in period j, and the scaling function is

given as k′t(a+St). Since dj = qj+1−qj , taking µ̄t = (q1, ..., qj−1), St and hence the scaling function can be equivalently

stated as a linear increasing function of qt.
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For example, Bitran and Mondschein (1997) discuss a pricing strategy with announced premiums or

discounts. Under this pricing strategy only the initial price p1 is a decision, the remaining prices are

pt = βpt−1 where β > 1 for the announced premium (mark-up pricing) strategy and β < 1 for the

announced discount (mark-down pricing) strategy. Note that for any p1 and β, the resulting problem

is equivalent to the exogenous pricing case. Hence the optimal initial p1 and the resulting profit can

be obtained by taking one extra step and searching over p1 ∈ R1 to maximize expected profit.

The area of information acquisition for capacity planning offers a fertile avenue for future research.

This paper takes a first step towards addressing pricing strategies to acquire demand information

used for capacity planning. There are other possible research directions. One possibility is to

explore the impact of advance selling when multiple products can be produced given a flexible

capacity, or when product substitution is a possibility. For example, Netessine et al. (2002) show

that one can gain significant benefits if capacity decision incorporates the possibility of upward

substitution; i.e., satisfying customer demand by a better product. We consider the impact of pricing

and advance selling strategy implemented prior to the capacity decision whereas they consider the

impact of substitution strategy implemented after capacity is set. An interesting research avenue is

to investigate the joint effect of both. We leave these for future research.
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Appendix A: Performance of the Heuristic Pricing Policy

We test the performance of this heuristic by comparing the resulting expected profit to that of

optimal pricing policy. To do so, we test nine settings for each δ, c0 and σ and report the resulting

profits and the optimality gap ε in Table 1. Let Gh be the optimal expected profit under the heuristic

pricing strategy. We use regression to compare Gh to the optimal profit G∗ and report the R2.

δ G∗ Gh ε(%) c0 G∗ Gh ε(%) σ G∗ Gh ε(%)
0.18 50.852 50.490 0.713 0 65.061 64.827 0.360 30 49.120 48.921 0.405
0.21 49.977 49.642 0.670 0.4 58.088 57.807 0.483 40 48.900 48.684 0.440
0.24 49.223 48.896 0.664 0.8 52.527 52.250 0.529 50 48.68 48.477 0.415
0.27 48.587 48.275 0.642 1.2 48.019 47.738 0.586 60 48.459 48.210 0.513
0.30 48.019 47.738 0.586 1.6 44.270 43.988 0.637 70 48.218 47.973 0.508
0.33 47.518 47.265 0.533 2.0 41.068 40.818 0.609 80 48.019 47.738 0.586
0.36 47.087 46.853 0.497 2.4 38.362 38.106 0.664 90 47.801 47.505 0.619
0.39 46.714 46.493 0.472 2.8 35.986 35.762 0.624 100 47.557 47.276 0.592
0.42 46.379 46.171 0.449 3.2 33.938 33.704 0.690 110 47.344 47.050 0.620
R2 = 99.99%, c0 = 2, σ = 80 R2 = 100%, δ = 0.03, σ = 80 R2 = 99.95%, δ = 0.03, c0 = 2

Table 1: Performance of the heuristic pricing policy

Appendix B: Proofs

In the sequel, we use the notation fχt and Fχt to denote the pdf and cdf of distribution χt.

Proof of Theorem 1: The proof is based on an induction argument. Before the inductive proof

we first show that Ht(qt, µ̄t) is linear in qt for all t. To do so, we substitute π∗t (qt, µ̄t) defined in (3)

to Equation (8) and rearrange terms to derive

Ht(qt, µ̄t) = ft(qt, µ̄t)
{(
pt − αT−t(cp + ct+1)

)
E[ξt]p−bt − αT−tΓ∗t

}
+αT−tE [ft+1(qt+1, µ̄t+1)] Γ∗t+1 − αT−t(ct+1 − ct)qt. (23)

The expectation of ft+1(·, ·) is with respect to Dt(pt|qt, µ̄t). The third term is linear. As ft(qt, µ̄t)

is linear, the first term is also linear in qt. Since qt+1 = qt + ft(qt, µ̄t)ξtp−bt , by same reason,

E [ft+1(qt+1, µ̄t+1)] is also linear in qt. This proves the linearity of Ht(qt, µ̄t).

To initiate the inductive argument, note for t = T−1 that H̃T−1(qT−1, µ̄T−1) = HT−1(qT−1, µ̄T−1)

which is linear (and hence convex) in qT−1, proving part 1 for T−1. If H̃T−1(qT−1, µ̄T−1) is increasing

in qT−1, then it can cross zero either once or not at all. In the former case, LT−1(µ̄T−1) = −∞

and UT−1(µ̄T−1) < ∞, and its optimal to continue advance selling if qT−1 > UT−1(µ̄T−1). In the
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latter case, LT−1(µ̄T−1) = UT−1(µ̄T−1) = ∞ and it is optimal to continue advance selling. If

H̃T−1(qT−1, µ̄T−1) is decreasing in qT−1, it can again hit zero either once or not at all. In either

case, we have LT−1(µ̄T−1) < ∞ and UT−1(µ̄T−1) = ∞, and it is optimal to continue advance

selling if qT−1 ≤ LT−1(µ̄T−1) and stop otherwise. Noticing that the function max{0, x} is increasing

convex, and recognizing that increasing convex transformation of a convex function is still convex,

VT−1(qT−1, µ̄T−1) = max{0, H̃T−1(qT−1, µ̄T−1)} is convex, proving part 3 for t = T − 1.

Suppose for an induction argument that part 1 is true for some t + 1 < T − 1. This implies

H̃t+1(·, µ̄t+1) can cross zero at most twice and those points are precisely defined by Lt+1(µ̄t+1) and

Ut+1(µ̄t+1). Hence, for q ∈ [Lt+1(µ̄t+1), Ut+1(µ̄t+1)], we have H̃t+1(q, µ̄t+1) < 0, which implies it is

optimal to stop advance selling. Otherwise, it is optimal to continue advance selling, proving part

2 for t + 1. Since max{0, x} is increasing convex and increasing convex transformation of a convex

function is still convex, Vt+1(q, µ̄t+1) is convex in q, proving part 4 for t+1. To conclude the induction

argument, we show that part 4 for t+1 implies part 1 for t. Note that αEξt [Vt+1(qt+1, µ̄t+1)] is convex

because (i) the update qt+1 = qt + ft(qt, µ̄t)ξtpt−b is increasing convex in qt, (ii) the composition

of increasing convex function is convex and (iii) convexity is preserved under expectation. Since

Ht(qt, µ̄t) is linear, the sum H̃t(qt, µ̄t) is also convex, proving part 1 for t. This concludes the

induction argument. 2

Proof of Theorem 2: To prove part 1 note that when ft(qt, µ̄t) ≡ 1 ∀t, qt, and µ̄t, Ht(qt, µ̄t) in

Equation (8) is independent of µ̄t and is given as

Ht(qt) =
(
pt − αT−t(cp + ct+1)

)
E[ξt]p−bt − αT−t

[
Γt∗ − Γ∗t+1

]
− αT−t(ct+1 − ct)qt.

Hence, if ct+1 > ct for all t, then Ht(qt) is strictly decreasing and linear in qt. Then it is easy to

establish inductively that H̃t(qt) and Vt(qt) are also independent of µ̄t and strictly decreasing convex

functions of qt. Hence Ut = ∞ and Lt < ∞ for all t, proving the optimality of state-independent

threshold policy.

When ct+1 = ct ∀t, the last term in Ht(qt) also drops. Consequently, Ht(qt), H̃t(qt) and Vt(qt)

are all independent of qt and equal constants Ht, H̃t and Vt respectively. Then it is easy to verify

that the optimal stopping time for acquiring advance sales information is the first t ∈ [1, T ] such

that H̃t = 0.

To prove part 2 recall from Theorem 1 and its proof that the structure of the policy is driven

by Ht(qt, µ̄t) given in Equation (23) which is linear in qt. For any t, µ̄t and ct, for a sufficiently
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large ct+1, the term in {·} is decreasing because Γ∗t , defined in (3), does not depend on ct+1. The

second term is also decreasing in qt because Γ∗t+1 is negative for large ct+1 (higher the cost of building

capacity, the lower will be optimal profit from remaining customers), while E [ft+1(qt+1, µ̄t+1)] does

not depend on ct+1. The last terms is clearly decreasing. As a result, Ht(qt, µ̄t) is decreasing in

qt. This means that when ct+1 is sufficiently larger than ct,, Ht(qt, µ̄t) would be decreasing in qt.

Next, one can establish inductively that H̃t(qt, µ̄t) and Vt(qt, µ̄t) are decreasing convex functions of

qt because this property is preserved under max{0, f(x)} operator. Hence, Ut(µ̄t) = ∞ for all t,

proving the optimality of state-dependent threshold policy. 2

Proof of Theorem 3: Let pt denote the selling season price set in period t and pst is optimal

value. Clearly, pst maximizes πt(pt, St|qt, µ̄t) defined in (2) over pt. Substituting yt ≡ St
ft(qt,µ̄t)

in (2),

we get

πt(pt, St|qt, µ̄t) = ft(qt, µ̄t)π̂t(pt, yt) where ,

π̂t(pt, yt) =
{

(pt − cp − ct)yt − (pt − cp + cu)E[yt − χtp−bt ]+
}
. (24)

Hence, maximizing (2) for a given commitment qt and history µ̄t boils down to maximizing (24).

Recall that since IFR property is closed under convolutions (Barlow and Proschan 1975), χt is also

IFR, meaning its failure rate ht(x) = fχt (x)
1−Fχt (x) is increasing. Since χt is IFR, it also has increasing

generalized failure rate (IGFR); i.e., xht(x) is also increasing (Lariviere and Porteus 2001).

Song et al. (2008) study the optimal ordering and pricing problem for a newsvendor with order

upto level y, retail price p, purchase cost w and salvage value b (p > w > b ≥ 0). They establish

(in Theorem 1) the existence of a unique optimal (y∗, p∗) pair under multiplicative demand for a

large class of demand functions that includes the iso-elastic function when the distribution of the

underlying uncertainty is IGFR. They derive the optimal pair (y∗, p∗) sequentially; i.e., they first

determine the unique optimal price p(y) for a given y, and then derive the unique optimal y∗ and

resulting p∗. Observe that (24) is equivalent to the standard newsvendor function with p = pt,

w = cp + ct and b = cp − cu. Hence their result applies as long as pt > cp + ct > cp − cu ≥ 0.

Note that the second inequality is immediately satisfied. Consequently, when cp ≥ cu and the first

inequality holds, (24) has a unique optimal (y∗t , p
s
t ). Next we show that the first inequality is true for

a candidate optimal stocking level and price pair and hence the pair is also the unique maximizer.

To do so, it is convenient to do conduct the stocking factor transformation (Petruzzi and Dada
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1999) zt = yt
p−bt

and hence write (24) equivalently as

π̂t(pt, zt) = p−bt
{
(pt − cp − ct)zt − (pt − cp + cu)E[zt − χt]+

}
. (25)

For a fixed zt, taking the derivative of (25), we obtain after some manipulation

∂π̂t(pt, zt)
∂pt

= (b− 1)p−(b+1)
t (zt − E[zt − χt]+)

{
b

b− 1

(
cp +

ctzt + cuE[zt − χt]+

zt − E[zt − χt]+

)
− pt

}
. (26)

Setting the derivative to zero and solving for pt yields the unique optimal price

pt(zt) =
(

b

b− 1

)(
cp +

ctzt + cuE[zt − χt]+

zt − E[zt − χt]+

)

as in (11) because pt(zt) > cp + ct for all zt ≥ 0. Substituting pt(zt) in (25) results in

π̂t(zt) = π̂t(pt(zt), zt) =
1
b
pt(zt)−(b−1) (zt − E[zt − χt]+

)
. (27)

Taking the derivative of (27) we get

∂π̂t(zt)
∂zt

= pt(zt)−b(1− Fχt(zt))
{

(pt(zt)− cp + cu)− ct + cu
1− Fχt(zt)

}
.

Hence z∗t is the unique solution of (pt(zt) − cp + cu) − ct+cu
1−Fχt (zt)

= 0 as stated in the theorem, and

pst = pt(z∗t ).

By definition S∗t = ft(qt, µ̄t)z∗t (pst )
−b, so that Q∗t = qt + S∗t . Substituting z∗t in (27) results in Γ∗t

given by (12) and π∗t (qt, µ̄t) = ft(qt, µ̄t)Γ∗t . Hence, Π∗t (qt, µ̄t) = Πt(pst , S
∗
t |qt, µ̄t) =

∑t−1
k=1 pkdk − (cp +

ct)qt + ft(qt, µ̄t)Γ∗t . 2

Proof of Theorem 4: Note that pst > cp + ct follows directly from (11) in Theorem 3, since

b
b−1 > 1 and zt

zt−E[zt−χt]+ > 1. In order to prove the remaining results, it is convenient to change the

order of optimization of the profit function π̂t(pt, zt) given by (25). Suppose that pt is fixed. Let

zt(pt) denote the corresponding optimal stocking factor, which is given uniquely by the equation

P (χt > zt) =
ct + cu

pt − cp + cu
. (28)

Substituting zt(pt) into π̂t(pt, zt), we can write ∂π̂t(pt,zt(pt))
∂pt

= ∂π̂t(pt,zt)
∂pt

+ ∂π̂t(pt,zt)
∂zt

∂zt
∂pt

at zt = zt(pt).

Noting that the second term in ∂π̂t(pt,zt(pt))
∂pt

equals zero at zt = zt(pt), it follows from (26) that the

optimal price pst is given as the unique solution to(
b

b− 1

){
cp +

ctzt(pt) + cuE[zt(pt)− χt]+

zt(pt)− E[zt(pt)− χt]+

}
− pt = 0. (29)
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Furthermore, for pt < pst , the left hand side of (29) is positive and for pt > pst , it is negative.

We first characterize the change in the optimal stocking factor (28) and then the resulting change

in (29). This enables us to prove the impact on optimal price pst . From the joint effect, we can

then establish the effect on optimal capacity level Q∗t = qt + ft(qt, µ̄t)z∗t (pst )
−b. The proof for each

cost element (cp, ct, cu) follows identical logic and intermediate steps. For this reason, in order to

avoid repetition, we provide a detailed proof for only one of them, namely the production cost cp.

Taking derivatives with respect to cp, for a fixed pt, we have ∂zt(pt)
∂cp

= − ct+cu
(pt−cp+cu)2fχt (zt(pt))

< 0. Let

Õ(pt) = cp + ctzt(pt)+cuE[zt(pt)−χt]+
zt(pt)−E[zt(pt)−χt]+ . Note from (29) that pst is increasing in cp if ∂Õ(pt)

∂cp
> 0.

∂Õ(pt)
∂cp

= 1 + (ct + cu)
zt(pt)Fχt(zt(pt))− E[zt(pt)− χt]+

(zt(pt)− E[zt(pt)− χt]+)2

∂zt(pt)
∂cp

,

= 1−
(

ct + cu
pt − cp + cu

)2
zt(pt)Fχt(zt(pt))− E[zt(pt)− χt]+

fχt(zt(pt))(zt(pt)− E[zt(pt)− χt]+)2
,

= 1− (1− Fχt(zt(pt)))
2

fχt(zt(pt))
zt(pt)Fχt(zt(pt))− E[zt(pt)− χt]+

(zt(pt)− E[zt(pt)− χt]+)2
.

The last equality is from (28). Notice that

(1− Fχt(zt(pt)))
2

fχt(zt(pt))
zt(pt)Fχt(zt(pt))− E[zt(pt)− χt]+

(zt(pt)− E[zt(pt)− χt]+)2
<

(1− Fχt(zt(pt)))
2

fχt(zt(pt))
Fχt(zt(pt))

zt(pt)− E[zt(pt)− χt]+

< 1− Fχt(zt(pt)) < 1.

The first inequality is evident. The second one is obtained by bounding the function zt−E[zt−χt]+

using the fact that χt is IFR. In particular,

zt − E[zt − χt]+ =
∫ zt

0
(1− Fχt(u))du ≥ (1− Fχt(zt))

fχt(zt)
Fχt(zt).

Consequently, ∂Õ(pt)
∂cp

> 0, and hence pst is increasing in cp. With this result, using implicit differenti-

ation on (29), it is easy to verify that ∂pst
∂cp

> 1, which immediately implies (from (28)) that ∂z∗t
∂cp

< 0.

Since pst is increasing and z∗t is decreasing, Q∗t is decreasing in cp. 2

Proof of Theorem 5: Similar to the proof of Theorem 1, first note that Ht(pt, qt, µ̄t) in Equa-

tion (15) is linear in qt for a given pt and µ̄t. The rest of the proof is based on an induction

argument. For t = T − 1, note that RT−1(pT−1, q, µ̄T−1) = HT−1(pT−1, q, µ̄T−1) which is linear in

q, proving part 1 for T − 1. This implies that if HT−1(pT−1, q, µ̄T−1) is increasing (resp., decreas-

ing) in q then RT−1(pT−1, q, µ̄T−1) is also increasing (resp., decreasing) in q. Next we show that
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this implies H̃T−1(q, µ̄T−1) is also increasing (resp., decreasing) in q. Define q1 < q2 and let p1 ≡

argmaxpRT−1(p, q1, µ̄T−1) and p2 ≡ argmaxpRT−1(p, q2, µ̄T−1). When RT−1(p, q, µ̄T−1) is decreasing

in q, we have H̃T−1(q2, µ̄T−1) = RT−1(p2, q2, µ̄T−1) < RT−1(p2, q1, µ̄T−1) < RT−1(p1, q1, µ̄T−1) =

H̃T−1(q1, µ̄T−1). Hence, H̃T−1(q, µ̄T−1) is also decreasing in q. When RT−1(p, q, µ̄T−1) is increasing

in q, we have H̃T−1(q1, µ̄T−1) = RT−1(p1, q1, µ̄T−1) < RT−1(p1, q2, µ̄T−1) < RT−1(p2, q2, µ̄T−1) =

H̃T−1(q2, µ̄T−1). Hence H̃T−1(q, µ̄T−1) is also increasing in q. This implies parts 3 and 4 for T − 1

along the same arguments as in the proof of Theorem 1.

Next suppose for an induction argument that Part 1 is true for t. This implies part 2 because

convexity is preserved under maximization (Porteus 2002, page 226). Hence, given µ̄t H̃t(q, µ̄t) can

cross zero at most twice and those points are given precisely as Lt(µ̄t) and Ut(µ̄t). From convexity,

it follows also that H̃t(q, µ̄t) ≤ 0 on Lt(µ̄t) ≤ q ≤ Ut(µ̄t) in which case it is optimal to stop advance

selling. Otherwise, it is optimal to continue advance selling, proving part 3. Noting that the function

max{0, x} is increasing convex, and increasing convex transformation of a convex function is still

convex, Vt(q, µ̄t) = max{0, H̃t(q, µ̄t)} is also convex, proving part 4 for t. To complete the proof,

we show that part 4 for t implies part 1 for t − 1. Note that qt = qt−1 + ft−1(qt−1, µ̄t−1)ξt−1p
∗
t−1
−b

is linear increasing in qt−1. Hence, αE[Vt(qt, µ̄t)] is also convex in qt−1. Since Ht−1(pt−1, qt−1, µ̄t−1)

is linear in qt−1, the sum Rt−1(pt−1, qt−1, µ̄t−1) is also convex in qt−1, proving part 1 for t − 1 and

concluding the induction argument. 2

Appendix C: Connection with Demand Learning Models

Consider the following demand learning setting which is suitable to our decision problem and frame-

work. The market demand potential in each period is given as ξt ≡ ktξ for t = 1, ..., T, where ξ’s

in each period are iid, k′ts are known scalars, and hence ξt are independent random variables. One

practical way to interpret this setup is to think of ξ as the total random market size and kt the

fraction of customers who potentially buy in period t (in this case it makes sense to have
∑
kt = 1).

Let dt(pt) denote the deterministic price function, which captures the effects of prices. Although any

function can be used, to be able to make parallels with our framework, suppose that dt(pt) = p−bt .

As a result, the distribution of demand in each period is given as dt(pt)ξt ≡ dt(pt)ktξ ≡ mt(pt)ξ.

Suppose that the distribution of ξ is unknown but belongs to a gamma distribution with unknown

scale parameter ω. The density of ξ for a fixed value of ω is: φ(z|ω) = ωλzλ−1e−ωz

Γ(λ) , λ > 0, z ≥ 0.

Suppose that the scale parameter ω itself has a gamma prior distribution g(ω) = baωa−1e−bω

Γ(a) , a, b >
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0, ω ≥ 0, and the firm updates its information in a Bayesian manner over time as demand realizes.

Let dt denote the realized demand in period t. It is well-known from Scarf (1960) and Azoury

(1985) that the sufficient statistic St for updating the demand distribution is St =
∑t−1

j=1
dj

mj(pj)
.

Furthermore, the Bayesian estimate (i.e., posterior distribution) of demand in period t has density

φt(d|St) =
Γ(a+ λt)(b+ St)a+λ(t−1)(d/mt(pt))λ−1

mt(pt)Γ(λ)Γ(a+ λ(t− 1))(b+ St + d/mt(pt))a+λt
.

Furthermore, φt(d|St) = 1
ϕt(St)ψt(d/ϕt(St)), where ϕt(St) = mt(pt)(b + St) and ψt(u) = (Γ(a +

λt)uλ−1)/(Γ(λ)Γ(a + λ(t − 1))(1 + u)a+λt). The above states that ϕt(St) is a function that scales

random demand. Let Dt(pt|St) denote the random demand each period given the sufficient statistic

St. We have

Dt(pt|St) = ϕt(St)D̃t = mt(pt)(b+ St)D̃t, (30)

where the distribution of D̃t (given by ψt(u)) only depends on t. If the firm decides to stop ad-

vance selling in period t, then there is no more learning, so the demand distribution does not get

updated. For any given selling season price p, the remaining demand in the market is Xt(p|St) =∑T
j=tDj(p|St) = (b+ St)

∑T
j=tmj(p)D̃j , where D̃j ’s are iid with distribution given by ψt(u).

The demand function in (30) is consistent with our market signal based demand framework.

In particular, the function (b + St) is akin to our market signal function ft(qt, µ̄t). In fact, since

qt =
∑t−1
j=1 dj, we can write St as a function of qt and define ft(qt, µ̄t) accordingly. This would require

the knowledge of the entire past sequence of dj for j = 1, .., t−1. Hence the history µ̄t would contain

qj and pj for j = 1, ...t − 1, (hence mj(pj) will also be known). 14 This follows because S1 = 0,

S2 = q2
m1(p1) , . . . , St = qt

mt−1(pt−1) +
∑t−2
i=1 qt−i

(
1

mt−i−1(pt−i−1) −
1

mt−i(pt−i)

)
for t ≥ 2. Consequently,

for t = 1, q1 ≡ 0, µ̄1 ≡ ∅, f1(q1, µ̄1) ≡ 1, and for t ≥ 2, we have ft(qt, µ̄t)

ft(qt, µ̄t) = b+
qt

mt−1(pt−1)
+

t−2∑
i=1

qt−i

(
1

mt−i−1(pt−i−1)
− 1
mt−i(pt−i)

)
(31)

Observe that ft(qt, µ̄t) is linear increasing in qt given the history µ̄t. Hence the demand function given

by (30) can be equivalently stated as Dt(pt|qt, µ̄t) = ft(qt, µ̄t)p−bt
(
ktD̃t

)
, which is has the same form

as our demand model. Furthermore, when the firm stops advance selling in period t, the remaining

demand can be stated as Xt(pt|qt, µ̄t) = ft(qt, µ̄t)p−bt
∑T
j=t

(
kjD̃j

)
. Defining χt ≡

∑T
j=t

(
kjD̃j

)
, we

have, as in our framework Xt(pt|qt, µ̄t) = ft(qt, µ̄t)p−bt χt.

14Note that state space reduction is possible if the manufacturer tracks the value ft of the market signal itself. In

this case, the manufacturer would need (ft,dt, pt) to update the market signal and qt to determine the profit and the

optimal course of action.
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