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Abstract milliseconds), and in terms of how many distributed morsitor
can be tracked simultaneously. The second limitation (as in
recently proposed large-scale monitoring systems [4,0]2, 2
is their lack of flexibility in detecting when a sophisticdte

- ) : . global conditionacross a set of distributed machines exceeds
tributed monitors. In this paper, we expand our previouskwayr

designing a new class of queries (conditions) that can lokethfor acceptable levels. . . .
anomaly violations. We show how security violations can be d 10 address the scalability issues, we designed D-Trigger,
tected over a time window adny size. This is important because @ general framework in prior work [9, 10] for global con-
security operators do not know in advance the window of time i Straint tracking. The key to achieving scalability is toued
which measurements should be made to detect anomalies.sw/e althe amount of data needed for anomaly detection. In [10],
present an algorithm that determines how each machinedafibul  we provided an example of a particular anomaly detector that
ter its time series measurements before back-hauling thentén-  when re-designed to fit in our framework, could continue to
tral operations center. Our filters are computed analyyicaich  gchieve high detection accuracy while only using 10-20% of
that upper bounds on false_positive and missed detecties BE  the original data. In this paper, we focus on the problem of
guaranteed. In our evaluation, we show that botnet detecim |, of sophistication in the types of conditions that can be
be carried out successfully over a distributed set of mashiwhile . -

simultaneously filtering out 80 to 90% of the measuremerd.dat tracked for VIOlat'.ons' . . .

The new queries and their supporting algorithms that we
develop here, were designed in accordance with our frame-
work. This framework is described in Sec. 2, but we briefly
mention a few points here. To reduce the amount of data
transmitted through the network, we advocate engaging the
1 Introduction monitors in filtering their own data, and only sending the op-

erations center new data “as needed”. What data is needed
Network-wide anomaly detection systems rely on largeescal by which machine depends upon the global constraint being
distributed monitoring systems to collect, aggregate andracked. Because the operations center is doing the datecti
present information describing the status and performahce and it now operates under a limited view of the global data,
the network under observation [1, 2]. Many types of net-it can make mistakes. To bound these mistakes, the filtering
works, including server clusters, enterprise network®slS at the monitors needs to be done in coordination with the op-
and sensor networks, employ such systems to track the heal#rations center. Our framework proposes that the filtereng b
of their networks. Remote monitor sites are typically de-done in such a way that detection errors are bounded.
ployed throughout the network and, thus, their data streams In order to enable broader and more flexible conditions for
present information from multiple vantage points. The en-triggering, we introduce a new class of triggers, cattathu-
semble of these monitors leads to the creation of numerousative triggers.These triggers allow one to detect cumulative
large, and widely-distributed time-series data streamsdte  violations that are persistent over time and are spreagaero
continuously monitored and analyzed for anomalous condidistributed set of machines. One of our main contributiens i
tions, either benign or malicious. In typical monitoringssy to enable such potential violations to be measured over time
tems, all the measurement data collected across the remotgthout specifying a fixed window siza priori. Our key en-
monitors is shipped to a data fusion center (i.e. a networlkabling insight is that the filter parameters needed to suppor
operations center) for processing. The fusion center daa ra these triggers can be viewed as analogous to queue sizes.
alarms should it detect anything abnormal. The motivation for such triggers comes from the follow-

Today’s distributed monitoring systems suffer from two ing. Current designs for large-scale monitoring systerngso

important limitations. The first is scalability - both intes  solely oninstantaneousrigger conditions, where the goal is
of how fast detections can be made (i.e. it is desirable tdo fire the trigger as soon as the aggregate ($@1) of ob-
shrink the time scale from hours and minutes to seconds anservations (e.g., CPU utilization or number of messages sen

In recent work, we proposed D-Trigger, a framework for tiaglka
global condition over a large network that allows us to deteoma-
lies while only collecting a very limited amount of data frairs-
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may not raise any serious alarms (e.g., intelligent bo{orets

vent compromised machines from transmitting at their max-
imum level so as to evade detection). However, by track-
ing theSUM of the number of simultaneous TCP connections

Zombie
e
m—-

/ Ogeratlon ’

e vietim__ from these hosts to a given destination, the excess or agrlo
7 @ would be more easily revealedUpon detection, ISPs could

‘ block this unwanted traffic via filters on the gateways. In an

/ e enterprise network the hosts could simply be disconnected.
In our experimental evaluation, we use real-life distréalit

() wenemprise data streams collected from PlanetLab IDS monitors. We
demonstrate that our schemes can easily guarantee target ac

Figure 1:Example: Distributed detection of botnet attacks. curacy levels of around 98% while typically sending lessitha

20% of the original time-series data (i.e., a communication

across distributed machines exceeds a pre-specified thresfgduction of over 80%).
old. While such triggers are undoubtedly useful, they are

limited when it comes to monitoring distributed phenomena

that are inherentlypursty, such as network traffic and server 2 BaCkg round
load. Fixing appropriate instantaneous threshold cooati
for anomaly detection can easily lead to numerous false po

itives and negatives. Exceeding a threshold for a shorogeri a coordinator nodél. Each monitor continuously produces

of time could very well be allowed as natural bursty behgvior time series signals (¢) on the variable(s) or condition(s) se
on the other hand, even violations that are small in magni- 9 (t) (s) (s)

tude could be harmful if they are allowedgersist over time lected for monitoring. Examples of a monitor's output in-

Persistent violations are better observed by measuring act S:r?segcr;ilé)?sere?fhizyvgﬂlrjnesgi ?rz;f?cecgrfﬁigﬂgtﬁ cc))f tD 8'\(1)5
ity over a window of time. However, the task of selecting a P ' P por

. : . : L . and so on. These time series signals are sent to coordina-
particular window size over which something is measured is : . .

. 1or X. The coordinator acts as an aggregation and detection
a headache that has long plagued operators because a single

, . . oint, whose purpose is to track conditions across its mon-
window size cannot accommodate all of their needs. In ad;

dition to ISPs, managers of distributed server systems hav'(!,\orS and to fire a trigger whenever some (?onstramt on the
found that measuring average server load using fixed size ggregate behavior of a subset of nodes is violated. The coor

windows is unsatisfactory in that it is insufficient to idiéyt alr?aior if:er] :ggrrsg;tiirtlr}ir'gggr:'g%g;n ;;en:;(}&g;g{lg usin
good or bad system behavior [23]. yiyp g9reg ' ’ ’ ’

One could implement a cumulative trigger by naively MAX, etc. We focus herein on the linear SUM aggregator be-

. o .7 cause our goal is to enable the SUM aggregation over time-
pushing all of the monitoring data to the central operations _ . . . .

. . . . varying windows, and because this aggregator is useful for
site. However, following the philosophy advocated in our

P botnets. In [9] we illustrated that our framework can suppor
framework, we design filtering schemes so as to accuratel . ; .
. . 2 A ore complex correlation functions such as the top eigenval
detect cumulative trigger violations with limited data. rOu

. S UYT . ues of the global measurements matrix.
second main contribution is thus an algorithm for computing . .
. . Our framework advocates a philosophy and provides de-
the filtering parameters at each local monitor. Based on our.

: .~sign guidelines for supporting anomaly detectors over such
analogy to queues, we use queueing theory as an analytic S L e
. . : arge-scale distributed monitoring systems. Our beli¢hé
tool. Our analytical solution provides guarantees that use . . .
. . . - _many anomaly detection applications can be successful with
supplied target false alarm and missed detection ratewill

met. These user-supplied target error rates enable thaoffad out backhaulingll of the monitored data. Because our ap-

i 2 lications are focused on anomaly detection, most of the tim
between reducing communication overhead and alarm deteﬁ;I T N » :
tion accuracy e traffic will be “normal” and there is no need to send such

. . data to the fusion center. The goal is thus to send only the
We apply our algorithms in the context of botnet detec-

i denicted deicted in Fid. 1. In botnet attacks. miai monitoring data that is “needed” for the anomaly detector
lon as depicted depicted In Fig. 1. In bolnet attacks, it inowork properly. To achieve this, we propose engaging the

zombies (recruited machines) try to open a large number o onitors in filtering their data locally by installing triggs on

TCP connections to a single.server (the victim). Assume 3neir machines. The monitomnly send updates to the data
set of hosts have been recruited by a botnet, some subset sion center when the local trigger fires.

which reside in our given network. An external commander The approach of filtering the measurement data at the

gives _th(_am an °Fder_‘° launch a_Iarge ““'_””ber of Connectlon%cal monitors has critical implications for detection aec
to a victim, that in this case resides outside our network. In

many cases, tracking the traffic level at each individuat hos !A caveat is that the overload could be due to a flash crowd.

ﬁ basic distributed triggering system consists of a set of
widely distributed monitoring nodesi;, ms, ..., m, and




racy, because the operations center (called ‘coordina¢oe-  More recently, Keralapurat al. [15], formalized the instan-
after) carries out the detection. The coordinator’s viewhef  taneous thresholded counting problem and gave static and
global state will be approximate because some elements @&fdaptive algorithms, as well as a detailed optimality analy
the global data can become stale (until the next update). Besis. Our approach goes further by providing both a firm de-
cause of its approximate view of the global state, the coortection guarantee famumulativerigger conditions, as well as
dinator could make two kinds of errors in detection: either athe flexibility for users to trade off communication overtlea
violation among monitors occurs and the coordinator fails t with detection accuracy.
catch it (called anissed detectignor no violation occurs yet Our prior work in [10] provides a solution for detect-
the coordinator thinks that one has (callef@dlze alarn). ing volume anomalies using instantaneous triggers cordbine
Our framework advocates that if this approximate view of with Principal Components Analysis (PCA) techniques. The
the global state at the operations center is carefully methag methods proposed in this paper are fundamentally different
then accurate detection can nevertheless still be achieved) instead of PCA and matrix perturbation theory [9, 10]; ou
The idea is to bound how ‘approximate’ or perturbed it is results here are based on queueing theory; and, (ii) thik wor
allowed to become. The filtering scheme needs to be sesupports different types of triggers (instantaneous \gecsu
lected so as to ensure these bounds are never exceeded. Sinoellative) and provides different accuracy guaranteesgtm b
different security applications require tracking of diffat  false alarm rates and missed detection rates versus only on
conditions, each new anomaly detector that is supported refalse alarm rates).
quires the development of a new filtering scheme along with
an analytical method for guaranteeing the detection acgura . .
boundsyare met. In desiggning the fil?ering, we Ieverage the?’ Cumulative Trlggers
coordinator’s global view by having it choose the level of ac

curacy that each monitor must report. This last point intisa be d dth hth lati . Th |
some of the complexities of our problem setting, since local e detected through the use ulative triggers The goa

filtering needs to be done based upon the global constrair® © .detec.t violations thgt pgrsist i,n time, without haviog
that is being tracked. specify a fixed aggregation time window beforehand. Cet

A nice property of our framework is that it achie _denote the network-wide trigger threshold that is resident

tinuoustracking, where by ‘continuous’ we mean the follow- th? co_ordina_\tor. _In cumulative triggers, the threshold-con
ing. The remote monitors can collect data as fast as they ar%:ct't(;]n IS deflnetd n terrlns of tthe gcgug;llated excasa
designed to operate (i.e., this could be 5 minutes if they col O IN€ aggregate signal over ime- (bytestime) °r.(”“”?'
lect SNMP data, or on the order of a few milliseconds, if ber of connections< tu_ne). Abstractly, a cumulative trig-
they collect flow statistics, such as netflow). Today moni-J¢' condition should fire when the excess area of the ob-

tors either summarize their data by aggregating at coarse ti served aggregate s!gnal overa t_|me windueny sizeex-
scales (e.g., computing averages over long windows of mulgeeds the pre-specified cumulative threshold. Such cumula-

tiple minutes) before sending it to an operations center, opve triggering conditions cannot be captured using et

they send every measurement they make. Neither of theceVM-trigger mechanisms based on instantaneous sums of lo-

options is desirable. In our framework, the local monitorsCal values [14, 15],

do continuous monitoring and the operations center has the tTO capturf tempO{aaﬂ_ly-perS|srter1Lp{wenomena, thimﬁord"
perceptionthat it receives all the measurements. The filter-Nator computes a vioation penafty that accrues overtime, a

ing strategies are chosen so that the operation center ﬁn&ges the t_rlgger.condl.'uon when_the penalty becomes exces-
out anything important (relative to the anomalies it trgcks SIVe. During a time WanOW of size :.T(t)’ .the penalty at

as soon as something happens, thereby essentially a@ieViHmet accrued over the intervill — 7, ] is defined to be
continuous monitoring.

t n
Prior Work. Database research on continuous distributed V(t,7) = max{0, /t_T Z”(w)dw — O
query processing has considered similar environments, [3, 5 =t
13, 17]; however, the focus is on the accurate estimation ofWe maximize this term with zero to keep the penalty non-
the aggregate signal itself rather than catching a comstrai negative.) Our cumulative triggering mechanism does not
violation. Jainet al. [14], propose using uniform thresh- depend on any fixed window;, instead, a cumulative trig-
olds across all monitors, and eventually detect instamiasie ger fires at time if penalty V' (¢, 7) > ¢ for anywindow size
threshold violations without giving any guaranteesonthes 7 € [1, ¢]. Thus, intuitively, we fire the trigger if there is
of the violation; in contrast, we place strict bounds onilaes some time windowhat causes the cumulative penalty to ex-
of the violation that our schemes seek to enforce within specceed the: constraint; or, more formally, ifnax, {V (¢, 7)} >
ified error rates. Dilman and Raz [7] propose algorithms fore, wheremax is computed on all possible over the entire
detecting whether the sum of a set of numeric values fronsignal history. One of our key insights in this work is that,
distributed sources exceeds a user-supplied threshal@.val by exploiting an analogy to queuing theory, our system can

We now explain a new kind of threshold violation that can
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I XK K S e. We can thus see the flexibility in not having to specify
a priori the time window over which a potential violation is
measured.

4 Problem Statement

Because our approach of using limited data introducessrror
we allow the network operator to input their tolerable error

T levels. We allow three such inputs. The first inpuspecifies
the error tolerance on the size of the violation. We alsonallo
Figure 2:Cumulative violations. network operators to input their tolerance on false alamas a
missed detections.
track cumulative trigger conditions effectively, withdugv- In our system, anissed detectiooccurs ifmax.{V (¢, 7)}
ing to retain the entire signal history or check the conditio > ¢ and the system doewt fire the corresponding trigger.
against all possible. Conversely, dalse alarmoccurs whenevemax.{V(t,7)}

We allow the user or network operator to specify an er-< € and the system fires a trigger. We define thissed-
ror tolerance: which indicates that it is sufficient to track the detection rate as the fraction of missed detections over the
global state (i.e., the aggregated time series) approgisnat total number of real violations, and tf&se-alarm rate) as
with an error bounded by. We will exploit this error toler-  the fraction of false alarms over the total number of trigger
ance to gain additional savings in communication overhead.fired. Allowing 3 and to be inputs, creates a flexible sys-
Earlier work on distributed triggers [7, 15] has focusedtem in which different deployments can be tailored to their
solely oninstantaneoushreshold conditions, where the goal own needs. For example, some systems may consider mini-
is to detect ify_" r;(t) exceeds a threshold at any timet. mizing false alarms more important than minimizing missed
An generalization of the instantaneous casdiaesl-window  detections; other systems may take the opposite view.
triggers, where the goal is to detect the conditiBit¢, 7) > ¢ The user input thus constitutes a trigte 3, ) that essen-
at any timet, for a given, fixed time window. tially denotes the accuracy level that our tracking schemes
Instantaneous and fixed-window triggers are inherentlytarget. The problem we address herein is to design the pro-
limited when it comes to signals where transient bursty betocols resident at the monitors and at the coordinator in or-
havior is the norm, such as IP network traffic. Depending onder toguaranteehat the coordinator’s trigger fires, whenever
the threshold value, an instantaneous trigger may easéliy ov max-{V(t,7)} > e, at any timet, with (e, 3,n)-accuracy
react to natural, transient phenomena. With fixed-windowwhile simultaneously keeping communication overhead low.
triggers, choosing the right window sizecan be problem- To simplify the exposition, our discussion assumes that
atic for several reasons. If we use a smafshort window), = communication between the monitors and the coordinator are
and the violation lasts for a long time but is small in magni- instantaneous. In the case of non-trivial delays in the unde
tude, the system is likely to miss it altogether. For examplelying network, techniques based on time-stamping and mes-
in Fig. 2, the persistent (but small) violation occurringime  sage serialization can be employed to ensure correctress, a
slots[10, 20] could go undetected with a window sizeof= in [17].
5 because the penalty (over any 5 time slots)pr V3, does
not grow to exceed. If, on the other hand, the violation were
short in duration but large in magnitude, the system would5  Distributed Cumulative Triggers
miss it if a larger (long window) is used. In our example fig-
ure, a sh_ort but_large violgtion occurs d_uring j[he _time_ piario 5.1 The Queueing Model
[4,6]. With a window of size 5 time units, this violation is
likely to get averaged out because the positive penalty in peOur approach tsupporting cumulative violations without
riod [4, 6] is canceled out by the negative contribution in pe-having to specify windows of time a priori is to use insights
riod [3, 4] (or, [6,7]). This illustrates the difference between from queueing theory. Earlier work on data streaming uses
fixed sized windows and cumulative violations with varying window-basedtream processing [6, 8] and focuses only on
window sizes. With a fixed window of size 5, both these vi- the case of (time- or arrival-based) windowefdixed sizever
olations would have been missed. However, with cumulativehe stream. Such techniques are not useful in our case, since
conditions, a window of size 10 would have caught the viola-the window sizes of the (potential) trigger violation are no
tion in [10, 20] in our first example since the penalty + V5 known ahead of time. Instead, our key observation is that
exceeds; a window size of 2 would detect the violation in we can accurately model the monitoring of a cumulative trig-
[4, 6] in our second example since the pendftydoes exceed ger condition (see Sec. 3) using a simpleeueing modeds
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Figure 3: Queueing model for a cumulative trigger. = Trigger threshold
€ Error tolerance for threshold violation
. d; Local monitor slack parameters
stated by the foIIowmg theorefn 0 Coordinator slack parameter
. . . . Ié} Miss detectioni(e., false negative) rate
Theorem 1 Consider a queue of sizewith an arrival rate 7 False alarmi(e., false posiiive) rate

equal to the actual aggregate sign@l’"_, r;(¢) and a drain

(i.e., service) rate equal to the trigger threshald A cumu- Figure 4:Our distributed trigger tracking framework.
lative trigger should fire (i.e 37 s.t. V (¢, 7) > €) if and only
if the above queue overflows. 5.2 Our Trigger-Tracking Protocols

Essentially, cumulative triggering aims to guarantee tha
>, 7i(t) does not exceed' in the long-term, however, it al-
lows >, r;(t) to be bursty (i.e.y, r;(t) can beanyamount
larger thanC' in any time window, but the volume of the
burstiness should not exceeld Thus, cumulative trigger-
ing does not care about instantaneous sums or averages o
a fixed size window; it cares only whether (acrasy possi-

The architecture of our system is depicted in Fig. 4. The role
of the monitor is to track its own time series data and to decid
when to send the coordinator an update based on a filtering
scheme. Let;(t) denote the actual time series observed at
monitoring node. If a monitor decides at tim&"<* to send

\fiE coordinator a sample of its data, it se®I&P"<?), which

is an approximate representation@ft?"<?). If in a subse-

ble time scalgthe accumulated violation (penalty) exceeds quent tiprr?et S gprev. tﬁe monitor s:rgfds no)thing, then the co-
and causes queue overflow. ordinator assumes th&}; (tP"¢") is a good approximation for

As an exgmple, t_he b(_)ttomnhalf of Fig. 3 depicts a sampleri(t). In generalR; (1) can be based on any typemediction
aggregate time-series S'QnE_i:I ri(t), while the top half modelfor monitorm;. For example, a simple model is to set
shows the occupancy over time of a queGkt), that has Ri(t77<7) = r;(t7"<7) at the update time. Time series predic-

a fixed sizec and drain rate”'. Clearly, if the queue over-  ,n models and other sophisticated prediction models3p, 1
flows at some time, then there must be some time < ¢ could also be used

denoting the start of &usy period(¢*, /] (i.e. a period dur- The role of the coordinator is twofold. First, it makes

N9 Wh'Ch<thte qudeue IS Ee(;slster(ljt_ly nog-eThpty; thatis= global anomaly detection decisions based on a queueing
max{z|z _t a>n Q(;) B }h)en Itng ab Wi a_qt:jeuetoc- model with paramete#, using the received update® (t)
cupancyQ(t) > e. Fig. 3 s ows two busy perllo.{at,l, 2] from the monitors. Second, it computes the slack parame-
anq [t3, Lal, Fhe seco_nd of Wh.'Ch resqlt; in sufficient A 0; for all the monitors based on its view of the global
buildup to _f|re th%trlg%er; l‘t/'i ?Ot tdslfflcultttho tseet that, by state and the condition for triggering an anomaly. The slack
ourqueueing mo et)( .) N (_’ . ) SO aQ( ) > € parameters; are sent to the monitors whenever they change.
(_|.e., agueue overflow) |_ndeeo_| implies that ourtrlggershouIdThe monitors use slack parameters when tracking the drift
1;|/ret. S'”?"a”y' _fodr any tlme”wmd(?vvr = iﬁwtt’ht _I tt ) tzb between the actual time series signal and the predictiozt fun

( J 7) (€., windows smaller or arger than he fates .usytion; whenever this drift exceeds the allowed slack, the mon
period can only reduce the cumulative size of the violation) itor sends the coordinator an updated predicfibty). Intu-
InotherwordsQ)(t) = V(¢ t—t*) = max, {V(t, 7)},imply- 01 these slacks are used to bound the difference kstwe
ing the cumulative trigger should fire if and only if the queue . . ordinator's view of the data and the actual data.

overflows. The model in Theorem 1 captures the equivalence The simple queueing model as in Theorem 1 is ideal since

petwgen an overﬂqwmg queue and a violation of the cumuIaTt assumes the true aggregater (¢) feeds a single coordi-
tive trigger constraint.

nator queue. We extend the ideal queueing model to the dis-
2Due to lack of space, the proofs for all of our theorems arettenhi but _t”bUt_ed enV_'tonment by placing queues at eaCh_ of the mon-
can be found in [11]. itors in addition to the one queue at the coordinator. This




Distr. Monitors
Coordinator Procedure Coordinator¢, 3, n)

nt. :UJM — Input: Trigger error threshold; miss-detection/false-alarm rates, n).
e~ — 0 1. while (true) do
m(t) :62@ Ro(t) c 2. Continuously simulate a virtual que@eof sizef with arrival rate
>, Ri(t) and drain rate”’

for each (monitor update(s, d; (t), R} (t)) received)do

Set local predictiorR; (t):= R} (t)

Enqueue thée (¢) chunk in the virtual coordinator que@
if (Q overflows)then

fire (“trigger violation”); break
Compute new optimal settings for local slagkés } and coordinator
Figure 5:Distributed queueing model: cumulative triggers. slackd based ond, 3, 7) and maintained statisti¢Sec. 5.3)

8 if (adaptive allocationjhen disseminaté{d; })

distributed queueing model is depicted in Fig. 5. Our taskrigure 6: Procedures for distributed trigger tracking at the coordi-
is then to design algorithms to convert the centralized queu;¢or.

model of size: into a coordinator queue of siZeand a set of
local monitor queues of sizg, . . ., §,,, while still guarantee-
ing the necessary false alarm and missed detection rates. o . )
The Local Monitor Protocol. In our distributed model, each PS€udo-code description of the coordinator protocol is de-
local queue has an arrival rate g(t), a drain rate ofz;(t) ~ Pictedin Fig. 6. . .
and a size ofi;. Let”"*" denote the time of the last update Intuitively, the local slack®; at the remote monitors aim
message fromn; to tF1e coordinator. At any time, the size to filter out local variations in individuat;(¢) signals, while
(3 . . . . . .

of the monitor's queue captures the cumulative deviation ofn€ coordinator slackd is useful for canceling out variations
r;(t) from its most recent predictioR;(t""**) over the in- ~ aCr0SS monitorge.g, when d'St'”CtTi(t)’S move In oppo-
terval [#77°", #], namelyd, () = ft o (ro() — Ri())da site directions). In addition to tracking the global coaasit,

Lo ' N ' ~ one of the coordinator’s key tasks is to compute values for
Should the local queue overflow, i.e., whigh(¢)| > 4;, this

he drift h ded the all d'slack. At this t i =1, ..., n) and@ that lower communications costs yet
means the drift has exceeded the allowed slack. Atthis M@ arantee that neither of the error ratelsn) exceed their
the monitor sends the coordinator an update on its timesserie

ds th I dict ; tolerance levels. In order to be adaptive, the coordinatar ¢
It sends the current valug(t), a predictionR;(¢) for near- recompute and redistribute these slacks either periddioal
term future values, and the current vatli¢t). The amount

. I upon each monitor update. In the next section, we give our
d;(t) corresponds to the cumulative deviationreft) from

) - . algorithm for computing these slack values.
its most recent prediction. At the time of the update, thalloc g PUing

queue also reset§(¢) to zero. Note that, unlike traditional . ) . )
queueing, local monitor queue occupancies are allowed t®-3 Queueing Analysis for Slack Estimation

become negative, if predictions consistently overesetfad  \ye now present an analysis of a simplified variant of our dis-
trqe local S|gnals._Such’cond|t|(_)ns are important to detedt tributed queueing model (Fig. 5), and discuss the apptinati
brmg_ to thg coordinator’s attention since they also CW of our results to estimating effective settings for the nbani
CESSIVE drift famd thus lead t(_) more updates. Sending unqeﬁnd coordinator slack parameters in our system. The exis-
rovy |rjformat|on tothe coordlnatqr _can also enable crots-si tence of the locad; filters obviously reduces communication
variations to cancel out (thus avoiding false alarms). costs by allowing monitors to “absorb” updates with no com-
We point out that the queues we are using here are modelg, nication to the coordinator. At the same time, however,
not actual physical queues. In animplementation a quete thanis |ocal filtering also makes the arrival process at the-coo
§t0_res datais not needed. Instead only a cpunter is neeated ﬂblinator queue morburstyby introducing bursts of queue ar-
is incremented and decremented according to the queueing,a|s and departures when the filter constraints at local-no
models herein. itors are violated. Thus, abstractly, the role of the cauaithr
The Coordinator Protocol. In our distributed queue- queue (of sizé) is to allow for such bursts to be effectively
ing model, the coordinator’s queue has an arrival rate ofabsorbed (or, cancel each other out) as long as the cunailativ
Yo, Ri(t), a drain rate equal to the trigger thresh@ld  trigger bound is not exceeded.
and is of sizef, as in Fig. 5. In addition to the continuous  The system slack parametefsg andd) interact with each
“arrivals” at rated " | R;(t) to the coordinator queue, each other as well as the input error threshe|dhiss-detection rate
update from monitomn; also introduces ahunkof d;(¢) ar- 3, and false-alarm ratg parameters in complex ways. Intu-
rivals into the queue. Note that if the queue underflows (glrop itively, given an error thresholdfor our trigger monitor, we
below zero), theni,(¢) is negative. The coordinator contin- would like to maximizethe size of the local-monitor filters
uously tracks this complex arrival process at its queue and;, as that would obviously minimize the number of monitor
fires a trigger violation if its queue overflows. A high-level updates to the coordinator. However, larger monitor filters
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also imply larger (more bursty) chunks of arrivals/depaasu  queue, and that the aggregate occupancy of all local moni-
at the coordinator queue (due to monitor updates) which maytor “queues” follows a NormalN (0, o2) distribution. Then,

in turn, cause: (1Jalse alarmavhen a combination of bursts setting

causes the queue to overflow even though the true aggregate

signal has not violated the trigger condition; and,r(23s de- / [1 _F (ﬂ +r+ 1>] o (1 — p)da = 1)
tectionswhen the local monitor filters absorb enough traffic  Jz=o0 0

variability to mask a real trigger violation. To minimizeeth guarantees a miss detection rate3, whereF () denotes the
false alarm_problem, we would I|k_e to have a large coordinacpg of N (0, 02), andp = A_CT denotes the average coordina-
tor queue sizé to absorb the monitor bursts — however, the ;. queue utilization (over time).

size of the coordinator slackand monitor slacks, ..., d, )

are also clearly constrained by the overall error threskold ~ The assumption of a zero mean for the aggregate occu-

that our triggering schemes must try to guarantee. pancy of all local monitor queues is motlvated by the fact
In what follows, we employ queueing theory to analyti- that, over a large enough window of time, the true and pre-

cally explore the aforementioned tradeoffs (under some simdictéd signal rates are approximately equa.(Ar ~ A).
plifying assumptions), and obtain results that provideeff Similarly, the normality assumption can be justified untter t

tive settings for our system slack parameters for a giveatinp 2SSUmption oindependent updategross local monitors and
triple (e, 3,). Our approach is to develop two non-linear the law of large numbers (for large enoug)f. To estimate
equations relating andd to the parameterg, 3,7) as well the aggregate varianeé in our system, each local monitor

as the model parameters. These two equations can then B& continuously tracks the up-to-date _variam;}’eof its lo-
solved simultaneously to deriveandd. cal occupancy and ships that information to the coordinator

We make two key assumptions to make the analysiéh its update messages if there is a significant change with re
tractable. First. we assume uniform local slack Ioarame_spect to the most recent measurement; the coordinator then
ters, wheres; — ¢ for all 3. Second, we assume an estimates the aggregate_yarianceré& > cr.i2 . Note that _
M/M/1 queueing model for the coordinator quéueln- Theorem (2) has trle ability to support adaptivity .through it
der theM /M /1 assumption, led, and\x denote the mean dependence op= 7. As the rate\, evolves, so willp, and
“arrival rates” for the true signal and predicted signasjpec- the resulting yalue computed for _
tively (i.e., the estimated averages Bf, r;(t) and3". Ri(1) _ pr, consider _the false alarm ra}_ie Observe t_hat, in our
over time). Similarly, let\, and\; be the mean arrival rates distributed queueing model, the arrival and drain ratebat t

for enqueue and dequeue chunks (respectively) at the coof0rdinator queue can be naturally approximatedias A - -
dinator. Note that, thé s, )., and\, rates are directly ob- 0 @1dC + Aq - 4 (respectively), whereas the corresponding

servable at the coordinator, and can be computed empjlricallrates for the ?dealized (c_entralized) case are SimF’"f‘”dC-
(e.g, through averaging over a time window of recent queue-BaseOI on this obser_vatlon and ouf/M/1 assumption, we
ing activity). Since the overall “mass’ of the true aggregat ¢an Prove the following result (see [11] for details).

signal is preserved over time, the coordinator can also-accurheorem 3 Assume an\/ /M /1 model for the coordinator

rately estimate\, as\, = Ag + (A\c — A\g) - 4. ° gueue. Then, setting:

Now, consider the effect af andé on the miss detection - -
rate 3. It is not difficult to see that having > 6 + n - & 1 (ﬁ) ; / ()\R + e - 5) o @
always guarantees a miss detection rate- 0. However, C CH+XNi-6 =

this condition is simply too conservative and may result in
excessive communication, especially if (a) some> 0 is
acceptable, or (b) the true value of the cumulative violatio  Given a triple of trigger-tracking requiremer(ts S, n),
max,{V (T, 1)} is well below thee threshold. Essentially, our coordinator algorithms use the derived system of two
fixing a total slack ot is an overly conservative, non-adaptive non-linear equations (Theorems 2 and 3) to solve for the opti
solution. As proved in [11], the following theorem presentsmal (under our assumptions) coordinator- and monitorkslac
a more versatile, less conservative analytical resultingla valuesf ando (Step7 in Fig. 6(b)). The local slacks are
the miss-detection rate 96, andd, under the assumption of then distributed to the monitors. This theorem also is afunc
normally-distributed local “queue” sizes. tion of the queue input rates, and thus these two equations
can be solved again as often as desired; as the time series
change, the queue input and drain rates will evolve and thus
3In a technical report [11], we evaluate how using non-umifgarame-  0(), 0(t) can be updated over time. Thus supporting changes
ters can provide greater communication reduction. in the data’s underlying statistics is straightforwarde(§EeL]
“4In[11], we also provide analyses under other possible dogueodels,  for more details).
such asM//D/1.

5Note that (unlike), andAr) Ae and\y here are in units of chunks (of SExperience with several real data sets shows that a Normeehus
sized). aggregate local occupancy is accurate under reasonatdenindows.

guarantees a false alarm rate 7.

Theorem 2 Assume an\//M /1 model for the coordinator




[ ¢ [ Target3 [ Achieved3™ [ Targetn | Achievedn™ | o

—=— High Volatility

0.2 0.02 0.008 0.02 0.008 —&— Middle Volatility
0.2 0.02 0.008 0.06 0.030 oas- —o— Low Volatility
0.2 0.04 0.000 0.02 0.020
0.2 0.04 0.008 0.04 0.031 g
0.4 0.02 0.010 0.02 0.010 g
0.4 0.02 0.000 0.06 0.026 g
0.4 0.04 0.028 0.02 0.009 g
0.4 0.04 0.028 0.04 0.036 g
§

Table 1:Target vs. achieved detection performance.

6 Evaluation s

Percentage error tolerance (€ /C)

6.1 Implementation and Data Figure 8:Impact of volatility on overhead.

We have implemented D-Trigger using Java, and deploye? . I . L
. ; f a trigger is fired, but no corresponding real violation oc-
the mpmtor protocol on 40. PlanetLab nodes along with the urredg\?vithin 3 time intervals (1 inpterval gefore duringda
coordinator protocol on a_smgle PIanetITab node. SNORT [Z]Cfter) of the detected one, then we count it as ’a false alarm
sensors have be_en continuously running on 200 PlanetL he achieved false alarm ,rataefkﬁ is the ratio of the number '
nodes for approximately one year. Our Java module extract f false alarms over the total number of triggers fired. For
information about the number of outgoing TCP requests pe L . o o S
fixed time window from these logs gnd g-Triggerquses trl?iseaCh real violation, if no trigger is fired within the 3 time in
information to detect network overload conditions resigjti :jeer;/eagzoiroyrﬂg ?Cehifvﬂ dv'rﬁlizzgg’ dvgteeg:i)grqtrgtlé)s(sa?hi :r;lssed
from the bursts of short TCP connections or periods of MaMYio of the.number of missed detections over the number of
long TCP connections, that would be generated by a botnet | traint violati
While the sizes of time windows (and underlying time unit of reaWcons ralnt v;g atons. i head d
the time series data) can range from 5 seconds to 10 minutegﬁuniiggé?qpclggt) :siglrlrc])r:vlsm:fst 'Onggfrr]eer?ué]%g'g?mzzom'
we have elected to use a 5 minute window. We explored th - e JNesT
effects of other time windows and in time series withp5 minute >29€S exchanged between monitors and the coordinator, in-
windows, we observed 85% to 96% of communication reduc-CIUOIing both th_e signal updates from monitprs to coordinato
tion, while with 5 second time windows, we observed 70% to."’tlS Welll_ats tht? fli'Ler updages fr]?m thgt coorglga::]or to thE mon-
90% of communication reduction. Thus, we believe the datd ?rs.l etn be he nu_rP fart_o momlors_?m € gymt er
presented herein are representative of the general gasss po ofvalues In each monitors time Series. S nIndicates

ble using our methods. Furthermore, this time series demont—he worst-case communication overhead (giving the coordi-

strates the need for cumulative triggers because we ohli;ervémor perfect knowledge), and the communication overhead

that the size of the time window needed to detect violations® num/ (m - ")‘_ :
varied from 5 to 100 minutes.¢., no single fixed window Table 1 provides several examples of achieved false alarm

size would have caught all events). (n*) and missed detections{) rates, along with the corre-
126 wou v He v ) sponding target (inputy and 5. The table shows that the

achieveds* andn* are always lower than the targétand
6.2 Performance Evaluation Model 7, indicating that our model finds upper bounds on the de-
tection performance, and its derived queue size paramgters
Using our implementation, we developed a trace-driven simzndg are always safe to use. The results also imply that there
ulator that takes in a time series and can be used for runningre additional optimizations that could reduce the communi
large-scale experiments under controlled conditions @all e  ation cost further.
uating D-Trigger's performance. Given a target perfornenc  cjearly the reduction in communication overhead depends
level specified by the triplet parametgs §,7), our model o the time series data themselves. We now examine our
uses Theorems 2 and 3, the data variabiifyand the en-  qata's properties to ensure that the our general obsengatio
queue and dequeue rates, A, and\,, to compute the mon-  5re not artifacts of a particular time series, and use these r
itor and coordinator queue sizgs ¢) which are used by the g ts to help select the time series and parameters used in ou
simulator to process the SNORT time series data. The Simqexperiments.
lator's outputs are the actual observedtiieveq false alarm The communication bandwidth used between monitors
and missed detection rates, which are computed as follows,\q the coordinator depends upon the data (intuitivelyemor

"While there were no actual botnet infections of PlanetLabinguour volatile d_ata_uses more bandWId_th)' To e.Xplore the rang.e of
experiments, our results show that we could detect the @saingT CP con- Commun'cat'on overhead red_UCtmnS for d'ﬁ_erent sets_mén
nections that would be caused by a botnet. series, we selected 40 machines (time series) at a time from
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Figure 7:Parameters design and tradeoff between false alarm, ntisstid® and communication overhead.

the 200 SNORT time series, by first computing the variancehat for any error typee( 3, andn are different error types),
of each of the 200 time series and then sorting them. the communication overhead can be reduced if we can toler-

We selected three different sets of 40 machines: a “highate higher errors. In this sense, Fig. 7(a) is consistert wit
volatility” set of nodes with the 40 largest variances, a¥lo  Fig. 8. What is surprising is that the range of communication
set of the 40 nodes with the lowest variances, and a “midoverhead is very limited (4-20%), implying that even when
dle” volatility set of 40 nodes selected at random. The com-very low false alarm and missed detection rates are desired,
munication overhead reduction versus error tolerancegusinwe can still achieve efficient communication. For example,
B = n = 0.06 for these three sets of machines is given inwhens = n = 0.04, we can filter out 92% of the original
Fig. 8. In all cases, the shapes of the monotonically deereassignal. We point out that looking across Figs. 8 and 7(a), we
ing curves are similar to each another, and the communicasee that the communication overhead is typically in theeang
tion reduction is substantial. A communication overhead ofof 5-20%, even when looking at it from different perspec-
0.1-0.2 means that only 10-20% of the original time seriegtives (in terms of volatility, percentage error tolerancen-
data is needed to fire triggers with high accuracy. The exstraint definition, and target performance levels). Whikese
act amount depends upon the volatility of the input data, anchumbers are particular to our dataset, we nonetheless there
as expected, the communication overhead decreases as ttoge believe that our methods can regularly achieve signifi-
data’s volatility decreases. The fact that the graphs maich cant data reduction even for low target error rates. Compari
expectations indicates that, even with the most volatlevee  our system to distributed monitors today that do not support
considered, our protocol and its implementation still aghi  distributed cumulative triggers, we see that we achieve dif
efficient communication. For the experiments in this segtio ficult monitoring tasks with less than 80% of the monitored
we use the middle volatility set. data compared to centralized solutions.

The target constraint' is data dependent and since trig-  Fig. 7(b) shows that as the tolerable false alarm rate in-
gers are usually designed to detect anomalies, it typitiay = creases, local queues increase in size because more dilterin
near the extreme behavior of the data. We(db the val-  can be done at monitors, which in turn brings down the over-
ues of thes5t", 90" and98*" percentile of the distribution head. This result explains why overhead decreases with in-
of all 4,000 values (time instants) of r;(¢), and observed creasing false alarm rate and a similar behavior occurs when
that the communication overhead as a function of the errothe tolerable missed detection rate is raised. Looking tt bo
tolerance is similar for these thrée values. Thus, for the (b) and (c) together, we see that a small changesim)X
experiments in this section, we ggtto the data value at the leads to sizable change in local queues, but relativelylsmal
90*" percentile of the distribution. amounts of change in the coordinator queue. Because the co-
ordinator does not vary much, even with changes in accuracy
requirements, we conclude that cancellation across the sig
nals of different monitors is indeed occurring.

We examined the tradeoffs between false alarm and missed

d_etection_ rates, communication overhead, a_md _the queyg 4 System Scalability

sizes. Using = 0.2C, Fig. 7(a) shows communication over-
head tradeoffs, (b) and (c) show monitor queue and coordina®ne key reasons for controlling communications costs is to
tor queue sizes for each achievgtf, n*) pair. Note thatto  avoid overwhelming the coordinator, so we examine scala-
facilitate viewing of the 3-D plots, the order of increasjfig  bility as the number of distributed monitors grows. Instead
andn* in (a) differs from that in (b) and (c). of measuring communications overheae.( num/n - m),

Fig. 7(a) shows that communication overhead decreasethe average overheger monitor we measure the communi-
quickly asg andn increase. The basic phenomenon here iscationscost(i.e., usingnum/m), the total communications

6.3 Performance versus Overhead



M with communication overhead.

g o 1 We envision several areas for future exploration, includ-
g e ing adding fault-tolerance to the single coordinator, gy

g, - = = = = = = = cumulative triggers over more sophisticated correlatiorct

Bosp ] tions (other than our choice &UM), and using multi-level

T onl ] tree hierarchies to further reduce the processing and cemmu
2w w T me wm W m nication workload at the coordinator.
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