
Communication-Efficient Tracking of Distributed Cumulati ve Triggers

Ling Huang∗ Minos Garofalakis† Anthony D. Joseph∗ Nina Taft‡
∗UC Berkeley †Yahoo! Research ‡Intel Research Berkeley

{hling, adj}@cs.berkeley.edu minos@yahoo-inc.com nina.taft@intel.com

Abstract
In recent work, we proposed D-Trigger, a framework for tracking a
global condition over a large network that allows us to detect anoma-
lies while only collecting a very limited amount of data fromdis-
tributed monitors. In this paper, we expand our previous work by
designing a new class of queries (conditions) that can be tracked for
anomaly violations. We show how security violations can be de-
tected over a time window ofany size. This is important because
security operators do not know in advance the window of time in
which measurements should be made to detect anomalies. We also
present an algorithm that determines how each machine should fil-
ter its time series measurements before back-hauling them to a cen-
tral operations center. Our filters are computed analytically such
that upper bounds on false positive and missed detection rates are
guaranteed. In our evaluation, we show that botnet detection can
be carried out successfully over a distributed set of machines, while
simultaneously filtering out 80 to 90% of the measurement data.

Keywords: Distributed Triggering, Network Monitoring,
Anomaly Detection, Data Aggregation, Queueing Theory.

1 Introduction

Network-wide anomaly detection systems rely on large-scale
distributed monitoring systems to collect, aggregate and
present information describing the status and performanceof
the network under observation [1, 2]. Many types of net-
works, including server clusters, enterprise networks, ISPs,
and sensor networks, employ such systems to track the health
of their networks. Remote monitor sites are typically de-
ployed throughout the network and, thus, their data streams
present information from multiple vantage points. The en-
semble of these monitors leads to the creation of numerous,
large, and widely-distributed time-series data streams that are
continuously monitored and analyzed for anomalous condi-
tions, either benign or malicious. In typical monitoring sys-
tems, all the measurement data collected across the remote
monitors is shipped to a data fusion center (i.e. a network
operations center) for processing. The fusion center can raise
alarms should it detect anything abnormal.

Today’s distributed monitoring systems suffer from two
important limitations. The first is scalability - both in terms
of how fast detections can be made (i.e. it is desirable to
shrink the time scale from hours and minutes to seconds and

milliseconds), and in terms of how many distributed monitors
can be tracked simultaneously. The second limitation (as in
recently proposed large-scale monitoring systems [4, 12, 20])
is their lack of flexibility in detecting when a sophisticated
global conditionacross a set of distributed machines exceeds
acceptable levels.

To address the scalability issues, we designed D-Trigger,
a general framework in prior work [9, 10] for global con-
straint tracking. The key to achieving scalability is to reduce
the amount of data needed for anomaly detection. In [10],
we provided an example of a particular anomaly detector that
when re-designed to fit in our framework, could continue to
achieve high detection accuracy while only using 10-20% of
the original data. In this paper, we focus on the problem of
lack of sophistication in the types of conditions that can be
tracked for violations.

The new queries and their supporting algorithms that we
develop here, were designed in accordance with our frame-
work. This framework is described in Sec. 2, but we briefly
mention a few points here. To reduce the amount of data
transmitted through the network, we advocate engaging the
monitors in filtering their own data, and only sending the op-
erations center new data “as needed”. What data is needed
by which machine depends upon the global constraint being
tracked. Because the operations center is doing the detection,
and it now operates under a limited view of the global data,
it can make mistakes. To bound these mistakes, the filtering
at the monitors needs to be done in coordination with the op-
erations center. Our framework proposes that the filtering be
done in such a way that detection errors are bounded.

In order to enable broader and more flexible conditions for
triggering, we introduce a new class of triggers, calledcumu-
lative triggers.These triggers allow one to detect cumulative
violations that are persistent over time and are spread across a
distributed set of machines. One of our main contributions is
to enable such potential violations to be measured over time
without specifying a fixed window sizea priori. Our key en-
abling insight is that the filter parameters needed to support
these triggers can be viewed as analogous to queue sizes.

The motivation for such triggers comes from the follow-
ing. Current designs for large-scale monitoring systems focus
solely oninstantaneoustrigger conditions, where the goal is
to fire the trigger as soon as the aggregate (i.e.,SUM) of ob-
servations (e.g., CPU utilization or number of messages sent)

1

If Enterprise

If ISP

Data Flow

Control Flow

Monitoring Flow

Zombie

x, y, ...
Send at rate

Operation
Center

COC

H1

H2

Hi

Hk

Victim

Figure 1:Example: Distributed detection of botnet attacks.

across distributed machines exceeds a pre-specified thresh-
old. While such triggers are undoubtedly useful, they are
limited when it comes to monitoring distributed phenomena
that are inherentlybursty, such as network traffic and server
load. Fixing appropriate instantaneous threshold conditions
for anomaly detection can easily lead to numerous false pos-
itives and negatives. Exceeding a threshold for a short period
of time could very well be allowed as natural bursty behavior;
on the other hand, even violations that are small in magni-
tude could be harmful if they are allowed topersist over time.
Persistent violations are better observed by measuring activ-
ity over a window of time. However, the task of selecting a
particular window size over which something is measured is
a headache that has long plagued operators because a single
window size cannot accommodate all of their needs. In ad-
dition to ISPs, managers of distributed server systems have
found that measuring average server load using fixed sized
windows is unsatisfactory in that it is insufficient to identify
good or bad system behavior [23].

One could implement a cumulative trigger by naively
pushing all of the monitoring data to the central operations
site. However, following the philosophy advocated in our
framework, we design filtering schemes so as to accurately
detect cumulative trigger violations with limited data. Our
second main contribution is thus an algorithm for computing
the filtering parameters at each local monitor. Based on our
analogy to queues, we use queueing theory as an analytical
tool. Our analytical solution provides guarantees that user
supplied target false alarm and missed detection rates willbe
met. These user-supplied target error rates enable the tradeoff
between reducing communication overhead and alarm detec-
tion accuracy.

We apply our algorithms in the context of botnet detec-
tion as depicted depicted in Fig. 1. In botnet attacks, multiple
zombies (recruited machines) try to open a large number of
TCP connections to a single server (the victim). Assume a
set of hosts have been recruited by a botnet, some subset of
which reside in our given network. An external commander
gives them an order to launch a large number of connections
to a victim, that in this case resides outside our network. In
many cases, tracking the traffic level at each individual host

may not raise any serious alarms (e.g., intelligent botnetspre-
vent compromised machines from transmitting at their max-
imum level so as to evade detection). However, by track-
ing theSUM of the number of simultaneous TCP connections
from these hosts to a given destination, the excess or overload
would be more easily revealed1. Upon detection, ISPs could
block this unwanted traffic via filters on the gateways. In an
enterprise network the hosts could simply be disconnected.

In our experimental evaluation, we use real-life distributed
data streams collected from PlanetLab IDS monitors. We
demonstrate that our schemes can easily guarantee target ac-
curacy levels of around 98% while typically sending less than
20% of the original time-series data (i.e., a communication
reduction of over 80%).

2 Background

A basic distributed triggering system consists of a set of
widely distributed monitoring nodesm1, m2, . . . , mn and
a coordinator nodeX . Each monitor continuously produces
time series signalsri(t) on the variable(s) or condition(s) se-
lected for monitoring. Examples of a monitor’s output in-
clude: number of SYN requests per second, number of DNS
transactions per hour, volume of traffic per minute at port 80,
and so on. These time series signals are sent to coordina-
tor X . The coordinator acts as an aggregation and detection
point, whose purpose is to track conditions across its mon-
itors and to fire a trigger whenever some constraint on the
aggregate behavior of a subset of nodes is violated. The coor-
dinator can aggregate the incoming time series signals using
any typical aggregation function, such asSUM, AVG, MIN,

MAX, etc. We focus herein on the linear SUM aggregator be-
cause our goal is to enable the SUM aggregation over time-
varying windows, and because this aggregator is useful for
botnets. In [9] we illustrated that our framework can support
more complex correlation functions such as the top eigenval-
ues of the global measurements matrix.

Our framework advocates a philosophy and provides de-
sign guidelines for supporting anomaly detectors over such
large-scale distributed monitoring systems. Our belief isthat
many anomaly detection applications can be successful with-
out backhaulingall of the monitored data. Because our ap-
plications are focused on anomaly detection, most of the time
the traffic will be “normal” and there is no need to send such
data to the fusion center. The goal is thus to send only the
monitoring data that is “needed” for the anomaly detector
to work properly. To achieve this, we propose engaging the
monitors in filtering their data locally by installing triggers on
their machines. The monitorsonly send updates to the data
fusion center when the local trigger fires.

The approach of filtering the measurement data at the
local monitors has critical implications for detection accu-

1A caveat is that the overload could be due to a flash crowd.

2

racy, because the operations center (called ‘coordinator’here-
after) carries out the detection. The coordinator’s view ofthe
global state will be approximate because some elements of
the global data can become stale (until the next update). Be-
cause of its approximate view of the global state, the coor-
dinator could make two kinds of errors in detection: either a
violation among monitors occurs and the coordinator fails to
catch it (called amissed detection), or no violation occurs yet
the coordinator thinks that one has (called afalse alarm).

Our framework advocates that if this approximate view of
the global state at the operations center is carefully managed,
then accurate detection can nevertheless still be achieved.
The idea is to bound how ‘approximate’ or perturbed it is
allowed to become. The filtering scheme needs to be se-
lected so as to ensure these bounds are never exceeded. Since,
different security applications require tracking of different
conditions, each new anomaly detector that is supported re-
quires the development of a new filtering scheme along with
an analytical method for guaranteeing the detection accuracy
bounds are met. In designing the filtering, we leverage the
coordinator’s global view by having it choose the level of ac-
curacy that each monitor must report. This last point indicates
some of the complexities of our problem setting, since local
filtering needs to be done based upon the global constraint
that is being tracked.

A nice property of our framework is that it achievescon-
tinuoustracking, where by ‘continuous’ we mean the follow-
ing. The remote monitors can collect data as fast as they are
designed to operate (i.e., this could be 5 minutes if they col-
lect SNMP data, or on the order of a few milliseconds, if
they collect flow statistics, such as netflow). Today moni-
tors either summarize their data by aggregating at coarse time
scales (e.g., computing averages over long windows of mul-
tiple minutes) before sending it to an operations center, or
they send every measurement they make. Neither of these
options is desirable. In our framework, the local monitors
do continuous monitoring and the operations center has the
perceptionthat it receives all the measurements. The filter-
ing strategies are chosen so that the operation center finds
out anything important (relative to the anomalies it tracks)
as soon as something happens, thereby essentially achieving
continuous monitoring.

Prior Work. Database research on continuous distributed
query processing has considered similar environments [3, 5,
13, 17]; however, the focus is on the accurate estimation of
the aggregate signal itself rather than catching a constraint
violation. Jainet al. [14], propose using uniform thresh-
olds across all monitors, and eventually detect instantaneous
threshold violations without giving any guarantees on the size
of the violation; in contrast, we place strict bounds on the size
of the violation that our schemes seek to enforce within spec-
ified error rates. Dilman and Raz [7] propose algorithms for
detecting whether the sum of a set of numeric values from
distributed sources exceeds a user-supplied threshold value.

More recently, Keralapuraet al. [15], formalized the instan-
taneous thresholded counting problem and gave static and
adaptive algorithms, as well as a detailed optimality analy-
sis. Our approach goes further by providing both a firm de-
tection guarantee forcumulativetrigger conditions, as well as
the flexibility for users to trade off communication overhead
with detection accuracy.

Our prior work in [10] provides a solution for detect-
ing volume anomalies using instantaneous triggers combined
with Principal Components Analysis (PCA) techniques. The
methods proposed in this paper are fundamentally different:
(i) instead of PCA and matrix perturbation theory [9, 10], our
results here are based on queueing theory; and, (ii) this work
supports different types of triggers (instantaneous versus cu-
mulative) and provides different accuracy guarantees (on both
false alarm rates and missed detection rates versus only on
false alarm rates).

3 Cumulative Triggers

We now explain a new kind of threshold violation that can
be detected through the use ofcumulative triggers. The goal
is to detect violations that persist in time, without havingto
specify a fixed aggregation time window beforehand. LetC
denote the network-wide trigger threshold that is residentat
the coordinator. In cumulative triggers, the threshold con-
dition is defined in terms of the accumulated excessarea
of the aggregate signal over time: (bytes× time) or (num-
ber of connections× time). Abstractly, a cumulative trig-
ger condition should fire when the excess area of the ob-
served aggregate signal over a time windowof any size, ex-
ceeds the pre-specified cumulative threshold. Such cumula-
tive triggering conditions cannot be captured using existing
SUM-trigger mechanisms based on instantaneous sums of lo-
cal values [14, 15].

To capture temporally-persistent phenomena, the coordi-
nator computes a violation penalty that accrues over time, and
fires the trigger condition when the penalty becomes exces-
sive. During a time window of sizeτ = τ(t), the penalty at
time t accrued over the interval[t − τ, t] is defined to be

V (t, τ) = max{0,

∫ t

t−τ

n
∑

i=1

ri(w)dw − C · τ}.

(We maximize this term with zero to keep the penalty non-
negative.) Our cumulative triggering mechanism does not
depend on any fixed windowτ ; instead, a cumulative trig-
ger fires at timet if penaltyV (t, τ) > ε for anywindow size
τ ∈ [1, t]. Thus, intuitively, we fire the trigger if there is
some time windowthat causes the cumulative penalty to ex-
ceed theε constraint; or, more formally, ifmaxτ{V (t, τ)} >
ε, wheremax is computed on all possibleτ over the entire
signal history. One of our key insights in this work is that,
by exploiting an analogy to queuing theory, our system can

3

0 20 T15

C

104 6

ε
Sum

V2 < ε V3 < ε

V2 + V3 > ε

V1 > ε

ε

Figure 2:Cumulative violations.

track cumulative trigger conditions effectively, withouthav-
ing to retain the entire signal history or check the condition
against all possibleτ .

We allow the user or network operator to specify an er-
ror toleranceε which indicates that it is sufficient to track the
global state (i.e., the aggregated time series) approximately
with an error bounded byε. We will exploit this error toler-
ance to gain additional savings in communication overhead.

Earlier work on distributed triggers [7, 15] has focused
solely oninstantaneousthreshold conditions, where the goal
is to detect if

∑n
i ri(t) exceeds a thresholdC at any timet.

An generalization of the instantaneous case arefixed-window
triggers, where the goal is to detect the conditionV (t, τ) > ε
at any timet, for a given, fixed time windowτ .

Instantaneous and fixed-window triggers are inherently
limited when it comes to signals where transient bursty be-
havior is the norm, such as IP network traffic. Depending on
the threshold value, an instantaneous trigger may easily over-
react to natural, transient phenomena. With fixed-window
triggers, choosing the right window sizeτ can be problem-
atic for several reasons. If we use a smallτ (short window),
and the violation lasts for a long time but is small in magni-
tude, the system is likely to miss it altogether. For example,
in Fig. 2, the persistent (but small) violation occurring intime
slots[10, 20] could go undetected with a window size ofτ =
5 because the penalty (over any 5 time slots),V2 or V3, does
not grow to exceedε. If, on the other hand, the violation were
short in duration but large in magnitude, the system would
miss it if a largeτ (long window) is used. In our example fig-
ure, a short but large violation occurs during the time period
[4, 6]. With a window of size 5 time units, this violation is
likely to get averaged out because the positive penalty in pe-
riod [4, 6] is canceled out by the negative contribution in pe-
riod [3, 4] (or, [6, 7]). This illustrates the difference between
fixed sized windows and cumulative violations with varying
window sizes. With a fixed window of size 5, both these vi-
olations would have been missed. However, with cumulative
conditions, a window of size 10 would have caught the viola-
tion in [10, 20] in our first example since the penaltyV2 + V3

exceedsε; a window size of 2 would detect the violation in
[4, 6] in our second example since the penaltyV1 does exceed

ε. We can thus see the flexibility in not having to specify
a priori the time window over which a potential violation is
measured.

4 Problem Statement

Because our approach of using limited data introduces errors,
we allow the network operator to input their tolerable error
levels. We allow three such inputs. The first input,ε specifies
the error tolerance on the size of the violation. We also allow
network operators to input their tolerance on false alarms and
missed detections.

In our system, amissed detectionoccurs ifmaxτ{V (t, τ)}
> ε and the system doesnot fire the corresponding trigger.
Conversely, afalse alarmoccurs whenevermaxτ{V (t, τ)}
≤ ε and the system fires a trigger. We define themissed-
detection rateβ as the fraction of missed detections over the
total number of real violations, and thefalse-alarm rateη as
the fraction of false alarms over the total number of triggers
fired. Allowing β andη to be inputs, creates a flexible sys-
tem in which different deployments can be tailored to their
own needs. For example, some systems may consider mini-
mizing false alarms more important than minimizing missed
detections; other systems may take the opposite view.

The user input thus constitutes a triple(ε, β, η) that essen-
tially denotes the accuracy level that our tracking schemes
target. The problem we address herein is to design the pro-
tocols resident at the monitors and at the coordinator in or-
der toguaranteethat the coordinator’s trigger fires, whenever
maxτ{V (t, τ)} > ε, at any timet, with (ε, β, η)-accuracy
while simultaneously keeping communication overhead low.

To simplify the exposition, our discussion assumes that
communication between the monitors and the coordinator are
instantaneous. In the case of non-trivial delays in the under-
lying network, techniques based on time-stamping and mes-
sage serialization can be employed to ensure correctness, as
in [17].

5 Distributed Cumulative Triggers

5.1 The Queueing Model

Our approach tosupporting cumulative violations without
having to specify windows of time a priori is to use insights
from queueing theory. Earlier work on data streaming uses
window-basedstream processing [6, 8] and focuses only on
the case of (time- or arrival-based) windowsof fixed sizeover
the stream. Such techniques are not useful in our case, since
the window sizes of the (potential) trigger violation are not
known ahead of time. Instead, our key observation is that
we can accurately model the monitoring of a cumulative trig-
ger condition (see Sec. 3) using a simplequeueing modelas

4

Q(t)

Empty Busy Empty Busy

t

C

t0

Trigger fired !

Sum

ε

t4t3t2t1

Figure 3: Queueing model for a cumulative trigger.

stated by the following theorem2.

Theorem 1 Consider a queue of sizeε with an arrival rate
equal to the actual aggregate signal

∑n
i=1 ri(t) and a drain

(i.e., service) rate equal to the trigger thresholdC. A cumu-
lative trigger should fire (i.e.,∃τ s.t.V (t, τ) > ε) if and only
if the above queue overflows.

Essentially, cumulative triggering aims to guarantee that
∑

i ri(t) does not exceedC in the long-term, however, it al-
lows

∑

i ri(t) to be bursty (i.e.,
∑

i ri(t) can beanyamount
larger thanC in any time window, but the volume of the
burstiness should not exceedε). Thus, cumulative trigger-
ing does not care about instantaneous sums or averages over
a fixed size window; it cares only whether (acrossany possi-
ble time scale) the accumulated violation (penalty) exceedsε
and causes queue overflow.

As an example, the bottom half of Fig. 3 depicts a sample
aggregate time-series signal

∑n
i=1 ri(t), while the top half

shows the occupancy over time of a queue,Q(t), that has
a fixed sizeε and drain rateC. Clearly, if the queue over-
flows at some timet, then there must be some timets < t
denoting the start of abusy period[ts, t] (i.e., a period dur-
ing which the queue is persistently non-empty; that is,ts =
max{x|x ≤ t andQ(x) = 0}) ending att with a queue oc-
cupancyQ(t) ≥ ε. Fig. 3 shows two busy periods,[t1, t2]
and [t3, t4], the second of which results in sufficient queue
buildup to fire the trigger. It is not difficult to see that, by
our queueing model,Q(t) = V (t, t − ts), so thatQ(t) > ε
(i.e., a queue overflow) indeed implies that our trigger should
fire. Similarly, for any time windowτ ≤ t, V (t, t − ts) ≥
V (t, τ) (i.e., windows smaller or larger than the latest busy
period can only reduce the cumulative size of the violation).
In other words,Q(t) = V (t, t−ts) = maxτ{V (t, τ)}, imply-
ing the cumulative trigger should fire if and only if the queue
overflows. The model in Theorem 1 captures the equivalence
between an overflowing queue and a violation of the cumula-
tive trigger constraint.

2Due to lack of space, the proofs for all of our theorems are omitted, but
can be found in [11].

?

C

?

ε

?

η

?

β

?
rn(t)

?
r1(t)

?
r1(t)

Parameters
Adaptive

-

-

-

-

J
J

J
J
J

J
Ĵ

PPPPPq

�
�
�
�
�
�
���

HHHHj

6

�
�

��>

?

Filter/
Predict

Filter/
Predict

Filter/
Predict

δ1

δ2

δn

R1(t)

R2(t)

Rn(t)

Checking
Constraint

Queueing
Aggreg./

AlarmsCoordinator

Distr. Monitors

Symbol Meaning

mi Monitor sites (i = 1, . . . , n)
ri(t) True local time-series signal atmi

Ri(t) Most recent prediction model forri(t)
C Trigger threshold
ε Error tolerance for threshold violation
δi Local monitor slack parameters
θ Coordinator slack parameter
β Miss detection (i.e., false negative) rate
η False alarm (i.e., false positive) rate

Figure 4:Our distributed trigger tracking framework.

5.2 Our Trigger-Tracking Protocols

The architecture of our system is depicted in Fig. 4. The role
of the monitor is to track its own time series data and to decide
when to send the coordinator an update based on a filtering
scheme. Letri(t) denote the actual time series observed at
monitoring nodei. If a monitor decides at timetprev to send
the coordinator a sample of its data, it sendsRi(t

prev), which
is an approximate representation ofri(t

prev). If in a subse-
quent timet > tprev, the monitor sends nothing, then the co-
ordinator assumes thatRi(t

prev) is a good approximation for
ri(t). In general,Ri(t) can be based on any type ofprediction
modelfor monitormi. For example, a simple model is to set
Ri(t

prev) = ri(t
prev) at the update time. Time series predic-

tion models and other sophisticated prediction models [5, 13]
could also be used.

The role of the coordinator is twofold. First, it makes
global anomaly detection decisions based on a queueing
model with parameterθ, using the received updatesRi(t)
from the monitors. Second, it computes the slack parame-
ters δi for all the monitors based on its view of the global
state and the condition for triggering an anomaly. The slack
parametersδi are sent to the monitors whenever they change.
The monitors use slack parameters when tracking the drift
between the actual time series signal and the prediction func-
tion; whenever this drift exceeds the allowed slack, the mon-
itor sends the coordinator an updated predictionRi(t). Intu-
itively, these slacks are used to bound the difference between
the coordinator’s view of the data and the actual data.

The simple queueing model as in Theorem 1 is ideal since
it assumes the true aggregate

∑

ri(t) feeds a single coordi-
nator queue. We extend the ideal queueing model to the dis-
tributed environment by placing queues at each of the mon-
itors in addition to the one queue at the coordinator. This

5

δ1

δ2

δn

-

PPPPPPPPPPPPPPq

�������������*

-

-

-

-
C

r1(t) R1(t)

r2(t) R2(t)

Rn(t)rn

Coordinator

θ

Distr. Monitors

Figure 5:Distributed queueing model: cumulative triggers.

distributed queueing model is depicted in Fig. 5. Our task
is then to design algorithms to convert the centralized queue
model of sizeε into a coordinator queue of sizeθ and a set of
local monitor queues of sizeδ1, . . . , δn, while still guarantee-
ing the necessary false alarm and missed detection rates.
The Local Monitor Protocol. In our distributed model, each
local queue has an arrival rate orri(t), a drain rate ofRi(t)
and a size ofδi. Let tprev

i denote the time of the last update
message frommi to the coordinator. At any timet, the size
of the monitor’s queue captures the cumulative deviation of
ri(t) from its most recent predictionRi(t

prev) over the in-
terval [tprev

i , t], namelydi(t) =
∫ t

t
prev
i

(ri(x) − Ri(x))dx.

Should the local queue overflow, i.e., when|di(t)| > δi, this
means the drift has exceeded the allowed slack. At this time
the monitor sends the coordinator an update on its time series.
It sends the current valueri(t), a predictionRi(t) for near-
term future values, and the current valuedi(t). The amount
di(t) corresponds to the cumulative deviation ofri(t) from
its most recent prediction. At the time of the update, the local
queue also resetsdi(t) to zero. Note that, unlike traditional
queueing, local monitor queue occupancies are allowed to
become negative, if predictions consistently overestimate the
true local signals. Such conditions are important to detectand
bring to the coordinator’s attention since they also capture ex-
cessive drift and thus lead to more updates. Sending under-
flow information to the coordinator can also enable cross-site
variations to cancel out (thus avoiding false alarms).

We point out that the queues we are using here are models,
not actual physical queues. In an implementation a queue that
stores data is not needed. Instead only a counter is needed that
is incremented and decremented according to the queueing
models herein.

The Coordinator Protocol. In our distributed queue-
ing model, the coordinator’s queue has an arrival rate of
∑n

i=1 Ri(t), a drain rate equal to the trigger thresholdC,
and is of sizeθ, as in Fig. 5. In addition to the continuous
“arrivals” at rate

∑n
i=1 Ri(t) to the coordinator queue, each

update from monitormi also introduces achunkof di(t) ar-
rivals into the queue. Note that if the queue underflows (drops
below zero), thendi(t) is negative. The coordinator contin-
uously tracks this complex arrival process at its queue and
fires a trigger violation if its queue overflows. A high-level

ProcedureCoordinator(ε, β, η)
Input : Trigger error thresholdε; miss-detection/false-alarm rates(β, η).
1. while (true) do
2. Continuously simulate a virtual queueQ of sizeθ with arrival rate

∑

i
Ri(t) and drain rateC

3. for each (monitor update(i, d∗
i
(t), R∗

i
(t)) received)do

4. Set local predictionRi(t):= R∗
i
(t)

5. Enqueue thed∗
i
(t) chunk in the virtual coordinator queueQ

6. if (Q overflows)then
fire(“trigger violation”); break

7. Compute new optimal settings for local slacks{δi} and coordinator
slackθ based on (ε, β, η) and maintained statistics(Sec. 5.3)

8. if (adaptive allocation)then disseminate({δi})

Figure 6:Procedures for distributed trigger tracking at the coordi-
nator.

pseudo-code description of the coordinator protocol is de-
picted in Fig. 6.

Intuitively, the local slacksδi at the remote monitors aim
to filter out local variations in individualri(t) signals, while
thecoordinator slackθ is useful for canceling out variations
across monitors(e.g., when distinctri(t)’s move in oppo-
site directions). In addition to tracking the global constraint,
one of the coordinator’s key tasks is to compute values forδi

(i = 1, . . . , n) andθ that lower communications costs yet
guarantee that neither of the error rates(β, η) exceed their
tolerance levels. In order to be adaptive, the coordinator can
recompute and redistribute these slacks either periodically or
upon each monitor update. In the next section, we give our
algorithm for computing these slack values.

5.3 Queueing Analysis for Slack Estimation

We now present an analysis of a simplified variant of our dis-
tributed queueing model (Fig. 5), and discuss the application
of our results to estimating effective settings for the monitor
and coordinator slack parameters in our system. The exis-
tence of the localδi filters obviously reduces communication
costs by allowing monitors to “absorb” updates with no com-
munication to the coordinator. At the same time, however,
this local filtering also makes the arrival process at the coor-
dinator queue moreburstyby introducing bursts of queue ar-
rivals and departures when the filter constraints at local mon-
itors are violated. Thus, abstractly, the role of the coordinator
queue (of sizeθ) is to allow for such bursts to be effectively
absorbed (or, cancel each other out) as long as the cumulative
trigger bound is not exceeded.

The system slack parameters (δi’s andθ) interact with each
other as well as the input error thresholdε, miss-detection rate
β, and false-alarm rateη parameters in complex ways. Intu-
itively, given an error thresholdε for our trigger monitor, we
would like to maximizethe size of the local-monitor filters
δi, as that would obviously minimize the number of monitor
updates to the coordinator. However, larger monitor filters

6

also imply larger (more bursty) chunks of arrivals/departures
at the coordinator queue (due to monitor updates) which may,
in turn, cause: (1)false alarmswhen a combination of bursts
causes the queue to overflow even though the true aggregate
signal has not violated the trigger condition; and, (2)miss de-
tectionswhen the local monitor filters absorb enough traffic
variability to mask a real trigger violation. To minimize the
false alarm problem, we would like to have a large coordina-
tor queue sizeθ to absorb the monitor bursts — however, the
size of the coordinator slackθ and monitor slacksδ1, . . . , δn

are also clearly constrained by the overall error thresholdε
that our triggering schemes must try to guarantee.

In what follows, we employ queueing theory to analyti-
cally explore the aforementioned tradeoffs (under some sim-
plifying assumptions), and obtain results that provide effec-
tive settings for our system slack parameters for a given input
triple (ε, β, η). Our approach is to develop two non-linear
equations relatingδ andθ to the parameters(ε, β, η) as well
as the model parameters. These two equations can then be
solved simultaneously to deriveδ andθ.

We make two key assumptions to make the analysis
tractable. First, we assume uniform local slack parame-
ters, whereδi = δ for all i3. Second, we assume an
M/M/1 queueing model for the coordinator queue4. Un-
der theM/M/1 assumption, letλr andλR denote the mean
“arrival rates” for the true signal and predicted signal, respec-
tively (i.e., the estimated averages of

∑

i ri(t) and
∑

i Ri(t)
over time). Similarly, letλe andλd be the mean arrival rates
for enqueue and dequeue chunks (respectively) at the coor-
dinator. Note that, theλR, λe, andλd rates are directly ob-
servable at the coordinator, and can be computed empirically
(e.g., through averaging over a time window of recent queue-
ing activity). Since the overall “mass” of the true aggregate
signal is preserved over time, the coordinator can also accu-
rately estimateλr asλr = λR + (λe − λd) · δ. 5

Now, consider the effect ofθ andδ on the miss detection
rateβ. It is not difficult to see that havingε ≥ θ + n · δ
always guarantees a miss detection rateβ = 0. However,
this condition is simply too conservative and may result in
excessive communication, especially if (a) someβ > 0 is
acceptable, or (b) the true value of the cumulative violation
maxτ{V (T, τ)} is well below theε threshold. Essentially,
fixing a total slack ofε is an overly conservative, non-adaptive
solution. As proved in [11], the following theorem presents
a more versatile, less conservative analytical result relating
the miss-detection rate toε, θ, andδ, under the assumption of
normally-distributed local “queue” sizes.

Theorem 2 Assume anM/M/1 model for the coordinator

3In a technical report [11], we evaluate how using non-uniform parame-
ters can provide greater communication reduction.

4In [11], we also provide analyses under other possible queueing models,
such asM/D/1.

5Note that (unlikeλr andλR) λe andλd here are in units of chunks (of
sizeδ).

queue, and that the aggregate occupancy of all local moni-
tor “queues” follows a NormalN(0, σ2) distribution. Then,
setting

∫

∞

x=0

[

1 − F

(

ε − θ

δ
+ x + 1

)]

ρx(1 − ρ)dx = β (1)

guarantees a miss detection rate≤ β, whereF () denotes the
CDF ofN(0, σ2), andρ = λr

C
denotes the average coordina-

tor queue utilization (over time).

The assumption of a zero mean for the aggregate occu-
pancy of all local monitor queues is motivated by the fact
that, over a large enough window of time, the true and pre-
dicted signal rates are approximately equal (i.e., λR ≈ λr).
Similarly, the normality assumption can be justified under the
assumption ofindependent updatesacross local monitors and
the law of large numbers (for large enoughn)6. To estimate
the aggregate varianceσ2 in our system, each local monitor
mi continuously tracks the up-to-date varianceσ2

i of its lo-
cal occupancy and ships that information to the coordinator
in its update messages if there is a significant change with re-
spect to the most recent measurement; the coordinator then
estimates the aggregate variance asσ2 =

∑n
i=1 σ2

i . Note that
Theorem (2) has the ability to support adaptivity through its
dependence onρ = λr

C
. As the rateλr evolves, so willρ, and

the resulting value computed forδ.
Now, consider the false alarm rateη. Observe that, in our

distributed queueing model, the arrival and drain rates at the
coordinator queue can be naturally approximated asλR +λe ·
δ andC + λd · δ (respectively), whereas the corresponding
rates for the idealized (centralized) case are simplyλr andC.
Based on this observation and ourM/M/1 assumption, we
can prove the following result (see [11] for details).

Theorem 3 Assume anM/M/1 model for the coordinator
queue. Then, setting:

1 −

(

λr

C

)
ε
δ
+1

/

(

λR + λe · δ

C + λd · δ

)
θ
δ
+1

= η (2)

guarantees a false alarm rate≤ η.

Given a triple of trigger-tracking requirements(ε, β, η),
our coordinator algorithms use the derived system of two
non-linear equations (Theorems 2 and 3) to solve for the opti-
mal (under our assumptions) coordinator- and monitor-slack
valuesθ andδ (Step7 in Fig. 6(b)). The local slacksδ are
then distributed to the monitors. This theorem also is a func-
tion of the queue input rates, and thus these two equations
can be solved again as often as desired; as the time series
change, the queue input and drain rates will evolve and thus
θ(t), δ(t) can be updated over time. Thus supporting changes
in the data’s underlying statistics is straightforward (see [11]
for more details).

6Experience with several real data sets shows that a Normal model of
aggregate local occupancy is accurate under reasonable time windows.

7

ε Targetβ Achievedβ∗ Targetη Achievedη∗

0.2 0.02 0.008 0.02 0.008
0.2 0.02 0.008 0.06 0.030
0.2 0.04 0.000 0.02 0.020
0.2 0.04 0.008 0.04 0.031
0.4 0.02 0.010 0.02 0.010
0.4 0.02 0.000 0.06 0.026
0.4 0.04 0.028 0.02 0.009
0.4 0.04 0.028 0.04 0.036

Table 1:Target vs. achieved detection performance.

6 Evaluation

6.1 Implementation and Data

We have implemented D-Trigger using Java, and deployed
the monitor protocol on 40 PlanetLab nodes along with the
coordinator protocol on a single PlanetLab node. SNORT [2]
sensors have been continuously running on 200 PlanetLab
nodes for approximately one year. Our Java module extracts
information about the number of outgoing TCP requests per
fixed time window from these logs, and D-Trigger uses this
information to detect network overload conditions resulting
from the bursts of short TCP connections or periods of many,
long TCP connections, that would be generated by a botnet7.
While the sizes of time windows (and underlying time unit of
the time series data) can range from 5 seconds to 10 minutes,
we have elected to use a 5 minute window. We explored the
effects of other time windows and in time series with 5 minute
windows, we observed 85% to 96% of communication reduc-
tion, while with 5 second time windows, we observed 70% to
90% of communication reduction. Thus, we believe the data
presented herein are representative of the general gains possi-
ble using our methods. Furthermore, this time series demon-
strates the need for cumulative triggers because we observed
that the size of the time window needed to detect violations
varied from 5 to 100 minutes (i.e., no single fixed window
size would have caught all events).

6.2 Performance Evaluation Model

Using our implementation, we developed a trace-driven sim-
ulator that takes in a time series and can be used for running
large-scale experiments under controlled conditions and eval-
uating D-Trigger’s performance. Given a target performance
level specified by the triplet parameters(ε, β, η), our model
uses Theorems 2 and 3, the data variabilityσ, and the en-
queue and dequeue ratesλR, λe, andλd, to compute the mon-
itor and coordinator queue sizes(δ, θ) which are used by the
simulator to process the SNORT time series data. The simu-
lator’s outputs are the actual observed (achieved) false alarm
and missed detection rates, which are computed as follows.

7While there were no actual botnet infections of PlanetLab during our
experiments, our results show that we could detect the changes in TCP con-
nections that would be caused by a botnet.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Percentage error tolerance (/C)ε

C
om

m
un

ic
at

io
n

ov
er

he
ad

High Volatility
Middle Volatility
Low Volatility

Figure 8:Impact of volatility on overhead.

If a trigger is fired, but no corresponding real violation oc-
curred within 3 time intervals (1 interval before, during, and
after) of the detected one, then we count it as a false alarm.
The achieved false alarm rate (η∗) is the ratio of the number
of false alarms over the total number of triggers fired. For
each real violation, if no trigger is fired within the 3 time in-
tervals around the real violation, we count this as a missed
detection. The achieved missed detection rate (β∗) is the ra-
tio of the number of missed detections over the number of
real constraint violations.

We compute the communication overhead (per-node com-
munication cost) as follows. Letnum be the number of mes-
sages exchanged between monitors and the coordinator, in-
cluding both the signal updates from monitors to coordinator
as well as the filter updates from the coordinator to the mon-
itors. Let n be the number of monitors andm the number
of values in each monitor’s time series. Thusm · n indicates
the worst-case communication overhead (giving the coordi-
nator perfect knowledge), and the communication overhead
is num/(m · n).

Table 1 provides several examples of achieved false alarm
(η∗) and missed detection (β∗) rates, along with the corre-
sponding target (input)η andβ. The table shows that the
achievedβ∗ andη∗ are always lower than the targetβ and
η, indicating that our model finds upper bounds on the de-
tection performance, and its derived queue size parametersδ
andθ are always safe to use. The results also imply that there
are additional optimizations that could reduce the communi-
cation cost further.

Clearly the reduction in communication overhead depends
on the time series data themselves. We now examine our
data’s properties to ensure that the our general observations
are not artifacts of a particular time series, and use these re-
sults to help select the time series and parameters used in our
experiments.

The communication bandwidth used between monitors
and the coordinator depends upon the data (intuitively, more
volatile data uses more bandwidth). To explore the range of
communication overhead reductions for different sets of time
series, we selected 40 machines (time series) at a time from

8

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0

0.05

0.1

0.15

0.2

0.25

False Alarm rate
Miss Detection rate

C
om

m
un

ic
at

io
n

ov
er

he
ad

(a) Communication overhead

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08
0

1000

2000

3000

4000

5000

False Alarm rateMiss Detection rate

M
on

ito
r

qu
eu

e
si

ze

(b) Monitor queue size

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08
2.4

2.5

2.6

2.7

2.8

2.9

x 10
4

False Alarm rateMiss Detection rate

C
oo

rd
in

at
or

 Q
ue

ue
 s

iz
e

(c) Coordinator queue size

Figure 7:Parameters design and tradeoff between false alarm, miss detection and communication overhead.

the 200 SNORT time series, by first computing the variance
of each of the 200 time series and then sorting them.

We selected three different sets of 40 machines: a “high
volatility” set of nodes with the 40 largest variances, a “low”
set of the 40 nodes with the lowest variances, and a “mid-
dle” volatility set of 40 nodes selected at random. The com-
munication overhead reduction versus error tolerance using
β = η = 0.06 for these three sets of machines is given in
Fig. 8. In all cases, the shapes of the monotonically decreas-
ing curves are similar to each another, and the communica-
tion reduction is substantial. A communication overhead of
0.1-0.2 means that only 10-20% of the original time series
data is needed to fire triggers with high accuracy. The ex-
act amount depends upon the volatility of the input data, and
as expected, the communication overhead decreases as the
data’s volatility decreases. The fact that the graphs matchour
expectations indicates that, even with the most volatile set we
considered, our protocol and its implementation still achieve
efficient communication. For the experiments in this section,
we use the middle volatility set.

The target constraintC is data dependent and since trig-
gers are usually designed to detect anomalies, it typicallylies
near the extreme behavior of the data. We setC to the val-
ues of the85th, 90th and98th percentile of the distribution
of all 4,000 values (time instants) of

∑

ri(t), and observed
that the communication overhead as a function of the error
tolerance is similar for these threeC values. Thus, for the
experiments in this section, we setC to the data value at the
90th percentile of the distribution.

6.3 Performance versus Overhead

We examined the tradeoffs between false alarm and missed
detection rates, communication overhead, and the queue
sizes. Usingε = 0.2C, Fig. 7(a) shows communication over-
head tradeoffs, (b) and (c) show monitor queue and coordina-
tor queue sizes for each achieved(β∗, η∗) pair. Note that to
facilitate viewing of the 3-D plots, the order of increasingβ∗

andη∗ in (a) differs from that in (b) and (c).
Fig. 7(a) shows that communication overhead decreases

quickly asβ andη increase. The basic phenomenon here is

that for any error type (ε, β, andη are different error types),
the communication overhead can be reduced if we can toler-
ate higher errors. In this sense, Fig. 7(a) is consistent with
Fig. 8. What is surprising is that the range of communication
overhead is very limited (4-20%), implying that even when
very low false alarm and missed detection rates are desired,
we can still achieve efficient communication. For example,
whenβ = η = 0.04, we can filter out 92% of the original
signal. We point out that looking across Figs. 8 and 7(a), we
see that the communication overhead is typically in the range
of 5-20%, even when looking at it from different perspec-
tives (in terms of volatility, percentage error tolerance,con-
straint definition, and target performance levels). While these
numbers are particular to our dataset, we nonetheless there-
fore believe that our methods can regularly achieve signifi-
cant data reduction even for low target error rates. Comparing
our system to distributed monitors today that do not support
distributed cumulative triggers, we see that we achieve dif-
ficult monitoring tasks with less than 80% of the monitored
data compared to centralized solutions.

Fig. 7(b) shows that as the tolerable false alarm rate in-
creases, local queues increase in size because more filtering
can be done at monitors, which in turn brings down the over-
head. This result explains why overhead decreases with in-
creasing false alarm rate and a similar behavior occurs when
the tolerable missed detection rate is raised. Looking at both
(b) and (c) together, we see that a small change in (β, η)
leads to sizable change in local queues, but relatively small
amounts of change in the coordinator queue. Because the co-
ordinator does not vary much, even with changes in accuracy
requirements, we conclude that cancellation across the sig-
nals of different monitors is indeed occurring.

6.4 System Scalability

One key reasons for controlling communications costs is to
avoid overwhelming the coordinator, so we examine scala-
bility as the number of distributed monitors grows. Instead
of measuring communications overhead (i.e., num/n · m),
the average overheadper monitor, we measure the communi-
cationscost (i.e., usingnum/m), the total communications

9

40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

M
on

ito
r

Q
 s

iz
e

40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

O
ve

rh
ea

d
pe

r
m

on
ito

r

40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

C
os

t o
f c

oo
rd

in
at

or

Number of nodes in the system

Figure 9:Communication overhead versus system size.

bandwidth into the coordinator, to capture the average num-
ber of messages the coordinator receives in a time slot.

In Fig. 9, we plot communications cost as a function of
the number of monitors (ranging from 40 to 200) and set
(ε, β, η) = (0.2C, 0.06, 0.06). We ran5 rounds of experi-
ments for each system sizen, each of which ran onn ran-
domly picked monitors. The system scales gracefully, since
as the system size increases: 1) the communication over-
head of each monitor decreases slightly; and 2) the coor-
dinator’s communication cost increases slowly with a slope
of roughly 0.1 (indicating that communication cost increases
sub-linearly as system size increases). Intuitively, our algo-
rithm captures the trend that as the number of monitor nodes
increases, when one monitor queue overflows, it is more
likely there will be an underflowing queue elsewhere, lead-
ing to more signal cancellation at the coordinator and less
communication cost and overhead.

Note that monitor and coordinator queues grow as the
system scales, however, this does not affect scalability be-
cause an implementation does not actually use buffers; in-
stead queues are implemented as counters, and queue sizes
correspond to maximum counter values.

7 Conclusion and Future Work

We have presented a novel solution to the problem of efficient
aggregate constraint detection over a time-varying window
(cumulative triggering) in a distributed monitoring system.
Our solution relies on a key insight of focusing on accurate
triggering instead ofε-error aggregate value reporting, which
can yield a greater than 80% reduction communication over-
head, while preserving high detection accuracy.

Our contributions include: providing a mathematical def-
inition of cumulative distributed triggering; using a queue-
ing theory-based problem definition, which makes analytical
solutions possible; and performing a detailed evaluation of
our schemes using real world and trace-based streaming data.
Overall, the combination of our contributions offers usersthe
power to tradeoff desired detection accuracy and performance

with communication overhead.
We envision several areas for future exploration, includ-

ing adding fault-tolerance to the single coordinator, applying
cumulative triggers over more sophisticated correlation func-
tions (other than our choice ofSUM), and using multi-level
tree hierarchies to further reduce the processing and commu-
nication workload at the coordinator.

References
[1] ArcSight. http://www.arcsight.com/.
[2] Snort. http://www.snort.org/.
[3] CHERNIACK, M., BALAKRISHNAN , H., BALAZINSKA , M., CARNEY,

D., ETINTEMEL, U., XING, Y., AND ZDONIK , S. Scalable distributed
stream processing. InCIDR (2003).

[4] CLARK , D., PARTRIDGE, C., RAMMING , J. C.,AND WROCLAWSKI,
J. T. A knowledge plane for the internet. InACM SIGCOMM(2003).

[5] CORMODE, G., AND GAROFALAKIS , M. Sketching streams through
the net: Distributed approximate query tracking. InVLDB (2005).

[6] DATAR , M., GIONIS, A., INDYK , P.,AND MOTWANI , R. Maintaining
stream statistics over sliding windows. InACM-SIAM SODA(2002).

[7] D ILMAN , M., AND RAZ , D. Efficient reactive monitoring. InIEEE
INFOCOM (2001).

[8] GAROFALAKIS , M., GEHRKE, J., AND RASTOGI, R. Querying and
mining data streams. Tutorial in VLDB (2002).

[9] HUANG, L., GAROFALAKIS , M., HELLERSTEIN, J., JOSEPH, A., AND

TAFT, N. Toward sophisticated detection with distributed triggers. In
MineNet(2006).

[10] HUANG, L., NGUYEN, X. L., GAROFALAKIS , M., HELLERSTEIN,
J. M., JORDAN, M., JOSEPH, A.D., AND TAFT, N. Communication-
efficient online detection of network-wide anomalies. To appear inIN-
FOCOM(2007).

[11] HUANG, L., GAROFALAKIS , M., JOSEPH, A., AND TAFT, N.
Communication-efficient tracking of distributed cumulative triggers. UC
Berkeley Tech. rep., EECS-2006-139 (2006).

[12] HUEBSCH, R., AND ET AL . Querying the internet with pier. InVLDB
(2003).

[13] JAIN , A., CHANG, E. Y.,AND WANG, Y.-F. Adaptive stream resource
management using kalman filters. InACM SIGMOD(2004).

[14] JAIN , A., HELLERSTEIN, J. M., RATNASAMY, S., AND WETHER-
ALL , D. A wakeup call for internet monitoring systems: The case for
distributed triggers. InHotNets(2004).

[15] KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM , J.
Communication-efficient distributed monitoring of thresholded counts. In
ACM SIGMOD(2006).

[16] LAKHINA , A., CROVELLA , M., AND DIOT, C. Diagnosing network-
wide traffic anomalies. InACM SIGCOMM(2004).

[17] OLSTON, C., JIANG , J.,AND WIDOM , J. Adaptive filters for contin-
uous queries over distributed data streams. InACM SIGMOD(2003).

[18] PADMANABHAN , V. N., RAMABHADRAN , S.,AND PADHYE , J. Net-
profiler: Profiling wide-area networks using peer cooperation. In IPTPS
(2005).

[19] PAXSON, V., AND FLOYD , S. Wide-area traffic: the failure of poisson
modeling.IEEE/ACM Trans. on Networking, 3(3) (1995).

[20] SPRING, N., WETHERALL, D., AND ANDERSON, T. Scriptroute: A
facility for distributed internet measurement. InUSITS(2003).

[21] X IE, Y., K IM , H.-A., O’HALLARON , D. R., REITER, M. K., AND

ZHANG, H. Seurat: A pointillist approach to anomaly detection. InRAID
(2004).

[22] YEGNESWARAN, V., BARFORD, P., AND JHA , S. Global intrusion
detection in the domino overlay system. InNDSS(2004).

[23] ZHANG, S., HUANG, L. Personal Communication. November, 2003.
[24] ZHANG, Y., GE, Z.-H., GREENBERG, A., AND ROUGHAN, M. Net-

work anomography. InIMC (2005).

10

