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Set of nodes: M = {1, ..., m}
» Observations of the ith node: X* = (X;1, ..., Xin)
» Denote by X r: the correlated rvs (Xit, ..., Ximt)

» X, ..., X pn are finite, discrete valued, i.i.d. rvs
- with known probability distribution.



e\\‘g\{Sl'r),
N

18 56

(AL ) &
TRYLAS

Formulation
An Upper Bound

Symmetric

r-Rounds Adaptive Protocol

Central Switch

. X5
\~‘\

Available Nodes: Ay = M
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Nodes Remaining: 4, = {1,2,3,4,5,6,7}

Communication in round j depends on:
local observations and the communication in the previous rounds.
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Nodes Remaining: A, = {2,3,4,6,7}

Communication in round j depends on:

local observations and the communication in the previous rounds
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Nodes Remaining: A, 1 = {2,4,6}

Communication in round j depends on:
local observations and the communication in the previous rounds.
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Nodes Remaining: A, 1 = {2,4,6} = A,

Communication in round j depends on:
local observations and the communication in the previous rounds.

Assumption: A, = A,_1
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Communication in round j depends on:

local observations and the communication in the previous rounds.

Assumption: A, = A,_1

The overall communication dependson A, = A,_1 C ... C A
- F denotes the overall communication.
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K constitutes a secret key if:
1. Recoverability: Pr (K; = K,i € A,) =~ 1
2. Security: I(KAF) =0

The rate of the SK: L H(K)
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Definition (Achievable (r,t)-fault-tolerant SK rate)

R > 0 is an achievable (r,t)-fault-tolerant SK rate if there is an r-rounds
adaptive protocol that generates an SK of rate greater than R whenever
not more than ¢ nodes drop out.
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r-Rounds Adaptive Protocol

K constitutes a perfect secret key if:
1. Perfect Recoverability: Pr(K; = K,i € A;) =1
2. Perfect Security: I(K AF) =10

The rate of the SK: L H(K)

10 /7
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Definition (Achievable (r,t)-fault-tolerant perfect SK rate)

R > 0 is an achievable (r,t)-fault-tolerant perfect SK rate if there is an
r-rounds adaptive protocol that generates a perfect SK of rate greater
than R whenever not more than ¢ nodes drop out.
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(r,t)-fault-tolerant SK capacity C™*(M):

Formulation

Supremum of all achievable (7, t)-fault-tolerant rates.

(r,t)-fault-tolerant perfect SK capacity Cj*(M):

Supremum of all achievable (7, t)-fault-tolerant perfect SK rates.

Forr > 1,
Cyt (M) < CTH M) < CTTHEM).

12 /20
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An Upper Bound on Fault-Tolerant SK Capacity

Theorem (Csiszar-Narayan 2004)

The secret key capacity (for t=0) is given by

C(M) =H (Xpm)—min(Ry +Ra+ ... + Rnn),

where the min is taken over (Ru, ..., Ry,) that satisfy:

> Ri>H(Xg|Xamp), BGM.

i€EB

min value above is the minimum rate of communication for omniscience.

Lemma (Upper Bound on C""*(M))

Co' (M) < CTH M) < CTTHM) < min C(4),  r>1
|A|Zm—t

Proof Idea: Consider the sequence of sets A1 =... = A,_1 = A, = A.

13 /20
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Monotonicity of SK Capacity

Theorem (Chan-Zheng 2010)

1
C(M) = i 2D (X | Xy Xy Xe) s
M)=__min 2D XumllXe, - Xo,-. Xey)

where the minimization is over all partitions P of M.

Lemma (Monotonicity of C(M))

C(M) > ﬁig C(A).

|A|=m—1

Lemma (Upper Bound on C™¢(M))

Gy (M) SCTH M) S CTHHH M) < min O(4), =1
|[A|=m—t
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Gy M) SCTHM) S CTHHM) < min C(4),  T>1,
|[A|=m—t
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Lemma (Upper Bound on C™¢(M))

Symmetric
Observations

Gy M) SCTHM) S CTHHM) < min C(4),  T>1,
|[A|=m—t

Yes.
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PX|,..Xm = PX,(1),....X, () fOr all permutations o of {1,...,m}
For disjoint sets Bi1, Ba: H (X, |XB,) depends only on |Bi|, |B:|
Define: g(7,|j) =H (X1, ,.,,XilXi+1, ,.,,Xi+j)

Exchangeablity

Lemma (Minimum Rate of Communication for Omniscience)

For

g(m —1]1)

W, =
m—1

I

(m, .., m) is an optimal rate-vector for omniscience, i.e., Rco = mam.

Lemma

Qo IS nonincreasing in m.

Proof: Uses properties g(i|j) inherited from H(-).

17 /20
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PIN Model

Optimal Fault-Tolerant SK Generation Protocol

2-rounds adaptive protocol:

1. Each node communicates using random mapping of rate au,.
Ay = set of nodes that communicate in round 1, [A1] = k

2. Nodes in A; send further communication of rate ap — aum
- if A3 # A; the protocol fails.

Observation: Two random mappings of rates R1 and Ra can serve as a
single random mapping of rate R1 + Rq in (multiterminal) Slepian-Wolf
coding.

Performance of the protocol:

- Nodes in Az = Ay recover X7},
- Rate of communication = kay,

- Nodes in Ay generate SK of rate C'(A2)
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Optimal Fault-Tolerant SK Generation Protocol

Theorem (Fault-Tolerant SK Capacity)

For exchangeable rvs, for r > 2,

Tt _ . _ (m —t)g(m —t —1|1)
C"' (M) = ‘A%%I C(A) = g(m —t|0) — p—— .

10 /20
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The Pairwise-Independent-Network Model

Ye-Reznik 2007, Nitinawarat et.al. 2010

B;j: unbiased bit corresponding to the edge e;;

Random Variables {B;; : i,j € M} are mutually independent.

» X; = {B;; corresponding to edges e;; incident on ¢}
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Assumption: The graph G is complete‘
Exchangeablity
PIN Model

Symmetry: For BN By =0, H (XB,|XB,) depends only on |Bi|,|B2].

Ch' (M) < O (M) = glm — dfo) - =0 — L= L) _m
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‘ Assume that G is a (t + 1)-connected, spanning graph.
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{B]jj ® Bjjr: ¢jj,eij € S}
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For A C M with |A| > m — t: let ea be an edge between nodes in A.

Claim: H (Be | (Fa,X;)) =0 and I (B., AFa)=0, i€ A.

Bea constitutes a 1-bit SK for A
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{BZ‘] 52 Bij’ L €ij, €ijr € S}

€im

This noninteractive protocol generates 1-bit SK for each spanning tree.

Nitinawarat et.al. use the interactive protocol of Csiszdr-Narayan.
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‘ Assumption: The graph G is complete‘

Noninteractive protocol above gives 1-bit of SK for each spanning tree

Exchangeablit

PIN Model Find a “fault-tolerant” spanning tree packing

- sufficiently many spanning trees must remain when nodes drop out

» Consider n = 2: Any two nodes share 2 independent bits

» Can find a spanning tree packing such that:
- any subset A contains |A| spanning trees

Thus, a subset of size > m — t can pack m — t spanning trees

Secret key rate attained: -

24 /20
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Theorem
For the PIN model corresponding to a complete graph,

CIHH(M) = C™H(M) = mT_t r> 2
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A protocol to generate | %] — t bits of SK for n = 1:
First consider m even.
Exchangeablity Tree remains connected if a leaf node drops out.
PIN Model

» Fix a matching in G.
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A protocol to generate | %] — t bits of SK for n = 1:
First consider m even.
Exchangeablity Tree remains connected if a leaf node drops out.
PIN Model

» Fix a matching in G.

» There is a spanning tree corresponding to each edge in the matching.
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Future Directions

» This work is a first step towards the larger goal of
information-theoretic SK agreement for dynamic groups.

» Incorporate rejoining of terminals that drop out.

» What if the central switch has additional side information?

20 /20
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