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Abstract  As it is well known in numerical analysis, most of the numerical schemes have undesirable oscillations, 
especially near the domain's border, or near the physical phenomena (empty region, collapse, boundary layer, among 
others) (mathematically invisible) eg: Burgers equation(the solution loses its regularity in finite time). In the case 
where the differential problem solution presents a singularity (shock, blow-up which cannot be numerically detected 
easily), the classical scheme cannot generally operate correctly and in the best case we are confronted with a very 
difficult algorithm, especially in several dimensions. Our objective here is to construct a less complicated scheme 
compared to the classical methods by keeping their advantages and obtained the admissible solution in the most 
difficult situations without complications obtained from the selected meshing. In this paper, we applied our new 
method called ziti's δ- scheme which is able to resist to such oscillations near the singularity and enables us to detect 
a lot of physical phenomena (eg: shock waves, rarefaction waves, conservation of the matter quantity ...). We depict 
the ziti's δ- scheme for the multidimensional partial differential equations and systems on any meshing with simple 
numbering. We apply our method to some models and compare its results with the exact one and other classical 
numerical methods. We can conclude that our results are very striking. The ziti's δ-method that we obtained is faster 
and more efficient and robust. 
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1. Introduction 
Hyperbolic systems of conservations laws can usually 

be obtained by assuming that the phenomena under 
consideration evolves on the advection time scale and that 
other effects, like viscosity, dispersion, capillary, etc, can 
neglect. This leads to discontinuities, non-uniqueness and 
"unphysical" solutions. To keep the discontinuities but to 
avoid the other two possibilities solutions are considered 
in a weak sense together with some admissibility 
conditions. Following are the most common admissibility 
criteria for shocks waves in case of strictly hyperbolic 
systems: 

a. Linearized stability analysis. (Lax conditions) 
b. Existence of a stable viscous profile. (Liu's 

conditions) 
c. Physical entropy derived from the second law of 

thermodynamics. 
d. Requirement for hyperbolic equations to be a 

limit of the same equations perturbed by linear 

viscosity terms with the multiple of identity 
viscosity matrix. 

e. Solution should be admissible for the equations 
derived as a weakly nonlinear asymptotic limit of 
the full physical system of equations. 

For example, in case of polytropic gas dynamics and 
other similar systems all of above criteria reject the 
expansion shocks waves. 

As it is well known in numerical analysis that most of 
the numerical schemes have undesirable oscillations, 
especially near the domain's border, or near the physical 
phenomena (empty region, collapse, boundary layer, 
among others)(mathematically invisible) eg: the heat 
equation with a bad sign, Burgers equation(the solution 
loses its regularity). 

In the case where the differential problem solution 
presents a singularity (shock, blow-up which cannot be 
numerically detected easily), the classical scheme cannot 
generally operate correctly and in the best case we are 
confronted with a very difficult algorithm, especially in 
several dimensions. 
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Generally, well using classical methods such as Finite 
differences, Finite elements, Particle methods and Spectral 
methods in hyperbolic problems usually give some 
oscillation or Gibs phenomena that are not detect and 
admissible shocks. Therefore we can't obtain any entropy 
solution. An analysis of such schemes was made in  
[8-13,18], but the extension to several dimensions (n = 
2,3,...) is not encouraging [18]. As against the schemes of 
Godunov and Glimm give entropy solutions in one 
dimension but unfortunately they are based on solving the 
Riemann problem involve a complication state, adding 
that the extension to several dimension does not give 
satisfactory results. The problem becomes more 
complicated if the problem is not strictly hyperbolic. 

Our objective here is to construct a less complicated 
scheme compared to the classical methods by keeping 
their advantages and obtained the admissible solution in 
the most difficult situations without complications 
obtained from the selected meshing. 

In this paper, we apply a new approximation method 
called ziti's δ-scheme to strictly or not strictly hyperbolic 
problem in one or more dimensions which is able to resist 
to such oscillation near the singularity and enables us to 
detect a lot of physical phenomena. We test our method to 
some models and compare its results with the exact one 
and other classical methods eg: burgers equation [7,14,15], 
gas dynamic [6,7,14], advection convection problems, 
biology chemotactic problems [16,17]. 

We can conclude that our results are very striking. The 
ziti's δ- scheme that we obtained is faster, more efficient, 
rebut, easy to handle in several dimension and gives 
entropy solutions. 

2. Numerical Approximation of the 
Linear Hyperbolic Equation. 

The advection equation is the prototype problem of the 
linear hyperbolic. In this section, we will study the one 
and two dimensional case. The comparison will be happen 
between the exact and the approximate solution obtained 
by ziti's δ-method. 

2.1. The One Dimensional Case 
We consider, here, the Cauchy problem associated with 

the advection equation: 
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where, c and Tf are constants , U0 is the initial data 
function. 

The ziti's δ- method is based on the Galerkin method: 
First, we approximate the weak solution U(x,t) of (1) by: 
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where, ( )iψ  is the orthonormal family satisfies the 
following relation: 
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where, ( )kψ  is the orthogonal family satisfies the 
following recurrence relation: 
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and (𝜑𝜑𝑘𝑘) is obtained from the test function (Figure 1): 
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where R is a positive constant, m is an integer such 𝑥𝑥1 = 𝑎𝑎 
and 𝑥𝑥𝑚𝑚+1 = 𝑏𝑏. 

 
Figure 1. Illustration of the test function   for R=1 

Multiplying (a) of (1) by 𝜓𝜓𝑘𝑘  and integrating it over [a,b] 
we obtain: 

 ( ) ( )dx dx 0) ., ( ) , (
b b

t k x ka a
U x t x c U x t xψ ψ+ =∫ ∫  

We use 𝑟𝑟𝑘𝑘  as points of meshing instead of the 𝑥𝑥𝑘𝑘 , where, 
𝑟𝑟𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ  root of 𝜓𝜓𝑚𝑚+1  on the interval [a,b] and 
𝑟𝑟𝑚𝑚+1 = 𝑥𝑥𝑚𝑚+1 [1]. 

From [1] we have, 
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By using the orthonormal property of the ( )iψ  we obtain, 
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Therefore the quantity (5) becomes, 
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To approximate (6), we denote by: 𝑈𝑈𝑘𝑘𝑛𝑛  the approximate 
value of the 𝑈𝑈(𝑟𝑟𝑘𝑘 ,𝑛𝑛.𝑑𝑑𝑡𝑡), 𝛼𝛼𝑘𝑘𝑛𝑛  the approximate value of the 
𝛼𝛼𝑘𝑘(𝑛𝑛.𝑑𝑑𝑡𝑡). 

For example, if we take the center finite difference 
approximation which is second order accuracy: 
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From [1] we have, 
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By taking the time semi discretization as following: 
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where, 𝛽𝛽𝑘𝑘 = 𝑐𝑐 .𝑑𝑑𝑡𝑡
𝑟𝑟𝑘𝑘+1−𝑟𝑟𝑘𝑘−1

. 
Boundary and initial conditions treatment. 

From [1], the initial data U0 can be approximated by, 
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The Neumann conditions (c) and (d) of (1) are 
approximated by, 
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By combining (7) with (8) and (9), we build an 
algorithm which enable to compute 𝛼𝛼𝑘𝑘𝑛𝑛  at each level  
n (n ≥1) in accordance with the following scheme, 
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where, 𝛽𝛽𝑘𝑘 = 𝑐𝑐 .𝑑𝑑𝑡𝑡
𝑟𝑟𝑘𝑘+1−𝑟𝑟𝑘𝑘−1

. 

2.1.1. Application. 
Our scheme (10) gives an approximate solution which 

coincide with the exact solution of the problem (1) in three 
initial datas: 

1) Gaussian function: (Figure 2). 
2) Rectangular function: (Figure 3). 
3) The initial function: has one or more singularity: 

(Figure 4 and Figure 5). 

 
Figure 2. Comparison our approximate solution with the exact one. The 
initial condition is Gaussian. 

 
Figure 3. Comparison our approximate solution with the exact one. The 
initial condition is rectangular 



 Turkish Journal of Analysis and Number Theory 101 

 
Figure 4. Comparison our approximate solution with the exact one. The 
initial condition has one singularity. 

 
Figure 5. Comparison our approximate solution with the exact one. The 
initial condition has two singularities 

2.2. The Bi-dimensional Advection Equation 
Let us take, 𝒬𝒬  in the form 𝒬𝒬 = Ω × �0,𝑇𝑇𝑓𝑓� , where, 

Ω = [𝑎𝑎, 𝑏𝑏] × [𝑐𝑐,𝑑𝑑] , In two dimension, the Cauchy 
problem associated with the advection equation is written 
as: 
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where, c1, c2 and Tf are constants, U0 is the initial data 
function. 

With the same spirit as previously in section (2.1), we 
use [1] for approximate U(x,y,t) by: 
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We build an algorithm which enable to compute 𝛼𝛼𝑖𝑖 ,𝑗𝑗𝑛𝑛  at 
each level n (n ≥1) in accordance with the following 
scheme, 
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where, 𝛾𝛾𝑗𝑗𝑖𝑖 = 𝑐𝑐𝑖𝑖 .𝑑𝑑𝑡𝑡
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2.2.1. Application 
We compute the solution of (11) by taking two different 

initial conditions: 
1. The first test: The initial condition is Gaussian. 

We consider, in this case, an initial condition under the form: 
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At final time Tf= 1, under the CFL condition, our 
scheme (12) gives an exact solution (Figure 6) and (Figure 7). 

 
Figure 6. Approximate solution. The initial condition is Gaussian 
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Figure 7. Exact solution. The initial condition is Gaussian 

2. The second test: The initial condition is rectangular 
function. 

We consider, in this case, an initial condition under the 
form: 
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At final time Tf= 1, under the CFL condition, our 
scheme (12) gives an exact solution (Figure 8) and (Figure 9). 

 
Figure 8. Approximate solution. The initial condition is rectangular 
function 

 
Figure 9. Exact solution. The initial condition is rectangular function 

3. Numerical Approximation of the 
Nonlinear Hyperbolic Equation 

In this section, we consider the numerical 
approximation of the hyperbolic problem solution with 
initial value. We start with the mono-dimensional case. 

3.1. The One Dimensional Case 
In one dimension, Burgers equation take the form: 
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which is a nonlinear hyperbolic equation in conservation 
laws. 

The Cauchy problem is written under the form: 
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where, Tf is a constant , U0 is the initial data function. 
The ziti's δ- method is based on the Galerkin method: 

First, we approximate the weak solution U(x,t) of (15) by: 
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where, 𝛽𝛽𝑘𝑘 = 𝑑𝑑𝑡𝑡
𝑟𝑟𝑘𝑘+1−𝑟𝑟𝑘𝑘−1

, k=2,…,m. 

3.1.1. Application. 
As we said in the introduction the numerical result 

obtained by the ziti's δ- scheme very significantly.  
Indeed: 

For the Riemann problem, our scheme gives the 
entropy solution (Figure 10) and (Figure 11) in each case 
eg: Rarefaction wave, shock wave. 
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Figure 10. Comparison our approximate solution with the exact one in 
presence the shock wave 

 
Figure 11. Comparison our approximate solution with the exact one in 
presence the rarefaction wave 

3.2. The Bi-dimensional Advection Equation 
Let us take, 𝒬𝒬  in the form 𝒬𝒬 = Ω × �0,𝑇𝑇𝑓𝑓� , where, 

Ω = [𝑎𝑎, 𝑏𝑏] × [𝑐𝑐,𝑑𝑑], In two dimension of epace we write 
the problem (15) as following: 
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(17) 

where, Tf is constant, U0 is the initial data function. 
With the same spirit as previously in section (2.2), we 

use [1] for approximate U(x,y,t) by: 

 ( ) ( ), ,
1 1
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where, �𝜓𝜓𝑖𝑖,𝑗𝑗 � is the orthonormal family defined in [1] 
and m is an integer such 𝑥𝑥1 = 𝑎𝑎  and 𝑥𝑥𝑚𝑚+1 = 𝑏𝑏 , 𝑦𝑦1 = 𝑐𝑐 
and 𝑦𝑦𝑚𝑚+1 = 𝑑𝑑. 

We build an algorithm which enable to compute 𝛼𝛼𝑖𝑖 ,𝑗𝑗𝑛𝑛  at 
each level n (n ≥1) in accordance with the following 
scheme, 
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where, 𝜒𝜒1 = 𝑑𝑑𝑡𝑡
𝑟𝑟𝑗𝑗+1

1 −𝑟𝑟𝑗𝑗−1
1 , 𝜒𝜒2 = 𝑑𝑑𝑡𝑡

𝑟𝑟𝑗𝑗+1
2 −𝑟𝑟𝑗𝑗−1

2 ; j=2,…,m and 𝑟𝑟𝑘𝑘1 is 

the 𝑘𝑘𝑡𝑡ℎ  root of 𝜓𝜓𝑚𝑚+1
1  on [a,b] and 𝑟𝑟𝑘𝑘2  is the 𝑘𝑘𝑡𝑡ℎ  root of 

𝜓𝜓𝑚𝑚+1
2  on [c,d].  

3.2.1. Application: The Riemann Problem [15] 
We consider an initial condition of the form: (Figure 12 

and Figure 13). 

 
Figure 12. Initial condition for Riemann problem 
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 (19) 

where, ui, i=1;2;3;4 are the given constants. 

 
Figure 13. Initial condition for Riemann problem 

We have 4!=24 cases to be treated according to the 
values of ui, i=1;2;3;4 . We handle five different cases: 

1) We have four rarefactions for initial conditions: 
u1=4; u2=2; u3=1 and u4=3 (Figure 14; Figure 15). 

 
Figure 14. Four rarefactions 

 
Figure 15. Four rarefactions 

2) We have one shock and three rarefactions for initial 
conditions: 

u1=3; u2=2; u3=1 and u4=4 (Figure 16; Figure 17). 

 
Figure 16. one shock and three rarefactions 

 
Figure 17. one shock and three rarefactions 

3) We have two shocks and two rarefactions for initial 
conditions: 

u1=2; u2=1; u3=3 and u4=4 (Figure 18; Figure 19). 

 
Figure 18. Two shocks and two rarefactions 

4) We have three shocks and one rarefaction for initial 
conditions: 

u1=2; u2=1; u3=4 and u4=3 (Figure 20; Figure 21). 
5) We have four shocks for initial conditions: 
u1=1; u2=2; u3=4 and u4=3 (Figure 22; Figure 23). 
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Figure 19. Two shocks and two rarefactions 

 
Figure 20. Three shocks and one rarefaction 

 
Figure 21. Three shocks and one rarefaction 

We present, here, in Figure 14; Figure 15, Figure 16; 
Figure 17, Figure 18; Figure 19, Figure 20; Figure 21, 
Figure 22; Figure 23 the approximate solution obtained by 
ziti's δ- scheme. 

 
Figure 22. Four shocks 

 
Figure 23. Four shocks 

4. Numerical Approximation of the Euler 
Equations of Gas Dynamics 

In this section we describe how to apply the ziti's  
δ-method to Euler equations of gas dynamics for a 
polytropic gas: 

 ( ) ( ) [ ], ( , ) 0 ,  0,t x fU x t F U x t x a b and t T + = ∈ ∈    (20) 

Where, 
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 

 

Where, Tf is constant, 𝜌𝜌  the density, m the momentum 
(𝑚𝑚 = 𝜌𝜌. 𝜈𝜈),𝜈𝜈 the velocity, E total energy, p the pressure 
and 𝛾𝛾 is the ratio of specific heats. 

The ziti's δ-method is based on the Galerkin method. 
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First, we approximate the weak solution U(x,t) of (20) 
by: 
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We build an algorithm which enable to compute 𝛼𝛼𝑘𝑘𝑛𝑛 ; 𝛽𝛽𝑘𝑘𝑛𝑛  
and 𝛾𝛾𝑘𝑘𝑛𝑛  at each level n (n ≥1) in accordance with the 
following scheme, 
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(21) 

where, 𝜆𝜆𝑘𝑘 = 𝑑𝑑𝑡𝑡
𝑟𝑟𝑘𝑘+1−𝑟𝑟𝑘𝑘−1

;  𝑘𝑘 = 2; … ;𝑚𝑚 

4.1. Application 

4.1.1. Example1: [14] 
Applying the ziti's δ -scheme (21) to the Riemann 

problem (20): 
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and 

 1.4.γ =  (22) 

The ziti's δ-method gives the same results than founded 
in [14] (Figure 24). 

 
Figure 24. The numerical solutions of (20) by ziti's δ-scheme (21) at 
t=0.15 with initial data (22) 

 
Figure 25. The numerical solutions of (20) by ziti's δ-scheme (21) at 
t=0.5 with initial data (23) 
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4.1.2. Example 2: [7] 
Applying the ziti's δ-scheme (21) to the Riemann 

problem (20): 
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and 

 1.4.γ =  (23) 

The ziti's δ-method gives the same results than founded 
in [7] (Figure 25). 

5. Numerical Approximation of the 
Biology Chemotactic Problem 

In this section we apply the ziti's δ-method to system 
arising in biology [16]: 

 ( ) ( ) [ ], ( , ) 0, ,  0,t x fU x t F U x t x a b and t T + = ∈ ∈   (24) 

Where, 𝑈𝑈 = �𝑢𝑢𝑣𝑣� and 𝐹𝐹(𝑈𝑈) = �−𝑢𝑢𝑣𝑣−𝑢𝑢 �. 
Remark 1. This problem is non-strictly hyperbolic system, 
and to study the Riemann problem associated, we must 
study more than 30 cases. The ziti's δ-method is based on 
the Galerkin method. First, we approximate the weak 
solution U(x,t) of (24) by: 
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We build an algorithm which enable to compute 𝛼𝛼𝑘𝑘𝑛𝑛  
and 𝛽𝛽𝑘𝑘𝑛𝑛  at each level n (n ≥1) in accordance with the 
following scheme, 
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 (25) 

where, 𝜆𝜆𝑘𝑘 = 𝑑𝑑𝑡𝑡
𝑟𝑟𝑘𝑘+1−𝑟𝑟𝑘𝑘−1

;  𝑘𝑘 = 2; … ;𝑚𝑚. 

5.1. Application 
The ziti's δ-method gives the same results than founded 

in [16]: 

5.1.1. Example 1: One Intermediate State 
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Figure 26. The numerical solutions of (24) by ziti's δ-scheme (25) at t=1 
with initial data (26) 

5.1.2. Example 2: Two Intermediate States 
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Figure 27. The numerical solutions of (24) by ziti's δ-scheme (25) at t=1 
with initial data (27) 

6. Conclusion 
In this paper we are interested in the hyperbolic 

problems of conservation laws and the viscous problems 
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associated (viscosity profil) to compare the solutions to 
the limit when the viscous term goes to zero. We have 
applied a new entropic conservation numerical scheme (in 
the general sense) called δ-ziti scheme. Hence we were 
able to reproduce at the discrete level an important 
property satisfied by the physical model. Also established 
that the proposed schemes may have sufficiently high 
order of accuracy. Indeed, we have compared our result 
for some models (travelling, Burgers, dynamics gas 
problems ...) in one dimension with the exact one or with 
another numerical result. It has also been testing the model 
Riemann problems cited in this paper, the results were 
efficient. Our method gives the result without numerical 
diffusion, dispersion and any oscillations. We also 
compared our results (obtained by our scheme) in two 
dimensions with famous numerical results [15]. Note here 
that we have at our disposal several choices meshes 
strategies and choice of basic functions, resulting all the 
best results easily. Note also that our method adapts well 
to mobile borders. Finally, all tested on our scheme, 
proved the detection of different singularities such as 
shock waves, the regularities such as the rarefaction 
waves, we could even detect more complex waves  
(eg instead of only one intermediate state, there are two or 
more intermediate states). We can conclude that our 
results are very striking. The ziti's δ-method that we 
obtained is faster and more efficient and robust. 
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