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Abstract—This paper presents general classes of optimal train-
ing signals for the estimation of frequency-selective channels in
MIMO OFDM systems. Basic properties of the discrete Fourier
transform are used to derive the optimal training signals which
minimize the channel estimation mean square error. Both sin-
gle and multiple OFDM training symbols are considered. Sev-
eral optimal pilot tone allocations across the transmit antennas are
presented and classified as frequency-division multiplexing, time-
division multiplexing, code-division multiplexing in the frequency-
domain, code-division multiplexing in the time-domain, and com-
binations thereof. All existing optimal training signals in the lit-
erature are special cases of the presented optimal trainingsignals
and our designs can be applied to pilot-only schemes as well as
pilot-data-multiplexed schemes.

Index Terms—Training signal design, Pilot tone allocation,
Channel estimation, MIMO, OFDM, DFT.

I. I NTRODUCTION

Channel estimation is a critical component in many wireless
communications systems. Training-signal-based channel esti-
mation is widely used in packet-based communications. For
single-carrier systems, optimal periodic or aperiodic sequences
for channel estimation were studied in [1]-[6] and references
therein. The optimal training sequences and pilot tones for
orthogonal frequency division multiplexing (OFDM) channel
estimation were investigated in [7][8]. Optimal placement
and energy allocation of training symbols or pilot tones for
both single-carrier and OFDM systems were considered in [9]
for frequency-selective block-fading channel estimation. The
training signal placement design is based on maximizing a
lower bound on the training-based capacity with the assump-
tion that all training symbols or pilot tones have the same en-
ergy. For OFDM systems, the optimal placement of pilot tones
is equal spacing in the frequency domain. In [10], optimal
design and placement of pilot symbols for frequency-selective
block-fading channel estimation are addressed for single-input
single-output (SISO) as well as multiple-input multiple-output
(MIMO) single-carrier systems by minimizing the Cramer-Rao
bound. The same problem was addressed in [11] by maximiz-
ing a lower bound on the average capacity.

In [12], optimal training signal design and power alloca-
tion for frequency-selective block-fading channel estimation in
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linearly-precoded OFDM systems (which include OFDM sys-
tems as well as single-carrier systems with cyclic prefix) were
presented where it was shown that theL pilot tones (which is
the minimum required to estimate anL-tap channel) are equi-
powered and equi-spaced. For doubly-selective fading channels
characterized by the basic expansion model, an optimal training
structure was presented in [13] for SISO single-carrier systems
by maximizing a lower bound on the average channel capac-
ity (equivalently minimizing the minimum mean square error).
In [14], MIMO training signal design for single-carrier systems
was reduced into a SISO design with a longer training sequence
using the space-time code structure. Furthermore, some sample
training sequence constructions were presented.

In [15], optimal training signal design for frequency-selective
block-fading channel estimation in MIMO OFDM systems was
analyzed based on minimizing channel estimation mean square
error (MSE). The optimal pilot tones for channel estimation
based on one OFDM symbol were shown to be equi-powered
and equi-spaced. Furthermore, pilot tones from different an-
tennas must be phase-shift orthogonal. For channel estimation
based onQ OFDM symbols, the conditions on pilot tones for
the case of one OFDM symbol are just spread out over theQ
symbols. Note that [16] also presented an optimal training sig-
nal design for MIMO OFDM systems where all sub-carriers are
used as pilot tones with equal power and pilot tones from differ-
ent antennas are phase-shift orthogonal. A similar design with
BPSK pilot symbols (a phase-shift of�� among pilot tones of
different antennas) was used in [17] for two transmit antennas
and later extended to more transmit antennas in [18].

In this paper, we revisit the problem of optimal training sig-
nal design for frequency-selective block-fading channel estima-
tion in MIMO OFDM systems and present more general opti-
mal training signals based on minimizing the channel estima-
tion MSE. While we derive our results assuming all sub-carriers
are used as pilot tones over theQ OFDM symbols, the cor-
responding results for pilot-data-multiplexed schemes can be
obtained in a straight-forward manner (see Section V). A brief
comparison with the existing approaches in the literature is now
in order. Our approach is novel in that it is based on the dis-
crete Fourier transform properties and could be useful for train-
ing signal designs with more constraints such as low peak-to-
average energy ratio (PAR) and robustness to frequency offsets.
In addition, all existing optimal OFDM training designs canbe
expressed as special cases of our design. Furthermore, our de-
sign introduces new optimal pilot structures and offers more
insights as described next (see Section V for details). First,
some of our new pilot structures can save training overhead (in
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terms of the numbers of pilot tones) for some system parameters
and/or support a larger number of transmit antennas. Second,
our design offers more flexibility in terms of applicabilityto
different systems such ultra-wide band (UWB) systems. Third,
some of our new pilot structures can give better channel esti-
mation performance in the presence of PAR constraint and/or
frequency offsets. Finally, our design shows that the condition
“equi-powered, equi-spaced pilot tones”, which has been con-
sidered in the literature as a necessary condition for the training
signal optimality, can be relaxed.

The rest of this paper is organized as follows. In Section II,
the signal model and the optimality condition for the training
signals of multi-transmit-antenna systems are described.Sec-
tion III presents optimal training signal designs over one OFDM
symbol while Section IV generalizes them to the case ofQ
OFDM symbols. In Section V, the applicability of our designs
to pilot-data-multiplexed scenarios and their relationships to the
existing optimal training signal designs are discussed. Finally,
the paper is concluded in Section VI.

II. SIGNAL MODEL AND OPTIMALITY CONDITIONS

Consider a MIMO OFDM system where training signals
from NTx transmit antennas are transmitted overQ OFDM
symbols. Since the same channel estimation procedure is per-
formed at each receive antenna, we only need to considerNTx
transmit antennas and one receive antenna in designing optimal
training signals. The channel impulse response (CIR) for each
transmit-receive antenna pair (including all transmit/receive fil-
tering effects) is assumed to haveL taps and is quasi-static overQ OFDM symbols. LetCn;q =[
n;q[0℄, . . . , 
n;q[K � 1℄℄T
be the pilot tones vector of then-th transmit-antenna at theq-th symbol interval whereK is the number of OFDM sub-
carriers and the superscriptT denotes the transpose. Further-
more, letfsn;q[k℄ : k = �Ng ; : : : ;K � 1g be the correspond-
ing time-domain complex baseband training samples, includ-
ing Ng (� L � 1) cyclic prefix samples. DefineSn[q℄ as
the training signal matrix of sizeK � L for then-th transmit
antenna at theq-th symbol interval whose elements are given
by [Sn[q℄℄m;l = sn;q[m � l℄ for m 2 f0; : : : ;K � 1g andl 2 f0; : : : ; L� 1g.

Let sn;q represent the0-th column ofSn[q℄. Then, thel-th
column ofSn[q℄ is the l-sample cyclically-shifted version ofsn;q denoted bys((l))n;q . Let hn denote the length-L CIR vector
corresponding to then-th transmit antenna. After cyclic prefix
removal at the receiver, denote the received vector of lengthK
at theq-th symbol interval byrq. Then, the received vector over
theQ OFDM symbol intervals is given byr = Sh+ n (1)

wherer = [rT0 rT1 : : : ;rTQ�1℄T (2)S = 2664 S0[0℄ S1[0℄ : : : SNTx�1[0℄S0[1℄ S1[1℄ : : : SNTx�1[1℄
...

...
.. .

...S0[Q � 1℄ S1[Q� 1℄ : : : SNTx�1[Q� 1℄ 3775(3)h = [hT0 hT1 : : :hTNTx�1℄T ; (4)

and n is a length-KQ vector of zero-mean, circularly-
symmetric, uncorrelated complex Gaussian noise samples with
equal variance of�2n.

The least-square channel estimate (also maximum likelihood
in this case), assumingSHS has full rank, is given by [19]ĥ = (SHS)�1SHr (5)

and the corresponding MSE is given by�2n trf(SHS)�1g: Let�1, . . . , �LNTx be the eigen values (positive) ofSHS. Then,trf(SHS)�1g = ��11 + . . . + ��1LNTx . Sincetrf(SHS)g = �1+

. . . + �LNTx = LPNTx�1m=0 Em is a constant, the minimum MSE
is achieved if and only if�1 = . . . = �LNTx = 1NTx PNTx�1m=0 Em
= Eav. This is achieved whenSHS = EavI (6)where Eav = 1NTx NTx�1Xm=0 Em (7)and Em = Q�1Xq=0 K�1Xk=0 jsm;q[k℄j2: (8)

The corresponding minimum MSE isLNTx�2n=Eav. We will
design training signals forNTx transmit antennas to achieve
this minimum MSE, i.e. to satisfy Condition (6). In this pa-
per, optimal training signals refer to those which achieve the
minimum MSE. Condition (6) can be equivalently stated asCondition �A : Q�1Xq=0 SHm[q℄Sm[q℄ = EavI ; 8m (9)Condition � B : Q�1Xq=0 SHm[q℄Sn[q℄ = 0; 8m 6= n:(10)

III. O PTIMAL TRAINING SIGNAL DESIGN OVERONE

OFDM SYMBOL

This section investigates optimal training signal design when
training signals from all transmit-antennas are transmitted over
only one OFDM symbol. For notational simplicity, the sym-
bol index q will be omitted in this section. For complete-
ness, in the following we summarize the main DFT proper-
ties used in this paper. LetX[n℄ =PK�1k=0 x[k℄e�j2�kn=K andx[k℄ = 1K PK�1n=0 X[n℄ej2�kn=K, i.e.X[n℄ F ! x[k℄.

Property-1: For anyK, if X[n℄ = a 8n, wherea 2 C andC
is the field of complex numbers, thenx[k℄ = aÆ[k℄ whereÆ[k℄ is
a discrete unit impulse function and vice versa.

Property-2: Assume thatK = ML1 for M=1, 2, . . . .If X[n℄ = � a; n = iM ; i = 0; : : : ; L1 � 1;a 2 C0; elsewhere; (11)then x[k℄ = � aL1=K; k = iL1; i = 0; : : : ;M � 10; elsewhere; (12)

and vice versa.
Property-3: X[(n � l)K ℄ F ! ej2�lk=Kx[k℄ where(�)K de-

notes the modulo-K operation, hence representing a cyclically-

shifted version. Its dual form is given byx[(k � m)K ℄ F !e�j2�mn=KX[n℄.
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In the following, our discussions based on Condition-A will
be indexed as (A-i), (A-ii), etc., and those based on Condition-B
will be denoted as (B-i), (B-ii), etc.

A. Optimality Conditions in Sub-Carrier Domain

Consider Condition-A in (9) withQ = 1. The following
conditions can be derived.

(A-i) Condition(A.1): The full rank condition in (9) implies
that for every transmit antennai, there must be at leastL differ-
ent nonzero tones.

(A-ii) The condition(s((l))m )Hs((l))m = Eav from (9) implies
that Condition(A:2 ) : Em = Eav 8m: (13)

(A-iii) Consider the following condition from (9):(s((l))m )Hs((i))m = 0 8l 6= i; where l; i 2 f0; : : : ; L�1g: (14)

Sinces((l))m = F�1K W (l)Cm whereFK is theK-point FFT
matrix andW (l)=diagf1, e�j2�l=K , . . . , e�j2�(K�1)l=Kg is a
diagonal matrix, the following condition is obtained from (14):Condition(A:3 ) : K�1Xk=0 j
m[k℄j2 ej2�dk=K = 0; (15)

for d = �1; : : : ;�(L� 1):
(A-iii-a) By Property-1, Condition (15) is satisfied for anyK � L if j
m[k℄j2 = am; 8k; am > 0: (16)

(A-iii-b) By Properties 2 and 3, Condition (15) is satisfied forK = ML1,M = 1, 2, . . . andL1 � L, ifj
m[k℄j2 = 8><>: a(l)m ; k = l + iM ; l = 0; : : : ;M � 1;i = 0; : : : ; L1 � 1; a(l)m � 00; elsewhere.

(17)

Consider Condition-B in (10). Usings((l))m = F�1K W (l)Cm,
we obtain the following condition:K�1Xk=0 
�m[k℄ 
n[k℄ ej2�dk=K = 0 (18)

for d = 0;�1; : : : ;�(L� 1); 8m 6= n:
Let Gm;n[k℄ = 
�m[k℄
n[k℄ andgm;n[k℄ F ! Gm;n[k℄. Then,
Condition (18) can be expressed asCondition(B :1 ) : K�1Xk=0 Gm;n[k℄ ej2�dk=K = 0; (19)

for d = 0;�1; : : : ;�(L� 1); 8i 6= j
or gm;n[k℄ = 0; (20)

for k = 0; : : : ; L� 1;K � L + 1; : : : ;K � 1:
The following definition will be useful in classifying the various
training signal designs in the following (sub)sections.

Definition: Let L0 be the smallest integer satisfyingL0 =K=M (M is a positive integer) andL0 � L.

B. Training Designs forNTxL0 = K
Consider the following cases:
(B-i) If L � K < 2L (i.e.,M = 1), then (20) implies thatgm;n[k℄ = 0 8k and henceGm;n[k℄ = 0 8k which is possible

only if pilots from different transmit antennas are frequency-
division multiplexed (FDM). However, since each transmit an-
tenna must have at leastL tones according to Condition(A.1),
we can only have one transmit antenna, i.e.,NTx=1. The opti-
mal pilot tones are then given by (16) (constant amplitude pilot
tones) withNTx=1.

(B-ii) If M = 2, thengm;n[k℄ can have nonzero values at
indicesfL; : : : ;K � Lg while satisfying (20). Using Proper-
ties 2 and 3, we have the following two solutions which satisfy
Condition (19) or (20):

(B-ii-a) All antennas use all pilot tones and have the follow-
ing relationship:Gm;n[k℄ = 8<: a(l)m;n; k = kl + iM ; i = 0; : : : ; L0 � 1;l = 0; 1; k0 = 0; k1 = 1;0; elsewhere

(21)a(0)m;n = �a(1)m;n; a(l)m;n 2 fC n 0g (22)

wheren denotes the set difference operation. Note thata(0)m;n =�a(1)m;n limits the number of transmit antennas toNTx = 2.
This allocation type will be called code-division multiplexing
(CDM) pilot allocation.

(B-ii-b) Pilot tones of an antenna are disjoint from those of
any other antenna resulting inGm;n[k℄ = 0 8k; m 6= n: (23)

To satisfy Condition(A.3) from (15), each antenna’s pilotsmust
satisfy (17), i.e., they must be spread out with equal spacing
over the indicesf0, . . . ,K � 1g. Since each antenna must have
at leastL tones andK = 2L0, we can only haveNTx = 2
antennas, each havingL0 pilot tones. To satisfy Conditions
(A.2) from (13) and (A.3) from (15), all pilot amplitudes must
be the same. This type of allocation of equally-spaced disjoint
pilot tones in the frequency-domain will be called FDM pilot
allocation.

(B-iii) In general, considerK = L0M for M = 1, 2, . . . . LetL1 = L0V , U = M=V , andV; U 2 f1; 2; : : :;Mg. We can
haveU FDM groups, each withL1 pilot tones. For theu-th
FDM group (u 2 f0, 1, . . . ,U �1g), Condition (19) is satisfied
if the following two conditions are met:Condition(B :1 :1) :GuV +m;uV +n[k℄ = 8>>><>>>: a(l)uV +m;uV +n; k = k(u)l + iM;i = 0; : : : ; L0 � 1;l = 0; : : : ; V � 1;8m 6= n;0; elsewhere

(24)V�1Xl=0 a(l)uV +m;uV +n = 0; 8m 6= n (25)

wherek(u)l 6= k(u)m if l 6= m, k(u)n 2 f0; : : : ;M � 1g, anda(l)uV+m;uV+n 2 C . For anyu 6= u0, k(u)l andk(u0)l are disjoint.
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The first condition (24) can be satisfied in infinitely many ways
but the second condition (25) can be satisfied by only a few.
Hence, (25) determines the number of antennas within an FDM
group. Ifa(l)m;n is restricted to have constant amplitude for any
antenna pair(m;n), a simple solution to (25) is given bya(l)uV+m;uV+n = a(0)uV+m;uV+nej2�l(n�m)=V ; (26)8m 6= n; m;n 2 f0; : : : ; V � 1g:
This solution indicates that the maximum number of antennas
within each FDM group isV .

The corresponding optimal pilot tones within each FDM
group satisfying Conditions (24) and (25), and hence Condi-
tions (B.1) and (A.1), are then given by
uV+m[k℄ = 8>>>><>>>>: b(l)uV+m[i℄ ; k = k(u)l + iM ;i = 0; : : : ; L0 � 1;l = 0; : : : ; V � 1;u = 0; : : : ; U � 10; elsewhereb(l)uV+m[i℄ = pmb(l)uV [i℄ e�j2�lmV ; (27)pm = 1; m = 0; : : : ; V � 1jb(l)uV [i℄j = b0 > 0:
It can be readily checked that the solution (27) satisfies (17)
and hence also satisfies Condition(A.3) from (15). Although
Condition (25) is satisfied by anypm 2 fC n 0g, imposing the
Condition(A.2) from (13) yieldspm = 1 and hence it is incor-
porated in (27). The pilot allocation within each FDM group
may be considered as CDM type in the frequency domain and
hence will be called CDM(F). The overall pilot allocation will
be calledU -FDM + V -CDM(F) pilot allocation. The maximum
total number of antennas isNTx = UV = M . If U = 1, we
have a CDM(F) pilot allocation while ifV = 1, we have an
FDM pilot allocation. IfK = L0, i.e.,M = 1, thenV = 1
(one antenna within an FDM group),U = 1 (only one FDM
group) and the result from (27) becomes identical to that in (B-
i). ForK = 2L0, i.e.,M = 2, if V = 1, thenU = 2 and the
result from (27) becomes identical to that in (B-ii-b). IfV = 2,
thenU = 1 and the result from (27) becomes identical to that
in (B-ii-a).

The condition (25) required for the CDM(F) allocation
within each FDM group of theU -FDM + V -CDM structure
is satisfied iffb(l)m : l = 0; 1; : : : ; V � 1g for all m are or-
thogonal sequences. Hence, iff
m[k℄g are constrained to be
binary (BPSK) symbols andV is a power of 2, optimal binary
sequencesfb(l)m g for V antennas (m =0, 1, . . . ,V � 1) can be
constructed from the Walsh-Hadamard sequences of lengthV
as follows:b(l)m = wm[l℄ b(l)0 ; m = 1; 2; : : : ; V � 1 (28)

wherewm[l℄ is thel-th element ofm-th Walsh-Hadamard se-

quences1 of lengthV andfb(l)0 : l = 0; 1; : : : ; V � 1g is any
binary (�1) sequence.1Walsh-Hadamard sequences are rows of the Walsh-Hadamard matrix and
the0-th Walsh-Hadamard sequence is an all-one sequence.

Other Training Structures
Note that forV > 1, all pilot tones of an antenna do not have

to be equally spaced. The solution (27) suggests that within
each FDM group, the pilot amplitude is the same. However, forV = 2, we can have the following alternative solution:b(l)1 [i℄ = 1b(l)�0 [i℄ (�1)l; (29)l = 0; 1; i = 0; : : : ; L0 � 1jb(1)0 [i℄j = 1jb(0)0 [i℄j (30)jb(l)m [i℄j = a(l)m > 0 for i = 0; : : : ; L0 � 1 (31)

wherefb(l)m [i℄g for differentl do not necessarily have the same
amplitude.

ForL1 > L0 � L and a positive integerU , if K = L0L1U
and there are disjoint sets of eqi-spaced, equi-energyL0 andL1 pilot tones, then (19) will give additional optimal pilot tones
not covered by (27). These additional optimal pilot tones are
composed of disjoint sets ofL0 andL1 tones. Within each set
ofL0 equi-energy pilot tones, the spacing isK=L0 while within
the set withL1 equi-energy pilot tones, the spacing isK=L1.
Pilot amplitudes for different sets will be different but the total
pilot energy for each antenna is the same for all antennas. An
example is given in Table IV. This type of optimal pilot tones
can be extended forL � L0 < L1 < L2 < : : : < Ld as long
asK = U Qdi=0 Li and there exist disjoint sets of equi-spacedLi pilot tones with spacingK=Li for all i.
C. Training Designs forNTxL0 < K

ForU -FDM + V -CDM type pilot structures, which includes
pure FDM or CDM structures, (27) gives optimal pilot vectors
for M transmit antennas. If the actual number of transmit an-
tennasNTx is smaller thanM , we can use anyNTx vectors
from the availableM optimal pilot vectors. In the following,
we present more optimal pilot structures forNTxL0 � K.

For FDM-type structures, (19) also gives the following opti-
mal pilot tones for them-th transmit antenna as
m[k℄ = L1�1Xl=0 b(l)m Æ[k � lKL1 � im℄; im 2 [0; KL1 � 1℄im 6= in if m 6= n; m = 0; : : : ; NTx � 1 (32)

wherefb(l)m g are constant-modulus symbols andL1 is any in-
teger such thatK=L1 is an integer whileL � L1 � K=NTx.
Similarly, we obtain from (19) optimal FDM pilot structures
with unequal numbers of pilot tones (an integer multiple ofL0)
as
m[k℄ = Vm�1Xp=0 L0�1Xl=0 b(l;p)m Æ[k � lKL0 � im;p℄; (33)m = 0; : : : ; NTx � 1; im;p 2 [0; KL0 � 1℄;im1;p1 = im2;p2 only if (m1 = m2 & p1 = p2)Vm�1Xp=0 L0�1Xl=0 jb(l;p)m j2 = KEav ; NTx�1Xm=0 VmL0 � K
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whereVm is an integer greater than zero. In this case, due to the
different numbers of pilot tones per antenna, the corresponding
pilot amplitudes will be different so that the total pilot energy
per antenna is the same (see (13)).

For CDM-type structures, similar to the development from
(24) to (27), we can obtain optimal pilots defined by
m[k℄ = V�1Xp=0 L0�1Xl=0 b(l;p)m Æ[k � lKL0 � ip℄; (34)m = 0; : : : ; NTx � 1; ip 2 [0; KL0 � 1℄;ip1 = ip2 only if (p1 = p2)V�1Xp=0 a(p)m;n = 0; 8m 6= n; m;n 2 f0; : : : ; NTx � 1g (35)

whereV is any integer satisfyingNTx � V � K=L0 anda(p)m;n = b(l;p)m �b(l;p)n . Note that each antenna hasV groups ofL0 pilot tones per group. Within each group,L0 equi-energy
tones are separated by an equal spacing ofK=L0. But spacings
between groups do not have to be the same. Equation (35) can
be satisfied bya(p)m;n = a(0)m;n ej2�p(in�im)=V ; 8m 6= n; (36)m;n 2 f0; : : : ; NTx � 1g;im; in 2 f0; : : : ; V � 1g; im 6= in if m 6= n:
There are other ways, not covered by (36), to sat-
isfy (35). For example, forV = 4, and NTx =3, we can have the following design satisfying (35):[b(0)0 ; b(1)0 ; b(2)0 ; b(3)0 ℄ = ej�0 [1; 1; 1; 1℄, [b(0)1 ; b(1)1 ; b(2)1 ; b(3)1 ℄ =ej�1 [ej�1 ; ej�2;�ej�2 ;�ej�1℄, [b(0)2 ; b(1)2 ; b(2)2 ; b(3)2 ℄ = ej�2[�ej�1 ; ej�2;�ej�2 ; ej�1℄.

If all V L0 pilot tones are equi-spaced (in this case,K=(V L0)
is an integer), we haveGm;m[k℄ = V L0�1Xl=0 a Æ[k� lKV L0 � n0℄; (37)n0 2 f0; : : : ; KV L0 � 1g;m = 0; : : : ; NTx � 1
and by the DFT Property-2, we obtaingm;m[k℄ = aV L0K KVL0�1Xl=0 Æ[k � lV L0℄ ej2�kn0=K : (38)

To satisfy the Condition B.1 from (20),gm;n[k℄ can be designed
by cyclically shiftinggm;m[k℄ such thatgm;n[k℄ = gm;m[(k � lm;n)K ℄; 8m 6= n; (39)m;n 2 f0; : : : ; NTx � 1g; L � lm;n � V L0 � L:
A simple solution to (39) is to use an equal distance shiftingasg0;m[k℄ = g0;0[(k �mL1)K ℄ (40)

whereL1 is any integer satisfyingL � L1 � VL0�LNTx�1 . The
corresponding pilot tones for them-th antenna are given by
m[k℄ = 
0[k℄ e�j2�kmL1=K ; m = 1; : : : ; NTx � 1 (41)

where
0[k℄ = V L0�1Xl=0 b(l)0 Æ[k� lKV L0 � n0℄; n0 2 f0; : : : ; KV L0 � 1g
(42)

andfb(l)0 g are constant-modulus symbols. An unequal distance
shifting ofgm;m[k℄ is also possible as long as the conditionL �lm;n � V L0 � L, 8m 6= n is satisfied.

Note that forV L0 < K, K must be an integer multi-
ple of V L0 in the above design for the CDM structure us-
ing V L0 tones. However, if all subcarriers are used (i.e.,
0[k℄ = b(k)0 ; 8k), thenK does not have to be an integer mul-
tiple of L0 (butK � L0NTx) and (41) can still be applied. In
this case, the condition from (39) becomesL � lm;n � K � L
, 8m 6= n. For the special case with equi-distance shifting,
the condition becomesL � L1 � K�LNTx�1 . ForNTxL0 < K,
optimal pilot structures ofU -FDM + V -CDM type can be sim-
ilarly constructed by appropriately combining FDM and CDM
optimal pilot structures described forNTxL0 < K.

D. Combined Training Structures

More complicated pilot allocations are also possible, for ex-
ample, by not fixing the FDM boundaries and by combining
FDM and CDM types. As an example, Table V presents a set of
optimal pilot vectors for the estimation ofNTx channels (each
with L = 2 taps) overQ = 1 symbol interval in an OFDM sys-
tem withK = 16 sub-carriers andNTx = 8 transmit-antennas
where�k can be any constant-modulus symbol. Within the
group of antennas 0, 1, 2, and 3, the pilot allocations are of
FDM type. Within the group of antennas 4 and 5 or the group of
antennas 6 and 7, the pilot allocation is of CDM(F) type while
between the two groups it is of FDM type. Pilot allocations of
the antenna pairs (0, 4), (1, 5), (2, 6), and (3, 7) are of CDM(F)
type and those of antenna pairs (2, 4), (3, 5), (0, 6), and (1, 7)
are of FDM type. Note that pilot amplitudes may be different
for different antennas, e.g., between antenna 0 and antenna4.

IV. OPTIMAL TRAINING SIGNAL DESIGN OVERMULTIPLE

OFDM SYMBOLS

This section investigates training signal design for channel
estimation based on observations overQ OFDM symbols.

A. Optimality Conditions in Sub-Carrier Domain

Based on Condition-A from (9), we observe the following:
(A-i) Condition(A.1): The full rank condition in (9) implies

that for every transmit antenna and within theQ OFDM sym-
bols, there must be at leastL different nonzero tones, each with
at least one symbol duration.

(A-ii) The conditionQ�1Xq=0 sHm;qsm;q = EavI ; 8m (43)
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means thatCondition(A:2 ) : Em = Eav ; 8m: (44)

(A-iii) The conditionQ�1Xq=0 (s((l))m;q )Hs((i))m;q = 0; 8l 6= i; l; i 2 f0; 1; : : : ; L� 1g (45)

means thatQ�1Xq=0 K�1Xk=0 j
m;q [k℄j2 e j2�dkK = 0 for d = �1;�2; : : : ;�(L� 1):
(46)

By definingEm[k℄ = Q�1Xq=0 j
m;q[k℄j2; k = 0; : : : ;K � 1; (47)

we can express (46) asCondition(A:3 ) :K�1Xk=0 Em[k℄ e j2�dkK = 0 for d = �1; : : : ;�(L � 1):(48)

Note thatEm = PK�1k=0 Em[k℄. Using Properties 2 and 3, we
obtain the following condition satisfying (46) forK =ML0:Em[k℄ = 8><>: a(l)m ; k = l + iM ; l = 0; : : : ;M � 1;i = 0; : : : ; L0 � 1; a(l)m � 00; elsewhere: (49)

At least onea(l)m must be nonzero in order to get nonzeroEm. Note that pilot tone amplitudes of different antennas may
not be necessarily the same but total pilot energiesEm must be
the same for different antennas.

Now consider Condition-B from (10) which is given byQ�1Xq=0 K�1Xk=0 
�m;q [k℄ 
n;q[k℄ ej2�dk=K = 0 (50)

for d = 0;�1; : : : ;�(L� 1) ; 8m 6= n:
Let Gm;n[q; k℄ = 
�m;q [k℄ 
n;q[k℄ and Gm;n[q; k℄ F !gm;n[q; k℄. Then, (10) becomesCondition(B :1 ) :K�1Xk=0  Q�1Xq=0 Gm;n[q; k℄!ej2�dk=K = 0; (51)

for d = 0;�1; : : : ;�(L � 1); 8m 6= n
or

Q�1Xq=0 gm;n[q; k℄ = 0; (52)

for k = 0; : : : ; L� 1;K � L+ 1; : : : ;K � 1; 8m 6= n:

B. Training Designs overQ Symbols

(B-i-a) If we letgm;n[q; k℄= 0 , fork = 0, . . . ,L�1,K�L+1,
. . . ,K�1, 8m 6= n and8q, then the solution for the case of one
OFDM symbol is applicable to each symbol of theQ-symbol
case. To wit, forK = ML0, we haveQ sets of antennas where
each set hasM antennas whose pilot tone allocations are de-
fined by the solution for the one-symbol case. Each set uses
one out ofQ symbols. Within each set, pilot tone allocation is
of CDM(F) or FDM or FDM+CDM(F) type while different sets
are of TDM type. The total number of antennas isNTx =MQ.

(B-i-b) Alternatively, using Properties 2 and 3, we have the
following condition satisfying (10) forK = ML0:Q�1Xq=0 Gm;n[q; k℄ = 8>><>>: a(l)m;n; k = l + iM; 8m 6= n;i = 0; : : : ; L0 � 1;l = 0; : : : ;M � 1;0; elsewhere; (53)M�1Xl=0 a(l)m;n = 0; 8m 6= n; a(l)m;n 2 C : (54)

Note that (53) satisfies
PQ�1q=0 gm;n[q; k℄ = 0 for k = 1, . . . ,L � 1, K � L + 1, . . . , K � 1, 8m 6= n while (54) satisfiesPQ�1q=0 gm;n[q; k℄ = 0 for k = 0, 8m 6= n.

(B-i-b-1) If Gm;n[q; k℄ = 0, 8q and 8k for somem 6= n
(a group of antennas), the corresponding pilot tones are dis-
joint. Within a group, theL0 tones of each antenna are dis-
joint from those of any other antenna by means of multiplexing
in time (TDM), in frequency (FDM) or in both time and fre-
quency (TFDM). The pilot tones must also satisfy Conditions
(A.2) and (A.3) through (44) and (49). Hence, the optimalL0
pilot tones of one symbol duration for each antenna must be
equally spaced (M tone spacing) with equal amplitude. They
should be disjoint from pilot tones of any other antenna. All
antennas have the same pilot amplitude.

(B-i-b-2) Consider the case whereGm;n[q; k℄ 6= 0, for some
(or all) q, for some (or all)k, and for somem 6= n, (a group
of antennas wherem;n 2 fi0; i1; : : :g). LetNf be the number
of sets of equally-spaced (M tone spacing)L0 tones overQ
symbols assigned to an antenna from the above group (each set
corresponds to tone indicesfkl + iM : i = 0; : : : ; L0 � 1g
wherekl 6= km if l 6= m andkn 2 f0; : : : ;M � 1g). LetNt be
the number of repetitions in time (with symbol indicesq0, q1,
. . . , qNt�1) of the aboveNf sets ofL0 tones each. By using the
same principle as in (26), within theq-th symbol interval, theNf sets of pilot tones (each set hasL0 tones) can accommodate
a set ofNf antennas ifa(kl)im;in [qt℄ = a(k0)im;in [qt℄ ej2�l(n�m)=Nf ; (55)for l = 0; : : : ; Nf � 1;m 6= n;m;n 2 f0; : : : ; Nf � 1g:
The corresponding pilot tones are given by
im;qt [k℄ = 8>><>>: b(l)m [qt; d℄; k = kl + dM ;d = 0; : : : ; L0 � 1;l = 0; : : : ; Nf � 10; elsewhere

(56)b(l)m [qt; d℄ = b(l)0 [qt; d℄ e�j2�lm=Nf ; m = 0; : : : ; Nf � 1jb(l)0 [qt; d℄j = b0 > 0;
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where the fulfillment of Conditions (A.1), (A.2), (A.3), and
(B.1) is inherited from (27). This pilot allocation is of CDM(F)
type.

Applying the CDM principle over the aboveNt symbols can
accommodateNt sets ofNf antennas each. The optimal pilot
tones for an antenna from thev-th set are related to those from
the0-th set byfa(kl)ivNf+m;ivNf+n [qt℄ : 8lg = fa(kl)im;in [q0℄ : 8lg ej2�tv=Nt ; (57)for v = 0; : : : ; Nt � 1; l = 0; : : : ; Nf � 1;8m 6= n;m;n 2 f0; : : : ; Nf � 1g:
The corresponding pilot tones are given by
ivNf+m;qt [k℄ = 
im;q0 [k℄ e�j2�tv=Nt ; v = 0; : : : ; Nt�1 (58)

andf
im;q0 [k℄ : m = 0; : : : ; Nf�1g are given by (56). The ful-
fillment of Conditions (A.1), (A.2), (A.3), and (B.1) is inherited
from (56). This pilot allocation among theNt sets is of CDM
type in the time-domain and denoted by CDM(T). Hence, this
overall pilot allocation overNfL0 tones andNt symbols will
be denoted byNf -CDM(F) +Nt-CDM(T). ForNTxL0 < KQ,
the results from Sub-section III-C can be straight-forwardly ap-
plied.

C. Combined Training Structures

More complicated pilot allocation schemes are also possible
by combining FDM, TDM, TFDM, CDM(F), and CDM(T) type
allocations. An example of optimal pilot allocations of mixed
types overQ = 2 OFDM symbols is shown in Table VI for
the estimation of channels withL = 4 taps each in an OFDM
system withK = 16 sub-carriers andNTx = 8 transmit an-
tennas. The group of antennas 0, 1, 2, 3 is disjoint from the
others by FDM over 2 symbols. Antenna 4 is of TFDM type
while antenna 5 is of purely FDM type over one symbol. The
group of antennas 6 and 7 is disjoint from the others by TFDM.
Within the group of antennas 0, 1, 2, and 3, pilot allocation is
of 2-CDM(F) + 2-CDM(T) type. Within the group of antennas
6 and 7, pilot allocation is of CDM(F) type.

In Table VII, the pilot vector for each antenna is presented
for the optimal training signal structure given in Table VI where�k can be any constant-modulus symbol. Note that within one
symbol, pilot amplitudes from different antennas may be differ-
ent, e.g., compare pilot amplitudes of antennas 0, 4, and 6.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Summary and Examples

In this section, we summarize our findings on the optimal
training signals for MIMO OFDM channel estimation. For
training signal design over one OFDM symbol, a simple opti-
mal solution is the FDM+CDM(F) type pilot allocation given
by (27) which includes FDM and CDM(F) types as special
cases. The allocation in (27) can also be used forNTx < M ,
(M = K=L0) by simply skipping any (M � NTx) pilot vec-
tors. More optimal pilot allocations forNTx < M are given
by (32) and (33) for FDM structure and (41) for CDM(F) struc-
ture, and an appropriate combination of (32) or (33) and (41)

for FDM+CDM(F) structure. In practice,K is a power of 2
for a simpler FFT implementation and henceL0 can always be
found. If all K(� LNTx) sub-carriers are used in CDM(F)
structure, thenK need not be an integer multiple ofL0.

Some representative examples of optimal pilot tone vectors
for SISO OFDM systems are given in Table I and those for
MIMO OFDM systems are given in Tables II and III wheref�ig are constant-modulus symbols. An example of optimal
pilot structure with unequal number of pilot tones per antenna
is presented in Table IV. More complicated pilot allocations
can be constructed by not fixing the FDM boundaries and by
combining FDM and CDM(F). An example is given in Table V.
For training signal design overQ OFDM symbols, two simple
optimal solutions have been presented. The first one is com-
posed ofQ TDM groups where within each TDM group, the
FDM+CDM(F) pilot allocation given in (27) is implemented.
In the second solution, every antenna transmits on all pilot
tones over allQ OFDM symbols and the optimal pilot tones
are given by the CDM(F)+CDM(T) allocation defined in (56)
and (58). Other more complicated solutions can be obtained by
combining TDM (less thanQ TDM groups), FDM, CDM(F),
and CDM(T) allocations. Examples are given in Tables VI and
VII.

Although our discussion is based on pilot-onlyQ OFDM
training symbols, the results can be easily adapted to pilot-
data-multiplexed schemes. The optimal training signal design
in pilot-data-multiplexed systems may be viewed as using data
in place of pilot tones allocated to some transmit antennas with
FDM pilot allocation in the original design for pilot-only train-
ing symbols (and removing those transmit antennas). The or-
thogonality between data and pilot tones is inherited from the
original FDM pilot allocation.

B. Relationship to Existing Training Designs

Consider pilot-data-multiplexed schemes withK = L0M
andM = (Md + Mp), whereMdL0 sub-carriers are for data
andMpL0 sub-carriers are for pilot tones. WhenK = DMpL0
whereD is an integer (> 1) and pilot tones are equi-powered,
equi-spaced and all transmit antennas use all pilot tones with
CDM(F) pilot allocation (i.e.,U = 1, kl = � + lD with� 2 f0; : : : ; D � 1g and l = 0; : : : ;Mp � 1 in (27)), our re-
sults specialize to the optimal training signals forMp transmit
antennas over one OFDM symbol presented in [9] and [15].
Note thatK need not be an integer multiple ofMpL0 in our
designs for pilot-data multiplexed schemes. This fact results in
a better flexibility of our designs over the existing ones. For
example, forK = 64, L = 8, andNTx = 3, the designs
from [9] and [15] would not be applicable since they require
thatK be an integer multiple ofLNTx. However, our design
can still be applied; for example, by using unequi-spaced FDM
or CDM(F), or FDM+CDM(F) structure. As another example,
consider OFDM-based UWB systems where some tones may
need to be turned off due to coexistence of other wireless de-
vices (such as 802.11b and Bluetooth) within the UWB band.
In this scenario, the existing equi-spaced pilot tones may not be
feasible and our design has a clear advantage in terms of appli-
cability/flexibility for different systems. Our optimal training
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signal designs over multiple OFDM symbols can be similarly
linked to those of [15].

Now consider schemes where all sub-carriers are pilot tones.
ForNTxL � K, our CDM design in (41) withL1 = bK=NTx

gives the training design of [16]. If pilot symbols are con-
strained to be BPSK, then using a subset from theV pilot tone
vectors of our CDM design with Walsh-Hadamard sequence
(28) gives the training design from [18]. The corresponding
subset is given bywm[l℄ = (�1)bl=2m�1
 form = 2, . . . ,NTx�1
in (28) withV L0 = K being an integer multiple of2NTx�1L0.
Note that forK = 2m�1L0 with BPSK pilot tones, the design
from [18] can accommodatem transmit antennas while our de-
sign can accommodate upto2m�1 transmit antennas.

C. Simulation Results

We have numerically evaluated the optimality condition in
(6) for all the training signal designs discussed and confirmed
their optimality with respect to minimizing MSE. Simulation
results are also provided to corroborate the optimality of the
proposed training signals. Simulation parameters assumedareK = 64, NTx = 4, a multipath Rayleigh fading channel withL = 8 taps and an exponential power delay profile (3 dB per
tap decaying factor). We evaluated five optimal training struc-
tures: a CDM-F structure using all subcarriers (same as [16]),
an equi-spaced CDM-F structure usingLNTx pilot tones (same
as [15]), an equi-spaced FDM structure with a total ofLNTx pi-
lot tones, an unequi-spaced FDM structure with a total ofLNTx
pilot tones, and a 2-FDM + 2-CDM structure using all subcar-
riers. For BER evaluation,NTx independent streams of BPSK
data symbols are transmitted simultaneously fromNTx trans-
mit antennas and we use maximum likelihod detection. Fig. 1
shows the NMSE simulation results as well as the theoretical
ones and Fig. 2 presents the BER simulation results for the
different optimal training signals. All optimal training signals
evaluated have the same performance as expected.

D. Other Properties of Optimal Training Signals

Training signals should be designed to have low PAR in or-
der to avoid nonlinear distortion of the training signal at the
transmit power amplifier. Depending on power amplifier de-
sign, allowable PAR of the training signal will vary. In the
following, we provide a general discussion on the PAR of dif-
ferent optimal training structures. Optimal training signals of
all transmit antennas with CDM(F) allocation have the same
PAR since the time-domain signals are just cyclic-shifted ver-
sions of one another. For FDM allocation, optimal training sig-
nals of all antennas can be easily designed to have the same
PAR by using the same pilot symbols on the assigned sub-
carriers since a shift in the frequency-domain results in a phase
rotation of the time-domain signal. Hence, as far as PAR
is concerned, we just need to consider the training signal of
the first antenna. For CDM(F) allocation, we can design allf
0[n℄ : n = 0; 1; : : : ; K � 1g. For FDM, we can designf
0[iM ℄ : i = 0; 1; : : : ; L0�1;M = K=L0g which is equiv-
alent to designing all sub-carrier symbols in an OFDM system
with L0 sub-carriers. Hence, generally there is no difference
between CDM(F) and FDM if PAR of the training signals is the

only concern. We can use zero-correlation or very low correla-
tion sequences as pilot tones which will give very low PAR.

If pilot symbols are constrained to be from a finite alphabet
signal constellation, FDM structure gives a much easier design
since CDM design is associated with some phase-shifts.

Furthermore, training signals for channel estimation should
be robust to frequency offsets. Different optimal trainingsig-
nals have different robustness to frequency offsets. For exam-
ple, we simulated the channel estimation NMSE for the above
five training signals in the presence of a frequency offset of0:05
(normalized by the subcarrier spacing) at a SNR per antenna of
10 dB and the corresponding NMSE values are5:06 � 10�3,4:79� 10�3, 4:75� 10�3, 5:14� 10�3, and3:14� 10�3, re-
spectively. Finding the best one(s) among the optimal training
signals in the presence of a frequency offset and a PAR con-
straint is a challenging problem. Being a larger and more gen-
eral set including the existing training structures, the proposed
training structures will be useful in this quest.

VI. CONCLUSIONS

We presented general classes of optimal training signals for
channel estimation in MIMO OFDM systems with single or
multiple OFDM training symbols. The optimal pilot tone al-
location among transmit antennas can be of frequency-division
multiplexing, time-division multiplexing, code-division mul-
tiplexing in the time-domain, code-division multiplexingin
the frequency-domain or combinations thereof. Depending on
the pilot allocation, the pilot amplitudes of different antennas
within an OFDM symbol can be different and all pilot tones of
an antenna may not be equally spaced. The presented optimal
training signal designs are applicable to pilot-only schemes as
well as pilot-data-multiplexed schemes. Our proposed training
designs include all existing training designs for OFDM as spe-
cial cases and introduce new designs as well. Our approach
based on the DFT properties facilitates new training designs.
Our training designs provide a better flexibility in terms ofsys-
tem parameters and could be useful in training signal designin
the presence of frequency offset and PAR constraints.

REFERENCES

[1] A. Milewski, “Periodic sequences with optimal properties for channel es-
timation and fast start-up equalization,”IBM Journal of Research and De-
velopment, Vol. 27, No. 5, Sept. 1983, pp. 426-431.

[2] S.N. Crozier, D.D. Falconer and S.A. Mahmoud, “Least sumof squared
errors (LSSE) channel estimation,”IEE Proceedings-F, Vol. 138, No. 4,
Aug. 1991, pp. 371-378.

[3] C. Tellambura, M.G. Parker, Y.J. Guo, S.J. Shepherd and S.K. Barton, “Op-
timal sequences for channel estimation using discrete Fourier transform
techniques,”IEEE Trans. Commun., Feb. 1999, pp. 230-238.

[4] W. Chen and U. Mitra, “Training sequence optimization: Comparison and
an alternative criterion,”IEEE Trans. Commun., Vol. 48, No. 12, Dec.
2002, pp. 1987-1991.

[5] W. H. Mow, “A New Unified Construction of Perfect Root-of-Unity
Sequences,”Proc. Spread Spectrum Techniques and its Applications
(ISSSTA’96), Mainz, Germany, pp. 955-959, 1996.

[6] J.C.L. Ng, K.B. Letaief, and R.D. Murch, “Complex Optimal Sequences
with Constant Magnitude for Fast Channel Estimation Initialization,” IEEE
Trans. Commun.,Vol. 46, N0. 3, Mar. 1998, pp. 305-308.

[7] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mo-
bile OFDM system,”IEEE Trans. Consumer Electronics,Vol. 44, No. 3,
pp. 1122-1128, Aug., 1998.

[8] J.H. Manton, “Optimal training sequences and pilot tones for OFDM sys-
tems,”IEEE Commun. Let., Vol. 5, No. 4, Apr. 2001, pp. 151-153.



9

TABLE IV
EXAMPLES OF FDM-TYPE OPTIMAL PILOT TONE VECTORS WITH

UNEQUAL NUMBER OF PILOT TONES PER ANTENNA FOR ANOFDM

SYSTEM WITHK = 12,NTx = 4,L = L0 = 2, L1 = 3 AND Q = 1
Sub-carrier Index Ant. 0 Ant. 1 Ant. 2 Ant. 3

0 A0�0 0 0 0
1 0 0 A2�6 0
2 0 A1�3 0 0
3 0 0 0 0
4 A0�1 0 0 0
5 0 0 0 A3�8
6 0 A1�4 0 0
7 0 0 A2�7 0
8 A0�2 0 0 0
9 0 0 0 0
10 0 A1�5 0 0
11 0 0 0 A3�93jA0j2 = 3jA1j2 = 2jA2j2 = 2jA3j2; j�ij = 1

[9] S. Adireddy, L. Tong, and H. Viswanathan, “Optimal Placement of Train-
ing for Frequency-Selective Block-Fading Channels,”IEEE Trans. Info.
Theory,Vol. 48, No. 8, Aug. 2002, pp. 2338-2353.

[10] M. Dong and L. Tong, “Optimal design and placement of pilot symbols
for channel estimation,”IEEE Trans. Signal Processing, Vol. 50, No. 12,
Dec. 2002, pp. 3055-3069.

[11] X. Ma, L. Yang, and G. B. Giannakis, “Optimal training for MIMO
frequency-selective fading channels,”IEEE Asilomar Conf. on Signals,
Systems, and Computers, Nov. 2002, pp. 1107-1111.

[12] S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding
for block transmissions with application to wireless OFDM,” IEEE Trans.
Commun.,Vol. 50, No. 12, Dec. 2002, pp. 2113-2123.

[13] X. Ma, G.B. Giannakis and S. Ohno, “Optimal training forblock trans-
missions over doubly selective wireless fading channels,”IEEE Trans. Sig-
nal Processing, Vol. 51, No. 5, May 2003, pp. 1351-1365.

[14] C. Fragouli, N. Al-Dhahir, and W. Turin, “Training-based channel estima-
tion for multiple antenna broadband transmissions,”IEEE Trans. Wireless
Commun.,Vol. 2, No. 2, Mar. 2003, pp. 384-391.

[15] I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for
MIMO OFDM systems in mobile wireless channels,”IEEE Trans. Signal
Processing,Vol. 51, No. 6, June 2003, pp. 1615-1624.

[16] Y. Li, “Simplified channel estimation for OFDM systems with multiple
transmit antennas,”IEEE Trans. Wireless Commun.,Vol. 1, No. 1, Jan.
2002, pp. 67-75.

[17] Y. Li, N. Seshadri, and S. Ariyavisitakul, “Channel estimation for OFDM
systems with transmitter diversity in mobile wireless channels,” IEEE J.
Select. Areas Commun., Vol. 17, Mar. 1999, pp.461-471.

[18] T.L. Tung, K. Yao, and R.E. Hudson, “Channel estimationand adaptive
power allocation for performance and capacity improvementof multiple-
antenna OFDM systems,”IEEE Signal Processing Workshop on Signal
Processing Advances in Wireless Communications, Mar. 2001, pp. 82-85.

[19] S. M. Kay, “Fundamentals of Statistical Signal Processing: Estimation
Theory,”Prentice Hall PTR, 1993.

TABLE VI
AN OPTIMAL PILOT ALLOCATION IN AN OFDM SYSTEM WITHNTx = 8,K = 16,Q = 2 FOR ESTIMATION OF CHANNELS WITHL = 4 TAPS EACH

(ANTENNA ASSIGNMENT ON THE GRID OF SUB-CARRIERS AND SYMBOLS)

Antennas assignments
Sub-carrier Symbol Index

Index 0 1
0 0, 1, 2, 3 0, 1, 2, 3
1 0, 1, 2, 3 0, 1, 2, 3
2 4 6, 7
3 5 6, 7
4 0, 1, 2, 3 0, 1, 2, 3
5 0, 1, 2, 3 0, 1, 2, 3
6 4 6, 7
7 5 6, 7
8 0, 1, 2, 3 0, 1, 2, 3
9 0, 1, 2, 3 0, 1, 2, 3
10 6, 7 4
11 5 6, 7
12 0, 1, 2, 3 0, 1, 2, 3
13 0, 1, 2, 3 0, 1, 2, 3
14 6, 7 4
15 5 6, 7
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Fig. 1. The NMSEs of several optimal training structures foran MIMO OFDM
system withNTx = 4,K = 64 in an 8-tap multipath Rayleigh fading channel
with an exponential power delay profile
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TABLE I
OPTIMAL PILOT TONE VECTORS FOR ASISO OFDMSYSTEM WITHK = 8;L = 2

Sub-carrier Index
0 1 2 3 4 5 6 72�1 0 0 0 2�2 0 0 0p2�1 p2�2 0 0

p2�3 p2�4 0 0p4=3�1 p4=3�2 0
p4=3�3 p4=3�4 p4=3�5 0

p4=3�6�1 �2 �3 �4 �5 �6 �7 �8
TABLE II

OPTIMAL PILOT TONE VECTORS FOR AMIMO OFDM SYSTEM WITHK > NTxL, (K = 8;NTx = 2;L = 2)

Sub-carrier Pilot Allocation
Index FDM FDM CDM(F) CDM(F), 1 � m � 3

Ant. 0 Ant. 1 Ant. 0 Ant. 1 Ant. 0 Ant. 1 Ant. 0 Ant. 1
0 2�1 0

p2�1 0
p2�1 p2�1ej�1 �1 �1ej�1

1 0 0 0
p2�5 0 0 �2 �2e�jm�=2ej�1

2 0 2�3 p2�2 0 0 0 �3 �3e�j2m�=2ej�1
3 0 0 0

p2�6 p2�2 �p2�2ej�1 �4 �4e�j3m�=2ej�1
4 2�2 0

p2�3 0
p2�3 p2�3ej�1 �5 �5e�j4m�=2ej�1

5 0 0 0
p2�7 0 0 �6 �6e�j5m�=2ej�1

6 0 2�4 p2�4 0 0 0 �7 �7e�j6m�=2ej�1
7 0 0 0

p2�8 p2�4 �p2�4ej�1 �8 �8e�j7m�=2ej�1
TABLE III

OPTIMAL PILOT TONE VECTORS FOR AMIMO OFDM SYSTEM WITHK = NTxL (K = 8;NTx = 4;L = 2)

Pilot Sub-carrier
Allocation Index Ant. 0 Ant. 1 Ant. 2 Ant. 3

0 �1 �1ej�1 �1ej�2 �1ej�3
1 �2 �2e�j�=2ej�1 �2e�j2�=2ej�2 �2e�j3�=2ej�3
2 �3 �3e�j2�=2ej�1 �3e�j4�=2ej�2 �3e�j6�=2ej�3
3 �4 �4e�j3�=2ej�1 �4e�j6�=2ej�2 �4e�j9�=2ej�3

CDM(F) 4 �5 �5e�j4�=2ej�1 �5e�j8�=2ej�2 �5e�j12�=2ej�3
5 �6 �6e�j5�=2ej�1 �6e�j10�=2ej�2 �6e�j15�=2ej�3
6 �7 �7e�j6�=2ej�1 �7e�j12�=2ej�2 �7e�j18�=2ej�3
7 �8 �8e�j7�=2ej�1 �8e�j14�=2ej�2 �8e�j21�=2ej�3
0 2�1 0 0 0
1 0 2�3 0 0
2 0 0 2�5 0
3 0 0 0 2�7

FDM 4 2�2 0 0 0
5 0 2�4 0 0
6 0 0 2�6 0
7 0 0 0 2�8
0

p2�1 p2�1ej�1 0 0
1 0 0

p2�5 p2�5ej�3
2 0 0

p2�6 �p2�6ej�3
3

p2�2 �p2�2ej�1 0 0
2-FDM + 2-CDM(F) 4

p2�3 p2�3ej�1 0 0
5 0 0

p2�7 p2�7ej�3
6 0 0

p2�8 �p2�8ej�3
7

p2�4 �p2�4ej�1 0 0
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TABLE V
OPTIMAL PILOT TONE VECTORS IN ANOFDM SYSTEM WITHNTx = 8,K = 16,Q = 1 FOR ESTIMATION OF CHANNELS WITHL = 2 TAPS EACH

Sub-carrier Antenna Index
Index 0 1 2 3 4 5 6 7

0
p2�1 0 0 0 �1 �1 0 0

1 0
p2�3 0 0 �3 -�3 0 0

2 0 0
p2�5 0 0 0 �5 �5

3 0 0 0
p2�7 0 0 �7 -�7

4
p2�2 0 0 0 -�2 -�2 0 0

5 0
p2�4 0 0 -�4 �4 0 0

6 0 0
p2�6 0 0 0 -�6 -�6

7 0 0 0
p2�8 0 0 -�8 �8

8
p2�1 0 0 0 �1 �1 0 0

9 0
p2�3 0 0 �3 -�3 0 0

10 0 0
p2�5 0 0 0 �5 �5

11 0 0 0
p2�7 0 0 �7 -�7

12
p2�2 0 0 0 -�2 -�2 0 0

13 0
p2�4 0 0 -�4 �4 0 0

14 0 0
p2�6 0 0 0 -�6 -�6

15 0 0 0
p2�8 0 0 -�8 �8

TABLE VII
OPTIMAL PILOT TONE VECTORS IN ANOFDM SYSTEM WITHNTx = 8,K = 16,Q = 2 FOR ESTIMATION OF CHANNELS WITHL = 4 TAPS EACH

Symbol Antenna Index
index 0 1 2 3 4 5 6 7�1 �1 �1 �1 0 0 0 0�2 -�2 �2 -�2 0 0 0 0

0 0 0 0 2�9 0 0 0
0 0 0 0 0 2�13 0 0�3 �3 �3 �3 0 0 0 0�4 -�4 �4 -�4 0 0 0 0
0 0 0 0 2�10 0 0 0

0 0 0 0 0 0 2�14 0 0�5 �5 �5 �5 0 0 0 0�6 -�6 �6 -�6 0 0 0 0
0 0 0 0 0 0

p2�17 p2�17
0 0 0 0 0 2�15 0 0�7 �7 �7 �7 0 0 0 0�8 -�8 �8 -�8 0 0 0 0
0 0 0 0 0 0

p2�18 p2�18
0 0 0 0 0 2�16 0 0�1 �1 -�1 -�1 0 0 0 0�2 -�2 -�2 �2 0 0 0 0
0 0 0 0 0 0

p2�19 p2�19
0 0 0 0 0 0

p2�19 -
p2�19�3 �3 -�3 -�3 0 0 0 0�4 -�4 -�4 �4 0 0 0 0

0 0 0 0 0 0
p2�20 p2�20

1 0 0 0 0 0 0
p2�20 -

p2�20�5 �5 -�5 -�5 0 0 0 0�6 -�6 -�6 �6 0 0 0 0
0 0 0 0 2�11 0 0 0
0 0 0 0 0 0

p2�21 -
p2�21�7 �7 -�7 -�7 0 0 0 0�8 -�8 -�8 �8 0 0 0 0

0 0 0 0 2�12 0 0 0
0 0 0 0 0 0

p2�22 -
p2�22
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Fig. 2. The BERs of several optimal training structures for an MIMO OFDM
system withNTx = 4,K = 64 in an 8-tap multipath Rayleigh fading channel
with an exponential power delay profile


