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Abstract. Recently, the question has been raised whether the deriva-
tion tree languages of Minimalist grammars (MGs; [14, 16]) are closed
under intersection with regular tree languages [4, 5|. Using a variation
of a proof technique devised by Thatcher [17], I show that even though
closure under intersection does not obtain, it holds for every MG and
regular tree language that their intersection is identical to the derivation
tree language of some MG modulo category labels. It immediately fol-
lows that the same closure property holds with respect to union, relative
complement, and certain kinds of linear transductions. Moreover, enrich-
ing MGs with the ability to put regular constraints on the shape of their
derivation trees does not increase the formalism’s weak generative capac-
ity. This makes it straightforward to implement numerous linguistically
motivated constraints on the Move operation.
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Introduction

Minimalist grammars (MGs) were introduced in [14] as a formalism inspired
by Chomsky’s Minimalist Program [1]. Over the years, MGs have been enriched
with various tools from the syntactic literature (e.g. phases and persistent fea-
tures [15]), most of which do not increase the framework’s weak generative ca-
pacity. One recent extension was proposed in my own work ([4, 5]; T will refer
to these papers in the third person): the addition of reference-set constraints,
which introduce a notion of optimality to the system. Graf proposes to model
these constraints by linear tree transductions mapping the set of derivation trees
of an MG to its subset of optimal derivation trees. He concludes that while the
specific constraints he implements do not increase the weak generative capacity
of MGs, the result carries over to arbitrary reference-set constraints definable by
linear tree transductions only if the class of derivation tree languages is closed
under intersection with regular tree languages — an open problem.

In this paper, I show that even though Minimalist derivation tree languages
are not closed under intersection with regular tree languages, it holds for ev-
ery Minimalist derivation tree language and regular tree language that their
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intersection is a projection of a Minimalist derivation tree language. I call this
property p-closure under intersection with regular tree languages. While this
p-closure result is already sufficient for Graf’s purposes, it turns out that Min-
imalist derivation tree languages enjoy several more p-closure properties that
make them appear very similar to regular tree languages. The p-closure prop-
erties of MGs also entail that their weak generative capacity is unaffected by
the addition of regular control, which proves useful in the implementation of
syntactic constraints such as islandhood, phases and Relativized Minimality.

The paper is laid out as follows: The preliminaries section covers, besides the
definition of MGs, mundane topics such as tree languages and tree automata
and the new yet crucial notion of p-closure. I then proceed to define Minimalist
derivation tree languages and establish some of their basic properties (Sec. 2).
This is followed up by a detailed investigation of their p-closure properties in
Sec. 3, the greatest part of which is devoted to showing p-closure under inter-
section with regular tree languages. In the last part of this paper, I define MGs
with regular control as a formalism with the same weak generative capacity as
standard MGs, and I sketch some potential linguistic applications.

1 Preliminaries and Notation

In this section, I briefly introduce tree languages, tree automata, Minimalist
grammars, and the notion of p-closure, which will be of great importance in this
paper. As usual, N denotes the set of non-negative integers. A tree domain is a
finite subset D of N* such that, for w € N* and j € N, wj € D implies both
w € D and wi € D for all ¢ < j. Every n € D is called a node. Given nodes
m,n € D, m immediately dominates n iff n = mi, ¢ € N. In this case we also say
m is the mother of n, or conversely, n is a daughter of m. The transitive closure
of the immediate dominance relation is called dominance. A node that does not
dominate any other nodes is a leaf, and the unique node that isn’t dominated
by any nodes is called the root.

Now let X be a ranked alphabet, i.e. every o € X' has a unique non-negative
rank (arity); X is the set of all n-ary symbols in X. A Y-tree is a pair T :=
(D, !), where D is a tree domain and ¢ : D — X is a function assigning each
node n a label drawn from X such that £(n) € X@ iff n has d daughters.
Usually the alphabet will not be indicated in writing when it is irrelevant or
can be inferred from the context. Sometimes trees will be given in functional
notation such that f(¢,...,t,) is the tree where the root node is labeled f and
immediately dominates trees t1,...,t,. I denote by T's; the set of all trees such
that for n > 0, f(t1,...,t,) isin Ty iff f € Y™ and t; € T, 1 <i<n. A tree
language is some subset of T's;. It is regular (a recognizable set) iff it is recognized
by a deterministic bottom-up tree automaton.

Definition 1. A deterministic bottom-up tree automaton is a 4-tuple A =
(X,Q, F,6), where

— X is a ranked alphabet,
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— @ is a finite set of states (i.e. of unary symbols q ¢ %),
— F C Q 1is the set of final states,
—9J: (UnZO Q" x E(")) — Q is the transition function.

In the remainder of this paper, I will refer to deterministic bottom-up tree au-
tomata simply as (tree) automata. The transition function of a tree automaton
can be extended to entire trees in the usual manner. A tree T, then, is rec-
ognized (accepted) by A iff 6(T) € F, and the language recognized by A is
L(A) := {T|6(T) € F}. At several points in the paper, I also mention tree
transducers. All the reader needs to know about them is that they are the tree
equivalent of string transducers, i.e. they rewrite input trees as output trees.

Given a tree T, a treelet t of T is a continuous substructure of T', that is to
say, there is no node that does not belong to ¢ yet both dominates a node of ¢
and is dominated by a node of ¢. In the special case where ¢ contains either all
the nodes of T" dominated by some node of ¢ or none of them, we call ¢ a subtree
of T. A projection of a tree language is its image under a function f that is the
pointwise extension of a surjective map f : X — (2 between alphabets to tree
languages. Thus projections are a particular kind of relabeling.

Definition 2 (P-Closure). Given a class of languages L and an operation O,
L is p-closed under O iff the result of applying O to some L € L is a projection
of some L' € L.

We now turn to the definition of MGs, which mostly follows the chain-based
exposition of [16] except that I allow for multiple final categories. This small ex-
tension has no effect on expressivity, as will be explained after the MG apparatus
has been introduced.

Definition 3. A Minimalist grammar is a 6-tuple G := (X, Feat, F, Types, Lez,
Op), where

— X £ (0 is the alphabet,

— Feat is the union of a non-empty set base of basic features (also called cat-
egory features) and its prefized variants {=f | f € base}, {+f | f € base},
{=f | f € base} of selector, licensor, and licensee features, respectively,

F C base is a set of final categories,

Types := {::,:} distinguishes lexical from derived expressions,

the lexicon Lex is a finite subset of X* x {::} x Feat®,

and Op is the set of generating functions to be defined below.

A chain is a triple in X* x Types x Feat™, and C denotes the set of all chains
(whence Lex C C). Non-empty sequences of chains will be referred to as expres-
sions, the set of which is called E. I will usually drop the tuple brackets of chains
and lexical items, but not those of expressions (the exception being depictions of
derivation trees and the definitions of merge and move below).

The set Op of generating functions consists of the operations merge and
move. The operation merge: (E x E) — E is the union of the following three
functions, for s,t € X*, - € Types, f € base, v € Feat*, § € Feat™, and chains
Qs ey Qs Ly ey bk, 0 < K12
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As the domains of all three functions are disjoint, their union is a function, too.
Given one of the configurations above, one also says that s selects t.

The operation move: E — FE is the union of the two functions below, with the
notation as above and the further assumption that all chains satisfy the Shortest
Move Constraint (SMC), according to which no two chains in the domain of
move display the same licensee feature —f as their first feature.

St +f7a0417~'~7ai—1;t: *f,OéH_l,...,ak
ts: v,01,..., 041,041, 0k

movel

st Hfy,an, . 0im1,t s —f6 gy,
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move2

The language L(G) generated by G is the string component of the subset of the
closure of the lexicon under the generating functions that contains all and only
those expressions consisting of a single chain whose feature component is a single
final category: L(G) :={c | (0 - ¢) € closure(Lex, Op),- € Types,c € F'}.

Ezample 1. Let G be an MG defined by F := {c} and the lexicon Lex below:

a: a b:: =a =a +ka c: =ac
a:a —k
Two derivation trees of G are depicted in Fig. 1. a

As noted before, I slightly relax the MG formalism by allowing multiple final
categories instead of just one. This is an innocent move. If a relaxed MG has final

categories ¢y, ..., C,, We can turn it into a canonical MG by restricting the set
of final categories to some new category ¢ and introducing n new lexical items
of the form € :: =¢; ¢, where 1 <1i < n and ¢ designates the empty string. The

two grammars have virtually identical derivation tree languages with the only
difference being the merger of a phonetically null c-head as the last step of every
derivation for the canonical variant.

As for their weak generative capacity, MGs were shown in [6, 11, 12] to
generate multiple context-free string languages, whence they constitute a mildly
context-sensitive grammar formalism in the sense of [7]. The set of derivation
trees of an MG, however, is a regular tree language and there is an effective
procedure for obtaining the derived trees from their derivation trees — this holds
even of the strictly more powerful class of MGs with unbounded copying [9, 10].
This is my main reason for considering derivation trees rather than derived
trees (besides the central role of derivation trees in Graf’s work): in contrast to
the latter, they provide a unified, finite-state perspective on both MG variants;
however, derived trees are investigated by Kobele in this volume, and he, too,
proves closure under intersection with regular tree languages.
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Fig. 1. Two derivation trees of the MG from example 1

2 Minimalist Derivation Tree Languages

The presentation of derivation trees in the MG literature varies somewhat with
respect to what kind of labels are assigned to the interior nodes. The more com-
mon variant [cf. 16] is what I call string-annotated derivation trees, which were
already encountered by the reader in the example at the end of the preliminaries
section.

Definition 4 (String-annotated Derivation Tree Language). Given an
MG G := (X, Feat, F, Types, Lex, Op), its string-annotated derivation tree lan-
guage sder(G) is the largest subset of Tg satisfying the following conditions:

— For every leaf node n, £(n) = (1), | € Lex.
— For every binary branching node n immediately dominating n' and n'’, it
holds that merge(n',n’"") is defined and £(n) = merge(n’,n’).
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— For every unary branching node n immediately dominating n', move(n’) is
defined and £(n) = move(n').
— For n the root node, £(n) = (o : ¢), where 0 € X* and ¢ € F.

String-annotated derivation tree languages aren’t particularly interesting from
the perspective of formal language theory as they are defined over an infinite
alphabet (L(G) is infinite in the general case, and so is E). Hence all work
focusing on formal aspects of the derivation trees themselves [cf. 10] assume
that the labels of the interior nodes indicate only which operations have taken
place rather than the outputs of these operations at the respective stages of the
derivations. This kind of derivation tree I refer to as Minimalist derivation tree.!

Definition 5 (Minimalist Derivation Tree Language). Given an MG G,
its Minimalist derivation tree language mder(QG) is the set of trees obtained from
sder(G) by the map p relabeling all interior nodes by the corresponding operation:

— u((l)) = (1), wherel € Lex
— u(eler, ... en)) = op(u(er),...,ulen)), where e;eq,...,e, € E, n>1, and
op is the unique operation in Op such that op(e1,...,en) =e€

Note that since the domains of all op € Op are pairwise disjoint, p is indeed
well-defined and a function. Also, whenever merge and mowve are used as labels,
I will abbreviate them in the remainder of this paper by M and O, respectively.

It is fairly easy to see that Minimalist derivation tree languages are regular
(consider the deterministic bottom-up tree automaton whose states correspond
to the feature components of the labels of sder(G)). In fact, they are a proper
subset of the regular tree languages and are not closed under intersection with
them.

Theorem 1. The intersection of a Minimalist derivation tree language and a
reqular tree language may fail to be a Minimalist derivation tree language.

Proof. Consider once again the Minimalist Grammar from example 1. Let Ly C
T'rezu{n,0y contain all trees that have an even number of nodes, and only those.
Then the result of intersecting the Minimalist derivation tree language of G
with Lp is not a Minimalist derivation tree language. Among other things, it
contains the Minimalist variant of the top tree in Fig. 1 on the facing page (i.e.
with internal nodes replaced by M and O) but not the bottom one, yet they are
built from the same lexical items and end in a final category, whence either both
of them are in closure(Lex, Op), or neither is. O

Corollary 1. The image of a Minimalist derivation tree language under a linear
transduction may fail to be a Minimalist derivation tree language, even if domain
and co-domain of the transduction are identical.

Proof. The intersection of two regular tree languages L and R is equivalent to
the image of L under the diagonal of R, which is a linear transduction. a

! While it may not be in good style to have a technical term coalesce with a more
colloquial one, the homophony is meant to highlight that I regard them as the
canonical version of derivation trees for MGs.
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3 P-Closure Properties

Theorem 1 and Cor. 1 notwithstanding, it does not take much ingenuity to realize
that the counting condition in the example above can be enforced through the
category and selection features of the feature calculus.

Ezxample 2. Consider the lexical item a :: =a =a 4+ k a, and suppose that the
derivation tree assembled so far contains an even number of nodes. The first
selection feature causes the lexical item itself to be added to the derivation tree,
plus the insertion of a Merge node. Thus the number of nodes in the derivation
tree has increased by 2, which means that it is still even. Assume that at the
next step a single lexical item is merged, increasing the count once more by 2.
Then movement is triggered by the movement licensor feature, leading to the
addition of only one node, so the tree now contains an odd number of nodes.
At this point we only have to ensure that no lexical item of category c may
be merged next in the derivation. The reason is that this would increase the
counter only by 2, wherefore the number of nodes in the derivation tree would
still be odd (and thus illicit), but nonetheless the derivation would be deemed
well-formed, since we merged a lexical item of category c. In order to represent
the arithmetic in the feature calculus, then, we have toreplacea :: =a =a +k a
by a: =a, =a, +k a, and c:: =a c by c:: =a, c. The fully refined grammar
is given below.

T =a, —=a, +kae C:i =aeC
D =a, —ae+Kka,
i =a, —a,+ka,
=8, —a.+kae

a:: a,
a:a, —k

oo oo

O

The strategy in the example above can easily be generalized to intersection
with arbitrary regular sets by a slight modification of the technique employed
by Thatcher in [17]. Thatcher realized that we may view the states of a tree
automaton as an alphabet which the automaton “adds” to the original node la-
bels. Therefore, one can simplify any recognizable set R over alphabet X to a
degree where it can be described as the derivation tree language of a context-
free grammar (ignoring the distinction between terminals and non-terminals),
even though the class of the latter is properly included in the class of the for-
mer. One does so by first subscripting the symbols in X with the states of
the canonical automaton accepting R, and subsequently recasting the transition
rules in terms of rewriting rules — a transition o(q1,...,¢,) — g corresponds to
the set {oq = T1,q1--+sTnyg, | 0(71,...,7s) is a subtree of some tree of R and
each 7; is assigned state ¢; in some T € R, 1 < ¢ < n}. Thatcher’s strategy, how-
ever, cannot be used if the alphabet of our trees is fixed, as is the case with
Minimalist derivation trees. Internal nodes have to be labeled by M or O, and
adding subscripts to these symbols takes us out of the class of Minimalist deriva-
tion trees. Crucially, though, the internal nodes of a derivation tree are tied to
the leaf nodes in a very peculiar way: every internal node denotes an operation,
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and this operation has to be triggered by a feature of some lexical item. So
while we may not suffix the states of an automaton to the internal node labels
of a Minimalist derivation tree, we can still make them explicit by incorporating
them into the feature calculus.

The first step in sharpening this rough sketch is the introduction of slices.

Definition 6 (Slice). Given a Minimalist derivation tree T := (D, £) and lex-
ical item 1 occurring in T, the slice of | is the pair slice(l) := (S,£), S C D,
defined as follows:

—-1les,
— if node n € D immediately dominates a node s € S, then n € S iff the
operation denoted by £(n) erased a selector or licensor feature on .

The unique n € S that isn’t dominated by any n’ € S is called the slice root of I.

Intuitively, slice(l) marks the subpart of the derivation that ! has control over
by virtue of its selector and licensor features. The next two lemmas jointly es-
tablish that for any derivation tree T', the set {slice(l) | [ a lexical item in T'} is
a partition of T'.

Lemma 1. For every Minimalist derivation tree T := (D, {) and lexical item 1
in T, slice(l) := (S, £) is a unary branching treelet.

Proof. That slice(l) is unary branching follows immediately from the definition.
So we only have to show that there is no node n ¢ S that both dominates and is
dominated by nodes in slice(l). Since the selector and licensor features of a lexical
item [ cannot be manipulated by any o € Op after [ has already been selected
by another lexical item, all these features of I have to occur before its category
feature (which is unique). It is also clear that every licensee feature has to follow
the category feature (move must be triggered by a licensor feature on some lexical
item that is higher than [ in the derivation tree, and only the category feature
allows [ to be selected by another lexical item so that the derivation can reach
this higher point). Thus it holds for every lexical item that its feature sequence
is an element of {=f,+f | f € base}” x base x {—f | f € base}”, proving the
claim above. a

Lemma 2. Given a Minimalist derivation tree T, every node of T belongs to
some slice.

Proof. Trivial. ad

With these basic facts established, we turn to the algorithm that upon being
given an MG G := (X, Featq, F, Types, Lexg, Op) and regular language R will
compute an MG G’ such that mder(G)NR is a projection of mder(G’). We begin
by constructing the canonical automaton Ar for R (note that Ap is determin-
istic). In the next step, we pick a tree T € R N mder(G) and suffix each node n
of T with the state ¢ that Agr assigns to n when recognizing T' (since Ag is de-
terministic, ¢ is unique). After the second step has been applied to all members
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of RN mder(G), the result will be a set with R N'mder(G) as its projection. So
far, then, our procedure does not deviate at all from Thatcher’s.

But now we have to move the state subscripts from the internal nodes into
the lexical items. We do so again in two steps (before proceeding any further,
though, the reader may want to take a look at the simplified example in Fig. 2
to get a better intuition for the procedure). For the first step, we look at each

Of
k|4q
/ \ A
John :: d M
g /

killed :: =d =d +top v

Q\Mf
e

the:: =nd — top man :: n

0]

|
/M\M
—

John :: dg

killed :: =d¢ =d, + top ve \M
/ \

the :: =n, dr — top man :: np

Fig. 2. Derivation tree of MG G with states of Ag (top), and corresponding derivation
tree of G’ with refined categories (bottom)

lexical item and add the subscripted state of its slice root to its category feature
— keep in mind that a lexical item has exactly one such feature. In the second
step, we have to refine the selection features accordingly. Given the definition of
slices, it is easy to see that the (n+1)* node o of slice(l) (counting from I toward
the slice root) denotes the operation that erased the n't feature f of I, n > 1.
If /(o) = M (in which case f is a selector feature), determine the category ¢, of
the lexical item [’ whose slice root is immediately dominated by o and replace
f by =c,. Repeat this procedure for all selector features of all lexical items in
all trees.? Call the set of these lexical items with refined category and selector
features Lexq: (which is still finite due to the restriction of Ag to finitely many
states). The desired MG is G’ := (X, Fealq, Fgr, Types, Lexzg:, Op), where

2 Two things are worth mentioning here. First, there seems to be no way around
restricting the selector features of lexical items, as is witnessed by example 2, where
a lexical item of category a, may not select two lexical items of the same category, and
one of category a. may not select two with differing categories. Second, it suffices for
the construction to consider but a finite number of configurations, so a computational



105

— Featgr = {fy,=fq| f € baseq, q a state of Ag} U {—f,+f | f € baseg},
and
— Fo :={cy | c € Fg, q a final state of Agr}

Lemma 1 and 2 jointly guarantee that the procedure above is well-defined. In
order to prove its correctness, though, we first need one more property of slices.

Lemma 3. Let T := (D,{) be a derivation tree, S := {slice(l) | | = £(n) for
some leaf n € D}, and S | slice(l) := {slice(l') € S | I’ was selected by l}. Let

S = (S1,...,8n) be a sequence of s €S such that
— 5 €8S

— foralll<i<n, s;+1 €STs;

—Stis,=0

For every Minimalist derivation tree, there is at least one such S, and for every
choice of 5, sn i= (S, 0) is a slice with |S| = 1.

Proof. The first half of the claim is trivial. As for the second one, if S | s, is
empty, the lexical item [ such that s, := slice(l) has no selector features. But
then it has no licensor features either, because these must precede the category
feature, which is the only way [ has left to enter the derivation. a

With this unsurprising yet important fact established, we finally turn to the
correctness of the procedure, splitting the claim into two lemmas for the sake of
readability. Note that I use w to denote the projection that strips away the state
suffixes and thus turns Lezgs into Lexs again.

Lemma 4. 7(mder(G’)) C RN mder(G)

Proof. Assume towards a contradiction m(mder(G’)) € RNmder(G). Then there
has to be some tree T' € w(mder(G’)) such that T ¢ RNmder(G). But mder(G)
cannot be a proper subset of (mder(G’)), so it has to be the case that mder(G) >
T ¢ R. Thus, when recognizing T, Ag assigns the root of T' some non-final state
q'. Suppose w.l.o.g. that the root node of T' belongs to slice(l) for some lexical
item [ of final category c,. According to our procedure, ¢, is a final category iff c
is a final category of G and ¢ is a final state of Ag. So if T € w(mder(G")), there
has to be some T’ € mder(G) N R such that in both trees the root node is also
the root of slice(l) (otherwise Agr never reached a final state in the slice root of
I, whence [ isn’t of category ¢4, a contradiction). Now since Ag is deterministic,
the only way for it not to reach state ¢ at the slice root of [ in T is if the
state it assigns to the slice root of some lexical item I’ selected by [ differs from
the subscript of the corresponding selector feature of [. But the same reasoning
applies to I’ as well, so that we progress further down the tree until we encounter
a lexical item that selects a lexical item " whose slice is of size 1 (by Lem. 3). So
the automaton must have assigned the slice root of I’ a state different from the
subscript of the category feature of I”. But Ag is bottom-up and deterministic,
wherefore it always assigns the same state to I”. Contradiction. O

implementation of the procedure is still feasible. This follows from the finiteness of
the lexicon and the index of the Nerode partition induced by the automaton.
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Lemma 5. 7(mder(G’)) O RN mder(G)

Proof. Assume once again towards a contradiction 7(mder(G’)) 2 RNmder(G).
Then there has to be some tree T € R N mder(G) such that T' ¢ 7(mder(G’)).
Since the lexicons of G and G’ are identical modulo state-subscripts, the only
option is that Ar and G’ disagree with respect to states, at which point the
reasoning of the previous proof applies unaltered. a

Theorem 2. The class of Minimalist derivation tree languages over X', Feat is
p-closed under intersection with regular tree languages.

Corollary 2. The class of Minimalist derivation tree languages over X, Feat is
p-closed under intersection and relative complement.

Proof. Since every Minimalist derivation tree language is regular, p-closure under
intersection follows immediately from Thm. 2. Given two Minimalist derivation
tree languages L and M, R := L — M is a regular language, so L— M =LNR
is a projection of some Minimalist derivation tree language. ad

Note that p-closure under relative complement does not imply p-closure un-
der complement with respect to the class of Minimalist derivation tree languages
over Y| Feat, as for each grammar over this signature there exists another gram-
mar whose derivation tree language is a proper superset of the former’s. However,
when we restrict our attention to the class of all MG whose lexicon is a subset
of some finite set Lex over X, Feat, there will be one Minimalist derivation tree
language that subsumes all others and p-closure under relative complement im-
plies p-closure under complement as desired (which in turns implies p-closure
under union).

Corollary 3. Let Lex be some finite subset of X* X {::} x Feat*. Then the
class {mder(G) | G an MG with Lexe C Lex} is p-closed under complement
and union.

P-closure also extends to linear tree transductions whose co-domain is a Min-
imalist derivation tree language. This is of immediate relevance to Graf’s tree
transducer model of reference-set computation, because most reference-set con-
straints are conceived of as filters, that is to say, they map each Minimalist
derivation tree language into a subset of itself.

Corollary 4. Given a linear transduction T with some Minimalist derivation
tree language L as its co-domain, it holds for every reqular tree language R that
its ¥mage under T is a projection of some Minimalist derivation tree language.’

Proof. Follows from Thm. 2 and the fact that the range of a linear transduction
applied to a regular tree language is regular. ad

3 My thanks go to an anonymous reviewer for pointing out that the corollary as it was
originally stated was overly restrictive.
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In connection with Graf’s transducer approach, we also observe that the
procedure as it is currently defined may lead to a significant (albeit still linear)
blow-up in the size of the lexicon. The implication for Graf’s work is that a
grammar with reference-set constraints may be notably more succinct than one
without them, even if both define the same tree languages modulo state sub-
scripts. But since it might be the case that the procedure given here can still be
improved upon, this has to remain a conjecture for now.

Conjecture 1. Given a lexicon Lez and n > 0, let Lez™ := {l € Lex | | has

exactly n selector features}. Now if there is no m > k such that Lex(Gm) # 0,
then in the worst case

k
Levcr| = Y (ILea| - 1QI)

=0

4 Minimalist Grammars with Regular Control

P-closure under intersection also opens up new ways of incorporating constraints
into MGs. Constraints have proven difficult to study in MGs, and their effects
on the machinery are somewhat unpredictable; for instance, MGs with the SMC
and the so-called Specifier Island Constraint (SPIC) are weaker than MGs that
feature only the SMC, whereas MGs that lack the SMC yet have the SPIC gener-
ate type-0 languages [3]. But adopting the perspective of model-theoretic syntax
[13], we may view constraints as defining formal languages. Thanks to Thm. 2,
then, MGs can be augmented by any finite number of constraints defining regular
tree languages without increasing their weak generative capacity. In fact, even
the strong generative capacity of MGs is mostly unaffected, as the procedure
outlined above only relies on refining category features, which — in the derived
tree — surface only on the head of the highest phrase.

Definition 7 (MGs with Regular Control). A Minimalist Grammar with
Regular Control (MGR€ ) is a 7-tuple G := (X, Feat, F, Types, Lex, Op, R), where

— X, Feat, F, Types, Lex, and Op are defined as usual,
— and R s a finite set of regular tree languages.

The language generated by G is the set L(G) := {o | (0 - ¢) € closure(Lex, Op),
- € Types, ¢ € F, and {0 - ¢) is the label of the root of some tree T € sder(G)
such that p(T) € mder(G) NNper R}

Theorem 3. MG = MGRC

Given the prominence of constraints in the syntactic literature, it is hardly sur-
prising that there are numerous applications for regular control. The most obvi-
ous one are intervention conditions on movement such as the one illustrated in
(1) below.

(1) a.  Who; did John say that Bill adores ¢;?
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b. ?/* Who, did John doubt whether Bill adores ¢;?

Without further precautions, a MG that derives (la) will also derive (1b) as
movement is restricted only by the feature calculus, not the shape of the phono-
logical strings. A regular language can easily militate against such locality viola-
tions. Recall that the states of an automaton recognizing a Minimalist derivation
tree can be taken to represent the feature components of the string-annotated
derivation trees. In order to block (1b), then, one may proceed as follows. Let p
and ¢ be the states that the standard automaton would assign to whether and Bill
hates t;, respectively (we take these states to literally be sequences of feature se-
quences). Now introduce a new state p®" that the automaton assigns to whether
instead of p such that p** x ¢ x M is undefined only if ¢ contains no sequence
containing a movement licensee features, in which case p** x gx M = px gx M.
It is easy to see that this strategy can be extended to intervention conditions
in general, most of which require the automaton to check the shape of entire
phrases rather than a single word. Two well-known examples are the Complex
NP Constraint, which blocks extraction from a CP that is the complement of
an NP (or rather, DP in contemporary analyses), and the Subject Constraint,
which rules out movement originating from inside a DP in subject position.

(2)  *Who; did John reject the claim that the lobbyists bribed ¢;?

(3) a.  Where, is it likely that John went ¢;7
b. * Where; is that John went t; likely?

A combination of both types of movement constraint is the that-trace effect: in
general, a wh-word can be extracted out of a CP whose complementizer is that,
but not if it is the subject of the clause.

(4) a.  What; did you say that John ate ¢;?
b. * Who; did you say that ¢; ate my burrito?

Here the automaton has to be sensitive to both the nature of the complemen-
tizer and the structural properties of the domain from which the wh-word was
extracted. The sensitivity to that is analogous to the whether-example, while
the distinction between subjects and objects mirrors the domain condition of
the Subject Constraint.

Further examples of linguistic locality constraints that can be captured this
way are the Coordinate Structure Constraint, the Left Branch Condition, and
phases (introduced in [2] and implemented for MGs in [15]). Many of the prin-
ciples formalized in [13] can also be adapted for MGs, although the change from
derived trees to derivation trees will require some slight revisions in certain
cases, in particular binding and control, which rely on a notion of c-command
that might prove tricky to capture on a derivational level.

Through the use of constraints we can also reduce the number of movement
steps in our grammars. In early Minimalism [1], satisfying feature dependencies
between non-adjacent phrases invariably required movement, an assumption in-
herited by MGs. In such a setup, subject-verb agreement, say, is assumed to
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be an effect of the subject moving into the specifier of the TP and checking its
person features. But other instances of agreement, e.g. between determiners or
adjectives on the one hand and nouns on the other, are rather cumbersome to
handle this way. This brought about a major revision of the feature calculus in
order to make feature checking apply a distance in certain cases [2]. As long as
we do not allow unbounded nesting and crossing of the checking paths defined
by this operation, regular constraints can yield the same effect by associating
every lexical item with “pseudo-features” that encode properties not pertinent to
movement. For instance, the Icelandic adjective raudan 'red’, which is masculine,
singular, accusative, and strongly inflected, could be assigned the corresponding
pseudo-features, which in turn also have to be present on the noun the adjective
combines with. A more interesting case is long-distance subject-verb agreement
in English expletive constructions, as the phenomenon is noticeably more diffi-
cult to capture by manual refinement of categories.

(5) a. *There seems to John to be several men in the garden.

b. There seem to John to be several men in the garden.

But the gerrymandering of the feature calculus need not stop here. We may
also employ regular constraints to incorporate a restricted version of pied-piping.
Pied-piping refers to the phenomenon that a constituent containing some element
with a movement licensee feature seems to be stuck to it for the purposes of
movement.

(6)

a. |Which famous linguist|; did Robert write a book [about ¢;]?
b. [About which famous linguist|; did Robert write a book ;7

In the syntactic literature this is often analyzed as the movement licensee feature
of the DP percolating upwards into the PP. Unfortunately, enriching MGs with
such a feature percolation mechanism allows them to generate any recursively
enumerable language [8]. But at least for the example above, only a very limited
kind of feature percolation is required: it is sufficient to allow both about and
which to carry a movement licensee feature as long as we ensure that the variant
of about with such a feature must merge with a DP such that the determiner of
said DP does not carry the same feature, but could in principle (i.e. there is an
entry in the lexicon with the same phonological string and the same category as
the determiner that also carries the relevant feature). It is easy to see that this
constraint can be enforced by regular means.

Dynamic restrictions on the distribution of features also allows us to work
around certain shortcomings of the SMC. The SMC — albeit essential for keeping
Minimalist derivation trees within the confines of regular tree languages — comes
with its fair share of linguistic inadequacies, in particular with respect to wh-
movement. Since English allows for wh-phrases to stay in situ, every wh-phrase
in an MG must come in two variants, one with a wh-licensee feature, and one
without it. But given this duality, nothing prevents superiority violations like
the one in (7b) (for the sake of simplicity, only wh-movement is indicated by
traces).
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(7) a.  Who, t; prefers what?
b. * What; does who prefer?

The ungrammatical (7b) can be derived because who need not carry a wh-licensee
feature, in which case the MG will treat it like any other DP. Consequently,
nothing prevents what from carrying a wh-licensee feature, so the movement
step is licit. Instances of overgeneration like this can be blocked if one takes a
hint from our implementation of pied-piping: the automaton has to verify that
no node along the movement path could potentially carry the same feature. In
(7b) above, this condition is violated because who could be a carrier of the wh-
licensee feature, and so the automaton rejects the derivation tree. Note that a
similar strategy can be used if two identical features have to be distinguished
due to the SMC yet at the same we want to capture specific locality restrictions
they impose on each other (e.g. who being assigned feature why and what feature
whgy in a multiple wh-movement language). Admittedly the notion “node along
the movement path” has to be carefully worked out and may turn out to be
rather complex in grammars with massive remnant movement. Overall, though,
it seems that this approach goes a long way towards an MG implementation
of Relativized Minimality as envisioned in [15], with the added benefit that the
restrictions imposed at the level of derivation trees also carry over to the strictly
more powerful mechanism of MGs with copying [9].

Conclusion

I defined Minimalist derivation tree languages and showed that they are p-closed
under intersection with regular tree languages, intersection, complement, relative
complement, union, and linear tree transductions whose co-domain is a Minimal-
ist derivation tree language. From these closure properties it follows immediately
that enriching MGs with regular control does not increase their weak generative
capacity. The result has numerous linguistic applications, in particular regarding
locality conditions on movement and reference-set constraints [cf. 4, 5].
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