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ABSTRACT

The goal of this project was to construct a graph-
ical simulation of the solar system, intended for
use by the general public. Though several such
simulations exist, none combine intuitive presen-
tation with true physical simulation. This report
outlines the development of the back end of the
simulation. Our goal was to achieve a flexible,
fast and accurate simulation suitable for real-time
graphical display. Additionally, the simulation pro-
vides support for real-time modification of the sim-
ulated system to facilitate a richly interactive user
experience. As part of the development process
we design a tailored force determination algorithm
that offers a significant speed advantage over di-
rect approaches. We also investigate several nu-
merical integration schemes and provide support
for various appealing visualizations of our data.
The resulting program is unique in combining in-
tuitive 3D presentation with a flexible and accu-
rate simulation engine, and we hope it will prove to
be a useful educational tool for promoting deeper
understanding of the behaviour of gravitational
systems.

1. INTRODUCTION

The objective of this project was to produce a
“digital orrery”. Originally an orrery was a device
that illustrated the motion of the planets and their
moons by means of an arrangement of mechanical
gears. Our aim is to create a similar simulation
on a PC — a program that will display the mo-
tion of the solar system in a way that is attractive
and appealing to a casual observer. We hope that
this will prove to be an engaging educational tool

FI1GURE 1.1. A mechanical orrery.

for the exploration of the physics of gravitational
systems.

1.1. Existing Systems. Not surprisingly, there
already exist several programs that deserve the
name “digital orrery”. Many of these are Open
Source. The two most prominent open source pro-
grams in this area are Celestia and ORSA. To ex-
plain how they differ requires a short introduction
to how the simulation engine of a program of this
type can be constructed. There are essentially two
strategies.

One way is to make use of predefined paths for
bodies in the system. This is the approach used
by Celestia. The advantage of this approach is
that it is computationally very cheap. The prob-
lem, however, is that the motion of the objects in
the simulation is essentially hard-coded. It would
not be possible, for example, to add a spacecraft
and have its trajectory determined by the gravita-
tional forces of the planets. While this is a faithful
translation of the mechanical orrery into the digi-
tal domain, it seems somewhat a missed opportu-
nity.

The other approach is to determine the motion
of the bodies by direct numerical integration of
the forces acting upon them. This is the approach
used by ORSA. The advantage of this approach is
that the user can be allowed to modify the system
being simulated.

1.2. Objective. Given the above, where can we
improve on what already exists? The answer lies
in the user interface. Celestia provides a high-
quality 3D display engine, much like high-end com-
puter games. However, its simulation is somewhat
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limited. ORSA, on the other hand, provides a
powerful and flexible simulation, but is geared to-
ward scientific data analysis. Its presentation style
resembles Matlab. As far as we are aware, there is
no program available that provides a 3D game-like
display driven by a numerical-integration based
backend. This is what we set out to develop in
this project.

The result should be useful as an educational
tool. What would happen if the Moon were twice
as massive? If a planet were added or removed
from the solar system? If we orbited a binary star?
Our program should allow the user to engage eas-
ily in this kind of exploration, and have the results
presented immediately and in an appealing way.

2. SIMULATION MODEL

One of the first issues in designing a simulation
is to decide exactly what aspects of the physical
process to include in the model. This section out-
lines the major considerations.

2.1. Newton vs. General Relativity. There
are two major theories of gravity — Newtonian and
General Relativity. General relativity is certainly
a better model, but under the conditions that exist
within the solar system the predictions of the two
theories are nearly indistinguishable. For our pur-
poses the Newtonian theory is an excellent model
of gravity. It is also far less computationally com-
plex than general relativity. We thus constructed
our simulation on a Newtonian framework.

2.2. Tidal Effects. The motion of planetary satel-
lites is significantly affected by tidal interaction
with the planet they orbit. These effects arise be-
cause the bodies are not rigid spheres of uniform
density, as in the Newtonian scheme, so cannot
truly be considered as point masses.

Directly determining tidal effects on orbital mo-
tion is a problem of significant complexity, requir-
ing detailed knowledge of the form and internal
physical properties of the bodies. The author is
not aware of any simulation that currently han-
dles these effects dynamically.

Semi-empirical corrections to the Newtonian field

can be used [2], however these are essentially a fit
to observed data, and need to be developed on a
case-by-case basis.

For a simulation designed to run in real time, it
was considered that the modeling of tidal effects
was too computationally complex to include.
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2.3. Non-Gravitational Effects. Several other
effects, such as course correction by spacecraft and
out-gassing by comets, were considered for inclu-
sion in the simulation. Including these effects would
comprise a periodic adjustment of the bodies ve-
locity vector, and incorporates naturally and eas-
ily into the simulation. However, due to limited
available project time, these effects remain to be
coded.

3. FORCE ALGORITHM

The primary task of the backend is to calculate
updated positions for the bodies in the simulation
as the frontend requests them. Performing the cal-
culation is a two-step process. First, we must de-
termine the acceleration of each particle, by calcu-
lating the gravitational force acting upon it. This
is the job of the force algorithm, discussed in this
section. Then, knowing the acceleration, we must
determine the positions and velocities of the par-
ticles at the next timestep. This is the numerical
integration step, discussed in Section 4.

The force algorithm performs the first stage of
the Advance () process - determining the acceler-
ation of the particles at the current timestep. For
the N-Body case, the acceleration of the i*"particle

is given by:

N

i=>y_
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Some of our numerical integration procedures

also require the first derivative of acceleration, known

as the jerk. This could be estimated from the dif-

ference in acceleration between timesteps, but it

is more accurate to differentiate the above expres-
sion to get the explicit formula below:
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We will now consider various algorithms for de-
termining the acceleration and jerk of particles.

3.1. Direct Summation. The simplest force eval-
uation algorithm is to directly encode the above
summation. We can eliminate a little work by not-
ing that \ﬁ;j|3 = |FJ7\3, and hence cut the number
of calculations in half. However, we must still eval-
uate the force expression for every particle pair.
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Thus the algorithm is unavoidably O(n?). Evalu-
ating the force expression is costly, since for ever
particle pair we must calculate|r;; |3, or in compo-

3
nents (x2 + %+ 2’2) ? . This involves an expensive
square root calculation and as n grows it comes to
dominate the running time of the entire program.

3.1.1. Tweaks to Direct Summation. We can tweak
the direct summation process slightly to improve
performance. We divide the bodies in the sim-
ulation into two groups - interacting and non-
interacting. Non-interacting bodies are test par-
ticles that feel the pull of the gravitational field,
but do not generate their own field. . Consider, for
example, a simulation containing the planets and
a spacecraft. It would be ridiculous to calculate
the pull of the spacecraft on the planets. Force
calculations become O(n?), where n; is the num-
ber of interacting bodies only. With a carefully
chosen threshold, the accuracy impact is slight.

3.2. Hierarchical Force Determination. The
speed of the O(n?) algorithm is quite acceptable
if our simulation contains only a small number of
bodies. However, as our simulation grows it be-
comes the limiting factor on backend speed. A
simulation containing most major solar system ob-
ject requires 35 interacting particles. If our simu-
lation is to handle this number of particles and still
run smoothly on a typical desktop PC, we require
a faster force determination algorithm.

For exact determination of forces, it is hard
to do better than O(n?). However, if we permit
a small degree of approximation, there are large
gains to be made.

3.2.1. Strategies. Inthe O(n?) algorithm, often the
strength of many of the interactions computed will
be completely negligible. For example, the motion
of the Earth is dominated by the influence of 3 or
4 other objects. However, we calculate the effect
of all 35. Most of these other interactions are com-
paratively minuscule.

A natural strategy would be to discard or ap-
proximate many of these minor influences.
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F1GURE 3.1. A remote group of
particles can be replaced by a sin-
gle particle.

Consider the effect on a particle of a remote,
compact group of bodies. Instead of calculating
the pull of each of these particles individually, we
could replace the group by a single aggregate par-
ticle. What we mean by remote and compact will
depend on how much error we are willing to tol-
erate in our results. In many cases the accuracy
penalty involved can be very small.
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F1cURE 3.2. Group-Group inter-
action approximations

The above reasoning can be extended to inter-
actions between groups. Say we have two groups,
which are both compact and mutually remote. In-
stead of computing the pull of the remote group
on each of the local particles, we instead compute
the interaction between the two barycentres. This
force can then be applied to all the particles in
the group. Interactions within the local group are
computed directly.

Since a group can be internally subdivided into
further groups, this suggests a divide-and-conquer
approach to computing the gravitational interac-
tions. These techniques are well-developed in ex-
isting N-body simulators.

3.2.2. Grouping Algorithm. The approach outlined
relies on identifying groups of particles within our
simulation. Several properties could form the ba-
sis of a grouping algorithm: physical separation,
velocity, local density, gravitational attraction, etc.
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FIGURE 3.3. A greatest attrac-
tor tree on an example system.
The graph is not connected due
to the presence of binaries (e.g
Pluto/Charon and Neptune/Triton
within the solar system).

One approach would be to examine these prop-
erties and group objects which are in some sense
close. However, this leads to the problem of thresh-
olding — to group things which are close we then
need to define some type of cutoff where close be-
comes far.

We decided against pursuing this route, and
instead tried to exploit the natural hierarchical
structure of planetary systems. Consider the graph
resulting from linking each body to that body which
attracts it most strongly (Fig. 3.3). Many natu-
ral grouping show up in this graph. For exam-
ple, moons are grouped with their planets, etc.
However, the graph contains cycles and is not con-
nected. We would like to generate a tree structure
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FIGURE 3.4. A modified greatest-
attractor tree. This structure suc-

cessfully groups our system.
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FIGURE 3.5. Our modified group-
ings tree. PseudoBodies are shown

in white. Each node in the tree is
the barycentre of the nodes below

that point.

to which we can apply a recursive force-determination

scheme along the lines outlined earlier, so these
features need to be eliminated from the graph.

We can obtain a much more useful graph if we
change the construction criteria so that each body
links to that body with greater mass that attracts
it most strongly (See Fig. 3.4). Given that there
are no two bodies of the same mass (a physically
reasonable assumption) it is simple to show that
this graph cannot contain cycles and has a unique
root. This tree gives us the kind of groupings we
need for our force algorithm.

3.2.3. PseudoBodies and Force Estimation. For the
approximation scheme, we need to know the mass,
position and velocity of the barycentres of every
group. Rather than calculate these each time, we
insert new pseudobodies into our tree to record this
information (See Fig.3.5 ).

Pseudobodies do not refer to any physical body,
and are invisible to the front end. They simply
record the barycentre information.

Once this tree has been constructed the oper-
ation of the algorithm is basically as outlines in
Section 3.2.1, and is illustrated in Fig. 3.6. Star-
ing on the level below the root, we calculate the
interaction of all the bodies on that level using the
O(n?) algorithm. We then examine the bodies on
that level. If a body has no descendants, its ac-
celeration has been completely determined and we
need to do nothing more. Otherwise, we “trickle
down” its acceleration to the bodies directly below
it, then recursively call the evaluation function on
that level.
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FIGURE 3.6. Interacting groups
in the treeforce algorithm
(shown in green).

3.2.4. Performance and Review. With only 35 bod-
ies in the system we were doubtful if our algorithm

would offer much benefit over direct summation.

However, it actually resulted in a x2.5 speedup,

with very modest accuracy penalty.

Our scheme appears to be successful in prag-
matic terms, though asymptotically it’s still O(n?).
This is because, in the worst case, the grouping al-
gorithm could determine that all the bodies in the
system formed a single interacting group. With no
partitioning of the system, we have a flat tree and
no performance benefit. Pragmatically, however,
the algorithm should offer performance gains on
any system with a hierarchical structure.

That said, our grouping algorithm could be more
aggressive. For example, within the solar system
the Sun’s attraction is so dominant that many ob-
jects have it as their greatest attractor. As a result
our tree is not very deep, with many objects on the
first level. Tweaking the algorithm to further par-
tition large blocks like this offers scope for further
performance enhancements.

A final word — while this algorithm was de-
signed from first principles, a literature review un-
surprisingly revealed that many similar algorithms
exist [3, 4]. In particular, the force approximation
scheme is almost identical to that described by
Appel [5], which was later developed into the Fast
Multipole Method.

We have not come across a grouping algorithm
exactly like our own, though Hut and Eisenstein’s
HOP algorithm [6] bears many similarities.

4. NUMERICAL INTEGRATORS

4.1. Introduction. The second step in advanc-
ing the simulation is the numerical integration step.
Knowing the acceleration of bodies at ¢, we need
to integrate to get their position and velocity at
t + dt. There exist a large number of procedures
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for doing this. Even for the specific case of N-
body simulations, which method to use is far from
obvious.

In the absence of any clear favourite method, it
was decided that we would attempt to implement
and compare several methods. With a little care
in the design of the program structure, the nature
of the underlying numerical integration procedure
can be changed without affecting the interface to
front end. The change is also largely transparent
to most of the backend methods.

4.2. Leapfrog. A very simple and effective method
is the Leapfrog or Verlet method [10, 12]. The
update-equations appear very similar to the basic
Simple Euler method:

s1 = So Jrv%(;t
vs = v1 + a10t
2 2

Though it is not obvious for the equations, leapfrog
is a second-order scheme, which exhibits good con-
servation of energy and angular momentum. The
method tends to perform especially well on orbits
which are near-periodic, as in the solar system,
due to the time symmetry of the scheme.

4.3. Time Symmetry. Some integrators have the
property of time-symmetry. For a full discussion
of time symmetric integrators and their properties,
see [10, 11, 8]. Informally, if a time symmetric in-
tegrator is run in the forward time direction, and
then time is reversed, the integrator will retrace its
steps. Errors are made symmetrically, so that, ex-
cept for the effects of rounding errors, the particle
will return to its starting point.

Time symmetry is a basic property of the physi-
cal laws we are simulating. Integrators that mirror
this property tend to have desirable characteris-
tics. In particular, they tend to exhibit very good
energy conservation. To understand why this oc-
curs, consider a particle in a circular orbit . Since
the orbit is symmetric, the forces experienced by
the particle in the second half of its orbit are equal
and opposite to those experienced during the first
half. So travelling the second half of the orbit
is essentially the same as travelling the first half
of the orbit in the time-reverse direction. Time-
symmetry means the errors made during the sec-
ond half cancel with those made during the first
half. As a result, errors are periodic, and do not
accumulate between orbits. This can be clearly
seen in Fig. 4.1
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FIGURE 4.1. Energy profile for Sim-
ple Euler and Leapfrog for a particle in
a circular orbit. The vertical scale of
the Leapfrog error has been magnified
by 107. Observe that the energy error

for leapfrog is periodic.

The good performance characteristics of this
class of integrators tends to be exaggerated by or-
bits which are exactly symmetric, such as our test
case. The solar system, being composed of many
near-periodic orbits, is also particularly suited to
integration with time-symmetric schemes. How-
ever, even in more general cases they perform very
well. The transient energy error tends to manifest
itself, for a periodic orbit, as a small linear drift in
the time of pericentre passage — for our purposes
a relatively benign type of error.
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We can iterate the Evaluator-Corrector stage
for higher accuracy. However, each iteration re-
quires a force evaluation, and thus is expensive.
Generally, when force evaluations are expensive,
the single-iteration PEC scheme was found to give
the best trade-off, though P(EC)? is preferable
in situations where we want high accuracy with a
small number of bodies.

With energy errors on the order of 1079 over
100 years of simulated time, it was decided that
the Leapfrog and Hermite integrators more than
met the performance goals set out in our spec,
and were chosen as the integrators for the pro-
gram. Both implemented methods are available
in the final program, and the existing program
structures should support the implementation of
further schemes.

5. FURTHER INTEGRATOR ISSUES

5.1. Variable and Individual Timesteps. There
are performance gains to be made by moving be-
yond a single fixed simulation timestep and al-
lowing variable or individual timesteps. However,
naively implemented, a variable timestep scheme
will destroy the accuracy of an integrator that de-
pends upon time symmetry. Recently methods
have been developed that allow time-symmetry to
be restored in the variable-timestep case [10, 11].
These scheme remains to be implemented in our
simulation. Also, save for comets, orbits within
the solar system are only moderately eccentric, so
variable timesteps are not critically important.

4.4. Hermite Predictor-Corrector Scheme. Her-

mite scheme is a fourth-order predictor-corrector
scheme [7, 9, 12]. Like the Leapfrog scheme, it
is also time symmetric. The update equate equa-
tions are as follows:

The predictor step simply a truncated Taylor
series:

5t)? ot)3
Spred280+vo5t+ao( ) +j0( )
2 6
5t)?
Upred = agdt + .70( 2)

The force algorithm is now called to determine
a and j at spreq.This is known as the evaluator
step. Finally we apply the corrector step:

5t)?
12
(6t)?
12

ot ) .
v1 =V + 5 (CLO + apred) + (.70 - .]p'r‘ed)

ot
s1 =580+ = (vo +v1) +

2 (ao - apred)

5.2. Time Control and the Front End. One
issue that proved tricky to resolve was the inter-
action of the backend and the frontend regarding
time control. The frontend calls Advance(T) once
per frame to update the position of bodies. The
problem is that the frame-rate of the display is de-
pendant upon the number of bodies in the field of
view. If the front end called Advance(T) with a
constant T per frame, then bodies would appear
to move at varying rates depending on the num-
ber of bodies on-screen, even though their speed
in the underlying simulation remains the same.
This suggests that the frontend should vary the
T per frame to maintain a fixed ratio between sim-
ulated time and real time. However, this presents
problems too. As explained in Section 5.1, varying
the timestep interferes with time-symmetry and
destroys the accuracy of the simulation. So we
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FIGURE 6.1. Orbit lines.

cannot link T directly to the integrator timestep
ot.

Our saving grace is that the backend runs con-
siderably faster than the frontend — generally one
or two orders of magnitude faster. The solution
we implemented was to have an internal timestep
0t, perhaps 10 to 100 times smaller than the typ-
ical T per frame. Then, when the front end re-
quests an advance of T, this actually causes the
backend to take T div &t steps (each of length
0t). Since 0t < T, this is almost equal to the ad-
vance requested. This allows us to maintain an
almost constant ratio between real time and sim-
ulated time, while allowing the backend to retain
control over its own timestep.

6. ORBIT VISUALIZATION

Another task of the backend is to support or-
bit visualization. To do this we determine an an-
alytic equation for the orbit of the body, which
allows us to plot an orbit line as in Fig. 6.1. In an
N-body situation this will not be possible in gen-
eral, since only 2-body problems are analytically
solvable. However, in cases where the force from
one body dominates, we can approximate our N-
body problem by a collection of 2-body problems,
which are then solvable analytically. This works
well within the solar system — it is, after all, why
Kepler’s Laws are successful. For more complex
situations where no good 2-body approximation
exists (as in Fig. 6.2), we fall back upon plotting
a trail of where the body has been recently.

7. EPHEMERIDES

The simulation takes initial positions from the

standard JPL DE406 ephemeris published by NASA.

However, the JPL ephemeris contains no data for
the natural satellites of the planets. While this
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FIGURE 6.2. Some situations, such
as this figure-of-eight orbit, cannot be
well-approximated as a collection of
two-body problems. In this situation,
orbit lines are not drawn, and we revert

to drawing trails only.

data is available from other sources, it exits in
a variety of different file formats and is difficult
to access. Currently initial position data for the
natural satellites is available in our program for a
limited number of dates only.

8. CONCLUSIONS AND EVALUATION

~ Digital Orrery - FPS: 27.777777

FIGURE 8.1. A screenshot of the
final program.

8.1. Review. Development so far has provided
the core functionality of our digital orrery. A flex-
ible simulation engine is now complete, as is the
rendering engine and the basics of the user inter-
face. The final simulation is fast, flexible and ac-
curate, and provides support for some interesting
visualizations. We also believe that it is unique in
offering the user an appealing graphical front end
to a truly flexible underlying simulation.

8.2. Further Developments. While we have so
far achieved a solid core of functionality, there is
still some way to go in providing an easy to use
educational tool. In particular, work remains to be
done in developing the user interface. By nature
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this project is very open ended, and there remains
plenty of scope for features to be added. Possible
features for inclusion in future development could
include visualization of the gravitational field and
eclipse/conjunction prediction. Also, as noted in
the body of the report, there are several avenues
open for improving the core force algorithm and
the integration schemes.
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