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Abstract. Steady-state tunneling and plane-strain delamination of an H-shape crack are examined for elastic,
isotropic multi-layers. Both tunneling and delamination are analysed by employing linear elastic fracture mech-
anics within a 2D finite element framework. Failure maps are produced to reveal the sensitivity of cracking path
to the relative toughness of layer and interface, and to the stiffness mismatch of layers. Closed-form expressions
are derived for the critical stress level for steady-state plane-strain delamination. By means of a comparison with
experimental results taken from the literature, it is demonstrated that these expressions serve as useful design
criteria for elastic multilayers.
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1. Introduction

The fatigue and fracture behaviour of fibre-metal laminates and fibre-reinforced ceramic-
matrix composites is of current technological interest because of the increasing number of
applications enjoyed by these materials in aerospace engineering, transport industry and gen-
eral engineering. A typical laminate structure is an alternating stack of aluminium alloy sheets
and fibre-reinforced epoxy layers. Laminates reinforced by aramid and glass fibres are com-
mercially known as ARALL and GLARE, respectively, and have been extensively tested over
the past 15 years (Marissen, 1988; Vermeeren, 1995; Vogelesang et al., 1995; Vlot et al., 1999;
Takamatsu et al., 1999; de Vries et al., 1999; de Vries, 2001; Vlot and Gunnink, 2001). It
has been found experimentally that these laminates are fatigue-resistant since the fibre-epoxy
layers arrest the transverse growth of a mode I crack in the metal layer, see Figure 1. Instead,
the crack tunnels as shown.

In order to activate the mechanism depicted in Figure 1, it is essential that the initial mode I
crack within the mid-layer does not penetrate the fibre layer when it reaches the interface, but
rather kinks along the interface to give interfacial delamination. He and Hutchinson (1989)
have developed criteria for the possible kinking of a mode I crack at a brittle interface between
dissimilar elastic solids. They argued that the competition between delamination and crack
penetration is governed by the ratio of energy release rate for crack deflection into the delamin-
ation plane, G4, and the energy release rate for continued mode I crack penetration into the
fibre/epoxy layer, G;,. Upon denoting the toughness for (mixed-mode) delamination as G,
and the toughness for mode I crack penetration in the fibre/epoxy layer as G, delamination
is predicted when
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Figure 1. H-shape crack tunneling in a fibre-metal laminate.
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Conversely, the mode I crack penetrates the fibre/epoxy layer without kinking when the in-
equality sign in Equation (1) is reversed. Thus, when delamination precedes penetration, the
Griffith fracture criterion is G; = G4, where the subscript ¢ denotes ‘critical’; alternatively,
when crack penetration of the interface precedes delamination the Griffith fracture criterion is
Grp = Gppe-

Over the last two decades, the mechanics of crack branching at an interface between two
dissimilar materials has been studied for various geometries. An extensive overview of studies
on interface delamination can be found in Hutchinson and Suo (1992). For the specific case
of a layer sandwiched between two substrates, mode I cracking in the layer combined with
symmetric delamination along the interfaces with the substrates leads to an H-shape crack
pattern, as sketched in Figure 1. Dollar and Steif (1991a) have studied the mechanics of an H-
shape crack in a homogeneous, isotropic, infinite medium subjected to a remote tensile stress,
and Lu (1996) has extended this analysis by accounting for the effect of residual stress caused
by a thermal expansion mismatch. Chan et al. (1993) investigated an H-shape crack in an in-
finite homogeneous medium by including the influence of plastic yielding at the delamination
planes. The growth of a periodic array of identical H-shape cracks in an infinite homogeneous
medium, with delamination obeying a Coulomb friction law, has been addressed by Dollar
and Steif (1991b).

The current study considers possible crack propagation paths for alternating layers of two
dissimilar but isotropic elastic, brittle solids, designated as materials ‘1’ and ‘2’ in Figure 2.
The initiation/nucleation phase of cracking is neglected, and it is assumed that the crack
has grown from a large pre-existing flaw in the mid-layer (material 1). The competition is
addressed for: (i) tunneling of a mode I crack in the mid-layer with delamination absent (mech-
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Figure 2. Three possible failure mechanisms for a laminate of two dissimilar, isotropic materials. Mechanism 1:
Tunneling of a mode I crack without delamination. Mechanism 2: Tunneling of an H-shape crack with constant
delamination length. Mechanism 3: Unstable delamination growth in all directions.

anism 1), (i) tunneling of an H-shape crack with constant delamination length (mechanism 2),
and (iii) unstable delamination in all directions (mechanism 3). Failure mechanism maps
are constructed to reveal the sensitivity of the operative cracking mechanism to the relative
toughness of layer and interface, and to the stiffness mismatch of the layers. Additionally, the
dependence of fracture strength upon crack location and laminate thickness are explored.

In Cox and Marshall (1996), three failure mechanisms analogous to those in Figure 2
were derived for a mode I transverse ply crack in a laminated ceramic composite. Instead of
considering delamination, they assumed that the transverse ply crack penetrates the adjacent
fibre layer. In the present study, it is assumed throughout that the penetration toughness G, of
the layers adjacent to the H-shape crack is sufficiently high for the crack not to penetrate them
(i.e. Equation (1) is assumed to hold); this is commonly the case for the laminates ARALL
and GLARE (Marissen, 1988; de Vries, 2001; Vlot and Gunnink, 2001). The assumption
of elastic isotropy may be an acceptable simplification for multi-directional fibrous laminates
when the elastic mismatch between fibres and matrix is moderate. The significance of material
anisotropy upon the cracking pattern must await a later study.

Both plane-strain delamination of an H-shape crack and steady state tunneling of an H-
shape crack are investigated herein by 2D finite element analyses. Although tunneling is a 3D
phenomenon, the remote stress for steady-state tunneling can be computed from a plane-strain
elasticity solution for an H-shape crack: the difference in strain energy upstream and down-
stream of the tunneling crack front is equated to the delamination work and, for simplicity, the
delamination toughness G . is taken to be independent of the mode-mix (Hutchinson and Suo,
1992; Beuth, 1992; Ho and Suo, 1993; Cox and Marshall, 1996; Fleck and Zhao, 2000). This
assumption does not introduce large errors: in the present study for all configurations analysed
it is found that the mode-mix attains a steady-state value at relatively small delamination
lengths.
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Figure 3. Plane-strain cracking. (a) Delamination along a straight interface between two dissimilar, isotropic
materials. The mode-mix of the delamination is indicated by the angle W. (b) H-shape crack as a result of a
uniform remote strain €j,f.

2. Review of delamination at a bi-material interface

Consider a plane-strain delamination crack along a planar interface between two isotropic
but dissimilar materials, as sketched in Figure 3a. The elastic mismatch of the two solids is
commonly represented by the Dundurs’ parameters « and § (Dundurs, 1969),

oy E - E, 21(1—21)2)/#2—(1—21)1)/,%1
E +E; 2 (I=v)/pua+ A —=v)/

where the subscripts 1 and 2 refer to the solids above and below the interface, respectively, and
E is the Young’s modulus, v is the Poisson’s ratio and u = E/(2(1+v)) is the shear modulus.
The overbar on the Young’s modulus denotes the plane-strain value, E = E/(1 — v?). The
parameter « is positive (negative) when material 1 is more stiff (compliant) than material 2.
In the limiting case of a rigid upper layer 1, ¢ attains the value + 1, while @ = —1 denotes a
rigid lower layer. When the elastic properties of materials 1 and 2 are identical, the parameters
o and S both equal zero, and both o and 8 change sign when the solids above and below the
interface are switched.

Generally, the singular stress field at the tip of an interfacial crack is characterised by a
complex stress intensity factor, K = K| + iK,, where i = v/—1, and K, and K, are the real
and imaginary parts of the stress intensity factor, respectively. The normal stress component
oy, and shear stress component o, at a distance r directly ahead of the crack tip are given
asymptotically by (Hutchinson et al., 1987; Rice, 1988)

@)
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where ¢ = ¢/*!"" = cos(eInr) + i sin(e Inr). The parameter ¢ is the oscillatory index, and
is a function of the Dundur’s parameter 8 according to
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For homogeneous solids and for incompressible bi-materials (i.e. v; = v, = 0.5), the para-
meters B and & vanish, and the oscillatory term ¢ of Equation (3) becomes unity. Under these
circumstances K; and K, represent the classical mode I and mode II stress intensity factors,
and Equation (3) simplifies to o,, = K; (2rr)~Y? and oy = Ks Qar)~1/2.

The oscillatory behaviour introduces a complication to the interpretation of the mode-mix
at the delamination tip, which for a crack in a homogeneous solid is defined by tan(y) =
K>/K; = o0,,(r)/oy,(r) immediately ahead of the crack tip. Rice (1988) extended the clas-
sical definition of the mode-mix for the case of an interfacial crack by introducing a reference
length [ such that

Oxy <r = i) B Im(Kjis)
Oyy <r = i) B Re(KI®)

tan(y) = &)

Thus, the mode-mix is defined by the ratio of shear to normal traction on the crack plane
immediately ahead of the crack tip, but since this ratio varies with distance r from the crack
tip, it is necessary to evaluate this ratio at an arbitrary (but specified) reference length [ ahead
of the crack tip. Fortunately, the particular value taken for [ has only a small effect upon
the value of the phase angle y for typical values of ¢ (Rice, 1988). In the current study the
reference length is set equal to the mode I crack semi-width, [ = a (the reader can relate this
choice to a different choice by a simple transformation, as discussed in Rice, 1988). It is noted
that Equation (5) reduces to the classical definition for the mode-mix, tan(y) = K,/K;, when
B=¢e=0.

The energy release rate per unit crack advance of the interfacial delamination is (Hutchin-
son and Suo, 1992)

2
Gy = : Eﬁ (KT + K3), (6)

*

where E, = 2(E N Ly Ez_ "~1. An alternative expression for the energy release rate can be ob-
tained by substituting 1 — 82 = 1/ cosh?(;r¢) into Equation (6), as noted by Hutchinson et al.
(1987) and Rice (1988). As outlined in the introduction, interfacial delamination occurs when
the energy release rate, Equation (6), equals the delamination toughness at the appropriate
mode-mix,

Ga = Gae(y (D). 7

3. Steady-state tunneling and plane-strain delamination

Consider the case of an H-shape crack tunneling within a symmetric stack of 3 layers as
shown in Figure 3b; it is assumed that the tunneling crack has nucleated from a flaw within
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material 1 and is driven by a remote load, characterised by a (uniform) tensile strain &;,¢, where
the subscript ‘inf” denotes ‘infinity’. The strain level may either represent static or fatigue
loading. The Poisson ratios of the materials are assumed to be equal and representative of
many fibre-reinforced laminates, v; = v, = 0.3. The stiffness mismatch is expressed in terms
of the ratio of plane-strain stiffness moduli, E,/E), instead of the Dundur’s parameters, o,
and B. As shown by Equation (2), a direct connection exists between (¢, 8) and the stiffness
ratio E2/E1, for vy = v, = 0.3. As E2/E1 ranges from 0.1 through 1.0 to 10.0, o ranges
from 0.81818 through 0 to —0.81818, and B ranges from 0.2338 through 0 to —0.2338 (i.e.
B = 0.2857a). Although tunneling is intrinsically a three-dimensional process, the remote
stress for steady-state tunneling is estimated by an energy balance of the upstream uncracked
state and the downstream cracked state. The downstream H-shape crack comprises a mode I
crack of width 2a within material 1, and four delaminations each of length /, as depicted in
Figure 3b.

During steady-state tunneling the tunneling front has a constant shape, and the energy
release rate is independent of the tunneling length (and of the geometry of the initial flaw
from which the tunneling crack initiated). Then, the energy released per unit tunneling depth
can be computed as the difference in elastic strain energy AW upstream and downstream of
the tunneling front (Hutchinson and Suo, 1992; Beuth, 1992; Ho and Suo, 1993). This energy
drop equals the difference in strain energy for an uncracked plane-strain solid and for a cracked
plane-strain solid. For the H-shape crack of Figure 3b the energy drop equals

1 —
AW = Eoinf,ISZa, (8)

where ojyf 1 (= E\&inp) equals the remote tensile stress in material 1 and 5 equals the average
displacement over the mode I crack faces, according to

a

S(x) dx. &)

5
2a

By dimensional considerations, the average displacement § may be written in the form
_ | E
5=kl (—, é), (10)
E 1 a E 1

where the dimensionless function f depends upon the aspect ratio of the H-shape crack //a
and the stiffness ratio £,/ E;. Upon inserting Equation (10) into Equation (8), the energy drop
per unit crack depth is

ol | E
AW:L“aZf( 2) (11)
E Cl E;

This energy drop can be related to the energy release rate for an H-shape tunneling crack
Gyun, and to the energy release rate for plane-strain delamination G, for each of the four
delaminations of an H-shape crack, as follows.

3.1. STEADY-STATE TUNNELING BY AN H-SHAPE CRACK

The average energy release rate for unit advance of a tunneling H-shape crack, G, is directly
related to the energy drop AW by (Hutchinson and Suo, 1992; Beuth, 1992; Ho and Suo,
1993)
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Qa4+ 4Gy, = AW, (12)

Also, the energy drop AW equals the energy required to form a mode I crack of length 2a in
the central material 1 and four delaminations, each of length / . Upon designating the mode I
toughness of material 1 as G/, and the delamination toughness at the appropriate mode-mix
as Gg.(¥ (i )), the energy balance reads

AW = Qa+4)Guyn =2a G+ 4 Gy, (13)

The remote stress for steady-state tunneling, oy, = Oinf,1, follows from Equations (13) and (11)
as

E\Qa G+ 4Gy
mn:\/ 12a G, d)‘ (14)

a? f(l/a, E2/E)

3.2. PLANE-STRAIN DELAMINATION

For the H-shape crack of Figure 3b the plane-strain energy release rate per unit advance of
each delamination is

_ 1AW
4 9
where the factor 4 reflects the number of delamination tips of the H-shape crack. Insertion of
Equation (11) into Equation (15) yields

Gy (15)

) _
Tl (! Ez)

G, = ——a - =1, 16

¢ 4F 1 f (a E 1 ( )

where f’ represents the partial derivative f' = 9f/dl. The remote stress for plane-strain

delamination, o; = oy, is obtained by substituting Equation (16) into Equation (7), and
rearranging the expression to the form

\/ 4E| Gge
6, — de__ (17)
a f'(l/a, E2/Ey)

4. Cracking in a 5/4 lay-up

Plane-strain delamination and steady-state tunneling are addressed for two different geomet-
ries, namely the 2/1 lay-up and the 5/4 lay-up. The notation ‘n/(n — 1) lay-up’ refers to
a laminate of n layers of material 1 alternately stacked with n — 1 layers of material 2.
Each layer of material 1 is of thickness 2a while the layers of material 2 have a thickness
of 5a/3. This thickness ratio is typical of that used for the fibre-metal laminates GLARE and
ARALL, where aluminium sheets of thickness 0.2 to 0.4 mm are bonded by somewhat thinner
fibre/epoxy layers (Marissen, 1988; Vermeeren, 1995; Takamatsu et al., 2001). Two cracked
configurations of the 5/4 lay-up are investigated: an internal H-shape crack in the centre layer
of the laminate, see Figure 4a, and a doubly deflected crack in the two outer layers of the
laminate, see Figure 4b. The doubly deflected cracks in the two outer layers taken together
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Figure 4. Cracking in a 5/4 lay-up. (a) H-shape crack in the centre layer of the laminate. (b) Doubly deflected
crack in the two outer layers of the laminate.

resemble an H-shape crack of width 4a. The results for the 5/4 lay-up are given first, and the
results for the 2/1 lay-up are presented in a subsequent section.

4.1. MODELLING ASPECTS

The configurations in Figure 4 have been modelled with the aid of the finite element program
ABAQUS Standard! . The degree of symmetry is such that only one quadrant is meshed. Fixed
and roller supports impose the required symmetry and prevent rigid body motion. The strip
is taken to be sufficiently long for end effects to be negligible: the top and bottom faces
of the 5/4 lay-up are at a distance 200a from the delamination tip. H-shape cracks with
delamination lengths in the range 0.015 < //a < 40 have been considered, using 7 different
element meshes. Mesh refinement studies have been performed to check the convergence of
the solution. All finite element configurations comprise 16 000 to 20 000 plane-strain 8-node
iso-parametric elements, with 3 x 3 Gauss quadrature. At the delamination tip, the square
root singularity of the stress field is simulated by moving the mid-side nodes on the crack
flanks to the 1/4 point nearest to the crack tip. Additionally, for each crack tip element, three
neighbouring nodes are collapsed to the crack tip.

A calculation of the load for steady-state tunneling and for plane-strain delamination of an
H-shape crack requires the computation of:
(i) the displacements of the nodes situated on the mode I crack faces,
(ii) the path-independent J-integral at the delamination tip, as defined by (Rice, 1968)?

IHibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, U.S.A.
2The J -integral, Equation (18), is path-independent when the crack is straight, traction free, with the material
interface parallel to the crack.
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Ju
J :/[Wnl —G,-jn,-&:| ds, (18)
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(ii1) the complex stress intensity factor at the delamination tip, K = K| +1i K».

In Equation (18), S is any path that begins at the bottom crack face and ends at the top
crack face, W is the elastic strain energy, n; is the unit outward normal to the path S, o;; is
the stress and u; is the displacement. For a linear elastic material, the J-integral equals the
energy release rate per unit crack advance, G; = J, (Rice, 1968). The J-integral is computed
as an embedded routine within ABAQUS by means of an area integral method that uses the
virtual crack extension technique (Parks, 1974; Li et al., 1985). For each of the finite element
models considered in the present study, the J-integral has been computed for 18 different
annular rings around the crack tip: with the exception of the first annulus around the crack tip
the computed integrals are in very good agreement (i.e. a scatter of less than 1% in value).

The J-integral provides the energy release rate for plane-strain delamination, G; = J, and
thereby the derivative f’ via Equation (16). The remote stress for plane-strain delamination
follows immediately from Equation (17). The complex stress intensity factor K = K +i K> is
required for determining the mode-mix w(f ), as defined by Equation (5). ABAQUS computes
the real and imaginary components of the stress intensity factor, K; and K,, by means of an
interaction integral method. In this method, the components K and K, are extracted from the
energy release rate, Equation (6), by combining the solution of the actual crack tip field with
that of an auxiliary field (Matos et al., 1989).

The computation of the displacements of the mode I crack faces gives the average crack
opening displacement, Equation (9), and thereby the drop in strain energy, Equation (8) and its
non-dimensional form f via Equation (11). As a next step, the energy release rate for tunnel-
ing, Gy 1s computed from Equation (12), and the tunneling stress by means of Equation (14).

4.2. H-SHAPE CRACK IN CENTRE LAYER OF LAMINATE

4.2.1. Mode-mix and energy release rate

For the configuration in Figure 4a, the mode-mix ¥ = atan(Im(K a'®)/Re(K a'*)) has been
computed as a function of the delamination length, //a, and the results are presented in Fig-
ure 5a for selected values of stiffness mismatch, E, / E,, in the range 0.1 to 10.0. It is seen
that the mode-mix at short crack lengths decreases from 72° to 50° with increasing stiffness
ratio. For all stiffness ratios considered the mode-mix increases to 90° with increasing //a.
Accordingly, the delamination tip closes (Re(K a'®) = 0) and becomes a pure mode II crack.
Because the influence of mode I contact has been neglected in the analysis (i.e. crack face
overlap is allowed to occur), the current analysis is, strictly speaking, not applicable when
delamination is in pure mode II. However, Dollar and Steif (1991a) have demonstrated that
for an H-shape crack in a homogeneous, infinite medium, the mode II stress intensity factor
for a frictionless crack with and without crack face overlap only show minor differences. In
other studies of mixed mode delamination this feature was assumed to hold on the basis of
heuristic reasoning (Liechti and Chai, 1992; Hutchinson and Lu, 1995; Lu, 1996). Thus, it
is expected that the computed energy release rates are not greatly in error when the effect of
crack surface contact is neglected.

Figure 5b depicts the energy release rate for plane-strain delamination G, versus delamin-
ation length, //a. Note that a zero offset in the scale for [ /a has been used in order to clarify
the asymptotic behaviour as //a — 0. At short delamination lengths, //a < 1, the energy
release rate is sensitive to /. For the asymptotic case [/a — 0, the energy release rate tends
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Figure 5. Cracking in the centre layer of the 5/4 lay-up, see Figure 4a. (a) Mode-mixity,
¥ =atan(Im(K a'€)/Re(K a'€)), versus delamination length [/a. (b) Energy release rate for plane-strain
delamination G4 versus delamination length //a.

to zero when E, / E, > 1 and becomes unbounded when E, / E, < 1, as discussed by He and
Hutchinson (1989), Ye et al. (1992), and Lu (1996). For a homogeneous laminate, E, / E, =1,
the plane-strain energy release rate remains finite when //a — 0, and the ¥ (I /a) and G4(I/a)
curves are in good agreement with those obtained by Lu (1996) for an H-shape crack in an
infinite medium.

When [/a > 1, the energy release rate slowly asymptotes to a steady-state value with
increasing /. The depicted steady-state values, G4 ;s = G4(//a — ©00), can be derived ana-
lytically by calculating the difference in the elastic strain energy downstream and upstream of
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Figure 6. H-shape crack in a laminate consisting of n layers of material 1 and n — 1 layers of material 2. The force
P denotes the equilibrium between the ‘upstream’ and ‘downstream’ cross-sections.

the delamination tip. Consider a laminate consisting of n layers of material 1 with width wy,
and n — 1 layers of material 2 with width w,, as sketched in Figure 6. The axial force per unit
thickness, P, is related to the remote stress in layer 1, ojnr; = E 1 €inf, and to the remote stress
in layer 2, oiyr2 = E28inf, by

P =nopuiwi + (n — 1)0ing2w2. (19)
Additionally, on the symmetry plane y = 0, the axial force is
P =n—1Doyw + (n— Doywa, (20)

where o and o are the (uniform) stresses at y = 0 in materials 1 and 2, respectively. Equating
Equations (19) and (20) and using the compatibility statement o;/E| = 0,/ E; it follows that

01 = Y Oinf,1

nEjw; + (n — 1) Eyw,
E, where y =

02 = 2V Ot (n — 1)(Eywy + Eywy)
1

2D

The steady-state energy release rate at an individual delamination tip, G4 s, is calculated from
the energy difference upstream and downstream of the delamination tip (Hutchinson and Suo,
1992). Employing Equation (21), this yields
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Note that the structure of the above expression obeys the general expression, Equation (16).
The steady-state energy release rates plotted in Figure 5b correspond to Equation (22), where
n =15, w; = 2a and w, = 5a/3. Itis clear from Figure 5b that the finite element predictions
lay close to the analytical asymptotes when [/a > 2 (Additional checks reveal that at [/a =
40, all curves have approached their steady-state value to within 0.4%.).

Figure 7 displays the energy release rate for tunneling, Gy,,, as a function of the relative
delamination length, //a. At short delamination lengths, //a < 3, the energy release rate
drops rapidly with increasing delamination length for all stiffness mismatches considered.
In comparison with the energy release rate for plane-strain delamination (Figure 5b), greater
delamination lengths are required to attain a steady-state. For example, for the stiffness ratios
E,/E; = 0.1 and 10.0, the energy release rate for tunneling at //a = 40 are 15% higher
and 1% higher, respectively, than the steady-state values Equation (22). The fact that a higher
stiffness ratio induces a faster convergence towards a steady state is also evident from Figure 7.

It is noteworthy that the steady-state values depicted in Figures 5b and 7 are identical, i.e.
Gun,ss = Gass- This can be explained as follows. As argued by Beuth (1992), the condition
Gun = G, is generally fulfilled at any point on the Gy, versus [/ /a curve where d Gy, /3l = 0.
In the present problem, 0Gyy,/90] — 0 asl/a — 00, and so Gyp g5 = G4 55-

4.2.2. Failure mechanisms

It is instructive to plot the tunneling stress, oy, and the stress for plane-strain delamination,
o4, as functions of //a for the cases EZ/EI = 0.1, 1.0 and 10.0, see Figures 8a, 8b and 8c,
respectively. The tunneling stress is evaluated using Equation (14), and selected values for the
toughness ratio G4./ G .. The stress for plane-strain delamination follows from Equation (17).
It has been noted above that the plane-strain delamination is purely mode II, except for short
delamination lengths, and so it can be assumed that G 4. is constant in the calculation of oy,;.
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The o,4(I/a) curve may be interpreted as the crack growth resistance curve (or R-curve)
for plane-strain delamination. The depicted steady-state stress, oy, = oy(//a — 00) =
own(l/a — 00), is derived by substituting Equation (7) into Equation (22), giving

4E Gy,

; (23)

Oss =

2 Es 2
wi(y*(n—1) —n) + E—lwz(y - D -1
where the dimensionless parameter y is defined in Equation (21). The normalisation chosen
for own(l//a) and o,4(I/a) in Figures 8a—c involves G, rather than G,.. Consequently, curves
of increasing ratio G,./ G, should be interpreted as curves of diminishing mode I toughness
G for the mid-layer (material 1). Further, three different fracture scenarios can be distin-
guished in Figures 8a—c, which depend upon the toughness ratio G,./ G . and upon the elastic
mismatch ratio E,/E;. Each scenario has already been sketched in Figure 2, and is discussed
below with reference to the current 5/4 lay-up.

First, consider the tunneling stress oy, (! /a) and the plane-strain delamination stress o, (I /a)
for the choice E»/E; = 0.1, see Figure 8a. Again, a zero offset in the scale for //a has been
used in order to clarify the asymptotic behaviour as //a — 0. Stable plane-strain delamination
is characterised by a rising o,;(//a) response. Correspondingly, stable tunneling of an H-shape
crack occurs for G4,/ G, > 0.08, with the minimum tunneling stress oinf,| = On,min indicated
by the intersection points (black dots) between the o,(l/a) curve and the oy,(//a) curve for
each selected value of G,4./G/.. The value of [/a at the minimum tunneling stress oyn, min
reflects the (constant) delamination length of the tunneling H-shape crack, //a = (I/a)wn.
In Figure 2 this fracture scenario has been designated as mechanism 2. The fact that the
intersection points correspond to an extremum (minimum) for the tunneling stress can be made
evident by applying the condition doy,,/d! = 0 to Equation (14), yielding oy, = o4, where o,
is given by Equation (17). A similar conclusion has been drawn by Cox and Marshall (1996)
for the tunneling of a mode I transverse ply crack in a laminated ceramic composite, and
by Fleck and Zhao (2000) for the microbuckle tunneling in a fibre-reinforced laminate. The
delamination length for this mechanism is stable, since at the minimum tunneling stress the
tangent of the o;(//a) curve is positive (R-curve behaviour). In contrast, for G,./G;. < 0.08,
the o, (I/a) curve decreases monotonically with increasing //a and correspondingly the min-
imum tunneling stress becomes oyn min = own({/a — 00) = oys. As a consequence, unstable
delamination will occur in all directions. In Figure 2 this fracture scenario has been designated
as mechanism 3.

Second, consider the tunneling stress oy, (I//a) and the plane-strain delamination stress
o4(l/a) for the choice EZ/EI = 1.0, see Figure 8b. It is noted that o;(//a) has a single
oscillation in value for 0 < [/a < 1; this feature is not a numerical artefact. The o,(l/a) curve
has two rising portions, one at 0 < [/a < 0.12 and one for //a > 0.80. Although the latter
rising portion has a small slope, nonetheless it gives rise to the existence of mechanism 2, for
reasons explained above. For a relatively high toughness ratio G,./ G, > 0.52 the ow,(I/a)
curve lays below the o,(//a) curve with no intersection points between the two curves. The
minimum tunneling stress oy, min 1S achieved at//a = 0, implying tunneling of a mode I crack
within the mid-layer and delamination absent. This fracture scenario has been designated in
Figure 2 as mechanism 1. For moderate toughness ratios, 0.28 < Gy./G;. < 0.52, stable
tunneling occurs with a constant delamination length (mechanism 2), and for low toughness
ratios, G 4./ G ;. < 0.28, unstable delamination operates in all directions (mechanism 3).
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Figure 8. Remote stress oj,f,1 versus delamination length //a (cracking in the centre layer of the 5/4 lay-up, see
Figure 4a). Solid line designates the plane-strain delamination curve o4y — [/a and dashed lines designate the
(steady-state) tunneling curves own — [/a for selected toughness ratios G4./G .. The black dots indicate the
minimum tunneling stress for mechanism 2. (a) Ey/E1 = 0.1. (b) Eo/E; = 1.0. (¢) E»/E1 = 10.0.
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Third, ow,(l/a) and o,4(I/a) are plotted in Figure 8c for the choice E, / E, = 10.0. The
delamination stress o, shows a minimum at / /a = 1; it rises slightly in value as //a increases
to infinity, but rises steeply as //a drops to zero (A minor oscillation in o,(I/a) is noted
at [/a = 0.03, but this local perturbation in value is considered no further). The shape of
the plane strain delamination curve o,(//a) is consistent with the following crack tunneling
behaviour oy, (l/a). For G4./ G- = 0.62, the oy, (l/a) curve is monotonically rising and
this implies that mechanism I with [/a = 0 0perates3. For 0.58 < G4./ Gy, < 0.62, alocal
minimum in oy, (!/a) is demanded from the rising part of the o;(//a) curve and mechanism 2
is predicted. Finally, for G,./G;. < 0.58, the tunneling stress oy,(//a) has an unstable
maximum value at the intersection with the o,(//a) curve, and drops monotonically at larger
l/a: mechanism 3 is active, and oy min = 055 at[/a — 00.

4.2.3. Analytical estimate for the tunneling stress by mechanism 1
For a homogeneous laminate (E; = E»), the tunneling stress by mechanism I can be determ-
ined from the classical solution to the corresponding plane-strain crack problem. Consider a
mode T crack of length 24’ in a plate of width w loaded under a uniaxial tensile stress oj;
then, the stress intensity factor K; at the crack tip is (Broek, 1986)

K; = owvma' g(a'/w), (24)

with g a dimensionless function that depends upon the non-dimensional crack length a’/w.
The plane-strain energy release rate at the mode I crack tip follows from Equation (24) as
K; opmd

G, ==L =" o2 /w). 25
1= E, g (a/w) (25)
Now, Dvorak and Laws (1986) have demonstrated that the energy release rate at a crack tip of

a tunneling mode I crack with width 2a can be calculated by means of the integral relation

1 a
Gun = — f G,(d)dd'. (26)
a Jo

For the geometry shown in Figure 4a, the ratio of crack length to specimen width is suff-
ciently small (a/w = 3/50) for the approximation g(a/w) = 1 to be justified. Substituting
Equation (25) into (26) then gives

7T0'i%1f a
Glun = =
2 E;

Upon equating the energy release rate for tunneling to the mode I toughness, G, = Gy,
the critical stress for steady-state tunneling of the mode I crack directly follows from Equa-
tion (27) as

27)

2E G,
Otun = # (28)
ma
Similar derivations can be found in Beuth (1992) and Ho and Suo (1993). For the homogen-
eous case depicted in Figure 8b, a numerical check on the tunneling stress for mechanism 1,

3Since E5/E| > 1, the crack stands off the interface by a small distance within the more compliant material 1,
and the predicted tunneling stress is slightly below that given here (see Beuth, 1992).
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own(l/a = 0), can be made via Equation (28). Although not shown here, the numerical values
agree within one percent of the analytical estimate, Equation (28), for each choice of G,4./ G/..

As an additional check on the numerical results the asymptotic value for plane strain
delamination, o;(//a — 0), at E, / E, = 1 can be obtained via Equation (25), and can
be compared with the numerical prediction in Figure 8b. Using the results obtained by He
et al. (1994), in an infinite homogeneous medium the ratio between the energy release rate
for delamination and mode I cracking can be computed as G;/G; = 0.261 for a delamin-
ation length approaching to zero. Combining this result with Equation (25), it follows that
Gy(l/a — 0) = 0.820361/]5’1. Hence, Jd(ElGdc/a)_o'S = 1.104 as [/a — 0, which closely
corresponds to the numerical prediction.

4.2.4. Failure mechanism map

A failure mechanism map can be constructed, in which the minimum tunneling stress oy min 15
plotted against the toughness ratios G4./ G ., see Figure 9a. The figure can be used to estimate
the (critical) tunneling stress for assumed values of G,./G . and E, / E,. The three failure
modes are displayed with the location of their boundaries indicated by dashed lines. Stable
tunneling (mechanism 2) dominates the map for E, / E, < 1. For each curve of tunneling
stress versus toughness ratio the transition from one mechanism to another is indicated by
a black dot. At low toughness ratios mechanism 3 operates and the tunneling stress is given
by Equation (23). At higher toughness ratios and for E,/E, > 1 mechanism I operates;
alternatively, at higher toughness ratios and for E,/E, < 1 mechanism 2 operates.

The corresponding values of the delamination length at tunneling are shown in Figure 9b
as a function of the toughness ratio G4./ G .. For E;/E; = 3.0 and 10.0 it is difficult to obtain
the precise shape of the curve in the transition from mechanism 1 ((I/a)w, = 0) to mechan-
ism 3 ((l/a)un — 00); this transition occurs abruptly due to the small range of G,./ G,
values over which mechanism 2 is operational, see Figure 9a. Hence, for E,/E, = 3.0
and 10.0 the anticipated trends for mechanism 2 are represented by dashed lines. It is con-
cluded from Figure 9b that H-shape cracking with a finite delamination length, exceeding
(I/a)wn = 0.1, only occurs over a narrow range of values for G;./ G-

For (relatively high) toughness ratios where 0 < (I/a)wn < 0.1, it becomes difficult exper-
imentally to distinguish between mechanism 2 with delamination present, and mechanism 1
with delamination absent.

4.3. DEFLECTED CRACK IN TWO OUTER LAYERS OF LAMINATE

4.3.1. Mode-mix and energy release rate

The configuration of a doubly deflected crack in each of the two outer layers of the 5/4 lay-
up has been depicted in Figure 4b. The mode-mix at the delamination tip of the cracks is
sketched in Figure 10a for various delamination lengths. For the stiffness ratios considered, a
steady state is attained relatively quickly with increasing //a, and the steady-state mode-mix
generally lies between 50° and 60°. Recall that the steady-state mode-mix for the H-shape
crack in the centre layer of the 5/4 lay-up (Figure 5a) equals 90° (i.e. pure mode II).

The energy release rate for plane-strain delamination is plotted against the delamination
length [ /a in Figure 10b. As in Figure 5b, the energy release rate rapidly attains a steady-state
with increasing [ /a. The steady-state energy release rate for the configuration in Figure 4b can
be derived in a similar manner to that given in Section 4.2.1 for the configuration in Figure 4a,
and the resulting closed-form expression is
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Figure 9. Cracking in the centre layer of the 5/4 lay-up, see Figure 4a. (a) Minimum tunneling stress oy, min
versus fracture toughness ratio G4./Gj.. Dashed lines indicate the zones corresponding to the three failure
mechanisms in Figure 2. (b) Delamination length (/ /a)twun versus fracture toughness ratio G4,/ G-
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4.3.2. Failure mechanisms

The o,4(I/a) and oy,(//a) curves are plotted in Figures 11a, b and c for the stiffness mis-
matches E,/E; = 0.1, 1.0 and 10.0, respectively. A comparison with the failure curves for
the H-shape crack in the centre layer of the 5/4 lay-up (Figure 8) reveals that the responses are
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Figure 10. Cracking in the two outer layers of the 5/4 lay-up, see Figure 4b. (a) Mode-mixity,
¥ =atan(Im(K a'€)/Re(K a'€)), versus delamination length [/a. (b) Energy release rate for plane-strain
delamination G4 versus delamination length //a.

qualitatively similar. Thus, the discussion on the three failure mechanisms (see Section 4.2.2)
also applies to the current case. The stress levels are a little lower than those for the H-
shape crack in the centre layer of the 5/4 lay-up, due to the presence of the free surface.
The steady-state stress, oy, has been computed by combining Equations (7) and (29),

4E Gy
Oss = E—, (30)
w02 —2) —n) + E——ZIUQ()»Z “Dn—1
1
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Figure 11. Remote stress ojpf, 1 versus delamination length / /a (cracking in the two outer layers of the 5/4 lay-up,
see Figure 4b). Solid line designates the plane-strain delamination curve oy — [ /a and dashed lines designate the
(steady-state) tunneling curves own — [/a for selected toughness ratios G4./G .. The black dots indicate the

minimum tunneling stress for mechanism 2. (a) Eo/E = 0.1. (b) Eo/E; = 1.0. (c) Eo/E; = 10.0.
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Figure 12. Cracking in the two outer layers of the 5/4 lay-up, see Figure 4b. (a) Minimum tunneling stress
Otun,min Versus fracture toughness ratio Gg./G .. Dashed lines indicate the zones corresponding to the three
failure mechanisms in Figure 2. (b) Delamination length (//a)wun versus fracture toughness ratio G4./G .

Figures 11a—c illustrate that the above closed-form expression provides correct asymptotes for
the numerical results.

The minimum tunneling stress own min 1S plotted against the toughness ratio G4./ G, in
Figure 12a, with the failure mechanisms superimposed on the plot. The failure mechanism
map for the doubly deflected cracks in the outer layers appears to be qualitatively similar to
that shown in Figure 9a for the internal H-shape crack of the 5/4 laminate.

For a double mode I edge crack with individual crack lengths 2a’ generated in a homogen-
eous laminate under a uniaxial tensile stress oy, the stress intensity factor at the crack tip is
(Broek, 1986)

K; = 1.12 oyp/72a g(d'Jw). 31)

Using the procedure outlined via Equations (24) to (28), the tunneling stress is
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Figure 13. Uniform cracking in a 5/4 lay-up.

1 E Gy,
un — . 2
=112\ na (32)

Although this stress level corresponds to the asymptotic case where a/w — 0, Figure 12a
reveals that it closely approaches the critical stress for the homogeneous 5/4 lay-up. In Fig-
ure 12b the delamination lengths are sketched as a function of the toughness ratio G,4./G..
For E»/E, < 1, mechanism 2 is active over a wide range of toughness ratios G4/ G ., but
for most of this range (i.e. G4./ G- > 0.4) the corresponding delamination (I/a);,, is almost
zero. In contrast, for E»/E, > 1, mechanism 2 is active only over a narrow range of G 4./ G e,
see also Figure 12a.

4.4. MULTIPLE DELAMINATION OF THE 5/4 LAY-UP

So far, delamination of a single mid-layer and of two outer layers have been addressed. In
reality, stacked laminates have the possibility of delaminating at several interfaces. In order
to assess this, plane-strain delamination of all interfaces is addressed for a 5/4 lay-up, with
each delamination of length [/a = 2, see Figure 13. The choice //a = 2 was made in order
to obtain values of the mode-mix i and the plane strain energy release rate G, near steady-
state. The representative delamination tips are labelled 1 to 4, with a higher number indicating
that the tip is located further from the free edge. The mode-mix and the plane strain energy
release rate for the four delamination tips have been calculated as a function of the stiffness
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Figure 14. Uniform cracking in a 5/4 lay-up, see Figure 13. (a) Mode-mixity, ¥ = atan(Im(K a'€) /Re(K a'€)),
versus delamination length //a. (b) Energy release rate for plane-strain delamination G4 versus delamination
length //a.

mismatch E,/E;, and the results are plotted in Figures 14a and b, respectively. For tips 2, 3
and 4 the mode-mix 1 increases to the mode II limit (v = 90°) with increasing E,/E; for
tip 1, however, ¥ remains approximately constant at 57° — 60°. Evaluations have also been
made of the interfacial stress intensity factor K a'¢, but the plots are omitted for the sake of
brevity. The mode I stress intensity factor, Re(K a’®), drops to zero with increasing E, / E,
for tips 2, 3 and 4, but is relatively insensitive to the value of E, / E, for tip 1. In contrast, the
mode II stress intensity factor, Im(K a®), is only mildly sensitive to the magnitude of E,/E|
for all 4 crack tips.
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Figure 15. Doubly deflected crack in the two outer layers of a 2/1 lay-up.

Figure 14b shows that the plane strain energy release rate G,; drops monotonically with
increasing E,/E1, and is consistently the largest for tip 1 near the free surface and the smallest
for tip 4 near the centre of the 5/4 lay-up. This implies that greatest delamination is expected
for the outermost plies. The small difference in ¥ and G, for tips 3 and 4 suggests that a
uniform delamination state will be achieved in the core region of a very thick multi-layer
laminate, with increased delamination of the outermost plies.

5. Effect of number of plies upon failure

5.1. CRACKING IN A 2/1 LAY-UP

In order to examine the effect of the number of plies upon failure, the failure mechanisms
in the 5/4 lay-up will be compared to those of the 2/1 lay-up depicted in Figure 15. The 2/1
lay-up comprises a layer of material 2 sandwiched between two layers of material 1, and has
been regularly applied for the fibre-metal laminates ARALL and GLARE (Marissen, 1988;
Vermeeren, 1995; de Vries, 2001). The H-shape crack pattern in the 2/1 lay-up is similar to that
in Figure 4b for the 5/4 lay-up, and competing failure modes for the 2/1 lay-up are analysed
below. Since the current configuration is thinner than the 5/4 lay-up, the finite element models
employed are composed of considerably fewer elements: between 4000 and 5000. For reasons
of symmetry, only a quarter of the configuration depicted in Figure 15 has been modelled.
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5.1.1. Mode-mix and energy release rate

The mode-mix 1 (//a) for plane-strain delamination is shown in Figure 16a. For the stiffness
ratios considered the steady-state value for the mode-mix lies between 50° and 60°, which is in
good agreement with the mode-mix values for the UCSB four-point bend specimen, as derived
by Suo and Hutchinson (1990). Further, there is a striking correspondence with the mode-
mix for plane-strain delamination of the outermost layers of the 5/4 lay-up, see Figure 10a.
Conversely, the energy release rate for plane-strain delamination G,(I/a) for the 2/1 lay-up,
as shown in Figure 16b, is qualitatively different from that for the 5/4 lay-up (Figure 10b): a
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Figure 17. Remote stress ojpf, 1 versus delamination length / /a (cracking in the two outer layers of the 2/1 lay-up,
see Figure 15). Solid line designates the plane-strain delamination curve oy — [ /a and dashed lines designate the
(steady-state) tunneling curves oy — [/a. A black dot indicates the minimum tunneling stress for mechanism 2.
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Figure 18. Cracking in the two outer layers of the 2/1 lay-up, see Figure 15. Minimum tunneling stress oyn, min
versus fracture toughness ratio G4./G .. Dashed lines indicate the zones corresponding to the three failure
mechanisms in Figure 2.

local minimum in the G4(//a) curves is noted for E, / E, = 0.1 and 0.3 in the 2/1 lay-up, but
not in the 5/4 lay-up. The steady-state values shown in Figure 16b have been calculated by
means of Equation (29), upon substituting n = 2, w; = 2a and w, = 5a/3. The numerical
predictions converge to the asymptotic values, as expected.

5.1.2. Failure mechanisms

The remote delamination stress and the remote tunneling stress for the 2/1 lay-up are plotted
against the delamination length in Figures 17a, b and c for Ez / E 1 = 0.1, 1.0, and 10.0,
respectively. It is noted that the critical stress levels are lower than those for cracking of the
outermost plies of the 5/4 lay-up (Figure 11). For E,/E; = 0.1, stable tunneling of an H-shape
crack occurs if G,/ G- > 1.5 (mechanism 2 in Figure 2), though it is characterised here by
very small delamination lengths, [/a < 1, see Figure 17a. Alternatively, for G,;./G|. <
1.5, mechanism 3 operates with Owyp min = Own(l/a — 00) = oy,. Next, consider the case
E, / E, = 1.0 shown in Figure 17b: mechanism 1 is active for G,4./ G, > 0.77 and is replaced
by mechanism 3 for G4./ G- < 0.77. It is clear from Figure 17c that mechanism 1 is triggered
for G4./ G, > 0.5 and mechanism 3 operates for G,./G ;. < 0.5.

The minimum tunneling stress own min 1S plotted against the toughness ratio G4/ G, in
Figure 18, together with the dominant failure mechanisms for selected values of E,/E.
For laminates with a relatively low toughness ratio G,./ G, mechanism 3 prevails. For high
toughness ratios mechanism I and 2 dominate, though mechanism 2 here is characterised by
a delamination length very close to zero, see Figure 17a, so it may be difficult to distinguish
experimentally this mechanism from mechanism 1. This is an important difference with the
5/4 lay-up, where tunneling with constant delamination of a measurable length occurs for a
considerable range of toughness ratios G4./ G, especially when the stiffness ratio E, / E| is
relatively small, see Figures 9b and 12b.
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5.2. FAILURE STRENGTH FOR MECHANISMS 1 AND 3

It is instructive to depict the failure strength for mechanisms I and 3 as functions of E,/E|,
see Figure 19. The critical stress for mechanism 1 is obtained by taking the limit oyp min =
own({/a — 0) from the finite element results. The critical stress for mechanism 3 1S oy min =
oun(l/a — o0) = oy, and is given explicitly by Equation (23) for the central crack and by
Equation (30) for the doubly deflected crack in the two outermost plies. Results are given for
both the 5/4 lay-up and the 2/1 lay up. The 5/4 lay-up with a crack in the centre layer has the
largest failure strength, both for mechanism 1 and mechanism 3, followed by the 5/4 lay-up
with a crack in the two outer layers and the 2/1 lay-up (with a crack in the two outer layers).
Figure 19 may serve as a design tool provided the failure mechanism is known. However,
mechanism 2 can intervene, depending upon the magnitude of G,./ G/, as evidenced by the
failure mechanism maps shown in Figures 9a, 12a and 18.

5.3. STEADY-STATE DELAMINATION STRESS FOR VARIOUS LAMINATE THICKNESSES

The steady-state stresses, Equations (23) and (30) for the central H-shape crack and doubly
deflected crack in the two outermost layers, respectively, are plotted against the number of
plies n of material 1, see Figures 20a, b. The layer widths in Equations (23) and (30) have
been taken as w; = 2a and w, = 5a/3. It can be seen that a higher stiffness ratio results
in a higher steady-state (residual) delamination strength. For relatively small stiffness ratios
the steady-state stress initially increases sharply with increasing n, especially for the case of
a doubly deflected crack in the two outermost layers. For relatively thick laminates, n > 5, a
significant change of the stiffness ratio E,/E; produces only a small change in the steady-state
stress o (= failure strength for mechanism 3).
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6. Comparison with experiments

The practical applicability of the expressions for the steady-state stress, Equations (23) and
(30), is demonstrated by means of a comparison with the experiments reported in de Vries
et al. (1999). In these experiments the delamination behaviour of a GLARE 3/2 laminate
(3 aluminium layers and 2 glass-fibre/epoxy layers) was examined, by considering an H-shape
crack in the centre layer of the specimen and a doubly deflected crack in the two outermost
layers of the specimen. The pre-cracked configurations were similar to those depicted in Fig-
ure 4 for the 5/4 lay-up but without initial delaminations. Accordingly, the fracture energy
released during the experiment was fully due to delamination. Three different thicknesses for
the aluminium layers were considered: w; = 0.2 mm, 0.3 mm and 0.5 mm. The thickness of
the fibre/epoxy layers was equal to w, = 0.125 mm. The axial stiffness of the aluminium lay-
ers was E; = 72 GPa, and the stiffness moduli for the fibre/epoxy layers were E; = 54 GPa
in the direction parallel to the fibre orientation and E,;, = 9.4 GPa in the transverse direction.
In the current comparison, only those configurations are considered for which the fibres are
oriented in the loading direction (i.e. E, = 54 GPa).

The gross failure stress is given in Table 1 for various thicknesses of the aluminium layer.
The steady-state stress in the aluminium (material 1) has been computed by means of Equa-
tions (23) and (30), using a delamination toughness G4, = 0.6 N mm~!. The stress in the
fibre layers (material 2), follows from the compatibility requirement oinf 1/ E; = 0oing2/ En,
and the gross failure stress is the weighted average over the total thickness of the laminate.
Table 1 shows that the comparison between the experimental results and the model predictions
is reasonably good. Both the experiments and the model give a lower gross failure stress for
a thicker aluminium layer. The reason for this is that a thicker aluminium layer behaves in a
stiffer manner, and produces a higher stress intensity at the delamination tips. The maximum
discrepancy between the predicted and measured strengths equals 19%, which may be due
to effects that have not been incorporated in the model, such as yielding of the aluminium,
anisotropy of the fibres and residual stresses as a result of the manufacturing process. Despite
these deficiencies, the comparison confirms that Equations (23) and (30) provide reasonably
accurate estimates for the residual failure strength of the laminate.

7. Concluding remarks

Steady-state crack tunneling and plane-strain delamination have been investigated in lamin-
ates subjected to a remote uniform tensile strain. Three mechanisms have been distinguished:
(1) tunneling of a mode I crack without delamination, (ii) tunneling of an H-shape crack with
constant delamination length, and (iii) unstable delamination growth in all directions. For
each of these mechanisms the critical stress is taken as the minimum tunneling stress. The
minimum tunneling stress of the laminate is dependent upon the delamination toughness at
the layer interfaces and upon the stiffness ratio of the layers. The dependence of the tunneling
stress upon the crack location and the number of plies within the laminate has also been
explored. Closed form expressions for the steady-state stress have been obtained, and may be
useful in design against delamination.

To further investigate the phenomena discussed in this paper, more systematic experimental
studies are necessary, both in regards to the static and the fatigue behaviour of laminate
structures. The sensitivity of the above results to material anisotropy and plasticity effects
are also topics for future study.
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Figure 20. Steady-state stress for plane-strain delamination oyg versus laminate thickness (n = number of plies of
material 1). (a) H-shape crack in the centre layer of the laminate, Equation (23). (b) Doubly deflected crack in the
two outer layers of the laminate, Equation (30).
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