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Abstract: We introduce the idea of an n-simplex graph and games upon
simplicial complexes. We then define moves on a labeled graph and
pose the problem of whether given two labelings of a graph it is
possibleto change oneinto another viathese moves. We then solve the
problem for a given class of graphs. Once having found a solution for a
given class of graphs we determine the number of different solutions
that exist. We then use thisto find an algorithm to determine whether a
graph is (n+1)-colorable, and in particular, whether it is 3-colorable.

0 I ntroduction

The rdation between graphs and games has been recognized throughout the
development of Game Theory (see [3, 9, 13]). Graphs have played an integral role in the
solution of coin flipping games, which are usudly viewed as being upon graphs and
grids. Coin flipping games, dso known as s -games, ae games in which the coins
adjacent to the one being flipped are dso flipped (in certan versons only the adjacent
coins ae flipped). Coin flipping games are dso popularly known as light-switching
ganes. That is, a game in which a switch toggles neighboring switches as wel. The
objective in these games is given an initid configuretion, to turn dl the lights off (or
coins over). S -games have been dudied by Sutner [10, 11, 12] and by Barua and
Ramakrishnan [2]. The commercidly avalable game “Lights Out,” played on a 5" 5
board, has been studied by Anderson and Fell [1]. (For more on these games and their
generdizations see [5, 6].) More recently, games have been looked a upon smplicia
complexes [4]. Though any countable graph with vertices in ndimensons can be viewed
as a graph in two dimensons, the ability to view it in ndimensons dlows for the notions
of motions and moves dong the graph to have a more intuitive sense. The use of
smplicid complexesisthen anaurd generdization.

In this paper we introduce a game in which each move, cdled a ‘push’, changes the
labding of every vertex in a dique (not necessaily maximd). (Since non-mexima
cligues can be viewed as Rsamplexes we opt for the more visud notion of an RIMplex.
Due to the labd changing action of a push there is some smilarity to s -games; however,
in many senses the amilarity goes no further than the notion of a flipping game. In Sec.
4 we give a criterion to determine whether given two boards, which we define and cdl n
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amplex graphs, it is possble to change one board into the other by a series of these
moves. In Sec. 5 we deemine (given tha a solutions exits) how many different
solutions there are. We use these reaults to find an adgorithm, in Sec. 7, to determine a
aufficient criterion for whether a grgph is n+1-colorable, and in specific, whether a planar
graphis 3-colorable.

1 Definitions

Following Hacher [7], we fird define an nsmplex and a smplidad complex
topologicaly and then indicate their natural corresponding graphical interpretation.

Definition 1.1 Given any set V ={v,,V,,...,v,} of n+1 pointsin R", such that the
differences v, - v,,V, - V,,...,V, - V, are linearly independent, the n-amplex with vertices
V isthe convex hull of V, i.e. the set of all points of the form t,v, +t,v, +...+t v, , where

n'n?
[o]

a t=landt 30 foralli.

Definition 1.2 A smplicid complex D on a finite set V is a collection of subsets of V
such that

) {v}1 D forall vi V.
ii)if FT Dand GI F then G D.

The members of D are called smplices or faces, and the elements of V are called
vertices.

The use (and advantage) of topologica notions is that it dlows us to have n-smplex
graphs upon any compact connected g-manifold, with g 2 n.

Viewed purdy from a graph theoretic perspective, an n-dmplex is dmply a
complete graph, U, , such that V(U;)| =n+1. Thus the st of vertices, V(U,), uniquely
determines the nramplex. And a smplicid complex is merdy a graph G :UUJ. with
eech U, complete. Due to the naturd mapping from the topologicd definition of
amplicid complexes to the graphtheoretic definition, we use them interchangeably,
adopting the notion of an n-dimensond graph, G, comprised of n-amplexes. It should
be noted that the connection to the topologicad notion has certain limitations since we are

not concerned with the topology of n-amplexes or with viewing them as convex hulls
but rather with their vertex sets, edge sets, and faces. Therefore, except for the intuition



that it brings with it, the ideas are primarily grgph-theoretic, and should be viewed as
such.

We now define the notion of an n-smplex grgph based upon the notions of a
amplicdd complex.

Definition 1.3 G issaid to be an nramplex grephif:

i) Gisasimplicial complex.
i)  Forany FT Gwith |F|<n+1thereexistsa KT G suchthat F1 K.

Alternately an namplex graph can be defined (and viewed) as a graph G = UUj where
each U, isoompleteawd|\/(Uj)| =n+1.

We take it as a generd assumption throughout this paper that al graphs are of
fintesze

2  Region-paths and region-connected graphs

The building blocks of n-amplex graphs are the nnamplexes. Topologicaly they
are the convex hulls of the set of vertices. It is therefore naturd that we shdl refer to
these namplexes astheregions of G.

We now extend the familiar notions of adjacent vertices and paths dong vertices
to that of regions. Adjacent regions are defined in the same vein as that of adjacent
vertices.

Definition 2.1 Two nsimplexes, § and S; are said to be adjacentif S C S, isan (n-1)-
simplex.

Definition 2.2 A region-pathfrom § to S, is a set of nsimplexes {SI ,S,+l,...,Sj} such
that S, isadjacentto S,, for i Ek<j.

Let L(G):V(G) ® Z, be alabding of the vertices of a graph G from the set {0, 1,...,n}.
We cdl a move a push if it is a function fq :L,(G) ® L,(G), acting on an RImplex
S ={vy, vy, },suchtha fg[L(v;)] =L, (v;)+1 (modn)for v, Is.



Definition 2.3 A graph is said to be region-connected if given any two nsimplexes
S.,S, 1 G there exists a region-path connecting them.

Fictoridly, a region-connected n-smplex grgph can be viewed as a graph formed by
pasting n-smplexes together by their (n-1)-amplexes. That is, the intersection of two nt
smplexes which are pasted together is an (1-1)-amplex. For example, we could form a
region-connected 2-smplex graph by pagting triangles together by their edges, or form a
region-connected 3-amplex graph by pasting tetrahedrons together by their triangles.

3  Aninvariant under pushes

We pose the following two genera problems concerning motions, or re-labdings,
of graphs:

Question 3.1 Let G be any region-connected nsimplex graph. Given two labelings,
L,(G) & L,(G), does there exist a series of pushes with which we can change L, (G) into
L,(G)?

Question 3.2 Given that a solution to Question 3.1 exists, how many different solutions
arethere?

We |eave the solution to Question 3.2 until Sec. 5.

We wish to find a cdass of nramplex graphs under which our question is solvable. We
dam tha if G is a region-connected n-smplex graph then the quedtion is solvable if
c(G) =n+1 (not that it is afirmative).

We dat by finding avalueof L(G) which isinvariant under pushes.
Let Z, bethelabdingsetfor L, & L,.

Since ¢(G) =n+1, G can be colored with the st {i,,i,,...,i .} , where i, isasfollows
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Wehave iy =i" =--- =i, =iy =igi, -, =1.

Given that{i, i, ,....i,.,} is linearly independent and that the order of each i, is m, we find
that <i0,il,...,in_l> »Z. ~Z. .. Z

n- times

m:*

Let i(v,)T {ig,i,, - i,} be the coloring of the vertex v, T V(G) and I(v,)] L(G) its
)

labdl. Assignthevaue '™’ (v,) tothevertex v, , foreach v, T V(G).
Le PIL@G)] = Oi'(v))-
vTV(G)
Lemma32 P[L(G)] isinvariant under pushes.
Pr oof Let {i§°,if1,--~,i’;‘"} be the st of values assgned to the vertices of an

.aj+l

abiray nsmplex in G. A push on this nsmplex woud send i i
"i1{o4,...n}. Thuswe have

'30'31__,'an 'ao+1'a1+1__,'an+1—'30'31”_'an(' . .'.. )—'30'31,,_'an . - .‘.. _
igigt---ii" ® 157 ™ =ig0ig e einighy -1, ) = igligt--i0n (Snceigiy -+, =1).

(Snce the push acts only upon a given nsmplex, the remander of G remans
unchanged.)

P[L(G)] istherefore invariant under pushes. O

4  Solutionsfor aspecific class of graphs

We now show a class of graphs under which our question is solvable and present an
agorithm for finding a series of pushes when asolution exigts.



Theorem 4.1 Let G be a region-connected nsimplex graph with ¢(G) =n+1. Then
there exists a set F, of pushes, such that F[L,(G)] = L,(G) iff P[L,(G)] = P[L,(G)].

Proof By Lemma 32, P[L(G)] is invariant under pushes the necessity of the equdity

therefore follows. (The condition of region-connectedness is not actualy required for
this direction.)

To show the aufficiency of the equdity we will congruct a solution. Since G is region
connected, we can find n+1 region-pathsin G such that:

() S 1Sz S, is a region-path of rImplexes with Szk-1 ={Vy,V, -,V },

S, ={Vi, vy, Vot then Sk, QS(Zk),ij ={v,,;- v}, k ={1 2..},
where i, isthe coloring of both v, and v, .

(i)  Givenay vi V(G) withcoloring i, v isin s, for somer.

(i) s, =§, = =s,, - |- dl pathsend with the same n-smplex.

(No other conditions exist for these paths, thus it is possible for a regionpath to cross or
retrace itsdlf.)

Let us now assume that two labdings, L, & L,, differ in only one aamplex. Let f o

Lig
be a push to such a power that the vertex in this rsmplex colored i, attains the same
labding as in L,(G). Wedamtha L (G)=L,(G). Snce PL,(G)]=P[L,(G)] (by

-a

assumption) we have i/ ---itn =js2if2t...i*2 - And given that ig*° =ig2°, we have

n n
i2a3 n(m1)p i2ap n(mp
_'31,1 'al,n _'32,1 'a2,n —_ B
Aj _|1 1...,|n _|1 Ry ] =

A - Aswdl, snce a,=¢ " =e " =b,,we
have a,, =a,,. Tha the remaining labels are dso equa can be seen as a reault of their

linear independence. We therefore havethat a, ; =a, " i1 {o1---,n}.

Let us now assume that the labdings differ arbitrarily. We form n+1 sequences of
pushes s follows For the coloring i; we have the sequence f," f,7 ™ £ £, ™1 ...,
where the pushes act upon the n-smplexes of the region-paths given above, and where
the (2k - D term is of the form f(sz_k‘g?;‘j” and the (2k)™ term is of the form f(;"k')ﬁ’?” , for
k={1,2,...}, and where Peak-,, is the power necessary <o that if v is the vertex in the i

simplex olored i, then Illf(;(f_ki)f)i"ji (V)J =1,(v). le thelabeling of that vertex is the same
asin L, (G).



The last term in esch of the sequences is ether of the form .52 or f . "

(2k-12),i; (2K).j; )
depending upon whether there is an odd or an even number of dements in the region
path.

Note that Snce Suicy C Saoi ={Var Vb, faran faor 1 raises the vaues of dll
i " " |

those vertices not colored i, by m. Therefore, dl vertices, except those colored i,
remain unchanged.

Each sequence will therefore change the labelings of al those vertices of G colored i,

except, possbly, for that of the last ramplex of the path (upon which the sequence acts).
This being true for each i, we need only concern oursalves now with this last rmplex,

which, by congruction, is the same for each path (the rest of G can therefore be ignored).
Having dready proven the theorem for that case our proof is complete. O

5 Board classes and solution sizes

Our objective in this section is to show the number of different solutions that exist
when there is a solution. To accomplish this we show that the set of labelingsof G form
equivaence classes. This we do because we wish to demondrate that the sizes of dl
these equivaence classes are the same.

Let us add to our collection of pushes acting on G, n additiond dements acting
only upon one vertex out of the n+1 vertices in some given namplex. Without loss of

generdity we can assume that these new dements dl act upon the same n-smplex.
4 2
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can take on any vaue (due to the addition of these new moves), it is now possible to
change from any given labeling of G to any other labding of G.



We now form classes of labdings of G such that two labdings, K and L, are in the same
dassif P[K(G)] =P[L(G)].

Definition 5.1 Let L (G) & L,(G) be two labelings of a region-connected nsimplex
graph, G, with the condition that c(G) =n+1. Then we say that L,(G) is labe-
equivdent to L, (G), writtenas L,(G) ~ L,(G) , if P[L,(G)] = P[L,(G)].

Lemmab5.2 Therelation L,(G) ~ L,(G) isan equivalence relation.

Proof Usng Theorem 4.1, it can be shown that the conditions for an equivaence
relation are easlly stisfied. O

Since an equivalence rdation crestes a decompogtion of the set into mutudly digoint
subsets (see [8] for asmple proof), we have the following:

Corallary 5.3 The equivalence relation ~ provides a decomposition of the set of all
labelings of G into distinct (mutually digjoint) equivalence classes.

Let m be the sze of the labdling set of G and n be such that ¢(G) =n+1. We now have
the further fact, that

Corallary 5.4 Thereare m" distinct equivalence classes.

Proof The proof follows essly from Theorem 4.1 and the fact that P[L(G)] can be
anyoneof m" different vaues. O

Let h* be a mapping from one class of labeings to another class, then if K and L are two
labdings in some class, hK and h*L will be two labdings in this other class
However, it is easlly shown that h* K =h*' L if axd only if K =L. Therefore thereisa
one to one relationship between the different equivaence classes, and we have

Corollary 55 The equivalence relation ~ divides the set of labeled graphs into
equivalence classes of equal size.



By Cordllary 5.4 we know that there are m" different vaues that P can take. Letting
V(G) =v, there are m" different labelings of G. Since, by Corollary 5.5, the sizes of

the equivdence classes are the same, there are m*™" different labdings for each class.
Therefore, we have that

Corollary 5.6 There are exactly m”" elements in each equivalence class formed by the
equivalencerelation ~.

We now form classes of pushes that dl act in a amilar manner on a labding. Let R(G)
be the sat of dl n-amplexes (i.e. regions) in G.

Definition 5.7 Let f and g be two wordsin R(G) and L some labeling of G, then we say
that f is congruent to g, writtenasf© g, if f[L(G)] = g[L(G)].

Lemmab5.8 Therelationf© gisan equivalencerelation.
Proof Follows from the definition of an equivalence rdation. O

As before, snce an equivaence relaion creates a decompostion of the set into mutudly
digoint subsets (see [8]), we have the following:

Corallary 5.9 The equivalence relation © provides a decomposition of the set of all
wordsin R(G) into distinct (mutually digoint) equivalence classes.

Corollary 5.10 The equivalence relation © divides R(G) into equivalence classes
of equal size.

Proof We form a magpping j :K ® L from one equivdence class, K, into another
equivdence dass, L, by f — nfi, where mrissuchtha niT L. It can easly be shown
thata mh° ng iff f°g, and nh=ng iff f =g. Theefore snce K and L were
arbitrary, there is a one to one correspondence between equivaence classes. O



Let |[R(G)| =T, then there are m" different sets of moves possible on G. Since we

know by Corollary 510 that the classes of moves are each the same sze, and by
Corollary 5.6 that there are m"" different dasses of labelings upon which these moves

r

act, we have that there are =m"""" different sets of pushes for each class of

V- n

labelings. Thus we have proved

Theorem 5.10 Given a graph G, as in Theorem 4.1, the number of solutions that exist
with which one labeling can be changed into another labeling, so long as a solution

exists, ism"V*".

6  Examplesof gameson 2-smplexes

Example6.1 As an example, imagine a board of coins (or disks with each dde a
different color), which are tightly packed. That is, coins lad out so that the board is
made up of little triangles of coins (i.e. each triangle conssting of three coins). A generd

board of this type can be formed by firgt taking three coins, each touching the other two,

then adding new coins, one a a time, so that each new coin touches a least two other

coins (which each touch the other). For example, the board can be shaped hexagondly or
triangularly (each row having one more coin than the previous row). Our question would
now be dated as follows. Given any two of these boards (and an arrangement of the coins
in heads and tals for each), does there exist a set of pushes such that one board can be
changed into the other?

Since ¢(G) =3 (which can be easily demondrated) a solution is now easly determined
(with the existence of a solution depending on whether or not P[L, (G)] = P[L, (G)]).

For example, say we would like to change

Since the values are equd (i.e. P[L,(G)] = P[L,(G)], if we would 3-color it), there exists

a solution, and since m"V*" =2%*'*? =2 we find that there are in fact two. Upon
investigation these solutions are found to be:

10
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Where we obtain by connecting the disks as such

(l.e. we asociate the center of each disk with a vertex and form edges between these
vertices. The vertices of the colored triangles are then flipped, tha is, the pushes act
upon the colored triangles).

Example 6.2 Giving the boards a memory vaue, we can develop Example 6.1 further.
That is, we can assign a number such that the coins turn from head to tails (or tals to
heads) only after a push has acted upon a vertex that number of times, for example 3
times (i.e. when a vertex is labeled 0, 1, or 2 the coin will be heads, and when it is labeled
3, 4, or 5 it will be tails). Then, snce ¢(G) =3, we can change one board into the other,

aslong as, again, PIL, (G)] = PIL,(G)].

The boards used for these games can aso be dructured upon manifolds having a genus
other than 0. For example, imagine a 29mplex grgph upon a torus (or Klein bottle), with
pushes acting only upon those 2-smplexes whose convex hull (i.e. a 2-amplex in the
topologicd sense of the tem) is smply connected. This extends naturdly to any
compact connected n-manifold. We can therefore imagine (trividly) a 1-smplex grgph
on a line in 1-dimengon; a smple closed curve in 2dimensions, a knot in 3dimensons,
etc. (And smilarly for other n-smplex graphs.)

These games can dso be extended to two (or more) person games in a manner such as the
folowing. Given a triangular board made up of heads, as described above (or smilarly
with a hexagona board), two players are each assigned a corner.  The object of the game
is then to form a path of talls to the third corner, with the players dternating pushes and a
win accruing for whomever succeeds first.

7  Anadgorithm for (n+1)-colorability

Snceif c(G)=n+1 there are m" different classes (by Corollary 5.4) (given that
G is a region-connected n-smplex grgph), as we move through dl m" different moves

possible, we obtain in of the possble labdings for G. If, however, the number of
m

11



different classes is m"*, then in the worst case scenaio, it is possible that in the first in
m

of possble moves every labeling of one of the classes is obtained, and in the next inof
m

possble moves every labdling of a different class is obtained. In which case it would be

ml’

m

moves. (The gtuation gets only better if the number of different classes for G is less than

mn—l )

possble to determine whether or not G is (n+1)-colorable in a most +1=m""+1

n

Therefore, we have only to show that if G is not (n+1)-colorable then the number of
classes of labdings of G decreases by afactor of m.

Let G be a graph that is more than (+1)-colorable. Then there is a proper sub-graph of
G, sy G¢, such tha it is maximdly f+1)-colorable, with V(G9 =V (G). (That is, if we
would add any edge from E(G)- E(G¢ to E(G¢, G¢ would no longer be (n+1)-
colorable) Therefore, every edge in E(G)- E(G§ must connect two vertices of the
same color. What results is that the vadue of the graph (i.e. P[L(G9]) would change if
acted upon by a push; and the labeling would therefore no longer be of the same class.

The actud vaue would change by i, %,™,', where i, is the color of both ends of the new
edge. (Without loss of generdity we can dlow i,,, be the color that is missng) Thisis
0 dnce a push in this case would result in a change of iy, i, X, X, ,,,,. But
io Xil“'ik >q.k+2 "'in-l = i0 >q-1”'ik >‘ik+1 >q.::11 >q.|<+2 "’in-l = (io >q.1"'in-1)ilin+-11 = i:l_ll’ therefore
o My My My, i, =i X0 However, i, %" is of order m (where m isthe size of
the labding set), so this new edge introduces m new vaues. Thus the number of classes
of labels is decreased by a factor of m (since every class of labelings are now associated
to m other classes). For every new edge now added the number of classes could decrease
by afactor of m, depending upon whether or not each new edge creates a new vaue when
a push is agoplied to its nrdmplex. ~ An (n+2)-colorable gragph might therefore have

m"*t,m"2,...1 labding classes. We have shown that

Lemma7.1l An (n+2)-colorable (region-connected n-simplex) graph has at most m"*
labeling classes.

For example, the following 4-colorable 2-amplex graph has two labding classes. A

While this 4-colorable 2-amplex graph has only one labding class.

(l.e it is possible to achieve any labdling of this graph with only pushes.)

12



Gven a geph G, we form a new graph, G¢, with V(G9=V(G) and
E(G¢ =E(G) +{enough edges so tha G¢ would be a region-connected n-simplex
graph}. Then

Corollary 7.2 m"” " +1 moves is sufficient to determine whether a graph G is (n+1)-
colorable, where r = R(G¢. If, in addition, G is a region-connected nsimplex graph,
then it is necessary as well.

Since m is independent of G (i.e. dependent upon the labeling set only), it can be chosen
arbitrarily. We can therefore improve our bound smply by letting m = 2.

N
Given an nimplex grgph G = | JC, with eech C, region-connected and C,NC,, i? j,
i=1
a subset of an n-smplex, we form a new graph G¢ by associating to each C, 1 G a
vertex ¢, 1 V(GY, where cc; T E(GY giventha C NC,, it |, is asubset of an n
smplex.

N

Corollary 7.3 Let G= UCi be an n-simplex graph where each C. is region-connected
i=1

and where C, 1C,, i ! j,isa subset of an nsimplex. Then the condition in Corollary

7.2 is both necessary and sufficient for determining whether or not G is (n+1)-colorable
if it's associated graph, G¢, has no cycles.

Proof If G is (n+l)-colorable, then given any C, and C, as dtated, since their
intersection is a subset of an rsimplex, the coloring of C; can be chosen based upon that
of C; (owing to the (1+1)-colorability of C;). (The fact that there are no cycles in G¢
guarantees this ability.) Thus it is possible to choose the coloring of C, (even if G is

planar), such that we can add enough edges into E(G), whose vertices are colored

differently, so thaa G now becomes region-connected without changing the (n+1)-
colorability of G. O

While the bounds are given for arbitrary grephs, given specific conditions we can
improve upon this bound. For example, for planar graphs, snce r £2v- 4, we have as a
sufficient condition for 3-colorability that we need only try 227 +1 moves.

13
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