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PETER ASHWIN & MICHAEL FIELD

Abstract. We give an intrinsic definition of a heteroclinic network as a flow
invariant set that is indecomposable but not recurrent. Our definition covers many
previously discussed examples of heteroclinic behavior. In addition, it provides a
natural framework for discussing cycles between invariant sets more complicated
than equilibria or limit cycles. We allow for cycles that connect chaotic sets
(cycling chaos) or heteroclinic cycles (cycling cycles). Both phenomena can occur
robustly in systems with symmetry.

We analyze the structure of a heteroclinic network as well as dynamics on and
near the network. In particular, we introduce a notion of ‘depth’ for a hetero-
clinic network (simple cycles between equilibria have depth one), characterize the
connections and discuss issues of attraction, robustness and asymptotic behavior
near a network.

We consider in detail a system of nine coupled cells where one can find a variety
of complicated, yet robust, dynamics in simple polynomial vector fields that pos-
sess symmetries. For this model system, we find and prove the existence of depth
two networks involving connections between heteroclinic cycles and equilibria, and
study bifurcations of such structures.
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1. Introduction

Dynamical systems that commute with a group of symmetries often display com-
plicated robust dynamics that results from the presence of symmetry. In symmetric
(equivariant) dynamical systems one can find robust attractors that are (a) not re-
current, and (b) do not display ergodic behavior. The simplest examples of this
phenomenon are heteroclinic cycles of the type made famous by Guckenheimer
and Holmes [23]. Slight variations on these examples can lead to rather com-
plicated, but apparently robust, attractors. While the presence of symmetry can
lead to complexity, the assumption of symmetry yields a range of new tools – alge-
braic and geometric – that can often make the complicated dynamics analytically
tractable.

Up until now, there has been no general definition that covers all examples of
‘heteroclinic’-type attractors. In this paper, we aim to give a usable definition that
includes all known examples of heteroclinic cycles and networks. Our definition is
nonetheless strong enough that we can prove structural results about heteroclinic
networks. To this end, we concentrate on the problem of describing the dynamics on
the network. That is, the dynamics intrinsic to the network, rather than dynamics
near the network. We then examine the consequences for dynamics near the network.

The paper is organized in the following way. In sections 2–4, we present definitions
and theoretical results. The remaining sections discuss specific models and examples.

In section 2, we start by discussing recurrence properties of flows; in particular
topological and chain recurrence. Next we give definitions for homoclinic and het-
eroclinic cycles. Roughly speaking, these are cyclic chains of connections between
recurrent invariant sets. This leads up to our intrinsic definition of a heteroclinic
network in section 2.3. A heteroclinic network is a continuous flow on a compact
metric space that is indecomposable and such that the set of recurrent points (the
set of nodes) satisfies certain regularity conditions.

We refer to the set of non-recurrent points as the set of connections. Associated
to every network we define a positive integer invariant that we call the depth of
the network. Heteroclinic cycles have depth one, more complicated networks have
depth greater than one. A quantity related to depth appears in the construction
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of the ‘Birkhoff center’ of a dynamical system. We prove some basic results on the
structure of heteroclinic networks and discuss a number of examples.

In section 3, we discuss the dynamics and asymptotics near a heteroclinic network
that is embedded as an invariant set of a dynamical system on Rn. We discuss
various conditions that imply an embedded heteroclinic network is an attractor for
nearby trajectories and characterize the behavior of observables from trajectories
converging to such networks.

In section 4 we tackle the problem of how to decide whether a given network
is robust in a given equivariant setting. At least for networks of depth greater
than one, structural stability appears not to form the basis of a good definition
of robustness. We formulate a weak, though verifiable, definition of stability that
relates the asymptotics on the network to the orbit structure of the group action.

In the remaining sections we focus on specific examples of equivariant systems in
Rn. Let ∆n = (Z2)n be the group generated by the set of reflections in all coordinate
hyperplanes and Γ be a finite group of linear symmetries of Rn containing ∆n. It
has been known for some time that the presence of the symmetries ∆n can lead to
robust attracting heteroclinic cycles in flows with symmetry Γ.

In sections 5–6, we study a model system of nine coupled identical one-degree of
freedom cells with Z3×Z3 global permutation symmetry and ‘internal’ Z2 symmetry.
We do this both from a theoretical point of view and also numerically. We find,
among other phenomena,

• Existence of depth two heteroclinic networks between equilibria with depth
one subnetworks that are attracting.
• Bifurcation of such networks to create networks between periodic orbits.
• Existence of cycles between ‘synchronized’ states that are ‘essentially asymp-

totically stable’.

All of this behavior is robust to perturbations preserving the symmetry. We also
briefly discuss some generic one-parameter bifurcations of these generalized net-
works.

Finally, in section 7, we consider the correspondence between our model equivari-
ant systems and Lotka-Volterra type equations that arise in game dynamics [33].
(This correspondence arises because equations that are symmetric under ∆n re-
stricted to an invariant sphere are equivalent to a game system on an (n − 1)-
simplex.) We also discuss some other consequences of the observed behavior and
implications for cycles between more complicated invariant sets, for example cycling
chaos [12, 20].

2. Heteroclinic networks

In this section our emphasis is on describing the intrinsic properties of a class
of compact flow-invariant sets. Although this class naturally arises in the study of
smooth flows on Rn, it is helpful at first to formulate our definitions in an abstract
setting. Consequently, throughout this section, we shall work with continuous flows
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on a compact metric space. In sections 3–4, this metric space is embedded into Rn
and the flow is the restriction of a smooth flow on Rn.

2.1. Preliminaries. Suppose Σ is a compact connected metric space with metric
ρ. We consider the continuous flow

(1) φt : Σ→Σ, t ∈ R.

In the sequel, we sometimes write (Σ, φ) to denote the set Σ together with the flow
φ. If the flow is clear from the context, we usually just write Σ.

For x ∈ Σ, let ω(x) (resp α(x)) denote the set of limit points of the trajectory
passing through x as t → ∞ (resp −∞). Recall that ω(x) and α(x) are compact,
connected flow-invariant subsets of Σ.

Definition 2.1. Given x, y ∈ Σ and ε, T > 0, we say there is an (ε, T )-pseudo orbit
joining x to y if we can find a finite subset {x = x0, y0, x1, . . . , xn, yn = y} of Σ and
ti ≥ T , 0 ≤ i < n such that for all 0 ≤ i < n we have

ρ(xi, yi) < ε,

xi+1 = φti(yi).

Remark 2.2. Our definition of (ε, T )-pseudo orbit follows that given in Shub [41,
page 18] and is slightly different from that originally used by Conley [11]. It
has the advantage that an (ε, T )-pseudo orbit joining x to y is automatically an
(ε, T )-pseudo orbit joining y to x for the time reversed flow. ♦

Following [11], we define a relation ∼ on Σ2 by requiring that x ∼ y if and
only if for all ε, T > 0, there exists an (ε, T )-pseudo orbit joining x to y. Let
P (Σ) = {(x, y) ∈ Σ2 | x ∼ y}. Just as in [11, Chapter III, §6], it may be shown
that ∼ is transitive and that P (Σ) ⊂ Σ2 is closed and invariant with respect to the
diagonal flow on Σ2.

Definition 2.3. The chain recurrent set Rch(Σ) of Σ is defined to be the subset of
Σ consisting of all x such that x ∼ x.

Since we may identify Rch(Σ) with the intersection of P (Σ) and the diagonal of
Σ2, it follows that Rch(Σ) is a closed flow-invariant subset of Σ.

We recall that

Rch(Rch(Σ)) = Rch(Σ),(2)

Rch(ω(x)) = ω(x), (x ∈ Σ),(3)

Rch(α(x)) = α(x), (x ∈ Σ).(4)

Definition 2.4 (cf Guckenheimer & Holmes [22, Defn 5.2.5]). We say (Σ, φ) is
indecomposable if x ∼ y for all x, y ∈ Σ.

Since we are assuming that Σ is compact and connected, it follows that Rch(Σ) =
Σ if and only if Σ is indecomposable.
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Remarks 2.5. (1) The definition of indecomposability given by Guckenheimer &
Holmes is weaker than ours in that they require points to be connected by (ε, 1)-
pseudo orbits, ε > 0.
(2) It follows from (4) that ω(x) and α(x) are always indecomposable. ♦

Definition 2.6. A φ-invariant subset S ⊂ Σ is recurrent if there is an x ∈ S such
that ω(x) = α(x) = S.

Remarks 2.7. (1) A recurrent subset of Σ is always connected and compact.
(2) Obviously, if S is recurrent then S is topologically transitive. Conversely, if there
exists x ∈ S such that ω(x) = S, then there is a residual subset of S consisting of
recurrent points (see, for example, Mañé [34]).
(3) If there exists x ∈ S such that S = α(x) ∪ ω(x) and x ∈ α(x) ∩ ω(x), then S is
recurrent. ♦

If S is an invariant subset of Σ, we define

R(S) = {x ∈ S | x ∈ ω(x) ∩ α(x)}.

We call R(S) the set of recurrent points (of S).

Remarks 2.8. (1) Even if S is closed, R(S) may not be a closed subset of S. In
the literature, R(S) is often defined to be the closure of the set of recurrent points.
In our applications we shall primarily be interested in R(Σ) and as part of our
regularity hypotheses, we shall require that R(Σ) is closed.
(2) If S = R(S), then S is a union of recurrent sets – S = ∪x∈Sα(x) ∩ ω(x). ♦

Lemma 2.9. Suppose that X is a closed invariant connected subset of Σ and X is
a union of recurrent sets. Then X is indecomposable.

Proof. Suppose X = ∪i∈IXi, where the Xi are recurrent sets. If x, y ∈ X and
ε, T > 0, we may choose {x = x0, x1, . . . , xn} ⊂ X such that ρ(xi, xi+1) < ε/2,
0 ≤ i < n. Since recurrent sets are indecomposable (Remarks 2.5(2)), we have
xi ∼ xi. Hence there is a (ε/2, T )-pseudo orbit Oi joining xi to xi, 0 ≤ i < n.
Concatenate the pseudo orbits O0, . . . , On−1 to obtain a (ε, T )-pseudo orbit joining
x to y. �

2.2. Heteroclinic cycles. Before we give our definition of a heteroclinic network,
we briefly review the definition and basic properties of a heteroclinic cycle. We start
by giving an intrinsic definition of a heteroclinic cycle (that is, without reference to
the phase space in which it may be embedded). Suppose that φt has equilibria

A = {p0, . . . , pk−1, pk = p0}.

Definition 2.10 (cf. Krupa & Melbourne [32, Definition 2.1]). We say that Σ
is a heteroclinic cycle connecting the equilibria A if for all x ∈ Σ there is a 0 ≤ j < k
such that either x = pj, or

α(x) = pj and ω(x) = pj+1.
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Figure 1. Sketch of a flow on a Möbius band that is a heteroclinic
cycle from α to β and back. Observe that the closure of the set of
connections from α to β contains the single connection from β to α.

Remarks 2.11. (1) According to Definition 2.10 there can be infinitely many con-
nections between adjacent equilibria pj, pj+1 of the cycle. (This is also possible with
Krupa & Melbourne’s definition).
(2) It is possible to construct examples for which the closure of the set of all connec-
tions between just one pair of adjacent equilibria is equal to all of Σ. For example,
see Figure 1. ♦

Example 2.12. One of the simplest (and best known) examples of a heteroclinic
cycle that occurs equivariant dynamics is the cycle described by Guckenheimer
& Holmes [23] (see Figure 3(b)). In this case, Σ is one-dimensional and consists of
three equilibria connected by three trajectories. Since Σ is a heteroclinic cycle of a
∆3 o Z3-equivariant vector field on R3, it follows by equivariance that γΣ is also a
heteroclinic cycle for all γ ∈ ∆3 o Z3 (see also [20, §4.2]). ♥

There are extensions of Definition 2.10 to allow for heteroclinic cycles connecting
limit cycles or even chaotic sets (see [36, 20]). We describe one such generalization
formulated in terms of stable and unstable sets.

If A ⊂ Σ is a compact flow-invariant set, we define the stable and unstable sets
of A by

Wu(A) = {y ∈ Σ | lim
t→−∞ ρ(φt(y), A) = 0},

Ws(A) = {y ∈ Σ | lim
t→∞ ρ(φt(y), A) = 0}.

Obviously, Wu(A), Ws(A) are flow-invariant subsets of Σ and Wu(A),Ws(A) ⊃ A.
Observe that if ω(x) ⊂ A if and only if x ∈ Ws(A). There is a similar relation
between α(x) and Wu(A).

Suppose that N = {Ni | i = 0, . . . , k − 1} is a finite set of mutually disjoint
compact flow invariant subsets of Σ. For notational convenience, we define Nk = N0.

Definition 2.13. We say that Σ is a heteroclinic cycle with node set N if
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(a) Wu(Ni) ∩Ws(Nj) 6= ∅ if and only if j = i+ 1 or j = k, i = 0, and
(b) ∪iWu(Ni) = ∪iWs(Ni) = Σ.

Remarks 2.14. (1) If N consists of equilibria, then Definition 2.13 is equivalent to
Definition 2.10.
(2) Although we have connections between nodes of the cycle, there may be few, if
any, connections between proper invariant subsets of nodes. ♦

It is worthwhile singling out a class of particularly well behaved heteroclinic cycles,
also called closed cycles in [4].

Definition 2.15. We say that Σ is a regular heteroclinic cycle if Wu(Nj)∪ {Nj+1}
is closed, j ≥ 0.

Remarks 2.16. (1) If Σ is regular, then the behavior described in Remarks 2.11(2)
does not occur. For example, the Guckenheimer & Holmes cycle is regular.
(2) An equivalent definition of regularity is to require that {Nj}∪Ws(Nj+1) is closed,
j ≥ 0.
(3) If the stable (or unstable) sets of the nodes are all one-dimensional, then Σ is
regular. ♦

A characteristic feature of a heteroclinic cycle is that the asymptotic dynamics
of points within the cycle is supported on the nodes of the cycle. That is, for all
x ∈ Σ, we have

ω(x) ∪ α(x) ⊂ ∪iNi

In the literature, there have been several attempts to extend the concept of a hete-
roclinic cyclic to allow for more complicated connections between equilibria or other
invariant sets (see, for example, [31], [16, §15], [20], [4]). The resulting constructions
are typically referred to as ‘heteroclinic networks’ or ‘heteroclinic complexes’.

In the next section, we present a definition of a heteroclinic network that gener-
alizes these definitions. Roughly speaking, we require that asymptotic dynamics on
the network is supported on the nodes of the network. The nodes may, for example,
consist of equilibria or more generally compact topologically transitive sets. Our
definition will include the examples of ‘cycling chaos’ found in [20, 12, 1] but not
the ‘Shilnikov’ network discussed in [20, Appendix]. It also includes the type of
cycling chaos discussed in [5] where there are connections to fixed points contained
within chaotic attractors. Although the dynamics on the cycle is relatively simple,
we emphasize that the dynamics in a neighborhood of an embedded cycle will be
typically rich and complex.

2.3. Intrinsic definition of a heteroclinic network. We define

C(Σ) = Σ \R(Σ).

In the sequel, we refer to C(Σ) as the set of connections of Σ.

Lemma 2.17. If X is a compact invariant subset of Σ, then X ∩R(Σ) 6= ∅.



8 PETER ASHWIN & MICHAEL FIELD

Proof. Since R(X) = ∪x∈Xα(x) ∩ ω(x) ⊂ ∪x∈Σα(x) ∩ ω(x) = R(Σ), it follows that
R(X) ⊂ R(Σ) ∩X. Since X is compact and invariant, R(X) 6= ∅ (see [30, Chapter
3]). �

Definition 2.18. We say that (Σ, φ) has a finite nodal set if we can write R(Σ) as
a finite union of disjoint, compact, connected flow invariant subsets. The set N of
such subsets is referred to as the nodal set of (Σ, φ). Elements of N are referred to
as the nodes.

Remarks 2.19. (1) If (Σ, φ) admits a finite nodal set then necessarily R(Σ) is closed
and C(Σ) is open. Moreover, if it is finite then the nodal set is unique (up to re-
ordering).
(2) Since a node is connected and a union of recurrent sets, it follows from Lemma 2.9
that nodes are indecomposable. ♦

Examples 2.20. (1) Suppose that Σ is a heteroclinic cycle between the equilibria
p0, . . . , pk = p0. Then Σ has finite nodal set N = {p0, . . . , pk−1}.
(2) Suppose Γ is a non-finite connected compact Lie group acting continuously on
Σ and φ is Γ-equivariant. Suppose that (Σ, φ) has nodal set N = {Ni | 0 ≤ i ≤
k − 1}. It follows by Γ-equivariance of φ and connectedness of Γ that each Ni is

Γ-invariant. Let φ̃t denote the flow induced by φt on the orbit space Σ̃ = Σ/Γ. Then

Ñ = {Ni/Γ | 0 ≤ i ≤ k − 1} is a finite nodal set for (Σ̃, φ̃). In this context, it is

natural to assume that each orbit space Ni/Γ is recurrent for φ̃. This would be the
situation, for example, if the sets Ni were relative equilibria. In particular, Σ is a
heteroclinic cycle between relative equilibria N0, . . . , Nk = N0 if and only if Σ̃ is a
heteroclinic cycle between equilibria N0/Γ, . . . , Nk/Γ = N0/Γ. ♥

Suppose that X is a compact subset of Σ. Define

λ+(X) = ∪x∈Xω(x),

λ−(X) = ∪x∈Xα(x),

λ1(X) = λ(X) = λ−(X) ∪ λ+(X).

Remark 2.21. If X is closed but not finite, neither ∪x∈Xω(x) nor ∪x∈Xα(x) need be
closed. ♦

For n > 1 we define λn(X) = λ(λn−1(X))) inductively. Taking X = Σ, we have
the following sequence of inclusions

Σ = λ0(Σ) ⊇ λ1(Σ) ⊇ . . . ⊇ λn(Σ) ⊇ . . . .

Set Σn = λn(Σ), n ≥ 0. We call {Σ0,Σ1, . . .} the asymptotic filtration of (Σ, φ).
Obviously, Σn ⊃ R(Σ), n ≥ 0. Moreover, since Σn is a compact flow-invariant

set, each connected component of Σn has non-empty intersection with R(Σ).

Definition 2.22. We say that (Σ, φ) has depth N if

(a) ΣN = R(Σ).
(b) Σn ) R(Σ), n < N .
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Remarks 2.23. (1) If depth(Σ) = N , then Σn = R(Σ), n ≥ N . In this case, we
regard {Σ0, . . . ,ΣN} as the asymptotic filtration.
(2) depth(Σ) = 0 if and only if R(Σ) = Σ. ♦
Example 2.24. Let Σ be a heteroclinic cycle connecting equilibria p0, . . . , pk = p0.
Then depth(Σ) = 1 and the asymptotic filtration of Σ is given by Σ0 = Σ, i.e. the
whole cycle, and Σ1 = {p0, . . . , pk−1} – the set of equilibria. For example, if Σ is the
Guckenheimer & Holmes cycle, Σ1 consists of three equilibria. ♥
Lemma 2.25. Suppose that depth(Σ) = N and that X is a compact connected
invariant subset of Σ. There exists a unique n, 0 ≤ n ≤ N , and connected component
Σ0
n of Σn such that

(a) X ⊂ Σ0
n.

(b) X 6⊂ Σn \ Σn+1.

Proof. Obviously there exists a largest n ≤ N such that X ⊂ Σn. Since X is
connected, X will be a subset of a unique connected component Σ0

n of Σn. If X ⊂ Σn,
then λ(X) ⊂ Σn+1. Since X ⊃ λ(X), it follows that X 6⊂ Σn \ Σn+1. �

Definition 2.26. We say that (Σ, φ) is a heteroclinic network if

(a) Σ is indecomposable.
(b) Σ has a finite nodal set.
(c) Σ has finite depth.

Remarks 2.27. If depth(Σ) > 0, or equivalently if the set of connections C(Σ) is
non-empty, we say that the heteroclinic network is non-trivial; otherwise we say the
network is trivial.
(2) Since each connected component of Σn contains at least one node, it follows that
Σn has finitely many connected components, n > 0. ♦
Definition 2.28. If Σ is a heteroclinic network and R(Σ) is a finite set of equilibria
then we say Σ is a heteroclinic network between equilibria in R(Σ).

Lemma 2.29. Suppose that Σ is a heteroclinic network between finitely many equi-
libria and that depth(Σ) = 1. Then Σ is a (possibly infinite) union of heteroclinic
cycles.

Proof. We are given that depth(Σ) = 1 and R(Σ) is a finite set of equilibria. Hence,
if x ∈ C(Σ), we can find p, q ∈ R(Σ) such that α(x) = p, ω(x) = q. Define X1 to
consist of the union of Ws(p) and those equilibria which are the α-limit points of
trajectories inWs(p). Iterating in the obvious way, we obtain an increasing sequence
of subsets (Xn) of Σ. Since there are only finitely many equilibria, it follows that
there exists N ≥ 1 such that Xn = XN , n ≥ N . If XN = Σ, we are done since then
q ∈ XN and so there is a sequence of connections of distinct equilibria joining q to
p. The required cycle is obtained by adding the connection from p to q. We claim
that XN is a closed connected flow-invariant subset of Σ. Assuming the claim, it
follows that XN = Σ, since if XN 6= Σ, then Σ cannot be indecomposable (XN is a
repellor). To prove the claim, let z ∈ XN \R(Σ). Necessarily, the trajectory through
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z must also lie in the closure of XN . But this implies that λ(z) ⊂ XN (otherwise
depth(Σ) > 1). Hence z ∈ XN . �

Since a heteroclinic network has an associated asymptotic filtration, it is natural
to ask whether each component of the filtration has the structure of a heteroclinic
network.

Theorem 2.30. Let (Σ, φ) be a heteroclinic network of depth N . For N ≥ n > 0,
Σn is a finite union of heteroclinic networks each with depth less than or equal to
N − n.

Proof. We prove by induction on N . If N = 1, the result is trivial since λ(Σ) is a
finite union of trivial heteroclinic networks. Suppose that the result is proved forN−
1 and that depth(Σ) = N . Recall that λ(Σ) ⊇ R(Σ) and each connected component
of λ(Σ) intersects R(Σ). Since R(Σ) has finitely many connected components, we
can conclude that λ(Σ) has finitely many connected components. Therefore we
restrict attention to one connected component Λ of λ(Σ). Observe that if a connected
component ofR(Σ) intersects Λ then it is contained within Λ and soR(Λ) has a nodal
set that is a union of connected components of R(Σ). Moreover, depth(Λ) < N , and
so it only remains to prove that Λ is indecomposable.

If x ∈ Λ, there exist sequences {xn} ⊂ Λ and {yn} ⊂ Σ such that xn→x and xn ∈
λ(yn), n ≥ 0. Without loss of generality we assume that xn ∈ ω(yn), n ≥ 0. Since
ω(yn) is connected, it follows that ω(yn) ⊂ Λ, n ≥ 0. But ω(yn) is indecomposable
and so xn ∼ xn on ω(yn) for all n ≥ 0. Hence xn ∼ xn on Λ and so, letting n→∞,
x ∼ x. �

Remark 2.31. Obviously, there are other possible ways of defining the ‘asymptotic
filtration’. For example, we could define the filtration by taking Σi to be the non-
wandering set of φ|Σi−1

. This gives a nested sequence Σ0 ⊇ Σ1 ⊇ · · · that in the
transfinite limit defines the Birkhoff center of the system (see [30, pp 129-130]). If
we assume finite depth, the Birkhoff center corresponds to the nodal set. However,
it is possible to construct examples for which Σi is not indecomposable and so
Theorem 2.30 fails (for example, see [11, §6.4]). ♦

Definition 2.32. We say that a heteroclinic network of depth N is regular if all
connected components in Σn, 0 ≤ n < N , which are of depth 1 are finite unions of
regular heteroclinic cycles.

Remark 2.33. In the case of a regular heteroclinic cycle, one can represent the dy-
namics as a directed graph on vertices that represent the equilibria. For heteroclinic
networks with depth greater than one, this is not possible as there will be x ∈ Σ
whose limits are not contained within R(Σ). For networks with depth one, there
will be a graphical representation of the network, although this is can be misleading
as in principle the set of connections between one pair of equilibria may accumulate
on connections between totally unrelated equilibria. This problem is related to our
definition of regularity for heteroclinic cycles. See also an example of Chossat,
Guyard & Lauterbach [9]. ♦
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Figure 2. The Chawanya heteroclinic network; a network with depth
equal to two.

Example 2.34. An example due to Chawanya [7, 8] of a regular (and robust)
heteroclinic network of depth two is shown in Figure 2. This network contains a
connection between an equilibrium and a heteroclinic cycle. More precisely, if we let
Σ′ denote the heteroclinic cycle a→b→c→d→a, then ω(y) = Σ′ for all points y 6= h
with α(y) = {h}. Since the ω-limit set of any point in Σ′ lies in {a, b, c, d}, it follows
that the network has depth two. The associated asymptotic filtration is given by
Σ0 = Σ, Σ1 = Σ′∪{e, f, g, h}, Σ2 = {a, b, . . . , h}. We remark that in Homburg [29]
there is a (non-robust) example of a network where there is a connection from an
equilibrium to a heteroclinic cycle. ♥

In the next example we show how to construct a (regular) network of arbitrary
depth.

Example 2.35. Let N ≥ 1. We construct a smooth flow φt on the torus TN =
RN/(2πZ)N such that (TN , φ) is a heteroclinic network of depth N . Define φt to be
the flow of the system

θ̇j = (1− cos θj)
2 + α(1− cos θj+1), 1 ≤ j < N,

θ̇N = (1− cos θN)2,

where α > 0 is a constant.
Regard Tj as embedded in Tj+1 by the inclusion (θ1, . . . , θj) 7→ (θ1, . . . , θj, 0), and

T0 ⊂ TN as the point θ1 = . . . = θN = 0.
We claim that if x? ∈ TN \TN−1, then the closure of the trajectory through x? has

depth N and λ(x?) ⊂ TN−1 has depth N − 1. Given this claim, the result follows
easily.

The fact that for any x? ∈ TN \ TN−1 we have [φt(x
?)]N → 0 as t → ∞ and

[φt(x
?)]N−1 winds arbitrarily many times around [0, 2π] as long as θN(t) 6= 0 proves

the claim for N = 2.
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A

B

C

D

a

b

c

d

e

f

(b) Guckenheimer-Holmes
                  network

(a)  Kirk-Silber network

Figure 3. Examples of heteroclinic networks.

Suppose the result is proved for all 2 ≤ n ≤ N − 1 and pick any x? ∈ TN \ TN−1.
It follows from the equation for θ′N , that θN(t)→0 as t→±∞. Hence λ(x?) ⊂ TN−1.
Since θN−1(t) visits all values infinitely often, given any 0 < ξ < 2π there must be (by
compactness) an accumulation point of the trajectory having θN−1 = ξ. Therefore

there exists a y? ∈ λ(x?) ∩ (TN−1 \ TN−2) and so φy?(R) ⊂ λ(x?). By the inductive

hypothesis, depth(φy?(R)) = N − 1. Since φx?(R) is indecomposable it follows that

depth(φx?(R)) = N . ♥

Heteroclinic networks often occur robustly in systems with symmetry and we
give some simple examples below of heteroclinic networks that occur in equivariant
dynamics. All of these examples have depth one.

Examples 2.36. In Figure 3(a), we show the one-dimensional heteroclinic network
studied by Kirk & Silber [31]. The network contains four equilibria A,B,C,D
and three heteroclinic cycles: A→B→D→A, A→C→D→A and A→B→C→D→A.

In Figure 3(b) we show the ∆3oZ3-orbit of the Guckenheimer & Holmes het-
eroclinic cycle. Note that the network contains more cycles than just the translates
of the original cycle by elements of ∆3 oZ3. For example, a→e→b→c→d→f→a is
a heteroclinic cycle.

In Figure 4 we show an example of an irregular two-dimensional heteroclinic
network. This example occurs in a ∆5 oZ5-equivariant vector field on R5 [16, §15].
If we let Z5 act by mapping a to b, b to c etc, then the network is the Z5-image of the
triangle 4abd (shaded in the figure). Just as in the previous examples, the ω-limit
of any point in the network is one of the equilibria a, . . . , e and so the network has
depth one. ♥



HETEROCLINIC NETWORKS 13

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������a

b c

d

e

Figure 4. A two-dimensional, depth one network.

We conclude this section with a technical lemma that gives an effective and simple
way of proving the indecomposability of a heteroclinic network. We make use of this
result in section 5.

Lemma 2.37. Suppose that Φ is a continuous flow on a compact connected metric
space Σ such that λ(Σ) ⊂ Σ′, where Σ′ is compact and indecomposable. Then Σ is
indecomposable.

Proof. Suppose x ∈ Σ. Either x ∈ Σ′, and so x is chain recurrent, or x /∈ Σ′. In the
latter case, since λ(Σ) ⊂ Σ′ we pick any two points y ∈ ω(x) and z ∈ α(x). Given
any ε, T > 0, we can find (ε, T )-pseudo orbits from z to x and from x to y and so
z ∼ x and x ∼ y. Since Σ′ is indecomposable we have y ∼ z and so, by transitivity,
x ∼ x. �

3. Dynamics and asymptotics near embedded heteroclinic networks

Although the dynamics on a heteroclinic network are relatively simple to quantify,
the dynamics that can occur in a neighborhood of an embedded network can be very
subtle and complex. For example, the Chawanya network arose out of a study of a
Lotka-Volterra type cubic five dimensional system of differential equations restricted
to a four-dimensional hyperplane. Careful numerical investigations by Chawanya
indicate that there are can be parameter values for which there are infinitely many
attractors in a neighborhood of the cycle [7, 8].

For the remainder of this section, we shall suppose that F is a smooth vector field
on Rn with flow Φt. Given x, y ∈ Rn, let d(x, y) = ‖x−y‖ denote Euclidean distance.
If X is a compact Φ-invariant subset of Rn, we define the stable and unstable sets
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of X by

W u(X) = {y ∈ Rn | lim
t→−∞ d(Φt(y), X) = 0},

W s(X) = {y ∈ Rn | lim
t→∞ d(Φt(y), X) = 0}.

If X has hyperbolic structure, then W s(X), W u(X) are fibered by smooth mani-
folds (see [30, Chapter 6]). In particular, if X is a hyperbolic equilibrium or limit
cycle then W s(X) and W u(X) will be smoothly immersed manifolds. If X is not
hyperbolic, then W s(X),W u(X) will typically not have smooth structure.

On occasions, we refer to W s(X) as the basin of attraction of X. We say that X
is a (Milnor) attractor [38] if

`(W s(X)) > 0,

where `(·) is Lebesgue measure on Rn.
Now suppose that Σ is a compact Φ-invariant subset of Rn and set Φt|Σ = φt. For

the remainder of this section, we assume that (Σ, φ) is a heteroclinic network with
node set N = {N1, . . . , Nk}.

3.1. Recurrence and attraction near embedded networks. Although Σ is in-
decomposable (in particular, chain recurrent), Σ is not recurrent unless depth(Σ) =
0. However, if Σ is embedded in Rn, it is natural to ask about the ω-limit sets of
points in the basin of attraction of Σ. In particular, under what circumstances can
we find points x ∈ W s(Σ) such that ω(x) ⊇ R(Σ)? We remark that the problem of
characterizing those (Σ, φ) which are representable as ω-limit sets has been consid-
ered by Bowen [6] in the context of discrete continuous dynamical systems defined
on (possibly disconnected) spaces.

Example 3.1. The Guckenheimer & Holmes network Σ arises as the hetero-
clinic network of a ∆3oZ3-equivariant cubic vector field F on R3. We recall that F
depends on three real parameters (a, b, c). It may be shown that there is a non-empty
open set Π of parameters for which we may represent Σ as a subset of a globally
attracting flow-invariant 2-sphere S ⊂ R3. Moreover, we may choose Π so that Σ is
an asymptotically stable attractor (we refer to [20, §6.2] for details). Henceforth, as-
sume (a, b, c) ∈ Π. We may represent the Guckenheimer & Holmes heteroclinic
cycle Σ0 as the intersection of Σ with the positive octant of S. Since the coordinate
planes xi = 0 are flow-invariant subspaces, it follows that if x = (x0, x1, x2) ∈ R3,
then ω(x) is a subset of any octant containing x. Further, provided |x0|, |x1| and |x2|
are not all equal and are non-zero, the octant is unique and there exists a unique
γ ∈ ∆3 such that ω(x) = γΣ0. Hence, although the Guckenheimer & Holmes
network is chain recurrent, nearby trajectories do not visit all of the nodes, even
if the network is asymptotically stable. Of course, if we ignore the symmetry, it is
an easy exercise to embed (Σ, φ) in a flow Φ̃ on R3 so that Σ is an asymptotically
stable attractor for Φ̃ and there exist points x ∈ R3 such that ω(x) = Σ. Indeed, we
may require that Φ̃ is equal to the original equivariant flow near R(Σ). ♥
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We now give a number of conditions on embedded heteroclinic networks that
strengthen the transitivity condition and avoid the pathology described in the pre-
vious example. Note however that the presence of codimension-one invariant sub-
spaces may force the previous behavior to be typical.

Condition A1 There exists an x ∈ Rn such that ω(x) = Σ.

Condition A2 There exists a positive Lebesgue measure set of x ∈ Rn such that
ω(x) = Σ.

Condition A3 There exists an open set of x ∈ Rn such that ω(x) = Σ.

Condition B1–B3 The same as conditions (A1)–(A3) except that ω(x) ⊇ R(Σ).

Condition C1–C3 The same as conditions (A1)–(A3) except that ω(x) ∩ N 6= ∅
for each N ∈ N .

We have the following diagram of implications between the conditions.

A3 ⇒ A2 ⇒ A1
⇓ ⇓ ⇓
B3 ⇒ B2 ⇒ B1
⇓ ⇓ ⇓
C3 ⇒ C2 ⇒ C1

In particular, every condition implies (C1). If Σ is a one-dimensional heteroclinic
cycle, then conditions (An) and (Bn) are equivalent. For higher dimensional cy-
cles, these conditions are not equivalent. For example, Ashwin and Chossat [4]
show there are cycles where (B3) holds but (A3) fails. An example of Ashwin
and Rucklidge [5] shows that the (Cn) conditions generally do not give much
information about dynamics near the network.

For a given embedding of a heteroclinic network, it is generally nontrivial to verify
condition (B1) (or even (C1)). Nevertheless, we conjecture that in the absence of
codimension one invariant subspaces for the flow, it is possible to satisfy condition
(B2) generically. (Note that if the network has at least two nodes, we can never
satisfy any of the conditions with trajectories through points of Σ.)

Remarks 3.2. (1) Condition (B1) is the weakest condition we can envisage placing
on an embedded heteroclinic network that excludes the pathology described in Ex-
ample 3.1. Thus, the only subnetworks of the Guckenheimer & Holmes network
that satisfy (B1) are the group translates of the Guckenheimer & Holmes cycle.
(2) In practice, one would hope that an embedded ‘attracting’ network satisfies con-
dition (B2).
(3) Conditions (B2) and (B3) suggest the possibility of defining a symbolic dynamics
associated to the cycle. Symbol sequences would be defined in terms of visitation of
nodes. ♦
Examples 3.3. (1) An illustrative example is provided by the 4-dimensional system
studied by Guckenheimer & Worfolk [25] (see also Worfolk [43]). Guck-
enheimer & Worfolk study a cubic vector field on R4 with symmetry group
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Γ equal to the determinant one subgroup of ∆4 o Z4. Just as for the Gucken-
heimer & Holmes network, there is an open region of parameter space for which
this system has an asymptotically stable one-dimensional heteroclinic network Σ
and this network may be represented as a Γ-invariant subset of the 3-sphere in R4.
Let Σ0 denote the intersection of Σ with the positive sector R4

+ ⊂ R4. Unlike the
Guckenheimer & Holmes network the coordinate hyperplanes xi = 0 are not
flow-invariant and so there is the possibility of trajectories which are asymptotic
to Σ leaving the R4

+ and having ω-limit equal to Σ. In this case, trajectories twist
around the the one-dimensional connections and repeatedly visit all the ‘octants’ of
R4. While this phenomenon has not yet been verified for the cubic form used by
Guckenheimer & Worfolk, it can be shown that condition (A2) is satisfied for
generic vector fields near the cubic normal form.
(2) The example of Kirk and Silber [31], shown in Figure 3(a), gives an example
where none of the conditions (A1)–(B3) are satisfied. This is because of the pres-
ence of codimension one invariant subspaces. Kirk and Silber show that points are
attracted to one of two possible subcycles. ♥

3.2. Averaged behavior near embedded networks. Suppose that Σ is a hete-
roclinic network embedded in Rn and ω(x) ⊂ Σ for some x ∈ Rn. If depth(Σ) > 0
this will have consequences on the behavior of averages along the trajectory of x in
particular any intersection of ω(x) with the nodes will cause ‘slowing down’ behavior
typical of heteroclinic orbits. We now state this precisely.

For any x with ω(x) ⊆ Σ, define Ω(x) to be the set of accumulation points of the
set of measures

1

T

∫ T

t=0

δΦt(x) dt, (T ∈ R),

as T →∞ in the weak dual topology on the space of continuous functions on Σ.
Measures in Ω(x) are Φt-invariant and so we may define the essential ω-limit set

of x (see also [42, 2])

ωess(x) = ∪µ∈Ω(x)supp(µ).

The compactness of Σ implies that the set of invariant probability measures is also
compact and so ωess(x) 6= ∅. Obviously, ω(x) ⊇ ωess(x) and ωess(x) is flow invariant.

Remark 3.4. The set ωess(x) can be thought of as the set of all limit points that
contribute asymptotically to averages of observables along the trajectory of x. ♦

Our main result about ωess(x) is that it is disjoint from the set C(Σ) of connec-
tions. This follows directly from [30, Theorem 4.1.18(1)]

Theorem 3.5. Let (Σ, φ) be a heteroclinic network embedded in Rn. Suppose that
x ∈ Rn and that ω(x) ⊆ Σ. Then

ωess(x) ⊆ R(Σ).

Remark 3.6. (1) For particular examples one can say more. In particular, if ωess(x)
is not a single ergodic measure, then the trajectory through x will behave non-
ergodically. That is, averages of observables along the orbit do not converge but
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subsequences can be found that converge to a continuum of values. This has been
shown for specific heteroclinic cycles [21, 42].
(2) It follows from [30, Theorem 4.1.18] that R(Σ) supports all flow invariant prob-
ability measures on Σ. ♦

It is possible for a sub-network of an embedded heteroclinic network to be a Milnor
attractor [38]. In this case, (A2) can hold for the sub-network but (A3) will not.
This can occur, for example, if the sub-network is essentially asymptotically stable
in the terminology of Melbourne [37]. Numerical results of Chawanya [7, 8]
suggest that close to such invariant sets, there may be a countable infinity of stable
periodic orbits accumulating on the set.

4. Regularity and stability of embedded heteroclinic networks

It is well-known that heteroclinic cycles can occur robustly in systems that possess
families of invariant subspaces. We recall that there are several natural classes of
dynamical system of this type. Differential equation models for population dynamics
often have invariant subspaces (extinction is a conserved quantity) and we refer
to the article by Hofbauer [27] and book by Hofbauer and Sigmund [28] for
examples of robust heteroclinic cycles in population models. Another important and
widely studied class of examples are symmetrically coupled systems of identical cells
or oscillators (see, for example, [13, 20]). More generally, if Γ is a Lie group, (V,Γ)
is a Γ-representation, and H ⊂ Γ, then the fixed point space V H = {v ∈ V | H(v) =
{v}} is an invariant linear subspace for all Γ-equivariant vector fields on V . If Γ is
finite or compact abelian, then V has finitely many fixed point subspaces. If Γ is
compact nonabelian, then V typically has infinitely many invariant subspaces (for
example, take the standard action of SO(3) on R3).

In this section, we shall restrict attention to Γ-equivariant vector fields on a fi-
nite dimensional representation (V,Γ), Γ finite. We do this mainly to simplify our
presentation. All our results and definitions extend straightforwardly to popula-
tion models defined on Rn+ or indeed to any class of vector fields which preserve a
sufficiently regular filtration of the phase space.

The first stability result on heteroclinic cycles was obtained by dos Reis [40].
Dos Reis proved a result characterizing structural stability for equivariant vector
fields on compact 2-manifolds. In particular, he showed that if certain conditions
on eigenvalues held, then cycles like the Guckenheimer & Holmes cycle were
(locally) structurally stable. Unfortunately, it is unrealistic to expect that local
structural stability will hold, even generically, for heteroclinic networks of depth
greater than one, even if the nodes are structurally stable. In the examples below,
we sketch two of the ways in which structural stability can fail in networks of depth
greater than one.

Examples 4.1. (1) Let Σ ⊂ R4 denote the one-dimensional heteroclinic network
considered by Guckenheimer & Worfolk [25]. This network has depth one and
is the group orbit of the base cycle Σ′ = R4

+ ∩Σ. For an open region of parameters,
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Σ is attracting and contained in an attracting flow-invariant 3-sphere S ⊂ R4. In
this example there are no codimension one reflection planes and so trajectories typ-
ically twist around the 1-dimensional connections between equilibria and appear to
visit randomly all of the cycles in the group orbit of Σ′. Although the network is
robust under equivariant perturbation, the flow is never locally structurally stable
in a neighborhood of the network in S. We present a brief sketch of an argument
showing the failure of local structural stability. We associate to each forward trajec-
tory asymptotic to Σ′ a symbol sequence identifying the ordered sequence of edges
in Σ′ visited by the trajectory (we ignore the measure zero set of trajectories which
are asymptotic to one of the equilibria in the network). The symbol sequence of a
trajectory will then be a conjugacy invariant of the trajectory (we may assume the
conjugacy is C0 close to the identity map). By making arbitrarily small perturba-
tions supported near a single edge we can change the order of symbol sequences and
hence structural stability fails.
(2) It is possible to modify the Guckenheimer & Holmes cycle and obtain a cycle
Σ ⊂ R6 between three limit cycles which has two dimensional connections and each
pair of cycles lying in a four-dimensional fixed point space. We may further require
that Σ is attracting and that Σ is contained in an attracting flow-invariant 5-sphere
S. In this case, the flow is not structurally stable in a neighborhood of Σ ⊂ S
because of the appearance of moduli of stability [39] such as ratios of eigenvalues of
linearizations near fixed points. In fact the codimension of the C0-equivalence class
of the flow will be infinite. ♥

In spite of the limited prospects of obtaining satisfactory conjugacy or structural
stability results for networks, or even higher dimensional cycles, there are still good
stability questions one can ask. In particular, we would like to have some stability
in the asymptotics and symmetry properties of the network. This stability should
be related to the structure of the invariant subspaces of our phase space. Our aim
in this section will be to formulate a verifiable concept of stability for heteroclinic
networks in a symmetric system.

4.1. Orbit strata. Henceforth, we assume that Γ is a finite group and (V,Γ) is a
finite dimensional real Γ-representation.

If J ⊂ Γ, we let V J denote the fixed point set of J acting on V . Obviously, V J is
a linear subspace of V and is equal to the fixed point subspace of the subgroup of Γ
generated by J . It is known (see below) that there is an open and dense subset U
of V J such that all points in U have the same isotropy, say H, and

V J = V H .

It follows that the set of invariant linear subspaces of V is parametrized by the set
I = I(V,Γ) of isotropy groups for the action of Γ on V . Let V (H) denote the set of
points in V H with isotropy group equal to H. Then

V (H) = V H \
⋃

J)H,J∈I

V J ,
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and so V (H) open and dense in V H .
Let 〈H〉 denote the conjugacy class of H in Γ and define

V 〈H〉 =
⋃

J∈〈H〉

V (J).

The collection {V 〈H〉 | H ∈ I(V,Γ)} defines the stratification of V by isotropy type
or the orbit stratification of V . We call connected components of V 〈H〉 orbit strata.
Note that V 〈H〉 will consist of at least |Γ/H| orbit strata. We let S(V,Γ), or just S,
denote the set of all orbit strata. If X is a smooth Γ-equivariant vector field on V ,
then the orbit strata are all invariant by the flow of X.

Let S be a stratum of the orbit stratification and let ∂S denote the frontier of S.
Using the linearity of the Γ-action, it may be shown that if H ∈ I, then

∂V 〈H〉 ∩ V 〈J〉 6= ∅ ⇐⇒ J ) H and ∂V 〈H〉 ⊃ V 〈J〉.

Example 4.2. The symmetry group associated to the Guckenheimer & Holmes
cycle is the semi-direct product ∆3 o Z3 and ∆3 o Z3 acts linearly on R3. De-
fine connected subsets of R3 by V0 = {(0, 0, 0)}, V1 = {(x, 0, 0) | x > 0}, V2 =
{(x, x, x) | x > 0}, V3 = {(x, y, 0) | x, y > 0}, V4 = {(x, y, z) | x, y, x > 0} \ V2. The
orbit stratification of R3 is given as the union of the ∆3 o Z3-orbits of V0, . . . , V4.
Thus, γVj will be a connected orbit stratum for all γ ∈ ∆3 o Z3. All points in
∆3 o Z3(Vj) will have the same isotropy type, and x, y ∈ R3 will have the same
isotropy type if and only if x, y ∈ ∆3 o Z3(Vj) for some (unique) j. ♥

4.2. Relating the asymptotic filtration to the orbit stratification. Let Σ ⊂
V be a ‘robust’ heteroclinic network for a Γ-equivariant flow Φ on V and suppose
that depth(Σ) = N . Let x ∈ Σ and suppose that x lies in the orbit stratum S ∈ S.
Provided that x /∈ R(Σ), it will often be the case that λ(x) ⊂ ∂S. Indeed, the
existence of a robust cycle between equilibria, implies that we have at least one non-
transverse saddle connection between equilibria. The only way these can persist
under equivariant perturbation is if at least some of the equilibria lie in the frontier
of the orbit strata containing the connections.

We shall restrict attention to networks where we have the strongest relation be-
tween the asymptotic filtration of the network to the orbit stratification of V . It
should be possible to weaken our requirements to allow for cycles like those con-
structed by Matthews et al. [35] (see below).

Suppose that Σ has asymptotic filtration {Σ = Σ0,Σ1, . . . ,ΣN}. Given j ∈
{0, . . . , N}, we recall Σj can be written (uniquely) as a finite union Σj = ∪p(j)i=1 Σij of
heteroclinic networks, each of depth less than or equal to N − j. Let A(Σ) denote
the set of all subnetworks of Σ derived in this way from the asymptotic filtration.
Suppose that S ∈ A. Denote the asymptotic filtration of S by {S0, . . . , SM}, where
M = depth(S). For 0 ≤ k ≤M , let ρk(S) be the minimal union of orbit strata such
that

Sk \ Sk+1 ⊂ ρk(S).

Set F (S) = (ρ0(S), . . . , ρk−1(S)). We call F (S) the orbit flag of S.
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Definition 4.3. Let Σ,Σ′ be heteroclinic networks. We say that Σ,Σ′ are iso-
morphic if there is a bijection ι : A(Σ)→A(Σ′) such that for all S ∈ A(Σ),
F (S) = F (ι(S)).

Definition 4.4. Let S ∈ A(Σ). We say that S is symmetry adapted if

Sk+1 ⊂ ∂ρk(S), 0 ≤ k < depth(S).

If all the heteroclinic subnetworks in A(Σ) are symmetry adapted, we say Σ is
symmetry adapted.

Example 4.5. The Guckenheimer & Holmes network is symmetry adapted as
indeed are all the edge cycles and networks described in [20, Chapter 6]. So also is the
Kirk-Silber network [31]. However, the robust heteroclinic cycle of Matthews et
al. [35] is not symmetry adapted as there are connections between equilibria within
a fixed orbit stratum. In other words, their cycle includes connections that limit to
equilibria with the same symmetry as the points on the connecting orbit. ♥

4.3. Stability of networks.

Definition 4.6. Let Σ be a symmetry adapted heteroclinic network for the Γ-
equivariant vector field X. We say that Σ is geometrically robust if for every open
Γ-invariant neighborhood U of Σ, we can find an open neighborhood U of X in the
C1-topology such every Y ∈ U has a heteroclinic network ΣY ⊂ U such that ΣY is
symmetry adapted and A(Σ) is isomorphic to A(ΣY ).

Example 4.7. The Guckenheimer & Holmes network is geometrically robust
as indeed are all the edge cycles and networks described in [20, Chapter 6]. So also
is the Kirk-Silber network [31]. ♥

5. A coupled cell system

We think of a cell as being a low dimensional ordinary differential equation that
can be coupled to other cells. In this way we can build up a higher dimensional
dynamical system with desired symmetries that can have specifiable properties such
as a heteroclinic network.

In particular, we consider a coupled cell network consisting of nine cells, each
with one degree of freedom, coupled directionally such that the network has global
Z3 × Z3 symmetry. To simplify notation, we write Z3 × Z3 = Z(3, 3). We shall
assume that each of the cells has an independent internal Z2 symmetry. We may
think of this system as a coupling of three Guckenheimer & Holmes models [23]
in a ring. The symmetry group Γ of the system will be ∆9oZ(3, 3) or, equivalently,
the wreath product Z2 o Z(3, 3) [13]. Some of the dynamical and bifurcation theo-
retic consequences of wreath product symmetries are discussed in [13] (see also the
works [16, 20] which treat similar groups in semi-direct rather than wreath product
notation).

The phase space we work with is R9. We regard R9 as (R3)3 and denote points in
R9 as 3-tuples (x,y, z), where x = (x0, x1, x2), y = (y0, y1, y2) and z = (z0, z1, z2).
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Let σ be a generator of Z3 and define an action of Z3 on R3 by σ(x, y, z) = (y, z, x).
We let κ : R3→R3 be defined by κ(x, y, z) = (−x, y, z).

The action of Γ on R9 is generated by

ρ1(x,y, z) = (σx, σy, σz)
ρ2(x,y, z) = (y, z,x),
κ0
x(x,y, z) = (κx,y, z).

Note that

Z3 × Z3 = 〈ρ1, ρ2〉,
and that Z3 × Z3 is a transitive subgroup of S9. Consequently, in order to specify
a Γ-equivariant differential equation on R9 it suffices to write down one component
of the equation (see [16]).

In the sequel we shall use the following notational conventions. Let A = (a0, a1, a2),
B = (b0, b1, b2), . . . denote general points of R3. We let A0 denote a point (0, a1, a2)
of R3 with first coordinate zero. If x ∈ R3, A ∈ R3, we define

A(x2) = a0x
2
0 + a1x

2
1 + a2x

2
2.

If X = (x,y, z) ∈ R9, we define ‖X‖2 = ‖x‖2 + ‖y‖2 + ‖z‖2, where ‖ ‖ denotes
the Euclidean norm.

We consider two model Γ-equivariant vector fields whose dynamics are uniquely
determined by their first component.

ẋ0 = x0(1− ‖X‖2 + A0(x2) + B(y2) + C(z2)),(5)

and

ẋ0 = x0(1− ‖X‖2 + A0(x2) + B(y2) + C(z2)) + x0(dx2
1x

2
2 + ey2

0z
2
0).(6)

Both vector fields consist of a general Γ-equivariant cubic polynomial. In (6), fifth
order terms with (small) coefficients d and e have been added to the second vector
field in order to break a degeneracy of the third order system; see [1]. The coefficient
of the radial term x0‖X‖2 is chosen to be minus one so that if ‖A0‖, ‖B‖, ‖C‖ are
sufficiently small then the conditions of the invariant sphere theorem will hold [15].
That is, near the origin of R9, the dynamics of both systems will be forward asymp-
totic to a flow invariant 8-sphere, S ⊂ R9.

In fact we will often discuss a system that has more symmetry. Let ρ3 ∈ S9 be
defined by

ρ3(x,y, z) = (σx,y, z),

where σ is a generator of Z3. Let H = 〈ρ1, ρ2, ρ3〉 and set Γ? = ∆9oH. In terms of
wreath products we have

Γ? = (Z2 o Z3) o Z3.

The system (5) is Γ?-equivariant if and only if B = (b, b, b) and C = (c, c, c), for
some b, c ∈ R.

We emphasize that all of the phenomena we describe below persist under pertur-
bations with only ∆9 symmetry.
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5.1. Equilibria. In order to describe the equilibria of (6) it is easiest to work with
the truncated cubic system (5). It follows from [16, §§13,14] that there is an open and
dense semialgebraic subsetR of R8 such that if (A0,B,C) ∈ R, then all equilibria of
(5) are hyperbolic. Consequently, for fixed (A0,B,C) ∈ R, the equilibria of (6) will
be hyperbolic for sufficiently small |d|, |e|. Moreover, the isotropy of the equilibria
will be the same as in the truncated system. That is, the symmetry of equilibria
will be unchanged if we perturb by higher order symmetric terms.

Using the results of [16, §§13,14] enables us to give a useful ‘parametrization’
of the equilibria that occur for (A0,B,C) ∈ R. First, however, we need some
preliminaries. We define a fundamental domain for the action of ∆9:

R9
+ = {(x0, . . . , z2) | x0, . . . , z2 ≥ 0}.

Since ∆9 ⊂ Γ, it is clear that if X is an equilibrium of (5), then we can find δ ∈ ∆9

such that δX ∈ R9
+. Consequently, to describe the set of equilibria of (5), it suffices

to find the equilibria lying in R9
+. Since R9

+ is Z(3, 3) invariant for the flow of (5),
it follows that the action of Z(3, 3) restricts to an action on R9

+.
Let E denote the Z(3, 3)-invariant subset of R9

+ consisting of all non-zero vectors
V such that each component of V lies in {0,+1}. It is shown in [16] that if X ∈ R9

+

is a hyperbolic equilibrium of (5), then there exists a unique point V ∈ E such that
ΓX = ΓV (equivalently, Z(3, 3)X = Z(3, 3)V). If V ∈ E , then V = (a,b, c), where
a,b, c ∈ R3. In future, we just set V = abc. If a = (0, 0, 0), we write a = 0. If
a = (1, 0, 0), we set a = 1 and if a = (1, 1, 1), we set a = 3. In the sequel, if X ∈ R9

+

is an equilibrium, we usually set X = pa, where a is the unique point in E such that
ΓX = Γa.

As an easy application of the methods in [16] (see also [20]), we have

Lemma 5.1. An equilibrium X ∈ R9
+ of (6,5) has maximal isotropy type if and

only if X corresponds to a point on the Z(3, 3)-orbit of 100 or 111 or 300 or 333.
All other equilibria have submaximal isotropy type. The same result also holds if
equations are Γ?-equivariant (with Z(3, 3) replaced by the subgroup of Γ? leaving R9

+

invariant).

If V ∈ E is not maximal, (5) may have no equilibria with isotropy equal to ΓV.
In fact, corresponding to each submaximal V ∈ E it is possible to compute explicit
equations and inequalities that determine the closed subset of R8 for which there are
no equilibria with isotropy equal to ΓV. In practice, these computations, although
quite tractable, can be complicated (see [16, §14]). The following result will suffice
for our needs.

Lemma 5.2. There is a nonempty open subset D of R such that if (A0,B,C) ∈ D,
then (5) has no equilibria with isotropy group equal to Γab0

, where a,b range over
all three tuples for which Γab0

is submaximal.

Proof. Let us start by assuming that (5) is Γ?-equivariant. Let R? ⊂ R4 be the open
and dense semialgebraic subset consisting of all A0,B = (b, b, b) and C = (c, c, c)
for which (5) has only hyperbolic equilibria. Let D? denote the open subset of R?
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corresponding to which (5) has no equilibria with submaximal isotropy equal to
Γab0

.
Straightforward computations show that a point (a1, a2, b, c) ∈ R? lies in D? if

and only if

a1a2 < 0,

bc < 0,

(3c− a1 − a2)b < 0,

(3c− a1 − a2)(3b− a1 − a2) < 0.

Hence D? 6= ∅. But now every point of D? determines an interior point of D. �

5.2. Stabilities of the equilibria p100 and p300. It is straightforward to compute
the eigenvalues and eigenspaces of the linearization of (5) at the equilibria p100 and
p300. The eigenvalues at p100 may be written as the 3-tuple

(7) ([−2, a2, a1], [c0, c1, c2], [b0, b1, b2]),

where the eigenvalue −2 corresponds (as always) to the radial direction. The triples
[−2, a2, a1], [c0, c1, c2], and [b0, b1, b2] respectively correspond to eigenvalues of the
linearization in the x-hyperplane, y-hyperplane and z-hyperplane. (Each of these
subspaces is invariant by the flow of (5).) For every eigenvalue, the eigenvector can
be taken to be the unit vector along the corresponding coordinate axis.

The eigenvalues at p300 are given by the triple

(8) ([−2,
a1 + a2 ± ı

√
3(a1 − a2)

a1 + a2 − 3
], [

c0 + c1 + c2

3− (a1 + a2)
], [

b0 + b1 + b2

3− (a1 + a2)
]).

The single eigenvalues associated to the y, and z-spaces occur with multiplicity
3. The eigenvalues in the x-space are exactly those that occur in the linearization
analysis of the Guckenheimer & Holmes cycle (see [16, §15] or [20, Chapter 6]).

5.3. The invariant sphere theorem. We recall some details on the invariant
sphere theorem. Suppose that X is a smooth vector field on Rn of the form X(x) =
x+Q(x), where Q is a homogeneous cubic polynomial. If we define

m(Q) = inf{(Q(u), u) | u ∈ Rn, ‖u‖ = 1},
M(Q) = sup{(Q(u), u) | u ∈ Rn, ‖u‖ = 1},

then for all x ∈ Rn

m(Q)‖x‖4 ≤ (Q(x), x) ≤M(Q)‖x‖4.

If M(Q) < 0, then (Q(x), x) < 0, all x ∈ Rn, x 6= 0. If this condition on Q holds,
we say that Q is contracting . It is shown in [20, Chapter 5] that if Q is contracting,
then there exists a topologically embedded flow-invariant (n − 1)-sphere S for the
flow of ẋ = X(x) such that ω(x) ⊂ S for all x ∈ Rn, x 6= 0. Moreover, the invariant
sphere S is contained in the annulus A(r, R) = {x | r ≤ ‖x‖ ≤ R}, where
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r =

√

−1

M(Q)
, R =

√

−1

m(Q)
.

In general, S will not be differentiably embedded.
For a ∈ R, define Qa(x) = Q(x) + a‖x‖2x, Xa = I + Qa. Obviously, M(Qa) =

M(Q) + a, m(Qa) = m(Q) + a. It follows by rescaling and the theory of normal
hyperbolic sets [26] that if we fix Q, N ∈ N, we can find aN ∈ R such that if a ≤ aN
then Qa is contracting and the corresponding invariant sphere S = Sa is embedded
as a CN -submanifold of Rn.

Remark 5.3. If a ≤ aN , the invariant sphere Sa is contained in the annulus A(r, R),

where r =
√

−1
M(Q)+a

, R =
√

−1
m(Q)+a

. In particular, as a→−∞, r→0, R/r→1. ♦

It follows from the previous remark that if we are given Q and N ∈ N, we can
rescale so that R < 1, for all a ≤ aN .

Suppose that Z is a smooth vector field on RN . Let ‖Z‖1 denote the uniform
C1-norm of Z restricted to the unit ball. As a straightforward consequence of the
theory of normally hyperbolic sets, we have the following differentiable version of
the invariant sphere theorem.

Theorem 5.4 (cf [15, Theorem 5.2]). Let N ∈ N and Q be a homogeneous cubic
polynomial on Rn. We may choose aN ∈ R and δ > 0 such that if Z is a smooth
vector field on Rn satisfying Z(0) = 0, DZ(0) = 0, and ‖Z‖1 < δ, then for a ≤ aN
the vector field Za(x) = x+Qa(x) + Z(x) has a unique CN flow-invariant (n− 1)-
sphere S contained in the unit ball of RN . Further, ω(x) ⊂ S for all x ∈ RN ,
0 < ‖x‖ ≤ 1.

Remark 5.5. In practice, we apply Theorem 5.4 when Q is the third order truncation
of a smooth vector field on Rn and Z is the remainder term. Roughly speaking, the
theorem implies that if X(x) = x + Q(x) + O(‖x‖4) is a smooth vector field on
Rn, then we can add a cubic term a‖x‖2x, so that if a is sufficiently negative the
resulting equation has a differentiably embedded flow-invariant sphere containing
the origin. ♦

We use the invariant sphere theorem in our study of dynamics of (6) in the fol-
lowing way. First of all, we consider the cubic truncation (5). Provided that the
homogeneous cubic part is contracting, all non-trivial trajectories of (5) will be for-
ward asymptotic to a flow-invariant embedded 8-sphere. Further, for an open dense
set of coefficients A0, B, C, all equilibria of (5) will be hyperbolic. The hyperbolicity
of equilibria persists if we add on a term a‖X‖2X, a < 0, except at possibly finitely
many values of a. For sufficiently negative values of a, the invariant sphere can be
made to have any prescribed finite order of differentiability. If the invariant sphere
is at least C1 (in fact, C0 in our case), we can add on small fifth and higher order
terms without changing stability or destroying the invariant sphere. (Of course,
dynamics on the invariant sphere may and do change.)
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5.4. Connections. We recall that there exists a nonempty open subset D of R8

such that if (A0,B,C) ∈ D, then (5) has no equilibria of submaximal isotropy type
in x,y-space (Lemma 5.2). In particular, all equilibria in x,y-space are of maximal
isotropy type and lie in {(x,y) | x = 0 or y = 0}. Let D′ denote the nonempty
open subset of D consisting of coefficient values for which the conditions of the
invariant sphere theorem hold (C0-invariant spheres will suffice). We investigate
connections between equilibria in x-space and y space under the assumption that
(A0,B,C) ∈ D′.

First, we need some notation. Let Z3 = 〈ρ1〉, and recall that ρ1 acts on the R9 by
simultaneous cyclic permutation of coordinates in the x-, y- and z-coordinate sub-
spaces. We also set Z̃3 = 〈ρ2〉, and recall that ρ2 cyclically permutes the coordinate
subspaces.

We write 100−→010, if there exist ρ, δ ∈ Z3 such that there is a connection from
ρp100 = pρ100 to δp010. That is, if W u(ρp100)∩W s(δp010) 6= ∅. Note that it follows
by Z3-equivariance that if there is a connection from ρp100 to δp010, then there are
connections from ρj1ρp100 to ρj1δp010, for j = 1, 2.

If there are connections from ρp100 to δp010 for all ρ, δ ∈ Z3, we write

100⇒010.

We generalize this notation to allow for connections between 300 and 030 or 010.
Of course, it follows by Z3-equivariance that

100−→030 =⇒ 100⇒030,

300−→030 =⇒ 300⇒030,

300−→010 =⇒ 300⇒010.

Lemma 5.6. There is a nonempty open subset D? of D′ such that if (A0,B,C) ∈
D?, then (5) has connections

100⇒010, 100⇒030, 300⇒010, 300⇒030.

All of these connections persist for small values of e, f .

Proof. It follows from §5.2, that we can choose a nonempty open subset D′′ of D′
such that if the coefficients of (5) lie in D′′, then the signs of eigenvalues of the
linearizations at p100 and p300 are given according to the following table.

x-directions y-directions z-directions

p100 (−,+,−) (+,+,+) (−,−,−)
p300 (−, a, ā) (+,+,+) (−,−,−)

Note that a, ā signify that there is a complex conjugate pair of eigenvalues with
nonzero real part.

Let P denote the 2-plane in xy-space defined by P = {(x, 0, 0, y, 0, 0) | x, y ∈ R}.
Observe that P is fixed point subspace of R9-space and hence P is invariant by the
flow of (5). If we set P+ = R6

+∩P , then P+ is also invariant by the flow of (5). The
intersection of P+ with the invariant sphere is a flow invariant arc joining p100 to
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p010. Since the only equilibria on the arc are p100 and p010, it follows that there is
a connection from p100 to p010. Similarly, we may show that there is a connection
from ρp100 to τp010 for all ρ, τ ∈ 〈ρ1〉. Hence 100⇒010. A similar argument proves
that 300⇒030

For the remaining cases, we start by working with the group Γ?. Each pair of
equilibria that we wish to prove connected are then contained in a two dimensional
fixed point space of Γ? and intersection with the invariant sphere then gives a con-
necting flow-invariant arc. Connections persist when we break symmetry from Γ?

to Γ and hence we obtain the required open subset D? of D′.
Finally, these connections persist if we allow e, d to be nonzero but small. �

6. Heteroclinic cycles

In this section, we describe a variety of nontrivial robust heteroclinic networks
present in the model systems (5) and (6). We present numerical simulations illus-
trating the asymptotic behavior of trajectories near these networks. For simplicity,
we shall work entirely within the flow-invariant region R9

+.

6.1. A depth one heteroclinic network. We assume that coefficients of (5) lie
in the region D? described by Lemma 5.6. In particular,

(a) The system (5) has an attracting invariant sphere S.
(b) The signs of the eigenvalues of the linearization of (5) at p100 and p300 are

given by

(−,+,−,+,+,+,−,−,−) and (−, a, ā,+,+,+,−,−,−),

respectively.
(c) There are no submaximal equilibria in xy-space.

These conditions imply that there is a ‘Guckenheimer & Holmes’ cycle Σx
contained in x-space. Specifically, the cycle determined by the Z3-orbit of the con-
nection p10000→p01000:

(9)
10000

↗ ↘
00100 ← 01000

We let Σy = ρ2Σx and Σz = ρ2
2Σx denote the corresponding cycles in y- and

z-space.
It follows from Lemma 5.6 that 100⇒010. In particular, there is a cycle

(10)
100

↗ ↘
001 ← 010
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Since 100⇒010, it follows that for all α, β, γ ∈ Z3, there is a cycle

(11)
α100

↗ ↘
γ001 ← β010

As an immediate consequence of Lemma 5.6, we see that there is also a cycle

(12)
300

↗ ↘
030 ← 003

We refer to this cycle as a cycle between synchronized states. Finally, yet another ap-
plication of Lemma 5.6 yields a plethora of cycles that switch between synchronized
and single states. For example, there is a cycle

(13)
300

↗ ↘
010 ← 001

It follows from (11) that for coefficients in D?, there exists a depth one hetero-
clinic network linking all equilibria with isotropy conjugate to that of 100. The
connections are shown schematically in Figure 5. Note that, for clarity, not all links
are shown.

Remark 6.1. The connections obtained in the proof of Lemma 5.6 were one dimen-
sional and came by looking at invariant subspaces. It follows that there is a natural
‘symmetry determined’ one-dimensional regular heteroclinic network between equi-
libria of symmetry type 100. In general, of course, there may be infinitely many
connections between equilibria of symmetry type 100. ♦

6.2. A depth two heteroclinic network. Under certain circumstances, the depth
one networks described above are part of a depth two network. More precisely, let
D?2 be the nonempty open subset of D?2 for which the complex eigenvalues of the
linearization of (5) have strictly positive real part. That is, we require A0 = (a1, a2)
to satisfy a2 < 0 and

(14) −a2 > a1 > 0.

If these conditions hold, then the cycle Σx is a (globally) attracting heteroclinic
cycle in x-space and the equilibrium 300 is repelling in x-space.

For sufficiently small values of d and e, the cycle Σx persists and attracts all
nonzero and nonsynchronized trajectories in some (preassigned) neighborhood of
the origin in x-space.

In particular, we obtain a robust connection p300−→Σy from the ‘synchronized’
state p300 to Σy. Combining this observation with our previous results on con-
nections between equilibria, we see that we may construct a robust heteroclinic
network of depth two that includes the depth one networks constructed above as
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Figure 5. Schematic partial diagram of connections between equi-
libria in the ‘one-cell’ equilibria.

100000000

000100000

000010000
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000111000

Figure 6. Schematic diagram showing the types of connection mak-
ing up the depth two heteroclinic network in the nine coupled cell
system.

subnetworks. The network contains new connections shown schematically in Fig-
ure 6. More precisely, if we define

ΣH = ∪2
j=0ρ

j
2W

u(p300) ∩ R9
+,

then ΣH is a flow invariant compact subset of R9 which is contained in the inter-
section of the invariant sphere S with the union of the xy-, yz- and zx-coordinate
hyperplanes.

Proposition 6.2. The set ΣH is a geometrically robust heteroclinic network of depth
two.

Proof. We start by proving that depth(ΣH) = 2. Suppose X = (x,y,0) ∈ ΣH .
If y = 0, then ω(X) ⊂ Σx or ω(X) = {300}. In the first case, ω(X) is either
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an equilibrium in the Z3-orbit of p100 or is all of Σx. If x,y 6= 0, then either
ω(X) = {p030} or it is one of the equilibria in the Z3-orbit of p010 or it is all of
Σy. Similar results hold when we look at α-limit points, except that Σx no longer
occurs as an α-limit set. It follows that ΣH

1 is the union of the cycles Σx, Σy and Σz
together with the equilibria p300, p030, p003. Obviously, ΣH

2 is the set of equilibria in
ΣH . Hence depth(ΣH) = 2. The indecomposability of ΣH follows from Lemma 2.37.

It follows immediately from our construction of ΣH that ΣH is symmetry adapted
and dynamically coherent. Since equilibria on ΣH are all hyperbolic, it follows
easily that symmetry adaptation and dynamic coherence persist under Γ-equivariant
perturbation. From this it follows that ΣH is weakly geometrically robust. In order
to complete the proof of geometric robustness, it is easiest to work in R9 rather than
R9

+. If we let Sx denote the intersection of the invariant sphere S ⊂ R9 with x-

space, then ΣH is the Z̃3-orbit ofWu(Sx). Let Dy denote an open unit disk, center
the origin, in y-space. We may choose an open Z3 o ∆9-invariant neighborhood
U of S such that Wu(Sx) ∩ U is homeomorphic to Sx × Dy. It follows that the
homeomorphism type of ΣH near Sx is constant under equivariant perturbations.
Now it is easy to patch the local stability near Sx, Sy, Sz with the stability on the

complement of ΣH \ Z̃3U to obtain the required global stability result. �

Remarks 6.3. (1) For simplicity, we have worked entirely within S ∩ R9
+ ⊂ R9

+. Of
course, there is a completely analogous result if instead we work in S ⊂ R9

(2) It is not unreasonable to ask whether the flow on network ΣH is structurally
stable. Structural stability does not follow from the arguments of the proof of
Proposition 6.2. Indeed, a necessary condition for structural stability is that the
invariant manifolds of the equilibria in ΣH are stratumwise transverse (equivalently,
Γ-transverse, see [20]). We have not addressed this point and indeed suspect that
it is generally difficult to find conditions on the coefficients of (5) and (6) that yield
stratumwise transversality of the invariant manifolds. ♦

6.3. Numerical simulations. To investigate these networks further, simulations
were carried out using the dynamical systems package dstool [24] with variable
step Runge-Kutta integrator and error tolerance 10−8. An initial condition was
chosen away from any symmetry-forced invariant subspaces, and the trajectory was
computed for several thousand time-units. Typical parameter values for the simu-
lations are shown in Table 1. Illustrations of time series at these parameter values
are shown in Figures 7 to 10; note that the parameters d and e non-zero to break
the degeneracy of the bifurcation where the cycle (9) changes stability within the
subspaces with isotropy a00.

The figures are as follows: Figure 7 shows a two-frequency quasi-periodic attrac-
tor; this can be thought of as having come from an interaction between periodic
orbits that have bifurcated from the cycles (9,10). Note that the parameter values
are such that all three of these cycles are unstable.

Figure 8 shows an attracting heteroclinic network between periodic orbits; in this
case the cycle (10) is stable within the space spanned by its vertices, but it is unstable
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a1 a2 b0 b1 b2 c0 c1 c2 d e
(a) 0.9 −0.87 1 1 1 −0.99 −0.99 −0.99 −0.1 −0.1
(b) 0.9 −0.89 1 1 1 −1.1 −1.1 −1.1 −0.1 −0.1
(c) 0.9 −0.91 1 1 1 −1.1 −1.1 −1.1 −0.1 −0.1
(d) 0.9 −0.87 1 1 1 −1.1 −1.1 −1.1 −0.1 −0.1

Table 1. Parameter values for the simulations of equation (6) shown
in Figures 7-10. For all these parameter values, there is an attracting
sphere on which the asymptotic dynamics takes place.

in other directions. Because d and e are non-zero, there are periodic orbits close
to the cycle (9) that are joined by connecting orbits to form a heteroclinic network
between periodic orbits.

Figure 9 shows an attracting heteroclinic network between the ‘one-cell’ equilibria.
For these parameter values, the cycles (9,10) are attracting within the subspaces
spanned by their nodes. Simulations indicate that the depth one network is an
attractor. Nevertheless, the attracting depth one network is embedded within an
asymptotically stable depth two network which contains, for example, connections
between p100 and Σy. The numerics we have done suggest that the depth one
subnetwork is essentially asymptotically stable; almost all trajectories eventually
avoid connections of the form p100→Σy. Such ‘hidden’ connections are likely to
generate many high period periodic orbits if we break the asymptotic stability of
the underlying depth two network.

Figure 10 shows an attracting heteroclinic network between ‘synchronized three-
cell’ equilibria; again, this is part of a depth two network, as can be seen by the
presence of decaying oscillations after each switching. However, typical trajectories
avoid connections of the form p300−→p010.

We also investigated some parameter values where submaximal equilibria exist
and can become part of the heteroclinic network; however this leaves many new
possibilities open and a classification is much more difficult.

6.4. Bifurcation behavior. The network (6) displays a number of bifurcations
that are generic in this context. Notably, fix all parameters except for a1 and increase
this through |a1| = |a2|; at this point the inequality in (14) is broken and the cycle
(9) loses stability within its invariant subspace. For d > 0 this leads to a bifurcation
of a large period periodic orbit from the cycle in a resonance bifurcation [10]; see
[1] for resonance bifurcation of a heteroclinic cycle between chaotic invariant sets.
Increasing a1 further will cause the periodic orbit to disappear at the 300 solution via
a Hopf bifurcation and consequently create a depth two connection from the cycle (9)
to the equilibrium p300. A detailed classification of possible generic bifurcations in
this system is beyond the scope of this work; we merely wish to indicate an example
of how bifurcations can alter the structure of a depth two heteroclinic network.
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Figure 7. Time series for parameter value Table 1(a) for compo-
nents x0 and y0. This exhibits attracting two frequency quasi-
periodicity.

6.5. Extensions and generalizations. Using the results on edge cycles in [20,
Chapter 6], it is easy to construct one-dimensional Z2 oZp-invariant attracting depth
one heteroclinic networks in Rp for all p ≥ 3. Just as we did in our construction of
the Z(3, 3)-invariant network, it is then straightforward to show that for all p, q ≥ 3
it is possible to construct a depth 2 geometrically robust attracting heteroclinic
network in Rpq with symmetry group (Z2 o Zp) o Zq (or Z2 × (Zp o Zq).

We believe that it possible to extend our methods so as to construct geometrically
robust networks of arbitrary depth in systems of symmetrically coupled cells. As
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Figure 8. Time series for parameter value Table 1(b) for compo-
nents x0 and y0. This exhibits a heteroclinic cycle to a periodic orbit;
note how the amplitude of the periodic orbit is almost constant except
for the starting and finishing peaks in each ‘burst’.

details of this work in progress will appear elsewhere, we limit ourselves to a few
brief remarks and comments.

One might guess that the construction of our depth 2 Z(3, 3)-invariant network
could be iterated N − 1 times to form a geometrically robust Z(3, 3, ..., 3)-invariant
network of depth N . However, this approach turns out to be too simplistic as it
ignores a crucial feature of the dynamics that leads to the Z(3, 3)-invariant network
having depth 2. Specifically, depth 2 follows from the existence of points x ∈ Σ such
that α(x) is a synchronized state 100 and ω(x) is a Guckenheimer & Holmes
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Figure 9. Time series for parameter value Table 1(c) for compo-
nents x0 and y0. This exhibits a heteroclinic cycle to a heteroclinic
cycle; note that the two rates of slowing down are rather different.

cycle. In order to obtain higher depths, we need cycling between synchronized states
and ‘Guckenheimer & Holmes’ cycles. One way to achieve this is to alternate
the stabilities of the synchronized states and heteroclinic cycles in a symmetrically
coupled ring consisting an even number of heteroclinic cycles. Just as before, this
leads to a depth 2 heteroclinic network. An appropriate coupling of three such net-
works should then lead to a depth 3 heteroclinic network. We believe that iteration
of this procedure will lead to geometrically robust heteroclinic networks of arbitrary
depth.
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Figure 10. Time series for parameter value Table 1(d) for com-
ponents x0 and y0. In this case the attractor is a heteroclinic cycle
between synchronized states; observe the decaying oscillations and the
slowing down between each approach to a synchronized state.

A particularly interesting feature of networks of this type (including iterated
Z(3, 3)-invariant networks) is that if the network is asymptotically stable and there
is a bifurcation breaking asymptotic stability or, alternatively, a forced symmetry
breaking, then there will be periodic orbits near the cycle that exhibit multiple time
scales corresponding to their tracking of cycles in the original network.
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7. Discussion

We have proposed a definition of a heteroclinic network that encompasses many
previous definitions, but also allows such cycles as that discovered by Chawanya
[7, 8] where connections may limit on to other connections. In doing so we show that
the concept of ‘depth’ of a flow on an invariant set (previously regarded as having
little direct application to generic systems) has real relevance to structurally stable
attractors in symmetric systems.

We have shown that such networks (which may contain robust continua of con-
nections and/or chaotic invariant sets) have a hierarchical structure that can be
characterized by their depth. We have given sufficient conditions for their embed-
dings that they can appear as ω-limit sets of nearby points, as well as sufficient
conditions that they are robustly embedded in symmetric systems. We emphasize
that these are only sufficient, and in many cases would be hard to verify. It is
an open problem to obtain improved results for stability and robustness. This is
likely to be difficult due to the appearance of essentially asymptotic stable subnet-
works, and possible existence of sets of stable periodic orbits or other invariant sets
accumulating on the network [8].

To address some of the questions about stability, we have examined a model sys-
tem on R9 that has a number of relatively easily analyzable but nontrivial networks;
we can show their robust existence and numerically find attracting networks.

As there is an equivalence between differential equations on Rn with ∆n symmetry
and game dynamics differential equations on the (n− 1)–simplex [33], these results
apply in both settings.

Trajectories that are asymptotic to ‘cycling chaos’ networks will show a slowing
down series of switchings between shadowing of different types of recurrent behavior
characterized by possibly chaotic nodal sets. If the nodes are not uniquely ergodic
then there is also a question of which of these ergodic measures will contribute to
averages of observables along trajectories that approach C. Chaotic sets raise a
number of further questions that we leave to future research.
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Astérisque, 51 (1978), 335–346.

[40] G L dos Reis. Structural stability of equivariant vector Fields on two-manifolds, Trans.
Amer. Math. Soc. 283 (1984), 633–642.

[41] M Shub. Global stability of Dynamical systems, Springer-Verlag New York Inc., New York,
Berlin, Heidelberg, (1987).

[42] K Sigmund. Time averages for unpredictable orbits of deterministic systems, Annals of Op-
erations Research 37 (1992), 217–228.

[43] P A Worfolk. An equivariant, inclination-flip, heteroclinic bifurcation, Nonlinearity 9 (3)
(1966), 631–648.

Department of Mathematics and Statistics, University of Surrey, Guildford GU2
5XH, UK

E-mail address: P.Ashwin@surrey.ac.uk

Department of Mathematics, University of Houston, Houston, TX 77204-3476,
USA

E-mail address: mf@uh.edu


