

Fixed Points Results for Graphic Contraction on Closed Ball

Aftab Hussain^{1,2,*}

¹Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan ²Department of Mathematical Sciences, Lahore Leads University, Lahore - 54000, Pakistan *Corresponding author: aftabshh@gmail.com

Abstract In this paper, we introduce a new class of ciric fixed point theorem of (α, ψ) -contractive mappings on a closed ball in complete metric space. As an application, we have derived some new fixed point theorems for ciric ψ -graphic contractions defined on a metric space endowed with a graph in metric space. Our results provide extension as well as substantial generalizations and improvements of several well known results in the existing comparable literature.

Keywords: fixed point, α – admissible, (α, ψ) – contraction, closed ball

Cite This Article: Aftab Hussain, "Fixed Points Results for Graphic Contraction on Closed Ball." *Turkish Journal of Analysis and Number Theory*, vol. 4, no. 4 (2016): 93-97. doi: 10.12691/tjant-4-4-2.

1. Introduction

In 2012, Samet et al. [18], introduced a concept of $\alpha - \psi$ - contractive type mappings and established various fixed point theorems for mappings in complete metric spaces. Afterwards Karapinar and Samet [6], refined the notions and obtain various fixed point results. Hussain et al. [9], enlarged the concept of α -admissible mappings and obtained useful fixed point theorems. Subsequently, Abdeljawad [4] introduced pairs of α – admissible mappings satisfying new sufficient contractive conditions different from [9] and [18], and proved fixed point and common fixed point theorems. Lately, Salimi et al. [17], modified the concept of $\alpha - \psi$ - contractive mappings and established fixed point results. Mohammadi et al. [7] introduced a new notion of $\alpha - \psi$ -contractive mappings and show that this is a real generalization for some old results. Arshad et al. [2] established fixed point results of a pair of contractive dominated mappings on a closed ball in an ordered complete dislocated metric space. Hussain et al. [8], introduced the concept of an α -admissible map with respect to η and modify the $\alpha - \psi$ -contractive condition for a pair of mappings and established common fixed point results for two, three, and four mappings in a closed ball in complete dislocated metric spaces. Over the years, fixed point theory has been generlized in multi-directions by several mathematicians(see [1-18]).

Let Ψ be a family of nondecreasing functions $\psi:[0,+\infty)\to[0,+\infty)$ such that $\sum_{n=1}^{+\infty}\psi^n(t)<+\infty$, for each t>0.

Lemma 1. ([17]). If $\psi \in \Psi$, then $\psi(t) < t$ for all t > 0. **Definition 2.** ([18]). Let (X,d) be a metric space. A mapping $T: X \to X$ is an (α, ψ) – contractive mapping if there exist two functions $\alpha: X \times X \to [0, +\infty)$ and $\psi \in \Psi$ such that

$$\alpha(x, y)d(Tx, Ty) \le \psi(d(x, y)),$$

for all $x, y \in X$.

Definition 3. ([18]). Let $T: X \to X$ and $\alpha: X \times X \to [0, +\infty)$. We say that T is α -admissible if $x, y \in X$, $\alpha(x, y) \ge 1$ implies that $\alpha(Tx, Ty) \ge 1$.

Example 4. Let $X = (0, \infty)$ and T an identity mapping on X. Define $\alpha: X \times X \to [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} e^{\frac{y}{x}} & \text{if } x \ge y, x \ne 0\\ 0 & \text{if } x < y. \end{cases}$$

Then T is α – admissible.

Definition 5. ([17]). Let $T: X \to X$ and $\alpha, \eta: X \times X \to [0, +\infty)$ two functions. We say that T is α -admissible mapping with respect to η if $x, y \in X$, $\alpha(x, y) \ge \eta(x, y)$ implies that $\alpha(Tx, Ty) \ge \eta(Tx, Ty)$.

If $\eta(x, y) = 1$, then above definition reduces to definition 3. If $\alpha(x, y) = 1$, then T is called an η -subadmissible mapping.

Definition 6. ([7]). Let $T: X \to X$ and $\alpha_0: X \times X \to [0, +\infty)$ by

$$\alpha_0(x, y) = \begin{cases} 1 & \alpha(x, y) \ge \eta(x, y) \\ 0 & \text{otherwise} \end{cases}.$$

We say that T is α_0 -admissible. If $\alpha_0(x,y) \ge 1$, then $\alpha(x,y) \ge \eta(x,y)$ and so $\alpha(Tx,Ty) \ge \eta(Tx,Ty)$. This implies $\alpha_0(Tx,Ty) = 1$. Also $\alpha_0(x_0,Tx_0) = 1$.

2. Main Results

We prove ciric fixed point results for (α, ψ) – contraction mappings on a closed ball in complete metric space.

Theorem 7. Let (X,d) be a complete metric space and T is α – admissible mapping with respect to η . For r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge \eta(x, y)$$

$$\Rightarrow d(Tx, Ty) \le \psi(M(x, y)),$$
(1)

where

$$M(x, y) = \max \left\{ \frac{d(x, y), d(x, Tx), d(y, Ty),}{\frac{d(x, Ty) + d(y, Tx)}{2}} \right\},$$

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_0, Tx_0)) \le r, \text{ for all } j \in N.$$
 (2)

Suppose that the following assertions hold:

- $\alpha(x_0, Tx_0) \ge \eta(x_0, Tx_0);$
- for any sequence $\{x_n\}$ in $B(x_0,r)$ such that $\alpha(x_n,x_{n+1}) \ge \eta(x_n,x_{n+1})$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \ge \eta(x_n,u)$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $B(x_0, r)$ such that $Tx^* = x^*$.

Proof. Let x_1 in X be such that $x_1 = Tx_0$, $x_2 = Tx_1$. Continuing this process, we construct a sequence x_n of points in X such that, $x_n = Tx_n$. By assumption $\alpha(x_0, x_1) \ge \eta(x_0, x_1)$ and T is α -admissible mapping with respect to η . we have, $\alpha(Tx_0, Tx_1) \ge \eta(Tx_0, Tx_1)$ from which we deduce that $\alpha(x_1, x_2) \ge \eta(x_1, x_2)$ which also implies that $\alpha(Tx_1, Tx_2) \ge \eta(Tx_1, Tx_2)$. Continuing in this way we obtain $\alpha(x_n, x_{n+1}) \ge \eta(x_n, x_{n+1})$ for all $n \in \mathbb{N} \cup \{0\}$. First, we show that $x_n \in \overline{B(x_0, r)}$ for all $n \in \mathbb{N}$. Using inequality (2), we have,

$$d(x_0, Tx_0) \leq r$$
.

It follows that,

$$x_1 \in \overline{B(x_0, r)}$$
.

Let $x_2, \dots, x_j \in \overline{B(x_0, r)}$ for some $j \in N$. Using inequality (1), we obtain,

$$d(x_i, x_{i+1}) = d(Tx_{i-1}, Tx_i)$$

$$\leq \psi(M(x_{i-1}, x_i))$$

$$M(x_{i-1}, x_i) = \max \begin{cases} d(x_{i-1}, x_i), d(x_i, x_{i+1}), \\ \frac{d(x_{i-1}, x_{i+1})}{2} \end{cases}$$

$$\leq \max \begin{cases} d(x_{i-1}, x_i), d(x_i, x_{i+1}), \\ \frac{d(x_{i-1}, x_i) + d(x_i, x_{i+1})}{2} \end{cases}.$$

So

$$M(x_{i-1}, x_i) \le \max\{d(x_{i-1}, x_i), d(x_i, x_{i+1})\}.$$
 (3)

the case $M(x_{i-1}, x_i) = d(x_i, x_{i+1})$ is impossible

$$d(x_i, x_{i+1}) \le \psi(d(x_i, x_{i+1})) < d(x_i, x_{i+1}).$$

Which is a contradiction. Otherwise, in other case $M(x_{i-1}, x_i) = d(x_{i-1}, x_i)$

$$d(x_i, x_{i+1}) \le \psi(d(x_{i-1}, x_i)) \le \psi^2(d(x_{i-2}, x_{i-1}))$$

$$\le \dots \le \psi^i(d(x_0, x_1)).$$

Thus we have,

$$d(x_i, x_{i+1}) \le \psi^i(d(x_0, x_1)). \tag{4}$$

Now.

$$\begin{split} d(x_0,x_{j+1}) & \leq d(x_0,x_1) + d(x_1,x_2) \\ & + d(x_2,x_3) + \ldots + d(x_j,x_{j+1}) \\ & \leq \sum_{i=0}^j \psi^i(d(x_0,x_1)) \\ & \leq r. \end{split}$$

Thus $x_{j+1} \in \overline{B(x_0, r)}$. Hence $x_n \in \overline{B(x_0, r)}$ for all $n \in N$. Now inequality (3.4) can be written as

$$d_1(x_n, x_{n+1}) \le \psi^n(d(x_0, x_1)), \text{ for all } n \in \mathbb{N}.$$
 (5)

Fix $\varepsilon > 0$ and let $N \in N$ such that $n \ge N \psi^n(d_l(x_0, x_1)) < \varepsilon$. Let $m, n \in N$ with m > n > N. Then, by the triangle inequality, we have

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \le \sum_{k=n}^{m-1} \psi^k (d_l(x_0, x_1))$$

$$\le \sum_{n \ge N} \psi^k (d_l(x_0, x_1)) < \varepsilon.$$

Hence $\{x_n\}$ is a Cauchy sequence in $(\overline{B(x_0,r)},d)$. As every closed ball in a complete metric space is complete, so there exists $x^* \in \overline{B(x_0,r)}$ such that $x_n \to x^*$. Also

$$\lim_{n \to \infty} d(x_n, x^*) = 0.$$
(6)

So by given assumption from (ii), we have $\alpha(x_n, x^*) \ge \eta(x_n, x^*)$, for all $n \in N \cup \{0\}$. Now from (1), we obtain

$$d(x_{n+1}, Tx^*) \le \psi \Big(M(x_n, x^*) \Big). \tag{7}$$

where

$$M(x_n, x^*) = \max \left\{ \frac{d(x_n, x^*), d(x_n, x_{n+1}), d(x^*, Tx^*),}{\frac{d(x_n, Tx^*) + d(x^*, x_{n+1})}{2}} \right\}.$$

If $d(x^*, Tx^*) \neq 0$, then $M(x_n, x^*) > 0$ for every n. Thus

$$d(x_{n+1}, Tx^*) \le \psi(M(x_n, x^*)) < M(x_n, x^*).$$
 (8)

which on taking limit as $n \to \infty$ gives

$$d(x^*, Tx^*) = \lim_{n \to \infty} d(x_{n+1}, Tx^*)$$

$$\leq \lim_{n \to \infty} M(x_n, x^*) = d(x^*, Tx^*).$$

Hence $d(x^*, Tx^*) = 0$. The result follows.

Example 8. Let $X = [0, \infty]$ with metric on X defined by d(x, y) = |x - y|. Let $T: X \to X$ be defined by,

$$Tx = \begin{cases} x4 \text{ if } x \in [0,1] \\ x - \frac{1}{4} \text{ if } x \in (1,\infty). \end{cases}$$

Consider $x_0 = 1$, r = 2, $\psi(t) = \frac{t}{3}$ and

$$\alpha(x, y) = \begin{cases} 1 & \text{if } x, y \in [0, 1] \\ 0 & \text{otherwise} \end{cases}.$$

Now $\overline{B(x_0,r)} = [0,1]$. then

$$d(x_0, Tx_0) = d(1, T1) = d(1, \frac{1}{4}) = \left|1 - \frac{1}{4}\right| = \frac{3}{4}$$

$$\sum_{i=0}^{n} \psi^{n}(d(x_{0}, Tx_{0})) = \frac{3}{4} \sum_{i=0}^{n} \frac{1}{3^{n}} < \frac{3}{2} (\frac{3}{4}) = \frac{9}{8} < 2$$

Also if $x, y \in (1, \infty)$, then

$$|3x-3y| > |x-y|$$

$$|x-y| > \frac{|x-y|}{3}$$

$$|x-\frac{1}{4}-(y-\frac{1}{4})| > \psi(|x-y|)$$

$$d(Tx,Ty) > \psi(d(x,y))$$

$$d(Tx,Ty) > \psi(M(x,y))$$

Then the contractive condition does not hold on X. Also if, $x, y \in \overline{B(x_0, r)}$, then

$$\left| \frac{3x}{4} - \frac{3y}{4} \right| \le |x - y|$$

$$\left| \frac{x}{4} - \frac{y}{4} \right| \le \frac{|x - y|}{3}$$

$$\frac{1}{4} |x - y| \le \psi(|x - y|)$$

$$d(Tx, Ty) \le \psi(d(x, y)) \le \psi(M(x, y)).$$

If $\eta(x, y) = 1$ in the Theorem 7, we have the following corollary.

Corollary 9. Let (X,d) be a complete metric space and T is α – admissible mapping. For r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge 1$$

$$\Rightarrow d(Tx, Ty) \le \psi(M(x, y)).$$
(9)

where

$$M(x, y) = \max \left\{ \frac{d(x, y), d(x, Tx), d(y, Ty),}{\frac{d(x, Ty) + d(y, Tx)}{2}} \right\}.$$

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_{0}, Tx_{0})) \le r, \text{ for all } j \in N.$$
 (10)

Suppose that the following assertions hold:

- $\bullet \qquad \alpha(x_0, Tx_0) \ge 1;$
- $\begin{array}{ll} \bullet & \text{for any sequence } \{x_n\} \text{ in } \overline{B(x_0,r)} \text{ such that} \\ \alpha(x_n,x_{n+1}) \geq 1 & \text{for all } n \in N \cup \{0\} \text{ and} \\ x_n \to u \in \overline{B(x_0,r)} \text{ as } n \to +\infty \text{ then } \alpha(x_n,u) \geq 1 \\ \text{for all } n \in N \cup \{0\} \text{ .} \end{array}$

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

If $\alpha(x, y) = 1$ in the Theorem 7, we have the following corollary.

Corollary 10. Let (X,d) be a complete metric space and T is η -subadmissible mapping. For r>0, $x_0\in \overline{B(x_0,r)}$ and $\psi\in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \eta(x, y) \le 1$$

$$\Rightarrow d(Tx, Ty) \le \psi(M(x, y)).$$
(11)

where

$$M(x, y) = \max \left\{ \frac{d(x, y), d(x, Tx), d(y, Ty),}{\frac{d(x, Ty) + d(y, Tx)}{2}} \right\}.$$

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_0, Tx_0)) \le r, \text{ for all } j \in N.$$
 (12)

If following assertions hold:

- $\eta(x_0, Tx_0) \le 1$;
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\eta(x_n,x_{n+1}) \le 1$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\eta(x_n,u) \le 1$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

Corollary 11. Let (X,d) be a complete metric space and T is α – admissible mapping with respect to η . For r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge \eta(x, y)$$

$$\Rightarrow d(Tx, Ty) \le \psi(N(x, y)),$$
(13)

where

$$N(x,y) = \max \begin{cases} d(x,y), \frac{d(x,Tx) + d(y,Ty)}{2}, \\ \frac{d(x,Ty) + d(y,Tx)}{2} \end{cases}$$

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_{0}, Tx_{0})) \le r, \text{ for all } j \in N.$$
 (14)

Suppose that the following assertions hold:

- $\bullet \qquad \alpha(x_0, Tx_0) \ge \eta(x_0, Tx_0);$
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\alpha(x_n,x_{n+1}) \geq \eta(x_n,x_{n+1})$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \geq \eta(x_n,u)$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

If $\eta(x, y) = 1$ in the corollary 11, we have the following corollary.

Corollary 12. Let (X,d) be a complete metric space and T is α – admissible mapping. For r>0, $x_0\in \overline{B(x_0,r)}$ and $\psi\in\Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge 1$$

$$\Rightarrow d(Tx, Ty) \le \psi(N(x, y))$$
(15)

where

$$N(x, y) = \max \begin{cases} d(x, y), \frac{d(x, Tx) + d(y, Ty)}{2}, \\ \frac{d(x, Ty) + d(y, Tx)}{2} \end{cases}$$

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_0, Tx_0)) \le r, \text{ for all } j \in N.$$
 (16)

Suppose that the following assertions hold:

- $\alpha(x_0, Tx_0) \ge 1$;
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\alpha(x_n,x_{n+1}) \ge 1$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \ge 1$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

If $N(x, y) = \frac{d(x,Tx) + d(y,Ty)}{2}$ in the corollary 11, we have the following corollary.

Corollary 13. Let (X,d) be a complete metric space and T is α – admissible mapping. For r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge 1$$

$$\Rightarrow d(Tx, Ty) \le \psi(N(x, y)),$$
(17)

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_{0}, Tx_{0})) \le r, \text{ for all } j \in N.$$
 (18)

Suppose that the following assertions hold:

- $\bullet \qquad \alpha(x_0, Tx_0) \ge 1;$
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\alpha(x_n,x_{n+1}) \ge 1$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \ge 1$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

If $N(x, y) = \frac{d(x,Ty) + d(y,Tx)}{2}$ in the corollary 11, we have the following corollary.

Corollary 14. Let (X,d) be a complete metric space and T is α – admissible mapping. For r>0, $x_0\in \overline{B(x_0,r)}$ and $\psi\in\Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge 1$$

$$\Rightarrow d(Tx, Ty) \le \psi(N(x, y)),$$
(19)

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_{0}, Tx_{0})) \le r, \text{ for all } j \in N.$$
 (20)

Suppose that the following assertions hold:

- $\bullet \qquad \alpha(x_0, Tx_0) \ge 1;$
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\alpha(x_n,x_{n+1}) \ge 1$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \ge 1$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

If N(x, y) = d(x, y), we obtain the following corollary.

Corollary 15. Let (X,d) be a complete metric space and T is α – admissible mapping with respect to η . For r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge \eta(x, y)$$

$$\Rightarrow d(Tx, Ty) \le \psi(d(x, y)),$$
(21)

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_0, Tx_0)) \le r, \text{ for all } j \in N.$$
 (22)

Suppose that the following assertions hold:

- $\bullet \qquad \alpha(x_0, Tx_0) \ge \eta(x_0, Tx_0);$
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\alpha(x_n,x_{n+1}) \geq \eta(x_n,x_{n+1})$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \geq \eta(x_n,u)$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

If $\eta(x, y) = 1$, N(x, y) = d(x, y) in the corollary 11, we have the following corollary.

Corollary 16. Let (X,d) be a complete metric space and T is α – admissible mapping. For r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, assume that,

$$x, y \in \overline{B(x_0, r)}, \alpha(x, y) \ge 1$$

$$\Rightarrow d(Tx, Ty) \le \psi(d(x, y))$$
(23)

and

$$\sum_{i=0}^{j} \psi^{i}(d(x_0, Tx_0)) \le r, \text{ for all } j \in N.$$
 (24)

Suppose that the following assertions hold:

- $\alpha(x_0, Tx_0) \ge 1$;
- for any sequence $\{x_n\}$ in $\overline{B(x_0,r)}$ such that $\alpha(x_n,x_{n+1}) \ge 1$ for all $n \in N \cup \{0\}$ and $x_n \to u \in \overline{B(x_0,r)}$ as $n \to +\infty$ then $\alpha(x_n,u) \ge 1$ for all $n \in N \cup \{0\}$.

Then, there exists a point x^* in $\overline{B(x_0,r)}$ such that $Tx^* = x^*$.

3. Fixed Point Results for Graphic Contractions

Consistent with Jachymski [13], let (X,d) be a metric space and Δ denotes the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., $E(G) \supseteq \Delta$. We assume G has no parallel edges, so we can identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph (see [13]) by assigning to each edge the distance between its vertices. If X and Y are vertices in a graph Y, then a path in Y from Y to Y of length Y (Y is a sequence Y is a sequence Y and Y is a path between any two vertices. Y is connected if there is a path between any two vertices. Y is weakly connected if Y is connected (see for details Y is connected (see for details Y is connected if Y is connected (see for details Y is Y is weakly connected if Y is connected (see for details Y is Y is weakly connected if Y is connected (see for details Y is Y is Y is Y is Y is Y is Y in Y in Y is Y in Y

Definition 17. ([13]). We say that a mapping $T: X \to X$ is a Banach G-contraction or simply G-contraction if T preserves edges of G, i.e.,

$$\forall x, y \in X, (x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G)$$

and T decreases weights of edges of G in the following way:

$$\exists k \in (0,1), \forall x, y \in X, (x, y) \in E(G)$$
$$\Rightarrow d(Tx, Ty) \le kd(x, y).$$

Now we extend concept of G-contraction as follows. **Definition 18.** Let (X,d) be a metric space endowed with a graph G and $T:X\to X$ be self-mappings. Assume that for r>0, $x_0\in \overline{B(x_0,r)}$ and $\psi\in\Psi$, following conditions hold,

$$\forall x, y \in \overline{B(x_0, r)}, (x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G)$$

$$\forall x, y \in \overline{B(x_0, r)}, (x, y) \in E(G) \Rightarrow d(Tx, Ty) \leq \psi(M(x, y).$$

where

$$M(x, y) = \max \left\{ \frac{d(x, y), d(x, Tx), d(y, Ty),}{\frac{d(x, Ty) + d(y, Tx)}{2}} \right\},$$

Then the mappings T is called ciric ψ -graphic contractive mappings. If $\psi(t) = kt$ for some $k \in [0,1)$, then we say T is G-contractive mappings.

Definition 19. Let (X,d) be a metric space endowed with a graph G and $T: X \to X$ be self-mappings. Assume that for r > 0, $x_0 \in \overline{B(x_0,r)}$ and $\psi \in \Psi$, following conditions hold,

$$\forall x, y \in \overline{B(x_0, r)}, (x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G)$$

$$\forall x, y \in \overline{B(x_0, r)}, (x, y) \in E(G) \Rightarrow d(Tx, Ty) \le \psi(N(x, y).$$

where

$$N(x, y) = \max \begin{cases} d(x, y), \frac{d(x, Tx) + d(y, Ty)}{2}, \\ \frac{d(x, Ty) + d(y, Tx)}{2} \end{cases}.$$

Then the mappings T is called ciric ψ -graphic contractive mappings. If $\psi(t) = kt$ for some $k \in [0,1)$, then we say T is G-contractive mappings.

Theorem 20. Let (X,d) be a complete metric space endowed with a graph G and $T: X \to X$ be ciric ψ -graphic contractive mappings and $x_0 \in \overline{B(x_0,r)}$. Suppose that the following assertions hold:

- $(x_0, Tx_0) \in E(G)$ and $\sum_{i=0}^{j} \psi^i(d(x_0, Tx_0)) \le r$ for all $j \in N$;
- if $\{x_n\}$ is a sequence in $\overline{B(x_0,r)}$ such that $(x_n,x_{n+1}) \in E(G)$ for all $n \in N$ and $x_n \to x$ as $n \to +\infty$, then $(x_n,x) \in E(G)$ for all $n \in N$.

Then T has a fixed point.

Proof. Define, $\alpha: X^2 \to (-\infty, +\infty)$ by

$$\alpha(x, y) = \begin{cases} 1, & \text{if } (x, y) \in E(G) \\ 0, & \text{otherwise} \end{cases}.$$

First we prove that the mapping T is α -admissible. Let $x,y\in \overline{B(x_0,r)}$ with $\alpha(x,y)\ge 1$, then $(x,y)\in E(G)$. As T is ciric ψ -graphic contractive mappings, we have, $(Tx,Ty)\in E(G)$. That is, $\alpha(Tx,Ty)\ge 1$. Thus T is α -admissible mapping. From (i) there exists x_0 such that $(x_0,Tx_0)\in E(G)$. That is, $\alpha(x_0,Tx_0)\ge 1$. If $x,y\in \overline{B(x_0,r)}$ with $\alpha(x,y)\ge 1$, then $(x,y)\in E(G)$. Now, since T, is ciric ψ -graphic contractive mapping, so $d(Tx,Ty)\le \psi(M(x,y))$. That is,

$$\alpha(x, y) \ge 1 \Rightarrow d(Tx, Ty) \le \psi(M(x, y)).$$

Let $\{x_n\} \subset \overline{B(x_0,r)}$ with $x_n \to x$ as $n \to \infty$ and $\alpha(x_n,x_{n+1}) \ge 1$ for all $n \in N$. Then, $(x_n,x_{n+1}) \in E(G)$ for all $n \in N$ and $x_n \to x$ as $n \to +\infty$. So by (ii) we have, $(x_n,x) \in E(G)$ for all $n \in N$. That is, $\alpha(x_n,x) \ge 1$. Hence, all conditions of Corollary 9 are satisfied and T has a fixed point.

Corollary 21. Let (X,d) be a complete metric space endowed with a graph G and and $T: X \to X$ be a mapping. Suppose that the following assertions hold:

- T is Banach G-contraction on $B(x_0, r)$;
- $(x_0, Tx_0) \in E(G)$ and $d(x_0, Tx_0) \le (1-k)r$;
- if $\{x_n\}$ is a sequence in $\overline{B(x_0,r)}$ such that $(x_n,x_{n+1}) \in E(G)$ for all $n \in N$ and $x_n \to x$ as $n \to +\infty$, then $(x_n,x) \in E(G)$ for all $n \in N$.

Then T has a fixed point.

Corollary 22. Let (X,d) be a complete metric space endowed with a graph G and and $T: X \to X$ be a mapping. Suppose that the following assertions hold:

- T is Banach G-contraction on X and there is $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$;
- if $\{x_n\}$ is a sequence in X such that $(x_n, x_{n+1}) \in E(G)$ for all $n \in N$ and $x_n \to x$ as $n \to +\infty$, then $(x_n, x) \in E(G)$ for all $n \in N$.

Then T has a fixed point.

Conflict of Interests

The authors declare that they have no competing interests.

References

- M. Abbas and T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory and Applications 2013, 2013:20.
- [2] M. Arshad, A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered complete dislocated metric space, Fixed Point Theory and Appl. (2013), 2013:115, 15 pp.
- [3] M. Arshad, Fahimuddin, A. Shoaib and A. Hussain, Fixed point results for α-ψ-locally graphic contraction in dislocated qusai metric spaces, Mathematical Sciences, In press.
- [4] T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory and Appl. 2013.
- [5] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75 (2012) 3895-3901.
- [6] E. Karapinar and B. Samet, Generalized (α-ψ) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., (2012) Article id: 793486.
- [7] B. Mohammadi and Sh. Rezapour, On Modified α-φ-Contractions, J. Adv. Math. Stud. 6 (2) (2013), 162-166.
- [8] N. Hussain, M. Arshad, A. Shoaib and Fahimuddin, Common fixed point results for α-ψ-contractions on a metric space endowed with graph, J. Inequal. Appl., 2014, 2014:136.
- [9] N. Hussain, E. Karapınar, P. Salimi and F. Akbar, α-admissible mappings and related fixed point theorems, J. Inequal. Appl. 114 2013 1-11.
- [10] N. Hussain, P Salimi and A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory and Applications, 2013, 2013:212.
- [11] N. Hussain, E. Karapinar, P. Salimi, P. Vetro, Fixed point results for G^m-Meir-Keeler contractive and G-(α,ψ)-Meir-Keeler contractive mappings, Fixed Point Theory and Applications 2013, 2013;34.
- [12] N. Hussain, S. Al-Mezel and P. Salimi, Fixed points for α-ψ-graphic contractions with application to integral equations, Abstr. Appl. Anal., Article 575869, 2013.
- [13] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 1 (136) (2008) 1359-1373.
- [14] M. A. Kutbi, M. Arshad and A. Hussain, On Modified α-η-Contractive mappings, Abstr. Appl. Anal., (2014) Article ID 657858, 7 pages.
- [15] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
- [16] B. E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 63 (2003) 4007-4013.
- [17] P. Salimi, A. Latif and N. Hussain, Modified α-ψ-Contractive mappings with applications, Fixed Point Theory Appl., (2013) 2013:151.
- [18] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165.