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Abstract

In this paper, we consider the preemptive scheduling of
hard-real-time sporadic task systems on one processor.
We �rst give necessary and su�cient conditions for a
sporadic task system to be feasible (i.e., schedulable).
The conditions cannot, in general, be tested e�ciently
(unless P =NP). They do, however, lead to a feasibil-
ity test that runs in e�cient pseudo-polynomial time
for a very large percentage of sporadic task systems.

1 Introduction

Scheduling theory as it applies to hard-real-time en-
vironments | environments where the missing of a
single deadline may have disastrous consequences |
seems to currently be enjoying a renaissance. Hard-
real-time scheduling problems may concern either
�xed-duration tasks or recurring tasks that must be
completed within a certain time frame. The prob-
lems most studied within the recurring category in-
volve periodically recurring tasks [LL73, LM80, LM81,
LW82, Mok83, BHR90]. Aperiodically or sporadically
recurring tasks have also been studied [Mok83, LSS87,
HL88, SLS88, JAM90, SSL89], but currently seem less
understood. The main focus of this paper concerns
feasibility testing with respect to sporadic task sys-
tems (i.e., testing whether a sporadic task system is
schedulable).

Sporadic tasks were introduced by Mok [Mok83] to
model external interrupts; i.e., events external to the
computer system, such as a button being pushed or
a train crossing a sensor. Clearly one cannot guaran-
tee schedulability for interrupts that occur arbitrarily
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frequently. However, when an interval between suc-
cessive invocations is guaranteed by the environment,
schedulability becomes possible. A sporadic task is
characterized by three positive integers | an execution
time e, a deadline d (relative to the release time), and
a minimum separation p, with e � d and e � p. Spo-
radic tasks may make a request at any time, but two
successive requests must be separated in time by at
least p \time units." A request by T at time t requires
that the processor be allocated (or scheduled) to T for
e time units in the interval [t; t + d). (We adhere to
the discrete model of time where a time unit cannot be
subdivided. The interval [t; t+d) then is composed of d
time units corresponding to times t, t+1, ..., t+d�1.)
Note that d is allowed to exceed p. This is signi�-
cant. For some applications, e.g., signal processing, it
is possible to model the processing elements (nodes in
a signal graph) as processes in our model. In this case,
the deadline of a process may be larger than its period
since there may be bu�ers which allow processing to
be postponed past the end of the sampling period. A
sporadic task system � is a collection of sporadic tasks
fT1; : : : ; Tng; with Ti = (ei; di; pi); 1 � i � n. � is
feasible (schedulable) i� it is possible for the processor
to meet the requirements for all requests in each set of
task requests that satis�es the separation constraints.

Liu & Layland [LL73] and Labetoulle [Lab74] �rst
introduced an on-line deadline driven algorithm for
scheduling periodic task systems. The algorithm is
optimal in the sense that it will successfully generate
a processor schedule for any periodic task system that
can be scheduled. (If the system cannot be scheduled
the algorithm will eventually miss a deadline.) Der-
touzos [Der74] subsequently extended this to obtain
a deadline algorithm that is optimal for sporadic task
systems. Leung & Merrill [LM80] then derived a fea-
sibility test for periodic task systems by showing that
a periodic task system is not feasible i� the deadline
algorithm of Liu & Layland and Labetoulle fails to
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schedule the system through a predetermined number
of time units. Prior to our (this) work, no complete
feasibility test for sporadic task systems appears to
have been known. Partial and/or related tests have
been developed, however; see, e.g., [Mok83, SSL89].
Mok provides a partial reduction from sporadic task
systems to periodic task systems, but while schedula-
bility of the resulting periodic task system guarantees
schedulability of the sporadic task system, the con-
verse fails to hold. In related work, Sprunt, Sha, &
Lehoczky [SSL89] recently provided a reduction from
a subclass of sporadic task systems (those in which
all deadlines are equal to the respective periods) to
periodic task systems with respect to �xed priority

schedulability, i.e., a �xed priority schedule exists for
the sporadic task system i� a �xed priority schedule
exists for the periodic task system. (For a discussion
on �xed priority schedules see, for example, Leung &
Whitehead [LW82].)

The major problem faced in the analysis of sporadic
task systems concerns the unpredictability or random-
ness of the task requests. For periodic task systems
the set of task requests to be encountered is known a

priori. For sporadic task systems, however, there is no
a priori knowledge about which set of task requests
will be encountered.

The ultimate goal regarding sporadic task systems
is to �nd an o�-line algorithm that will mechanically
synthesize on-line algorithms for scheduling the pro-
cessor. The o�-line algorithm would �rst determine
the feasibility of a sporadic task system, and if feasi-
ble construct a suitable on-line algorithm for schedul-
ing it. The resulting on-line algorithm must be able
to iteratively schedule the processor when presented
with any set of task requests that satis�es the sep-
aration constraints. Now the deadline algorithm of
Dertouzos [Der74] successfully schedules the proces-
sor when presented with any set of task requests for
which the processor can be scheduled | regardless of
whether the separation constraints hold. The deadline
algorithm then constitutes a suitable on-line schedul-
ing algorithm whenever one exists. If we could cou-
ple the deadline algorithm with a polynomial time
or even a pseudo-polynomial time feasibility test we
would have made signi�cant progress toward the real-
ization of a viable algorithm for mechanical synthesis.

In this paper, we derive necessary and su�cient con-
ditions for a sporadic task system to be feasible. We
�rst show that a sporadic task system is feasible i�
it can be scheduled with respect to a particular set of
task requests. (This allows us to ignore the random na-
ture of task requests in our analysis.) Techniques sim-
ilar to those employed by Leung & Merrill [LM80] and

Baruah, Howell, & Rosier [BHR90] are then used in
deriving our necessary and su�cient conditions. Our
conditions immediately yield an exponential time fea-
sibility test for sporadic task systems | the �rst such
test, as far as we know | and su�ce for showing
that feasibility testing with respect to sporadic task
systems belongs to co-NP. At this time, we are not
able to determine whether feasibility testing is co-NP-
complete, nor are we able to provide a feasibility test
that runs in polynomial or even pseudo-polynomial
time. Our test, however, runs e�ciently in pseudo-
polynomial time for a very large percentage of sporadic
task systems with integer parameters. While its worst-
case running time is O(P +max1�i�nfdig), where P
is the least common multiple (lcm) of p1; : : : ; pn, it
runs in time O(n � max1�i�nfpi � dig) with a small
constant of proportionality for all instances � where
0:99 <

Pn

i=1 ei=pi � 1 fails to hold.

The remainder of this paper is organized as follows.
Section 2 contains material concerning necessary and
su�cient conditions for a sporadic task systems to be
feasible. The resulting algorithm is presented in Sec-
tion 3. Although our results are shown with respect
to a discrete model of time where the inputs and pre-
emption boundaries are constrained to be integers, the
results generalize quite readily to a continuous model
of time without integer constraints. We discuss this in
Section 4. We also discuss extensions of our results to
hybrid systems consisting of some sporadic and some
periodic tasks.

2 Feasibility with respect to

sporadic task systems

In this section, we derive necessary and su�cient con-
ditions for a sporadic task system to be feasible. Our
techniques are similar to those employed by Leung &
Merrill [LM80] and Baruah, Howell, & Rosier [BHR90]
where it is concluded that feasibility testing with re-
spect to periodic task systems is co-NP-complete in
the strong sense. The conditions we derive here su�ce
for showing feasibility testing with respect to sporadic
task systems to be in co-NP. We are not able to es-
tablish a similar NP-hardness result, however. Nei-
ther are we able to provide a polynomial or pseudo-
polynomial time feasibility test. We do, though, in
the next section illustrate a feasibility test that runs
in pseudo-polynomial time for a very large percentage
of sporadic task systems.

Let � = fT1; : : : ; Tng be a sporadic task system
where Ti = (ei; di; pi) with ei � di and ei � pi; 1 � i �



n. Let P = lcmfp1; : : : ; png. We represent a request
by Ti at time t0 by the pair (i; t0); 1 � i � n; t0 � 0.
In the context of � we call the request (i; t0) a �-
request. Recall that (i; t0) requires that the processor
be allocated to Ti for ei time units during the interval
[t; t + di). A set of � -requests R is schedulable i� it
is possible for the processor to meet the requirements
of all � -requests in R. A set of � -requests is legal i�
whenever R contains both (i; t1) and (i; t2) we have
jt1� t2j � pi, i.e., the separation constraints are satis-
�ed. � is then feasible i� every legal set of � -requests
is schedulable.

An online scheduling algorithm � is an iterative al-
gorithm which when presented with a set of � -requests
R (� -request (i; t0) in R is presented to � at time
t0) uniquely determines at each instant of time t =
0; 1; 2; : : : which active � -request of R | if any | is
to be allocated the processor. The � -request (i; t0) in
R is said to be active at time t (with respect to �) i�
t0 � t < t0+di and � did not allocate the processor to
(i; t0) for ei time units in the interval [t0; t). � reports
failure | but does not terminate | at time t if there is
a � -request (i; t0) in R such that t0+ di = t and � did
not allocate the processor to (i; t0) for ei time units in
the interval [t0; t). � can only successfully schedule � if
it never reports failure when presented with a legal set
of � -requests. Hence, � can be expressed as a function
of R and t:

(�:R):(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(i; t0); failure meaning that � at time
t allocates the proces-
sor to � -request (i; t0)
and reports failure.

(0; 0); failure meaning that � at time
t leaves the processor
idle and reports fail-
ure.

(i; t0) meaning that � at time
t allocates the proces-
sor to � -request (i; t0)
and does not report
failure.

(0; 0) meaning that � at time
t leaves the processor
idle and does not re-
port failure.

In what follows we make use of the fact that the dead-
line algorithm of Dertouzos [Der74] is optimal for spo-
radic task systems. (See also [LL73, Lab74].) For the

remainder of this paper let � denote the deadline al-

gorithm. Given a set of � -requests R, � allocates the
processor at time t to the active � -request (if there is

one) whose deadline is nearest. Ties can be broken in
an arbitrary fashion without a�ecting whether or when
(�:R) reports failure. Hence, without loss of generality
we assume � chooses active � -request (i; t1) over (j; t2)
whenever \t1 + di < t2 + dj" or \t1 + di = t2 + dj and
i < j."

Lemma 1 (Der74) � is optimal for sporadic task

systems, i.e., given a set of �-requests R, (�:R) will

construct a schedule for R if one exists; otherwise �
at some time will report failure. Thus � is feasible

i� (�:R) constructs a schedule for every legal set of

�-requests R.

We now investigate properties of � when � is not fea-
sible. Our exposition requires the use of the following
lemma. Let R be a set of � -requests, t a non-negative
integer, and hR(t) =

P
(i;t0)2R^t0+di�t ei:

Lemma 2 If hR(t) > t then

� (�:R) will report failure at or before t.

� If R is legal � is not feasible.

Proof : The number of time units needed in [0; t) to
satisfy all � -requests (i; t0) in R with t0 + di � t is
strictly greater than t | the number of time-units in
[0; t). Surely then (�:R) will report failure on or before
t. If R is legal then Lemma 1 guarantees that � is not
feasible. 2

Suppose now that � is not feasible. Let tf � 0 be the
earliest time � reports failure with respect to any legal
set of � -requests. Let R0 be a legal set of � -requests
such that (�:R0) reports failure for the �rst time at
time tf . Consider the �nite legal set of � -requests
R1 = R0 �f(i; t0)jt0 + di > tfg. Consider (�:R1). Re-
call that (�:R1) mimics (�:R0) with respect to all tie
breaking choices. Over the interval [0; tf ) (�:R0) never
assigns the processor to a � -request from R0 � R1 at
a time when a request from R1 is active. Hence, over
[0; tf ), (�:R0) and (�:R1) make identical assignments
with respect to the � -requests in R1. Hence, (�:R1)
too reports failure for the �rst time at time tf .

We now show by contradiction that (�:R1) never
idles the processor over [0; tf ). Suppose at time tb, 0 �
tb < tf , (�:R1) idles the processor, i.e., (�:R1):(tb) =
(0; 0). Suppose further that tb is the largest such inte-
ger. Let R2 = fAll � -requests in R1 that were not as-
signed the processor by (�:R1) in [0; tb)g. Note that R2

is legal. Note also that R2 \ f(i; t0)jt � tbg = �. Con-
sider (�:R2). Now with respect to (�:R1) no � -requests



are active at time tb. Thus, over [tb; tf ), (�:R1) can
only assign the processor to � -requests in R2. Hence,
(�:R2) will mimic (�:R1) over [tb; tf ), and (�:R2) will
report failure for the �rst time at tf . Note now that
(�:R1) and thus (�:R2) never idles the processor over
[tb; tf ). Lastly consider the �nite legal set of � -requests
R3 = f(i; t0�(tb+1)) j (i; t0) 2 R2g. Then (�:R3) over
[0; tf � (tb + 1)) is identical to (�:R2) over [tb + 1; tf ),
because (�:R3) over [0; tf � (tb + 1)) mimics the tie
breaking choices of (�:R2) over [tb + 1; tf ). Hence,
(�:R3) reports failure for the �rst time at tf � (tb+1)
| a contradiction given our choice for tf .

Now let us review the properties of R1:

� Each (i; t0) 2 R1 has t0 + di � tf ,

� (�:R1) never idles the processor over [0; tf ), and

� (�:R1) reports failure exactly once | at time tf .

>From these properties we immediately obtain thatP
(i;t0)2R1^t0+di�tf

ei > tf . Hence, from Lemma 2 we
see that R1 is a certi�cate attesting to the fact that �
is not feasible. Now suppose for some (i; t0) 2 R1 we
have:

� t0 = q � pi + r; q � 0; 0 < r < t0, i.e., t0 � r
(mod pi); r 6= 0, and

� each (i; t0) 2 R1 where t0 < t0 is such that t0 � 0
(mod pi).

Then we can easily see that a schedule cannot be con-
structed for R4 = R1 � f(i; t0)g [ f(i; q � pi)g either,
since:

�
P

(i;t0)2R4^t0+di�tf
ei =P

(i;t0)2R1^t0+di�tf
ei > tf .

This implies that from R1 one can iteratively construct
a �nite legal set of � -requests R0 such that:

� R0 � [n
i=1 [k�0 f(i; k � pi)g, and

�
P

(i;t0)2R0^t0+di�tf
ei > tf .

Letting R = [n
i=1 [k�0 f(i; k � pi)g, we then haveP

(i;t0)2R^t0+di�tf
ei > tf . Hence we now have that

R is a certi�cate attesting to the fact that � is not
feasible.

For the remainder of this section let R = [n
i=1 [k�0

f(i; k � pi)g. >From Lemma 2 and the discussion pre-
ceding this paragraph we obtain:

Lemma 3 � is not feasible i� there exists an integer

t � 0 such that hR(t) > t. Furthermore, the minimum

t satisfying hR(t) > t is equal to tf | the earliest time

the deadline algorithm can report failure. 2

Recall that hR(t) =
P

(i;t0)2R^t0+di�t ei. In what
follows, we need a more useful characterization or
formula for hR(t). We now derive such a formula.
Clearly, hR(t) can be written as

Pn
i=1 ei �c(i; t), where

c(i; t) represents the number of requests (i; t0) in R
satisfying t0 + di � t. Given our particular R, c(i; t)
will be the largest non-negative integer k+1 such that
k satis�es k � pi + di � t, if one exists; otherwise c(i; t)
will equal zero. Since the largest integer satisfying k �
pi+di � t is b t�di

pi
c we get c(i; t) = maxf0; b t�di

pi
c+1g.

We therefore have hR(t) =
Pn

i=1 ei�maxf0; b t�di
pi

c+1g.

Lemma 3 provides a necessary and su�cient condi-
tion for � to be feasible. Its utilitarian value, however,
is limited since it provides no a priori upper bound on
the value of a t such that hR(t) > t, other than tf .
The next three lemmas address this shortcoming and
lead to a necessary and su�cient condition that in this
respect is more useful.

Lemma 4 Suppose
Pn

i=1 ei=pi > 1. Then � is not

feasible.

Proof : Suppose
Pn

i=1 ei=pi > 1. We will show that
there exists a t such that hR(t) > t. Lemma 4 then fol-
lows from Lemma 3. Choose t > max1�i�nfdig such

that P divides t and t > �
Pn

i=1 ei�b
pi�di
pi

c=(
Pn

i=1
ei
pi
�

1). Then:

hR(t)
= fBy de�nitiong

nX
i=1

ei �maxf0; b
t� di
pi

c+ 1g

= ft � max1�i�nfdig ) b t�di
pi

c � 0g

nX
i=1

ei � (b
t� di
pi

c+ 1)

= f Pulling the 1 inside the 
oorg

nX
i=1

ei � b
t+ pi � di

pi
c



= fSince pijt, we pull t=pi from within the

oor function, and rearrange termsg

t �

nX
i=1

ei
pi

+

nX
i=1

ei � b
pi � di
pi

c

= frearranging termsg

t � (1 +

nX
i=1

ei
pi
� 1) +

nX
i=1

ei � b
pi � di
pi

c

= frearranging termsg

t+ t � (

nX
i=1

ei
pi
� 1) +

nX
i=1

ei � b
pi � di
pi

c

> fSubstituting �
Pn

i=1 ei � b
pi�di
pi

c=

(
Pn

i=1
ei
pi
� 1) for the latter tg

t+
(�
Pn

1=1 eib
pi�di
pi

c)

(
Pn

1=1
ei
pi
� 1)

�

(

nX
1=1

ei
pi
� 1) +

nX
i=1

ei � b
pi � di
pi

c

= fcancelling the common factor
(
Pn

i=1
ei
pi
� 1)g

t�

nX
i=1

ei � b
pi � di
pi

c+

nX
i=1

ei � b
pi � di
pi

c

= fCancelling termsg

t:

Hence, hR(t) > t. 2

Lemma 5 Suppose
Pn

i=1
ei
pi

� 1 and t �

max1�i�nfdig. Then hR(t + P ) > t + P implies

hR(t) > t.

Proof : Suppose
Pn

i=1
ei
pi
� 1, t � max1�i�nfdig, and

hR(t+ P ) > t+ P . Then:

hR(t) + P
= fBy de�nition of hR(t), and the assumption
that t � max1�i�nfdigg

nX
i=1

ei � (b
t� di
pi

c+ 1) + P

� fsince
Pn

i=1
ei
pi
� 1g

nX
i=1

ei � (b
t� di
pi

c+ 1) + P
nX

i=1

ei
pi

= frearranging the second termg

nX
i=1

ei � (b
t� di
pi

c+ 1) +

nX
i=1

ei �
P

pi

=fRearranging termsg

nX
i=1

ei � (b
t� di
pi

c+
P

pi
+ 1)

= fMove P inside the 
oor, since pijPg

nX
i=1

ei � (b
t+ P � di

pi
c+ 1)

= fBy de�nitiong

hR(t+ P )

> fBy assumptiong

t+ P

Now hR(t)+P > t+P immediately yields the desired
conclusion | hR(t) > t. 2

Corollary 1 Suppose � is not feasible and
Pn

i=1
ei
pi
�

1. Then there exists a t < P+max1�i�nfdig such that
hR(t) > t.

Lemma 6 Suppose � is not feasible and
Pn

i=1
ei
pi
< 1.

Then hR(t) > t implies t < max1�i�nfdig or t <
max1�i�nfpi � dig �

Pn

i=1
ei
pi
=(1�

Pn

i=1
ei
pi
).

Proof : Assume that � is not feasible,
Pn

i=1
ei
pi

<

1, hR(t) > t, and t � max1�i�nfdig. Then our
proof obligation is to show that t must be less than
max1�i�nfpi � dig �

Pn

i=1
ei
pi
=(1�

Pn

i=1
ei
pi
).

hR(t)
= fBy de�nition of hR(t)g

nX
i=1

ei �maxf0; b
t� di
pi

c+ 1g



� fEliminating the 
oor function, and rear-
ranging termsg

nX
i=1

ei � (
t+ pi � di

pi
)

= fRearranging terms g

t �

nX
i=1

ei
pi

+

nX
i=1

ei
pi
(pi � di)

� fsince max1�i�nfpi � dig � (pj � dj) for
all j; 1 � j � ng

t �

nX
i=1

ei
pi

+ max
1�i�n

fpi � dig

nX
i=1

ei
pi

Substituting t for hR(t), and from the as-
sumption that hR(t) > t, we obtain:

t < t �

nX
i=1

ei
pi

+ max
1�i�n

fpi � dig �

nX
i=1

ei
pi
;

� f Rearranging terms, and factoring out tg

t(1�

nX
i=1

ei
pi
) < max

1�i�n
fpi � dig �

nX
i=1

ei
pi

� fdividing both sides by the positive quan-
tity (1�

Pn

i=1
ei
pi
)g

t < max
1�i�n

fpi � dig �

Pn

i=1
ei
pi

(1�
Pn

i=1
ei
pi
)
:

2

Lemmas 3-6 and Corollary 1 yield:

Theorem 1 Let
Pn

i=1
ei
pi

= c. � is not feasible i�

either:

(1) c > 1, or

(2) there exists an integer t, t < minfP +
max1�i�nfdig;

c
1�c

max1�i�nfpi � digg such that

hR(t) > t.

Corollary 2 Feasibility testing with respect to spo-

radic task systems is in co-NP.

Proof : The corollary follows directly from Theorem 1
once one observes that:

� an integer t < P+max1�i�nfdig can be \guessed"
in nondeterministic polynomial time, and

� checking whether hR(t) > t or whether
Pn

i=1
ei
pi
>

1 can be accomplished in deterministic polynomial
time. 2

3 An algorithm for feasibility

testing with respect to spo-

radic task systems

In the previous section we derived necessary and suf-
�cient conditions for a sporadic task system to be fea-
sible. In this section, we present a feasibility testing
algorithm for sporadic task systems based on these
conditions. In the worst case our algorithm runs in
exponential time; however, for a very large percentage
of sporadic task systems the algorithm runs in pseudo-
polynomial time. This \speed-up" with respect to this
large percentage of systems represents an exponential
improvement over the algorithm's worst case behavior.

Again let � = fT1; : : : ; Tng where Ti = (ei; di:pi)
with ei � di and ei � pi; 1 � i � n, be a sporadic task
system. Let P = lcmfp1; : : : ; png. Let R = [n

i=1 [k�0

f(i; k � pi)g.

An obvious feasibility testing algorithm might sim-
ulate the deadline algorithm over R until it either re-
ports failure or until it is guaranteed to never report
failure. Our algorithm \essentially" does this without
the the mess and cleanup involved in performing an
actual simulation. Our algorithm | based on the ob-
servations stated in Theorem 1 | iteratively searches
for an integer t > 0 such that hR(t) > t. The \sim-
ulation" here is done implicitly via the computation
of hR. Recall that Lemma 3 guarantees �nding a t
such that hR(t) > t occurs after iterating through ex-
actly tf values for t, where tf is the earliest time the
deadline algorithm can report failure.

Before presenting the algorithm we prove a techni-
cal result that yields a small improvement over the
algorithm suggested by Theorem 1.

Lemma 7 Suppose
Pn

i=1
ei
pi
� 1 and di � pi; 1 � i �

n. Then � is feasible.

Proof : Suppose
Pn

i=1
ei
pi
� 1 and di � pi; 1 � i � n.

We show that hR(t) � t for all integers t � 0. The
lemma then follows directly from Lemma 3. Now :



hR(t)
= fBy de�nitiong

nX
i=1

ei �maxf0; b
t� di
pi

c+ 1g

� f By assumption, di � pi for all i;
1 � i � n g

nX
i=1

ei � b
t

pi
c

� fGetting rid of the \
oor."g

t �
nX

i=1

ei
pi

� f By assumption,
Pn

i=1 ei=pi � 1g

t

2

We now present our algorithm for feasibility testing
with respect to sporadic task systems.

input(�);
/* Recall that � = fT1; : : : ; Tng;
ei � di; ei � pi; for 1 � i � n */

c :=
Pn

i=1
ei
pi
;

if \c > 1" then return(\not feasible");
/* Correctness guaranteed by Lemma 4 */
if \^n

i=1(di � pi)" then return(\feasible");
/* Correctness guaranteed by Lemma 7 */

P := lcmfp1; : : : ; png;
D := max1�i�nfdig;
M := P +D;
if \c = 1" then T :=M
else T := minfM; c

1�c
�max1�i�nfpi � digg;

H := 0;
/* H will contain the value of hR(t), and,

by definition, hR(0) = 0 */

for t := 1 to T do
for i := 1 to n do

if \t � di" and \t � di (mod pi)"
then H := H + ei;

endfor
/* H now equals hR(t) */

if \H > t" then return(\not feasible");
/* Correctness guaranteed by Lemma 3 */

endfor
return(\feasible");
/* Correctness guaranteed by Theorem 1 */

end.

Theorem 2

(1) If \
Pn

i=1
ei
pi

> 1" holds then our algorithm runs

in linear time.

(2) If \^n
i=1di � pi" holds then our algorithm runs in

linear time.

(3) Let c be a �xed constant that is strictly less than

one | for example, say 0:99. Then our algorithm

runs in O(n �max1�i�nfpi � dig) time.

(4) If none of the above cases hold then the algo-

rithm runs in exponential time | O(n � (P +
max1�i�nfdig)) time. 2

Now, \
Pn

i=1
ei
pi

> 1" is not likely to hold for the ma-

jority of inputs. Neither is \^n
i=1(di � pi)." Hence,

the pruning accomplished by (1) and (2) a�ects only
slightly the algorithm's expected run time. However,
we think it is reasonable to expect that the vast ma-
jority of inputs will satisfy \0 <

Pn

i=1
ei
pi
� 0:99," and

in this case the algorithm runs in pseudo-polynomial
time | O(n �max1�i�nfpi� dig) | with a small con-
stant of proportionality | 99. Hence:

Corollary 3 Feasibility testing can be accomplished

in O(n �max1�i�nfpi � dig) deterministic time, when

0:99 <
Pn

i=1
ei
pi
� 1 fails to hold. 2

One �nal comment : Note that O(n �max1�i�nfpi�
dig) is potentially exponentially less than O(P +
max1�i�nfdig) as P can be as large as

Qn

i=1 pi. Hence,
the \speed-up" for sporadic task systems where 0 <Pn

i=1
ei
pi
� 0:99 is potentially exponential with respect

to the algorithm's worst-case behavior.

4 Conclusions

Highlights concerning results presented in this paper
are

� Necessary and su�cient conditions are derived for
a sporadic task system to be feasible.

� Feasibility testing with respect to sporadic task
systems is shown to be in co-NP.

� A feasibility testing algorithm for sporadic task
systems is provided that runs e�ciently in pseudo-
polynomial time when 0 <

Pn
i=1

ei
pi

� 0:99 or

1 <
Pn

i=1
ei
pi
, and all inputs are integers.



The results presented here are similar to the results
of Baruah, Howell, & Rosier [BHR90] concerning syn-
chronous periodic task systems.

A periodic task T is characterized by four non-
negative integers | s the start time, e the execution

time, d the deadline (relative to a request time), and p
the period (the time between T 's successive requests).
For a periodic task it is required that 0 < e � d � p.
(See [LL73, LM80, LM81, LW82, Mok83, BHR90].)
Task T 's i'th, i = 1; 2; : : :, request occurs at time
s+ i �p, and requires that the processor be allocated to
T for e time units in the interval [s+ i �p; s+ i �p+d).
A periodic task system � is a collection of periodic
tasks fT1; : : : ; Tng; with Ti = (si; ei; di; pi); 1 � i �
n. Liu & Layland [LL73] published the �rst signi�-
cant results regarding periodic task systems. When
di = pi; 1 � i � n, they show � is feasible on one pro-
cessor i�

Pn

i=1 ei=pi � 1. See also Co�man [Cof76].
In addition, Liu & Layland show that the deadline al-
gorithm is optimal for periodic task systems on one
processor. The deadline algorithm remains optimal
for periodic task systems when the di = pi restriction
is removed although feasibility testing then becomes
much harder. Leung and Merrill [LM80] showed that
feasibility testing in this case is co-NP-hard. Baruah,
Howell, & Rosier [BHR90] subsequently re�ned this to
co-NP-complete in the strong sense.

Now, � is synchronous i� si = 0; 1 � i � n.
In [BHR90] one can �nd a feasibility test for syn-
chronous periodic task systems that is similar to the
algorithm presented here for sporadic task systems.
Similar techniques apply here because the synchronous
periodic task system is feasible i� the deadline algo-
rithm � never reports failure with respect to R =
[n
i=1[k�0f(i; k�pi)g. In fact, many of the results shown

here can be viewed as extensions of results derived in
[BHR90] | extensions for synchronous periodic task
systems where \ei � di � pi" need not be satis�ed
but \ei � di and ei � pi" must. Consequently, all
of the results presented in this paper hold for hy-
brid task systems consisting of some sporadic tasks
and some synchronous periodic tasks (periodic task
Ti = (si; ei; di; pi) is synchronous i� si = 0). When all
the periodic tasks are not synchronous, the feasibil-
ity problem is clearly co-NP-hard in the strong sense,
since the feasibility problem for periodic task systems
is co-NP-complete in the strong sense [BHR90]. It can
be shown that the feasibility problem for general hy-
brid task systems is also co-NP-complete in the strong
sense | details will be provided in an extended version
of this paper, currently under preparation.

While the results in Sections 2 and 3, and those
mentioned above, were derived for task systems with

integer parameters, most extend rather naturally to
systems with real-valued parameters. The de�nition of
hR(t) (Section 2) may be extended such that hR(t) =P

(i;t0)2R^t0+di�t ei for all non-negative real numbers

t. With this extended de�nition, Lemmas 1-7, Corol-
laries 1 and 2, and Theorem 1 continue to hold, except
that t may now be any non-negative real number (i.e.,
it need no longer be an integer). The algorithm pre-
sented in Section 3 makes use of the fact that deadlines
may occur only at integer boundaries; for systems with
real-valued parameters, this is no longer true. The al-
gorithm may be extended for inputs which are rational
numbers by multiplying all inputs by a common de-
nominator; however, when such an extension is made
to a pseudo-polynomial-time algorithm, the resulting
algorithm is potentially exponential in n. To avoid
this problem in extending Theorem 2(3), we must �rst
modify the algorithm to compute the summation for
only those times t at which a deadline occurs. The
resulting algorithm not only works for noninteger in-
puts, it operates in time O(n2maxfpi�dig=minfpig),
which is slightly better than the original algorithm on
integer inputs, as long as every period is at least n.
For Theorem 2(4), the extended algorithm operates in
time O(n2 � (P +maxfdig)=minfpig).
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