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1 ABSTRACT

Semi-numerical Simulations of HII Bubble Growth During Reionization. SHUENN PATRICK

HO (Princeton University, Princeton, NJ 08544) MARCELO ALVAREZ (Kavli Institute for

Particle Astrophysics and Cosmology, Stanford Linear Accelerator Center, Stanford, CA

94025)

Related to such phenomena as cosmic structure formation and the birth of the first stars,

the epoch of reionization provides a segue from the largely homogeneous universe described

by the cosmic microwave background spectrum to the complexity we see today. While there

are significant ongoing efforts to observe reionization, simulating reionization is an important

and active area of research because it allows the testing and refining of analytical models.

However, the radiative transfer simulations widely used in research, while providing a good

qualitative picture of reionization, are too computationally taxing for such applications as

probing a significant amount of the parameter space of reionization models. In the present

study, we present an original code for simulating reionization much more efficiently based on

a semi-numerical method involving a new algorithm for calculating smoothed overdensities in

real space, as opposed to the fast Fourier transform (FFT) procedure used in previous semi-

numerical studies. Using a cross-correlation coefficient analysis, we find that our simulations

are successful at reproducing the results of previous simulations to a high degree of accuracy.

Furthermore, we find our simulation code to be highly efficient, with a run time of ∼ 10-15

minutes for the 1283-sized domains we simulate on in this study, and our design using a

real-space smoothing algorithm promises a significant speed-up upon transfer to a graphics

processing unit (GPU).
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2 INTRODUCTION

The process of reionization describes a critical phase transition in the evolution of baryonic

matter in the universe. In the early, cooling universe, baryons and electrons recombined to

form neutral atomic hydrogen (HI), marking the beginning of the cosmological Dark Ages.

However, structure formation continued through the amplification of density anisotropies

(recorded at the moment of matter-radiation decoupling in the cosmic microwave back-

ground), creating regions massive enough to collapse through gravitational instability. This

led to the appearance of the first luminous objects energetic enough to ionize hydrogen

atoms, and the radiation created therewith caused the atomic hydrogen that pervaded the

early universe to become largely composed of ionized hydrogen (HII). We refer to this period

as the epoch of reionization (EOR), an important milestone in the evolution of the universe

from the relative homogeneity following recombination to the complexity we see today.

Observational data provide some useful constraints on the EOR. One result is derived

from the probing of the Gunn-Peterson absorption trough in the spectra of high-redshift

quasars [1]. This technique provides a very sensitive measurement of the redshift at which

the neutral HI fraction exceeds a threshold for near-complete absorption of Ly-α emission,

suggesting that the end of reionization occurs at a redshift z ∼ 6, roughly one billion years af-

ter the big bang. However, this technique is too sensitive — near-complete absorption begins

at a neutral fraction xHI ∼ 10−4 — for probing the EOR before its final moments. Fur-

ther observational constraint comes from measurement of the cosmic microwave background

(CMB) polarization. Thomson scattering of CMB photons off of free electrons generated at

the onset of reionization can act as a source of secondary anistropy in the polarization of

CMB light [2]. Measurements of the large-scale polarization of the CMB and comparison

with the temperature anisotropy spectrum (used as an indication of primary polarization

anisotropy) imply that reionization began as early as z ∼ 11± 3 [1]. Future studies will in-
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vestigate the details of the EOR between these two constraints. One promising observational

method is the measurement of the HI 21-cm line, an emission line resulting from forbidden

transitions between the triplet and singlet states in atomic hydrogen. Measurements of this

signal may lead to the detection and direct imaging of the neutral intergalactic medium and

its evolution during the EOR. The data resulting from efforts such as 21-cm observation —

currently underway at such facilities as the Mileura Widefield Array, the Primeval Struc-

ture Telescope, and the Low Frequency Array [1] — as well as measurements of the CMB

secondary temperature anisotropy will lead to a clearer picture of the EOR.

Numerical simulations may also play an important role in providing a convenient way

to examine the structure evolution during the period that has heretofore been difficult to

probe observationally (beyond z ∼ 6). Recent efforts to examine the growth of HII regions

numerically from first principles using radiative transfer simulations have shed much light on

the behavior of HII regions during reionization and motivated analytical models for HII region

growth [3]. The present study also seeks to produce large-scale simulations of reionization.

However, instead of a costly radiative transfer method, we implement the reionization physics

using a semi-numerical method inspired by Zahn, et al. (2007) [5]. This allows us to perform

analyses that are prohibitively time-consuming and inefficient with costly radiative transfer

simulations. For example, we are able to more efficiently survey a large parameter space

in the properties of the ionizing sources. In particular, in this study we present a semi-

numerical simulation code implementing a real-space smoothing algorithm as opposed to the

fast Fourier transform (FFT) algorithms used by prior studies. This is because we hope to

adapt our code to run on a graphics processing unit (GPU), and FFT algorithms are very

inefficient on such processors. However, with a real-space algorithm, running on a GPU

promises a significant speed-up in run time (as much as 40 to 100 times CPU speed)[6].

2



3 METHODS

A. The Semi-numerical Method

The semi-numerical method begins with the simple assumption that each collapsed halo of

mass mhalo (which is assumed to contain a galaxy) produces a spherical ionized region around

it, the size of which is directly proportional to the galaxy mass. This assumption simplifies all

of the complex recombination and radiative transfer physics into a proportionality constant,

which we call the efficiency factor ζ [3]. Thus,

mion = ζmhalo , (1)

where mion and mhalo are the masses of the ionized region and the halo, respectively. For

example, the efficiency factor can encode the escape efficiency of photons from the galaxy fesc,

the star formation efficiency within the galaxy f∗, the number of ionizing photons produced

in stars per baryon Nγ/b, and the average number of recombinations for a hydrogen atom

nrec by writing ζ = fescf∗Nγ/b/(1 + nrec) [3].

It is straightforward to extend this assumption to a condition stipulating whether a region

of mass m is fully ionized. First, we can consider Eq. 1 equivalent to a relation between the

ionized fraction fion and the collapse fraction fcoll: fion = ζfcoll. This then translates to a

minimum condition on the collapse fraction for full ionization (fion = 1) to occur [3]:

fcoll ≥ fx ≡ ζ−1 (2)

We can then use the extended Press-Schechter model to relate this condition on the collapse

fraction to a condition on the mean mass overdensity smoothed over a region of scale m,
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commonly denoted δm:

fcoll = erfc

[
δc(z)− δM√

2[σ2(Mmin)− σ2(M)]

]
, (3)

where σ2(M) is the mass variance if the density i smoothed on the scale M , δc(z) is the critical

overdensity for collapse, and Mmin is the minimum mass for which a halo is considered to be

a source of ionizing radiation [4]. With these relations, we can convert Eq. 2 into a condition

on the mass overdensity itself,

δM ≥ δx(M, z) ≡ δc(z)−
√

2
[
σ2(Mmin)− σ2(M)

]1/2
erf−1(1− ζ−1) , (4)

where we have clearly defined the minimum overdensity δx(M, z) above which a region will

self-ionize.

This formulation provides a simple method to answer the question of whether a region

about a point is self-ionizing at some redshift z. A region is self-ionizing if the condition

in Eq. 4 is satisfied over any scale M . Similarly, we can also calculate when a region

first becomes self-reionizing. We define the reionization redshift at a position zreion as the

maximum redshift (the earliest time) at which the region about that position is self-ionizing

at any scale M . Inverting Eq. 4 to solve for z, we find an expression for the earliest redshift

a region of scale M becomes self-ionizing:

zion(M) =
7D6

δc,0

[δM + Z(M, ζ)]− 1 , (5)

where have explicitly written δc(z) = δc,0(1+z)

7D6
by assuming that the critical overdensity

evolves as the linear growth factor 1/D(z) where D(z) ≡ D6

(
7

1+z

)
, and where we have

defined the quantity Z(M, ζ) ≡
√

2 [σ2(Mmin)− σ2(M)]
1/2

erf−1(1 − ζ−1). Calculating the

reionization redshift for any given position thus amounts to looping through scales M about
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that position to find zreion = max[zion(M)].

B. The Simulation

Our semi-numerical simulation produces a field of zreion throughout a large-scale (∼ 200

Mpc/h) domain, calculating for each point its corresponding reionization redshift. Such

a field provides a very compact representation of the time evolution of HII bubbles. In

producing such a field, our method computes zion using Eq. 5 for a range of scales M at

each point, as similar studies have done in the past. However, our method differs in that,

where past studies have employed k-space FFT procedures for computing the overdensity

δM , we have devised an efficient, hierarchical algorithm to compute the overdensity δM

with a smoothing procedure in real space [5]. Inspired by the marching cubes algorithm

for generating three-dimensional computer graphics, our algorithm is much faster than a

brute-force averaging.

Given an input density field ρ(~r), we first translate this to the density contrast,

δ(~r) =
ρ(~r)− ρ̄

ρ̄
, (6)

In preparation for our optimized algorithm for calculating δM , we then derive from this initial

field a series of coarser fields, each 2−3 the size of the last. These coarser fields are populated

with increasingly lower-resolution density values drawn recursively from the field before it,

with each cell in a coarse field representing the mean value of 23 cells in the finer field from

which it was drawn. For example, if the input field is of size 1283, the field one coarser is

of size 643, and the cell (i, j, k) in the coarser field corresponds to the average of the points

(2i, 2j, 2k), (2i + 1, 2j, 2k), (2i, 2j + 1, 2k), etc. in the finer field. Given an input field of size

2(3Ni) and a coarsest field of size 2(3Nmin), a field of coarseness order n is then defined to be of

size 23(Nmin+n). Performing this ”downgridding” process sequentially on the input field and
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storing the coarser fields preliminarily allows for an expedited smoothing algorithm. The

extent of this downgridding is at the discretion of the user (more downgridding provides

more efficiency); in the simulations presented in this study, we downgrid from an initial field

of 1283 down through a coarsest field of size 83.

In calculating mean overdensity, we smooth over δ about a point using a spherical top

hat in real-space,

δM =
1

VM

∫
VM

δ(x)dV , (7)

where R = [3M/4πρ̄]1/3 is the smoothing radius for a scale M and VM = (4π/3)R3 is

the corresponding smoothing sphere volume. Fig. 1 diagrams our hierarchical ”cascading”

algorithm for calculating δM in contrast to the inefficient ”brute force” method. The brute

force method involves simply searching through all cells in the domain and averaging only

those within the radius R of the center of the smoothing sphere to calculate the value

δM . Our algorithm, while more complex, is significantly more efficient. Beginning on the

coarsest field, the hierarchical algorithm includes cells within the smoothing sphere of radius

R, cascading down to finer fields where higher resolution is needed near the boundary. If a

cell is completely outside R, it is discarded; if it is completely inside, it is volume-averaged

into the total smoothing value; and if it is on the sphere, we go to one finer scale and repeat

the process on the eight finer cubes within that cell. This process is done recursively until

we reach the finest scale, that of the input field, at which point the brute force method is

performed on any cells remaining to be examined; that is, they are either included if their

midpoints are within R or excluded otherwise. As a comparison between Fig. 1a and 1b

shows, this results in identical volumes being covered. In all tests, relative error between the

cascade method and the brute force method was exactly zero, while efficiency (measured by

the number of cells calculated on) was improved by roughly an order of magnitude.

Utilizing this real-space smoothing method for calculating δM , our simulation can be
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summarized as consisting of five major steps. Diagrammed in Fig. 2, these steps are: (1)

read in the initial density field; (2) downgrid over a range of coarser fields; (3) read in a

pre-calculated array of σ(M) over a range of scales M (or, equivalently, R); (4) calculate δM

and then zreion(M) over a range of scales M; and (5) look up values of zreion(M) and return

the highest zreion value at each point.

The loops described in steps (4) and (5) for calculating and then looking up zreion values

are described in more detail in Fig. 3. For optimization reasons, our algorithm for the

calculation of zreion calculates and stores zreion values at lower resolutions when smoothing

over larger scales. As summarized in Fig. 3a, we produce another array of grids of sequential

coarseness orders similar to those generated by the downgridding of the density fields. Each

grid of coarseness order n corresponds to a range of smoothing scales R : τ2Ni−n ≤ R <

τ2(Ni−n+1), where we set τ =
√

3, such that the threshold corresponds to the diagonal of a

cube in grid n. Then, when looping over smoothing scales, the highest zreion values within

each range of R are then calculated only over the grid-points of the corresponding grid. Our

algorithm for the look-up of zreion uses these values to calculate the highest zreion at each

point on the finest level. As summarized in Fig. 3b, the look-up algorithm accomplishes

this at each position by looping through grids of all coarseness levels and, where necessary,

interpolating between points stored at lower resolution. The highest of these values is taken

to be the zreion of that particular position in our domain. We believe that we can employ

this method with little error because δM values calculated on larger smoothing scales are not

sensitive to small shifts in the position of the center of the smoothing sphere, and so we do

not need to calculate δM at high resolution on higher smoothing scales.

For the simulations presented in this draft, we calculated zreion on a grid of size 1283

corresponding to a cube with side length 200 Mpc/h given a pre-generated field of random

Gaussian density perturbations at z = 19. Run on a single-processor desktop computer,

the algorithm takes approximately 10-15 minutes to finish. Other parameters used in these
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simulations include: the critical overdensity at z = 0: δc,0 = 1.686, the linear growth

constant: D6 = 0.1917, the Hubble constant: h = 0.7, the minimum collapse mass: Mmin =

108M�, and the ionization efficiency: ζ = 200. All FFT simulations presented for comparison

were generated with identical parameters.

4 RESULTS

We evaluate the accuracy of our newly developed simulation code by testing its results

against those of a previously developed code that employs the aforementioned FFT smooth-

ing procedure. We compare the different data using the cross correlation coefficient between

the FFT and real-space data, defined as:

ξFR(k) =
PFR(k)

[PFF (k)PRR(k)]1/2
(8)

where P is the power spectrum:

Pαβ = 〈δk,αδ∗k,β〉 (9)

and δk,α are the Fourier coefficients of δ~r,α = α−ᾱ
ᾱ

for the quantity α. In our case, the

two quantities being cross-correlated are the zreion values generated by the two respective

simulations. The cross-correlation coefficient is exactly 1 for perfectly correlated data, -1 for

perfectly anti-correlated data, and 0 for no correlation.

The resulting data indicate that our simulations are robustly accurate in comparison with

the FFT simulations. Plots of ξFR for data generated at a number of different values for the

ionization efficiency ζ and for the resolution in the smoothing scales Nsm show this accuracy

to be insensitive to changes in these parameters (Fig. 4). The cross-correlation coefficient

is well above 0.9 for k < 1 and remains above 0.85 even to high k values. This suggests that

earlier and later reionization occurs largely in the same places in both simulations, and thus
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they generate very similar pictures of the time-evolution of reionization. As suggested by

the higher cross-correlation coefficient at k < 1 than at higher k, this is especially true for

large-scale structure and deteriorates a bit for small-scale structure. For visual comparison

of the strikingly similar data, Fig. 5 shows one example of slices through the x− y planes of

data generated by both the FFT and real-space simulations, with parameters ζ = 157 and

Nsm = 60. Note that the real-space simulation is biased slightly towards higher values of

zreion and thus earlier reionization in some regions — the FFT simulation has reionization

starting at z = 25.2 and ending at z = 11.2, while the real-space simulation runs from

z = 28.9 to z = 11.3. However, qualitatively the pictures of reionization generated by the

two are the same, as long as the same regions reionize before other regions.

Using our semi-numerical method, we can also derive the time-evolution of reionization

using just the one grid of zreion data generated by our simulation. By plotting surfaces of

constant zreion, we can retrieve the positions of the ionization fronts at a given redshift z and

thus easily image the extent of the HII bubbles. Fig. 6 shows an example of a sequence of

such images. Our simulation produces a similar picture of the process of reionization to that

produced by the FFT simulation, and both reflect the accepted model for reionization: the

evolution of individual HII bubbles, their coalescence, and the rapid overlap phase leading

to complete reionization.

Significantly, the optimizations we have coded into our simulation have allowed it to

run very efficiently. Each run described in this study finished on the order of ∼ 10 −

15 minutes. And since we have successfully produced this code using a real-space-based

smoothing algorithm, there is the promise of a significant speed-up when we compile this

code for the graphics processing unit.
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5 CONCLUSIONS

We have presented results from an original simulation code, based on a semi-numerical

method for calculating zreion throughout a domain and employing a new algorithm for cal-

culating δM in real space. In comparison to previously developed FFT simulations using

identical input parameters, we find that our simulations produce very similar results. As

diagrammed in Fig. 4, we find high cross-correlation coefficients between our data and the

FFT simulation-generated data for both large and small scales, and this indicates to us that

our simulations are very accurate in relation to simulations that have been used in previ-

ous studies. Significantly, our simulation code is very efficient and inexpensive in terms of

runtime (∼ 10− 15 minutes for the simulations in this study), and is also different from pre-

vious simulations in that, being based on a real-space smoothing algorithm, it is optimally

prepared for a significant speed-up when compiled for a GPU.

Some further work can be conducted on exploring the accuracy and efficiency of this

simulation code. We have established in this study that the code is relative robust to

changes in parameters such as ionization efficiency (ζ) and resolution in smoothing scales

(Nsm). Using the same cross-correlation coefficient analysis as described above, we can

evaluate the effect of computational parameters such as the threshold for transferring between

grids of different coarseness (τ) in order to investigate the accuracy-efficiency trade-off and

operate optimally in the future. In the very near future, we expect that this simulation

code can be easily adapted to run on a GPU, from which we expect a significant decrease in

computation time. We hope to then apply these simulations to probe the parameter space

of our reionization model and refine the picture of reionization physics.
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FIGURES

Figure 1: Diagram of smoothing algorithm by (a) brute force and (b) cascade methods.

Figure 2: Flow chart of main function for simulation.
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Figure 3: Flow charts for zreion (a) calculation and (b) look-up loops.

Figure 4: Plots of cross-correlation coefficient for simulations generated with ζ values of,
from left to right, ζ = 50, ζ = 157, ζ = 300, and with Nsm values of 32, 60, 88, 116, 144, 172,
200, 228, as shown in the legend.
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Figure 5: Slices through the x− y planes of zreion data generated by (a) the FFT simulation
and (b) our real-space simulation.

Figure 6: Time-evolution images of ionization fronts in (a) the FFT simulation at z =
19.3, 16.7, 14.3, 12.0 and (b) our real-space simulation at z = 21.4, 18.4, 15.7, 12.4, with
parameters ζ = 157 and Nsm = 60.
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