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Abstract

Our MED 13 system is an extension of our MED 12 system [12, 13], and consists of a collection of low-
level and high-level features, feature-specific classifiers built upon those features, and a fusion system that
combines features both through mid-level kernel fusion and late fusion. Our MED submissions include
total of 24 different configurations which consist of combinations of 2 submission timings (PS/AH), 3
training conditions (100/10/0Ex), and 4 types of feature conditions (Full/Visual/Audio/ASR).

Our MER 13 submissions reported recounting for all five MER events. Our MER system combines
evidences from multiple base classifiers, which are translated to texts and used to identify key frames.
Multiple MER results are fused and presented to users as recounting for each detection.

1 Introduction
For TRECVID 2013 [10, 15], we participated the Multimedia Event Detection (MED) and Multimedia Event
Recounting (MER) tasks. For the MED task, we submitted runs on HAVIC dataset [16] for all the tasks,
which include the pre-specified (E06–E15 and E21–E30), ad-hoc (E16–E20), and small example tests (10Ex).

Our MED 13 system is an extension of our MED 12 system [13, 8], and consists of a collection of low-
level and high-level features, feature-specific classifiers built upon those features, and a fusion system that
combines features both through mid-level kernel fusion and late fusion. Our MED submissions include total
of 24 different configurations which consist of combinations of 2 submission timings (PS/AH), 3 training
conditions (100/10/0Ex), and 4 types of feature conditions (Full/Visual/Audio/ASR).

Our MER 13 submissions reported recounting for all five MER events. Our MER system combines
evidence from multiple base classifiers, which then are translated to text and used to identify key frames.
Multiple MER results are fused and presented to users as recounting for each detection.

2 Multimedia Event Detection (MED)
Our MED results are summarized in Table 1. We observe that there is a substantial gap between 100Ex,
10Ex, and 0Ex systems. In terms of relative improvement from last year, our results from PS results indicate
that our results on FullSys 100Ex runs are comparable to those on MED 2012 130Ex runs. Because 2012
results were based on 130Ex training condition, which has more of both positive and negative examples
compared to this year’s 100Ex, we can interpret the comparable numbers as an improvement in the 2013
system. In addition, we observed notable improvements in our 10Ex results from the last year.

While the MAP results presented in Table 1 are useful for understanding overall system performance, we
also analyze the per-event average precision (AP) performance in Table 2 due to the significant event-to-event
variation. Under to 0Ex condition, we see that many events perform quite poorly, but that a few events
perform much better than the average. In particular, the ‘changing a vehicle tire‘ and ‘making a sandwich’
events work quite well under 0Ex due to the performance of ASR features in this condition. This suggests
that these events are particularly well-suited to a keyword spotting-type approach, and that they may have
relatively higher audio quality than other events.

Comparing the 10Ex and 100Ex conditions, we see that the relative performance of different events is
largely consistent. The best event under both conditions is ‘flash mob gathering’, and ‘grooming an animal’
is difficult under both conditions. However, it is surprising—at first—that the GENIE system performs
better with 10 positive examples (10Ex condition) on ‘making a sandwich’ than it does with 100 positive



Table 1: MED results of mean average precision (%) on the PROGRESS Dataset (computed by NIST).

MED’13 MED’12
Condition 0Ex 10Ex 100Ex 10Ex 130Ex

Pre-specified FullSys 1.3 10.4 23.3 7.7 23.9
Pre-specified VisualSys 1.0 10.3 19.9 - -
Pre-specified AudioSys 1.1 2.6 7.8 - -
AdHoc FullSys 0.4 11.7 20.2 - -
AdHoc VisualSys 1.2 7.3 16.9 - -
AdHoc AudioSys 0.5 3.9 10.1 - -

Table 2: Per-event results of average precision (%) on MEDTEST (self-reported).

0Ex 10Ex 100Ex

Birthday party 7.1 13.8 34.3
Changing a vehicle tire 17.0 24.8 52.7
Flash mob gathering 1.5 56.4 74.3
Getting a vehicle unstuck 0.7 19.6 53.7
Grooming an animal 0.8 11.2 26.1
Making a sandwich 14.9 24.1 22.8
Parade 1.3 26.0 51.7
Parkour 1.0 41.0 57.4
Repairing an appliance 15.0 42.7 60.1
Working on a sewing project 4.5 10.5 28.1

Average (Mean AP) 6.4 27.0 46.1

examples. As explained in Section 2.1.4, though, this is due to differences in the fusion method, and the 0Ex
ASR scores contribute relatively more under the 10Ex condition than under 100Ex.

We also note that our ‘expected performance’, in the sense of the mean AP on the MEDTEST data, is
significantly better than the reported performance on the PROGRESS Dataset. We have no solid explanation
for this difference. Two hypotheses are: (1) we performed unexpectedly poorly on the new events (E21–
E30), causing a lower average; or (2) the positive-negative ratio in MEDTEST is significantly different in
the PROGRESS Dataset. (Average precision is known to be sensitive to the positive-negative ratio in the
test set, and will decrease when there are fewer positives even when the system does not change.)

2.1 10Ex and 100Ex
For 10Ex and 100Ex, we have improved our MED 12 system [8, 13] by adding a set of new features and
enhancing fusion methods. We basically learned base classifiers separately by using a single feature or a
subset of features, then fused them with a late fusion method.

2.1.1 Features

In our MED 13 system, we computed a set of features, which are mostly quantized by a codebook-based
method. For many features, a single clip-level histogram representation based on bag-of-words (BoW) models
were used, while a sequence of BoW segments were built for ObjectBank features to be incorporated into
temporal latent SVM models.

The list of our visual features includes HOG2x2, HoG3D [4] with varying spatio-temporal quantization,
a set of ObjectBank [7] variants, Scene Attributes [11], GIST [9], Color SIFT [18], independent subspace



analysis (ISA) [5], transformed color histogram [18], dense SIFT, Sparse SIFT with Hessian and MSER
interest point detection, dense trajectory, SSIM, Self similarity, Geometric context color histogram, and
Action Bank [14].

Additionally, the list of our audio features include MFCC [6], acoustic segment models (ASMs) [1], Audio
Bank [3], and words from automatic speech recognition (ASR) computed and shared by BBN and SRI Menlo
Park.

2.1.2 Training Protocol

For event agent generation, following TRECVID guidelines, we have followed an independent event agent
generator scenario where only the corresponding event kit examples are used along with Background (BG)
dataset. In other words, the other remaining event kits were assumed to be unknown and not included in
any way (e.g., as negative examples).

For the incorporation of negative samples beyond event kit samples, we have taken a realistic set-up
where we assume that only the labels from the event kits are known and treat all the remaining BG datasets
to be unknown. In our approach, we use the exemplars in the BG datasets as negative training data (again,
regardless of their labels), which simulates a realistic scenario where the negative datasets are essentially
polluted.

Specifically, for the agent generator for a given event class, our training data consists of the samples in
the corresponding event kit and samples in the BG datasets. For the examples included in the event kits
as ‘near miss’ or ‘related’, they were used as explicitly as negative samples while the remaining ‘positive’
samples from the event kit are used as positive training data. Any samples drawn from the BG datasets
were treated as negative samples, regardless of their actual content.

2.1.3 Base Classifiers

From the feature sets, we learned multiple classifiers from different subsets of features, which compute scores
on the test dataset independently. These set of classifiers are called ‘base classifiers’ in our framework. Most
base classifiers are learned from single features, while some are learned from multiple features jointly. In
total, we learned 35 base classifiers.

Two different types of base classifiers were learned: (1) non-linear kernel SVMs using kernels [2] such
as histogram intersection kernel and (2) multiple kernel learning (MKL) across multiple features by using
the AND/OR graph structure [17]. During the testing on the PROGRESS dataset, the base classifiers
are applied to the test data and independently compute detection scores for the corresponding event class.
Accordingly, each test clip is associated with multiple base classifier scores, which are then fused to compute
final scores.

2.1.4 Fusion

Throughout the GENIE system, we use geometric mean to fuse the scores of various base level classifiers,
as the geometric mean has two key advantages. First, it does not require training data, which is important
because—in the 10Ex case—all positive examples are used for base classifier training. Second, fusing base
classifier scores with the geometric mean has been found empirically to provide roughly monotonically-
increasing MAP as base classifier scores are added, provided that the base classifier scores have similar
distributions.

Figure 1 illustrates this point with the mean average precision (MAP) of incrementally fusing base
classifiers in decreasing order of performance. Both the base classifier performance and the fused MAP are
computed on events 6–15 in the MEDTEST data set; we exclude events 21–30 as we suspect that there are
unlabeled positive instances of these events in MEDTEST and, anyway, because the small number of labeled
positives adds some noise to our measured performance. This progression also shows that there are two
notable regions of rapid improvement. The first takes place during the fusion of the first few base classifiers;
these highest-performing base classifiers are various visual features. The second, more gradual improvement
in fused MAP occurs starting with the 25th base classifier, and illustrates the improvement gained by adding
audio information. While the first 25 base classifiers contain visual data—each of which is higher-performing



Figure 1: Mean Average Precision (MAP) over events 6–15 (measured against MEDTEST) as a function of
the number of base classifiers fused using geometric mean. While there are relatively small decreases along
the way, MAP is roughly monotonically increasing with the number of base classifiers.

than the best audio classifier—the relative contribution to fusion of the audio features is higher because they
bring complementary information.

Whereas the 100Ex fusion is a straightforward geometric mean over all of the base classifiers—with
some complexity needed to handle those clips with missing base classifier scores—the 10Ex fusion method is
somewhat more elaborate. Instead of a single-level fusion, we perform a multi-level fusion. Base classifiers
are divided into three categories:

1. Audio features, such as low-level MFCC features, ASM, and mid-level Audio Bank scores;

2. Color features, such as TCH and CSIFT; and

3. Low-level motion and object features, such as ObjectBank and various gradient histogram features.

At the first level, all of the base classifiers in each category are fused using the geometric mean. Then, these
three scores are further fused via geometric mean for all event categories. Finally, for the features where we
have found high ASR performance in the 0Ex condition—making a sandwich and changing a vehicle tire,
specifically—we finally fuse a third time. We have found that fusion of the 0Ex ASR scores improve the AP
of these events by 5–10%, but that they reduce AP on other events.

2.2 0Ex
The MED13 0Ex task involves searching a large video archive for specific event in the absence of any
training videos. The search needs to be based simply on the textual event description. This necessitates the
association of video clips with human-nameable semantic concepts.

To drive our 0Ex system, we use semantic video and audio features. For visual features we employ
ObjectBank and Scene Attributes which were described in the Section 2.1.1. Both of these features are



Table 3: MER results for the GENIE system

Accuracy ObsTextScore PRRT

56.44% 0.9 141.23%

average pooled across frames from a given clip to obtain a clip-level score. With 177 dimensional ObjectBank
features and 102 dimensional scene attributes, we obtain a bank of about 279 semantic visual concepts which
we can use for the zero-shot search. For zero shot search to work effectively, it is important for the concept
scores to be meaningful to a human and have a direct correlation to the semantics that are observed in the
video.. For example, a score of 0.5 from a person detector and 0.5 from a water detector may not imply an
equal probability of these concepts being present in the clip. In order to convert the raw detector scores into
meaningful values, we employ a score calibration scheme to modify the concept scores.

The semantic concepts which are relevant to the keywords in an event kit description are used to construct
a zero shot query. The search query is formulated in the form of an AND-OR query. An AND operation
tries to determine the likelihood of multiple concepts being present simultaneously in a video clip. AND
operation over two or more concepts averages the respective scores. An OR operation tries to detect the
presence of at least one of the requested concepts by finding the maximum of the corresponding scores. The
scores returned after evaluating the complete query for each event give the scores for each of the test clips.
For capturing the semantics in the audio stream, we used Automatic Speech Recognition (ASR). The scores
obtained from these three different features (object bank, scene attributes, and ASR) are combined to obtain
final test scores, in a manner similar to 10Ex and 100Ex systems.

3 Multimedia Event Recounting (MER)
Our MER results are summarized in Table 3. Overall, the results indicate that our MER system shows
reasonable accuracy. However, based on the ObsTextScore and PRRT metrics, it outputs a lot of information;
this will be reduced in future versions of the system.

In order to recount the classifiers based on low-level features, we used a topic model to ‘translate’ the
feature into text. In particular, we extracted the top 1000 dimensions for each feature (using dimensionality
reduction), and assigned a translation based on a previously learned topic model. The topic models were
learned on non-HAVIC data downloaded from the Internet. For the semantic features (like Object Bank),
we simply used the detector labels as the translation. In addition to the text translation, we also located
the most meaningful frames for each classifier.

Figure 2(a) shows the visualization of sparse SIFT feature on clip HVC018429 with event E026 (‘renovat-
ing a home’). The words circled in red show words that are particularly suited to summarizing the extracted
frames (and the video clip). Figure 2(b) shows the visualization of HOG3D feature on clip HVC116421 with
event E022 (‘cleaning an appliance’). We can see the topic model translation indeed found a few meaningful
words ‘applianc’, ‘refriger’ and ‘water’, which are circled in red in the figure. Also, the extracted frames are
very good match to the text descriptions.

4 Conclusion
In our MED 13 system, we have explored the use of a large number of features and advanced event agent
learning methods which expanded our system beyond our MED 12 system. Meaningful improvements were
achieved in our 10Ex performance. We also observed comparable 100Ex results when compared to our MED
12 results, which can be interpreted as an improvement considering the number of positive and negative
samples notably reduced from the last year. The improvement in our performance indicates that the overall
direction of our research and development addresses the problem more effectively. We obtained these results
in spite of the minimal optimization and tuning efforts, and clearly indicating the reliability of the developed
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(b)

Figure 2: Example of MER visualization for (a) sparse SIFT on HVC018429 with E026 (‘renovating a home’)
and (b) HOG3D on HVC116421 with E022 (‘cleaning an appliance’).

system. In the future, we plan to tie our MED and MER system to simultaneously improve the performance
for both tasks while enhancing the transparency of the decision criteria made by our system.
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