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ABSTRACT
In IR research it is essential to know IR models. Research
over the past years has consolidated the foundations of IR
models. Moreover, relationships have been reported that
help to use and position IR models. Knowing about the
foundations and relationships of IR models can significantly
improve building information management systems.
The first part of this tutorial presents an in-depth consoli-
dation of the foundations of the main IR models (TF-IDF,
BM25, LM). Particular attention will be given to notation
and probabilistic roots. The second part crystallises the re-
lationships between models. Does LM embody IDF? How
“heuristic” is TF-IDF? What are the probabilistic roots?
How are LM and the probability of relevance related? What
are the components shared by the main IR models?
After the tutorial, attendees will be familiar with a consol-
idated view on IR models. The tutorial will be illustrative
and interactive, providing opportunities to exchange contro-
versial issues and research challenges.

1. IR MODELS: FOUNDATIONS (90 MINS)

The introduction of the traditional strands and instances of
IR models includes: TF-IDF, VSM (Vector-Space Model),
G-VSM (Generalised VSM), PRF (Probability of Relevance
Framework), BIR (Binary Independence Retrieval, RSJ
(Robertson-SparckJones) weight, Laplace-like estimation of
probabilities), Probabilistic Inference Networks (PIN), Pois-
son and 2-Poisson, BM25, DFR (Divergence from Random-
ness), and LM.
This part will consolidate the main foundations following
from [15] (probabilistic retrieval, BIR model), [5] (missing
relevance), [20, 22, 21, 11] (PIN), [13] (2-Poisson, founda-
tion for the BM25 TF quantification tf/(tf+K)), [4] (IDF
is Poisson approximation, aspects of burstiness), [3] (DFR),
[12, 8, 9] (LM).
Moreover, this part will emphasises that IR models are
consequent applications of basic techniques from probabil-
ity theory: Bayes’ Theorem, Total Probability Theorem,
probability mixtures, and divergence measures (e.g. KL-
divergence, mutual information).
Particular emphasis will be given to the issue of event spaces
[16, 18, 10], and a notation that is consistent across different
models.
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Finally, the first part will refer to general approaches to IR
such as logical IR [23, 25] and PIN’s [20].

2. IR MODELS: RELATIONSHIPS (90 MINS)

The second part of the tutorial is dedicated to the relation-
ships between retrieval models. In addition to the aim to
look across the boundaries of single models models, i.e. dif-
ferent from “single-model” tutorials, the relationships be-
tween models is a differentiator to previous tutorials pre-
sented by Hugo Zaragoza, Stephen Robertson, Djoerd Hiem-
stra, Victor Lavrenko, and Donald Metzler.
There are several relationships between the models, and for
selected relationships the tutorial will outline the mathemat-
ical proofs while keeping the formalisms minimal. We will
look at the following relationships:

• BIR and TF-IDF: BIR can be used to “explain” TF-
IDF; essentially, this views IDF as an approximation of
the BIR/RSJ weight for the case of missing relevance,
[14, 6].

• TF-IDF, LM and Poisson: There are relationships that
follow from being precise about the event spaces [16,
18, 10], e.g. probabilities based on document frequen-
cies of terms, or based on token occurrences of terms.

• PRF, TF-IDF and LM: Recently, [2], “Towards a bet-
ter understanding of the relationship between proba-
bilistic models in IR”, investigated some controversial
aspects regarding the relationship between PRF (prob-
abilistic odds), TF-IDF and LM.

• PRF and LM: There is an early view on the relation-
ship between LM (language modelling) and the PRF
(probability of relevance framework) [9] which is ad-
dressed and criticised in [10].

• PIN’s and TF-IDF and LM: A relationship between
LM and PIN’s has been pointed out in [11]; this rela-
tionship builds upon the earlier work [20, 22, 21] dis-
cussing the relationship between PIN’s and TF-IDF;
overall, this marks the total probability theorem and
PIN’s as a binding link between TF-IDF and LM.

• Logical IR, VSM and G-VSM: Expanding [25], we can
go as far as relating the G-VSM to the total proba-
bility theorem, a relationship that seamless leads to
combinations of geometric and probabilistic IR [24].

• Information theory: On the information-theoretic side,
there are controversial ways to relate IR model to con-
cepts of information theory [1, 14].



• Axiomatic approach: Models can be characterised by
axioms/constraints [7] the models do or do not satisfy.

Regarding technical aspects covered, the tutorial makes ex-
plicit that “there is as much LM in TF-IDF as there is TF-
IDF in LM”. TF-IDF has probabilistic roots. The duality
of TF-IDF and LM marks TF-IDF as a model, not just as
a weighting scheme in the VSM; the VSM is a “framework”
to express models [17].
Also, the tutorial looks at the statement “in LM, the es-
timate P (t) := df(t)/(

P
t′ df(t′)) is wrong; P (t) should be

based on the term frequency”. Moreover, the tutorial will
review that LM is based on P (q|d)/P (q), how this interpre-
tation justifies the relationship between LM and the prob-
ability of relevance P (r|d, q) [9]. Finally, the tutorial will
include conducive interpretations of the renown BM25 TF
quantification tf/(tf+K) [3, 26, 19]. After the tutorial, the
participants will have their personal view on statements such
as “we know that LM works, but we do not know why”; “TF-
IDF is intuitive, LM is not”; “TF-IDF is heuristic, whereas
LM has a probabilistic semantics”.
In summary, the tutorial is structured as follows:

IR Models: Foundations
TF-IDF, Vector-space Model
PRF, BIR, 2-Poisson, BM25
LM, Relevance
DFR, KL-Divergence
Entropy, Mutual Information
IR Models: Relationships
PIN’s, TF-IDF and LM [20, 11]
IDF and BIR [14, 6]
Event spaces [16, 18, 10]
Model axioms/constraints [7]
LM and PRF/BM25: related? [9, 2]
LM and TF-IDF: siblings! [19]
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