EE384Y: Packet Switch Architectures II

Cell Switching vs. Packet Switching

Abtin Keshavarzian & Yashar Ganjali

Department of Electrical Engineering
Stanford University

June 2002

Abstract

In current switching systems, all packets
are divided into equal-sized cells before be-
ing scheduled. This is because of the fact
that cell-based scheduling is easier to be im-
plemented in hardware. In this paper, we
consider the case in which the switch does
not split packets and the scheduling is done
over the whole packets. In this paper, we
classify packet-based scheduling algorithms
into waiting and non-waiting and show that
any algorithm in the second class is not
generally stable. Then we show that for
a given packet-based scheduling algorithm,
which we call PB-MWM, the switch is sta-
ble under i.i.d. traffic assumption. Finally,
we compare cell-based Maximum Weighted
Matching and our PB-MWM algorithm. We
show that even though these two seem to
be very different in structure, they perform
similarly.

Keywords: Packet switching, scheduling,
variable length packets.

1 Introduction

When designing any switching system, there
are two important factors to be considered,
namely the overall throughput of the sys-
tem and the delay of packets. These two
factors are tremendously affected by the
scheduling algorithm used by the switch
and have been studied extensively for input-
queued, output-queued, and combined-
input-output-queued architectures [1, 2, 3,
4]. In all these studies, there is an im-
plicit assumption that the switch works with
fixed-size cells. In other words, they all as-
sume that whenever a packet arrives to the
system, it is divided into equal-sized cells,
and after switching is done, the cells are re-
assembled in the form of the original packet
before leaving the system.

In contrary to this common assumption,
we can consider systems in which the switch
directly works on packets without break-
ing them into cells. We call such a switch-
ing system a packet-based system compared
to the cell-based systems which only deal
with fixed-size cells. Obviously, using fixed-
length cells in the switch makes the hard-

ware implementation much easier than us-
ing variable-length packets, but the ques-
tion is can we gain a better performance
(delay, throughput, ...) using packet-based
systems. In this paper, we will try to inves-
tigate this problem, and study the trade-off
between packet-based and cell-based switch-
ing systems.

The structure of this paper is as fol-
lows: in Section 1.1 we will state the prob-
lem in more detail. Then, in Section 2
we briefly review previous results in this
area. In Section 3 we propose a num-
ber of packet-based scheduling algorithms.
We classify all packet-based scheduling algo-
rithms into two classes of waiting and non-
waiting algorithms and show that no non-
waiting algorithm can gain 100% through-
put under generally admissible traffic. In
section 3.2 we prove that there is a non-
waiting packet-based scheduling algorithm
which gains 100% throughput under i.i.d.
traffic. In section 4 we compare the per-
formance of packet-based and cell-based
scheduling algorithms using simulation. Fi-
nally we conclude in Section 5.

1.1 Problem Statement

In any cell-based switching system, different
cells of the same packet may observe differ-
ent delay values before leaving the system.
It is reasonable to assume that the delay
seen by the user is the delay observed by the
last cell of any packet. Therefore, a schedul-
ing algorithm which switches the last cell
of a packet with a large delay is considered
to perform poorly, even if it performs very
well on all other cells of the packet. Most
of the known cell-based scheduling are not
aware of the existence of packets, and there-

fore there is a chance that a packet-based
scheduling algorithm which is aware of the
entity of a packet can use this information
to do a better scheduling (in the sense of the
waiting delay observed by the users).

Obviously, a possible drawback for
packet-based switching systems is that long
packets may keep a pair of input-output
ports busy, therefore increasing the delay
of other small packets waiting for the same
output port.

Based on the above observations, a very
interesting problem is the study of the
trade-off between cell-based and packet-
based scheduling algorithms and the role of
traffic pattern in the performance of each
system.

McKeown et. al have shown that using
Maximum Weighted Matching (MWM) as a
scheduling algorithm for a cell-based switch
results in 100% throughput for i.i.d. traffic
pattern [2]. Prabhakar and Dai have shown
that the stability holds for any admissible
traffic [3]. There are also a number of cell-
based scheduling algorithms which are sta-
ble under any admissible i.i.d. traffic even
though they cannot achieve 100% through-
put in general. There are no similar re-
sults for packet-based scheduling algorithms
which we are aware of.

In this paper we will propose a number
of algorithms and study their stability under
different traffic patterns.

1.2 Preliminaries

Let us start with formally defining what a
packet-based scheduling algorithm is. Here
we assume that a cell-based switching sys-
tem is an input-queued crossbar which also
implements virtual output queues. Know-

ing this structure, we can define a packet-
based switching system as follows.

Definition 1. A packet-based scheduling al-
gorithm for a switch is a cell-based schedul-
ing algorithm such that once it starts trans-
ferring a packet from an input port to an
output port it does not stop until the whole
packet is completely transfered to the cor-
responding output port.

As we can see in this definition, if we as-
sume that all packets are of the same size
a packet-based scheduling algorithm will be
the same as a cell-based scheduling algo-
rithm.

2 Previous work

Marsan et. al [5] have considered this prob-
lem and have proposed a simple scheduling
algorithm for Input-queued switches. They
use simulations to show the efficiency of
their method and do not provide any an-
alytical proofs. They show that in the
case of packet-based switching systems, in-
put queuing architectures can provide ad-
vantages over output-queuing architectures.

Manjunath and Sikdar [6] give an ana-
lytic model for the delay in an input-queued,
packet-based switches under Poisson and
self similar traffic patterns. They validate
their model using simulations. Based on
their model, they show that a first-come-
first-served service in the virtual output
queued system gives the least average de-
lay. Their model can be easily extended
to consider priorities in the input queue,
but unfortunately, their model does not ad-
dress many architectures that are possible
for packet-based switching systems.

3 Main results

In this section we introduce different meth-
ods for converting cell-based scheduling al-
gorithms into packet-based algorithms and
study the properties of the proposed meth-
ods.

3.1 Proposed Algorithms

One way to convert any cell-based schedul-
ing algorithm to a packet-based one, is to
assume that we have got large cells such
that any packet can be encapsulated in a
cell. We call this method algorithm 1. Ob-
viously we are wasting a lot of bandwidth in
this method. One might think that by tak-
ing the cell size to be the maximum of the
packets which are being transfered we can
gain some advantage. This is called algo-
rithm 2. As we will see later, both of these
algorithms perform very poorly in general.
Let us consider a more complex method.
We consider any cell-based scheduling algo-
rithm X (e.g. MWM, maximal matching,
ete.). We can easily convert X into a packet-
based algorithm as follows.
PB-X scheduling algorithm: At each
time slot ¢ we divide the input-output ports
into two disjoint sets:

1. Busy ports: the set of input-output
ports which have been matched to
each other in the previous time slot
and are still in the middle of sending
a packet.

2. Free ports: the set of input-output
ports which either have no packets to
send, or just finished sending a packet.

The scheduling algorithm PB-X keeps
the matching already used by busy ports

and finds a new (sub-)matching for free
ports using the cell-based scheduling algo-
rithm X (Figure 1).

@ (b)

Figure 1: a) The matching used by the PB-
X algorithm at time ¢. b) The solid line are
the input-output ports which are still busy.
PB-X recomputes a matching for the free
ports indicated by the dashed lines.

3.1.1 Non-waiting vs. waiting
packet-based scheduling algo-

rithms

In this section we will classify packet-based
algorithms into two classes called mnon-
waiting and waiting algorithms and study
their properties.

Definition 2. A packet-based scheduling
algorithm PBA is said to be non-waiting if
PBA starts transferring packets from input
port ¢ to output port ;5 whenever there is a
packet at VOQ@);; and neither the input port
7 nor the output port j is busy.

Intuitively, a non-waiting scheduling al-
gorithm never defers the transfer of a (head
of line) packet unless one of the input or out-
put ports corresponding to that packet are
busy. On the other hand we can have algo-
rithms that may defer transferring a packet

even though none of the corresponding in-
put or output ports are busy. We call such
algorithms waiting algorithms..

Since any PB-X algorithm finds a match-
ing for all free input-output ports at any
time slot, any PB-X scheduling algorithm is
a non-waiting algorithm.

012345678 9101112131415161718192021222324252627282930 Time

Figure 2: Arrival pattern which makes the
switch unstable.

With the help of a counter-example we
can easily show that no non-waiting packet-
based scheduling algorithm can be generally
stable. Consider a 2x2 switch and assume
that packets of length 1,2, or 3 arrive to this
switch according to the pattern shown in
Figure 2. A;; shows the packets arrived at
input port ¢ going to output port j. We note
that the traffic is strictly admissible (no in-
put or output is over-subscribed). When the
first packet arrives (packet with length 3 to
Ay 5) the switch selects the parallel match-
ing (1=1 and 2=-2) and is forced to keep it
for the next three units of time. But before
it can switch again, a packet of size 2 arrives
to Ay ; and force the switch to keep the same
matching. It can be seen that the same pro-
cess occurs alternatively between lines Aqy
and A forcing the system to keep the same
matching forever. Therefore, packets of size
1 can never leave the switch and thus the
switch is not stable.

3.2 PB-MWM under i.i.d.

traffic

In Section 3.1.1 we proved that any PB-X
algorithm is not stable under generally ad-
missible traffic. In this section, we show
that under i.i.d. input traffic, there is a class
of algorithms, which include PB-MWM that
can gain 100% throughput. To show this let
us start with the following definition.

Definition 3. A matching M, between in-
put and output ports, is called a k-imperfect
matching at time slot ¢, if the scheduling al-
gorithm of a switch chooses M as a maxi-
mum weighted matching at time ¢t — k and
the switch continues to use M during the
time interval [t — k, t].

Obviously, any maximum weighted
matching is a O-imperfect matching at the
time it is chosen by the scheduler. The fol-
lowing Lemma states a very simple but im-
portant property of k-imperfect matchings.

Lemma 1. If W* is the weight of any maz-
imum weighted matching at time t and W is
the weight of a k-imperfect matching at that
time, W > W* — 2Nk.

Proof. Let M be the maximum weighted
matching used by the scheduler at time ¢t — &
and M* be a maximum weighted match-
ing at time ¢. For any input-output pair
in M we can have at most k departures and
therefore we have at most Nk departures if
the system uses M for k consecutive time
slots. Also we have at most Nk arrivals to
the input-output pairs in M* during these k
time slots (Figure 3). Therefore the weight
of W is at least W* — 2Nk. n

at most k
arrivals

(MWM at time t-k)

(MWM at time t)

Figure 3: M is the matching used by the
switch for the time interval [t — k, t] and M*
is the MWM at time ¢. During the time in-
terval [t —k, t] we can have up to Nk arrivals
to M* and up to Nk departures from M.

Theorem 1. There is a class of PB-X al-
gorithms which are stable under i.i.d. input

traffic.

Proof. Let us consider any scheduling al-
gorithm SA such that whenever all input-
output pairs are free, SA uses a maxi-
mum weighted matching and keeps the same
matching (or a matching with a greater
weight) till the time when all input-output
pairs are free. We say that such an algo-
rithm is in state ¢ (0 < ¢) at time ¢ if the
algorithm has updated its matching at time
t — 7 for the last time. Based on the way we
have defined the states, we can have only
transitions between states ¢ and i + 1 (for
0 < i) or from state i to state 0. Let us

assume that the probability of going from
state ¢ to state ¢ + 1 is P; and the probably
of going back to state 0 from state ¢ is Q;
(Figure 4). Obviously, P, + @, = 1.

Figure 4: The structure of states in the SA
algorithms.

If for every ¢ > 0 we have Q); > « for a
given o > 0, then we can to verify that the
probability of being in state ¢, denoted by
7;, in steady state is at most o'*!. Using
Lemma 1 we also know that if the system is
in state ¢, we have W; > W*—2N1i, where W;
is the weight of the matching which is being
used by the switch and W™ is the weight
of the maximum weighted matching at that
time.

Now, let us compute the expected weight
of the matchings used by the switch.

E{(W} = 2 WP
> @()W*—QNz'PZ-
> W& P -2NLP
> W*—2N Lot

Since the arrivals are i.i.d. we can easily
show that such an alpha always exists, be-
cause at any time slot the probability that
all input-output lines become free is not zero
(even though this probability may be very
small). Therefore, we have E{W} > W*—-C
which proves that the system is stable. =

Since the weight of the matchings used
by the PB-MWM is always greater than or

equal to the weights of the matchings used
by the SA algorithm in the previous proof,
we can easily derive the following corollary.

Corollary 1. The PB-MWDM scheduling al-
gorithm is stable under i.i.d. traffic.

4 Simulation results

In this section, we compare the performance
of packet-based scheduling algorithms and
cell-based scheduling algorithms. We use a
simulation program to obtain an estimate of
the average delay seen by the packets.

Switch Size

=8
10° b Max Packet Length = 16

Uniform Traffic
Uniform Packet Length

S* Algorithm 1
% « Algorithm 2
> » CB-MWM

10° o+ PB-MWM

Figure 5: Average delay vs. input traffic
load (uniform traffic, uniform packet length)

Figure 5 shows the average delay seen by
packets versus the traffic load for four dif-
ferent algorithms. An 8x8 switch with max-
imum packet length of 16, uniform input
traffic and uniform packet length distribu-
tion is considered. The curves correspond-
ing to algorithms 1 and 2 (Section 3.1) show
that these algorithms perform very poorly,
even for low traffic loads.

The two other curves correspond to
packet-based and cell-based MWM algo-
rithms. For the cell-based case, in the sim-
ulation process, the delays seen by each
packet (and not by cells) is considered, i.e.,
the delay assigned to a packet is the delay
which is observed by the last cell of a packet.

It is worth noticing that although these
two algorithms are completely different,
they have pretty close delay curves. How-
ever, for small load values, the packet-based
MWM performs slightly better than the
cell-based algorithm, and the situation is re-
versed for higher loads. The rate at which
the two curves get identical average delay is
about 0.5 in this particular example.

10*

Average Delay

nform Packet Length Dist.
acket Length is considered

10°

Figure 6: Weighted average delay vs. input
traffic load (uniform traffic, uniform packet
length)

To compute the average delay in the pre-
vious plot, we took the average without con-
sidering the length of each packet. In other
words, each packet has the same effect on
the total average no matter how long the
packet is. However, it seems reasonable to
consider the packet lengths in computing
the average delay, i.e., to multiply the de-

lay seen by each packet by its length and
take the average over all packets. In Fig-
ure 6 we can see the average delays ob-
tained with this modification, for a switch
with the same specification as in Figure 5.
Again, we see that these two curves are
pretty close to each other, and for low traffic
loads the packet-based algorithm performs
better, while for higher loads the cell-based
algorithm has better delays on average.

10°

Switch Size =8
10% + Max. Packet Size =4

Diagonal Traffic
Uniform Distribution for Packet Length

Average Delay

10°F #————% CB-MWM

e——e PB-MWM

0 0.2 0.4 0.6 0.8 1
Normalized Load

Figure 7: Average delay vs. input traf-
fic load (diagonal traffic, uniform packet
length)

In Figure 7 we examine the delay perfor-
mance of the switch for a non-uniform traf-
fic pattern. The traffic applied to the switch
has diagonal distribution, i.e., A;; = 0.9 and
Aii+1 = 0.1 and all other elements are zero
in the rate matrix. We again see the same
behavior as before, but the crossing point
of the two curves is now somewhere around
0.7.

In Figure 8 we assume a different distri-
bution for packet lengths. The traffic pat-
tern is uniform but the length of the packets
has the following distribution:

Average Delay

#——————% CB-MWM

————— PB-MWM

Figure 8: Average delay vs. input traf-
fic load (uniform traffic, non-uniform packet
length)

03forl=1,2,3
P<l>:{ 0.1 for [= 4

We can see that for this specific dis-
tribution the crossing point of the two
curves (PB-MWM and CB-MWM) goes
much higher to about 0.95. So PB-MWM
outperforms CB-MWM for a wider range of
traffic loads.

5 Conclusion

In this paper we looked at the packet-
based scheduling algorithms. We intro-
duced a general method for converting a
cell-based algorithm to a packet-based one.
Then, after classifying all packet-based al-
gorithms into waiting and non-waiting cat-
egories, with the help of a counter-example
we showed that no non-waiting packet-
based algorithm can be stable under general
admissible traffic. Furthermore, we proved
that with i.i.d. traffic assumption, there
exist some stable packet-based algorithms.

Mainly we proved that PB-MWM is stable
for i.i.d. traffic.

Finally, based on some simulation re-
sults we concluded that PB-MWM and CB-
MWM have approximately similar delay
performance. We observe that PB-MWM
has better average delay for low traffic loads
while CB-MWM is better for higher traffic
rates.

We showed that no non-waiting algo-
rithm can be generally stable, so if there
exist any generally stable packet-based al-
gorithm it must be a waiting algorithm. An
open problem that can be further studied is
finding such an algorithm or proving that it
does not exist.

References

[1] Nick McKeown. iSLIP: A schedul-
ing algorithm for input-queued switches,
April 1999.

[2] N. McKewon, V. Anantharam, and
J. Walrand. Achieving 100% throughput
in an input-queued switch. In Procee-
dungs of IEEE Info-com 96, volume 1,
pages 296-302, March 1996.

[3] Jim Dai and Balaji Prabhakar. The
throughput of data switches with
and without speedup. In Proceed-
ings of the 2000 IEEE Computer
and Communications Societies Con-
ference on Computer Communications
(INFOCOM-00), pages 556-574, Los
Alamitos, March 26-30 2000. IEEE.

[4] Balaji Prabhakar and Nick McKeown.
On the speedup required for combined
input and output queued switching.

Technical Report CSL-TR-97-738, Stan-
ford University, Computer Systems Lab-
oratory, November 1997.

M.A. Marson, A. Bianco, P. Giacone,
E. Leonardi, and F. Neri. Scheduling in
input-queued cell-based packet switches.
In Proceedings of the Global Telecommu-
nications Conference, GLOBECOM 99,
pages 1227-1235, 1999.

D. Manjunath and Biplab Sikdar. Vari-
able length packet switches: Delay anal-
ysis of crossbar switches under poisson
and self similar traffic. In INFOCOM
(2), pages 1055-1064, 2000.

