
Going Deeper with Convolutions

Christian Szegedy1, Wei Liu2, Yangqing Jia1, Pierre Sermanet1, Scott Reed3,

Dragomir Anguelov1, Dumitru Erhan1, Vincent Vanhoucke1, Andrew Rabinovich4

1Google Inc. 2University of North Carolina, Chapel Hill
3University of Michigan, Ann Arbor 4Magic Leap Inc.

1{szegedy,jiayq,sermanet,dragomir,dumitru,vanhoucke}@google.com

2wliu@cs.unc.edu, 3reedscott@umich.edu, 4arabinovich@magicleap.com

Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafted design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRC14 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes. Our
GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-

ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms – especially their power and memory use – gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient deep neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2]. The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification
and detection challenges, where it significantly outperforms
the current state of the art.

2. Related Work

Starting with LeNet-5 [10], convolutional neural net-
works (CNN) have typically had a standard structure –
stacked convolutional layers (optionally followed by con-
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trast normalization and max-pooling) are followed by one
or more fully-connected layers. Variants of this basic design
are prevalent in the image classification literature and have
yielded the best results to-date on MNIST, CIFAR and most
notably on the ImageNet classification challenge [9, 21].
For larger datasets such as Imagenet, the recent trend has
been to increase the number of layers [12] and layer
size [21, 14], while using dropout [7] to address the problem
of overfitting.

Despite concerns that max-pooling layers result in loss
of accurate spatial information, the same convolutional net-
work architecture as [9] has also been successfully em-
ployed for localization [9, 14], object detection [6, 14, 18, 5]
and human pose estimation [19].

Inspired by a neuroscience model of the primate visual
cortex, Serre et al. [15] used a series of fixed Gabor filters
of different sizes to handle multiple scales. We use a similar
strategy here. However, contrary to the fixed 2-layer deep
model of [15], all filters in the Inception architecture are
learned. Furthermore, Inception layers are repeated many
times, leading to a 22-layer deep model in the case of the
GoogLeNet model.

Network-in-Network is an approach proposed by Lin et
al. [12] in order to increase the representational power of
neural networks. In their model, additional 1 × 1 convolu-
tional layers are added to the network, increasing its depth.
We use this approach heavily in our architecture. However,
in our setting, 1 × 1 convolutions have dual purpose: most
critically, they are used mainly as dimension reduction mod-
ules to remove computational bottlenecks, that would oth-
erwise limit the size of our networks. This allows for not
just increasing the depth, but also the width of our networks
without a significant performance penalty.

Finally, the current state of the art for object detection is
the Regions with Convolutional Neural Networks (R-CNN)
method by Girshick et al. [6]. R-CNN decomposes the over-
all detection problem into two subproblems: utilizing low-
level cues such as color and texture in order to generate ob-
ject location proposals in a category-agnostic fashion and
using CNN classifiers to identify object categories at those
locations. Such a two stage approach leverages the accu-
racy of bounding box segmentation with low-level cues, as
well as the highly powerful classification power of state-of-
the-art CNNs. We adopted a similar pipeline in our detec-
tion submissions, but have explored enhancements in both
stages, such as multi-box [5] prediction for higher object
bounding box recall, and ensemble approaches for better
categorization of bounding box proposals.

3. Motivation and High Level Considerations
The most straightforward way of improving the perfor-

mance of deep neural networks is by increasing their size.
This includes both increasing the depth – the number of net-

Figure 1: Two distinct classes from the 1000 classes of the
ILSVRC 2014 classification challenge. Domain knowledge is re-
quired to distinguish between these classes.

work levels – as well as its width: the number of units at
each level. This is an easy and safe way of training higher
quality models, especially given the availability of a large
amount of labeled training data. However, this simple solu-
tion comes with two major drawbacks.

Bigger size typically means a larger number of parame-
ters, which makes the enlarged network more prone to over-
fitting, especially if the number of labeled examples in the
training set is limited. This is a major bottleneck as strongly
labeled datasets are laborious and expensive to obtain, often
requiring expert human raters to distinguish between vari-
ous fine-grained visual categories such as those in ImageNet
(even in the 1000-class ILSVRC subset) as shown in Fig-
ure 1.

The other drawback of uniformly increased network
size is the dramatically increased use of computational re-
sources. For example, in a deep vision network, if two
convolutional layers are chained, any uniform increase in
the number of their filters results in a quadratic increase of
computation. If the added capacity is used inefficiently (for
example, if most weights end up to be close to zero), then
much of the computation is wasted. As the computational
budget is always finite, an efficient distribution of comput-
ing resources is preferred to an indiscriminate increase of
size, even when the main objective is to increase the quality
of performance.

A fundamental way of solving both of these issues would
be to introduce sparsity and replace the fully connected lay-
ers by the sparse ones, even inside the convolutions. Be-
sides mimicking biological systems, this would also have
the advantage of firmer theoretical underpinnings due to the
groundbreaking work of Arora et al. [2]. Their main re-
sult states that if the probability distribution of the dataset is
representable by a large, very sparse deep neural network,
then the optimal network topology can be constructed layer
after layer by analyzing the correlation statistics of the pre-
ceding layer activations and clustering neurons with highly
correlated outputs. Although the strict mathematical proof
requires very strong conditions, the fact that this statement



resonates with the well known Hebbian principle – neurons
that fire together, wire together – suggests that the under-
lying idea is applicable even under less strict conditions, in
practice.

Unfortunately, today’s computing infrastructures are
very inefficient when it comes to numerical calculation on
non-uniform sparse data structures. Even if the number of
arithmetic operations is reduced by 100×, the overhead of
lookups and cache misses would dominate: switching to
sparse matrices might not pay off. The gap is widened yet
further by the use of steadily improving and highly tuned
numerical libraries that allow for extremely fast dense ma-
trix multiplication, exploiting the minute details of the un-
derlying CPU or GPU hardware [16, 9]. Also, non-uniform
sparse models require more sophisticated engineering and
computing infrastructure. Most current vision oriented ma-
chine learning systems utilize sparsity in the spatial domain
just by the virtue of employing convolutions. However, con-
volutions are implemented as collections of dense connec-
tions to the patches in the earlier layer. ConvNets have tra-
ditionally used random and sparse connection tables in the
feature dimensions since [11] in order to break the sym-
metry and improve learning, yet the trend changed back to
full connections with [9] in order to further optimize par-
allel computation. Current state-of-the-art architectures for
computer vision have uniform structure. The large number
of filters and greater batch size allows for the efficient use
of dense computation.

This raises the question of whether there is any hope for
a next, intermediate step: an architecture that makes use
of filter-level sparsity, as suggested by the theory, but ex-
ploits our current hardware by utilizing computations on
dense matrices. The vast literature on sparse matrix com-
putations (e.g. [3]) suggests that clustering sparse matrices
into relatively dense submatrices tends to give competitive
performance for sparse matrix multiplication. It does not
seem far-fetched to think that similar methods would be uti-
lized for the automated construction of non-uniform deep-
learning architectures in the near future.

The Inception architecture started out as a case study for
assessing the hypothetical output of a sophisticated network
topology construction algorithm that tries to approximate a
sparse structure implied by [2] for vision networks and cov-
ering the hypothesized outcome by dense, readily available
components. Despite being a highly speculative undertak-
ing, modest gains were observed early on when compared
with reference networks based on [12]. With a bit of tun-
ing the gap widened and Inception proved to be especially
useful in the context of localization and object detection as
the base network for [6] and [5]. Interestingly, while most
of the original architectural choices have been questioned
and tested thoroughly in separation, they turned out to be
close to optimal locally. One must be cautious though: al-

though the Inception architecture has become a success for
computer vision, it is still questionable whether this can be
attributed to the guiding principles that have lead to its con-
struction. Making sure of this would require a much more
thorough analysis and verification.

4. Architectural Details
The main idea of the Inception architecture is to consider

how an optimal local sparse structure of a convolutional vi-
sion network can be approximated and covered by readily
available dense components. Note that assuming translation
invariance means that our network will be built from convo-
lutional building blocks. All we need is to find the optimal
local construction and to repeat it spatially. Arora et al. [2]
suggests a layer-by layer construction where one should an-
alyze the correlation statistics of the last layer and cluster
them into groups of units with high correlation. These clus-
ters form the units of the next layer and are connected to
the units in the previous layer. We assume that each unit
from an earlier layer corresponds to some region of the in-
put image and these units are grouped into filter banks. In
the lower layers (the ones close to the input) correlated units
would concentrate in local regions. Thus, we would end up
with a lot of clusters concentrated in a single region and
they can be covered by a layer of 1×1 convolutions in the
next layer, as suggested in [12]. However, one can also
expect that there will be a smaller number of more spatially
spread out clusters that can be covered by convolutions over
larger patches, and there will be a decreasing number of
patches over larger and larger regions. In order to avoid
patch-alignment issues, current incarnations of the Incep-
tion architecture are restricted to filter sizes 1×1, 3×3 and
5×5; this decision was based more on convenience rather
than necessity. It also means that the suggested architecture
is a combination of all those layers with their output filter
banks concatenated into a single output vector forming the
input of the next stage. Additionally, since pooling opera-
tions have been essential for the success of current convo-
lutional networks, it suggests that adding an alternative par-
allel pooling path in each such stage should have additional
beneficial effect, too (see Figure 2(a)).

As these “Inception modules” are stacked on top of each
other, their output correlation statistics are bound to vary:
as features of higher abstraction are captured by higher lay-
ers, their spatial concentration is expected to decrease. This
suggests that the ratio of 3×3 and 5×5 convolutions should
increase as we move to higher layers.

One big problem with the above modules, at least in this
naı̈ve form, is that even a modest number of 5×5 convo-
lutions can be prohibitively expensive on top of a convolu-
tional layer with a large number of filters. This problem be-
comes even more pronounced once pooling units are added
to the mix: the number of output filters equals to the num-
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Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1×1 convolutions are used to compute reductions before
the expensive 3×3 and 5×5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3− 10× faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet
By the“GoogLeNet” name we refer to the particular in-

carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224×224 in the RGB color
space with zero mean. “#3×3 reduce” and “#5×5 reduce”
stands for the number of 1×1 filters in the reduction layer
used before the 3×3 and 5×5 convolutions. One can see
the number of 1×1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.



type patch size/
stride

output
size depth #1×1 #3×3

reduce #3×3 #5×5
reduce #5×5 pool

proj params ops

convolution 7×7/2 112×112×64 1 2.7K 34M

max pool 3×3/2 56×56×64 0

convolution 3×3/1 56×56×192 2 64 192 112K 360M

max pool 3×3/2 28×28×192 0

inception (3a) 28×28×256 2 64 96 128 16 32 32 159K 128M

inception (3b) 28×28×480 2 128 128 192 32 96 64 380K 304M

max pool 3×3/2 14×14×480 0

inception (4a) 14×14×512 2 192 96 208 16 48 64 364K 73M

inception (4b) 14×14×512 2 160 112 224 24 64 64 437K 88M

inception (4c) 14×14×512 2 128 128 256 24 64 64 463K 100M

inception (4d) 14×14×528 2 112 144 288 32 64 64 580K 119M

inception (4e) 14×14×832 2 256 160 320 32 128 128 840K 170M

max pool 3×3/2 7×7×832 0

inception (5a) 7×7×832 2 256 160 320 32 128 128 1072K 54M

inception (5b) 7×7×1024 2 384 192 384 48 128 128 1388K 71M

avg pool 7×7/1 1×1×1024 0

dropout (40%) 1×1×1024 0

linear 1×1×1000 1 1000K 1M

softmax 1×1×1000 0

Table 1: GoogLeNet incarnation of the Inception architecture.

The network is 22 layers deep when counting only layers
with parameters (or 27 layers if we also count pooling). The
overall number of layers (independent building blocks) used
for the construction of the network is about 100. The exact
number depends on how layers are counted by the machine
learning infrastructure. The use of average pooling before
the classifier is based on [12], although our implementation
has an additional linear layer. The linear layer enables us to
easily adapt our networks to other label sets, however it is
used mostly for convenience and we do not expect it to have
a major effect. We found that a move from fully connected
layers to average pooling improved the top-1 accuracy by
about 0.6%, however the use of dropout remained essential
even after removing the fully connected layers.

Given relatively large depth of the network, the ability
to propagate gradients back through all the layers in an
effective manner was a concern. The strong performance
of shallower networks on this task suggests that the fea-
tures produced by the layers in the middle of the network
should be very discriminative. By adding auxiliary classi-
fiers connected to these intermediate layers, discrimination
in the lower stages in the classifier was expected. This was
thought to combat the vanishing gradient problem while

providing regularization. These classifiers take the form
of smaller convolutional networks put on top of the out-
put of the Inception (4a) and (4d) modules. During train-
ing, their loss gets added to the total loss of the network
with a discount weight (the losses of the auxiliary classi-
fiers were weighted by 0.3). At inference time, these auxil-
iary networks are discarded. Later control experiments have
shown that the effect of the auxiliary networks is relatively
minor (around 0.5%) and that it required only one of them
to achieve the same effect.

The exact structure of the extra network on the side, in-
cluding the auxiliary classifier, is as follows:

• An average pooling layer with 5×5 filter size and
stride 3, resulting in an 4×4×512 output for the (4a),
and 4×4×528 for the (4d) stage.

• A 1×1 convolution with 128 filters for dimension re-
duction and rectified linear activation.

• A fully connected layer with 1024 units and rectified
linear activation.

• A dropout layer with 70% ratio of dropped outputs.



• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [ 34 ,

4
3 ]. Also, we found that the photometric distortions

of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.
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Figure 3: GoogLeNet network with all the bells and whistles.



We participated in the challenge with no external data
used for training. In addition to the training techniques
aforementioned in this paper, we adopted a set of techniques
during testing to obtain a higher performance, which we de-
scribe next.

1. We independently trained 7 versions of the same
GoogLeNet model (including one wider version), and
performed ensemble prediction with them. These
models were trained with the same initialization (even
with the same initial weights, due to an oversight) and
learning rate policies. They differed only in sampling
methodologies and the randomized input image order.

2. During testing, we adopted a more aggressive cropping
approach than that of Krizhevsky et al. [9]. Specif-
ically, we resized the image to 4 scales where the
shorter dimension (height or width) is 256, 288, 320
and 352 respectively, take the left, center and right
square of these resized images (in the case of portrait
images, we take the top, center and bottom squares).
For each square, we then take the 4 corners and the
center 224×224 crop as well as the square resized to
224×224, and their mirrored versions. This leads to
4×3×6×2 = 144 crops per image. A similar ap-
proach was used by Andrew Howard [8] in the pre-
vious year’s entry, which we empirically verified to
perform slightly worse than the proposed scheme. We
note that such aggressive cropping may not be neces-
sary in real applications, as the benefit of more crops
becomes marginal after a reasonable number of crops
are present (as we will show later on).

3. The softmax probabilities are averaged over multiple
crops and over all the individual classifiers to obtain
the final prediction. In our experiments we analyzed
alternative approaches on the validation data, such as
max pooling over crops and averaging over classifiers,
but they lead to inferior performance than the simple
averaging.

In the remainder of this paper, we analyze the multiple
factors that contribute to the overall performance of the final
submission.

Our final submission to the challenge obtains a top-5 er-
ror of 6.67% on both the validation and testing data, ranking
the first among other participants. This is a 56.5% relative
reduction compared to the SuperVision approach in 2012,
and about 40% relative reduction compared to the previous
year’s best approach (Clarifai), both of which used external
data for training the classifiers. Table 2 shows the statistics
of some of the top-performing approaches over the past 3
years.

We also analyze and report the performance of multiple
testing choices, by varying the number of models and the

Team Year Place Error
(top-5)

Uses external
data

SuperVision 2012 1st 16.4% no

SuperVision 2012 1st 15.3% Imagenet 22k

Clarifai 2013 1st 11.7% no

Clarifai 2013 1st 11.2% Imagenet 22k

MSRA 2014 3rd 7.35% no

VGG 2014 2nd 7.32% no

GoogLeNet 2014 1st 6.67% no

Table 2: Classification performance.

Number
of models

Number
of Crops

Cost Top-5
error

compared
to base

1 1 1 10.07% base

1 10 10 9.15% -0.92%

1 144 144 7.89% -2.18%

7 1 7 8.09% -1.98%

7 10 70 7.62% -2.45%

7 144 1008 6.67% -3.45%

Table 3: GoogLeNet classification performance break down.

number of crops used when predicting an image in Table 3.
When we use one model, we chose the one with the lowest
top-1 error rate on the validation data. All numbers are re-
ported on the validation dataset in order to not overfit to the
testing data statistics.

8. ILSVRC 2014 Detection Challenge Setup
and Results

The ILSVRC detection task is to produce bounding
boxes around objects in images among 200 possible classes.
Detected objects count as correct if they match the class
of the groundtruth and their bounding boxes overlap by at
least 50% (using the Jaccard index). Extraneous detections
count as false positives and are penalized. Contrary to the
classification task, each image may contain many objects or
none, and their scale may vary. Results are reported using
the mean average precision (mAP). The approach taken by
GoogLeNet for detection is similar to the R-CNN by [6], but
is augmented with the Inception model as the region classi-
fier. Additionally, the region proposal step is improved by
combining the selective search [20] approach with multi-
box [5] predictions for higher object bounding box recall.
In order to reduce the number of false positives, the super-



Team Year Place mAP external data ensemble approach

UvA-Euvision 2013 1st 22.6% none ? Fisher vectors

Deep Insight 2014 3rd 40.5% ImageNet 1k 3 CNN

CUHK DeepID-Net 2014 2nd 40.7% ImageNet 1k ? CNN

GoogLeNet 2014 1st 43.9% ImageNet 1k 6 CNN

Table 4: Comparison of detection performances. Unreported values are noted with question marks.

pixel size was increased by 2×. This halves the proposals
coming from the selective search algorithm. We added back
200 region proposals coming from multi-box [5] resulting,
in total, in about 60% of the proposals used by [6], while
increasing the coverage from 92% to 93%. The overall ef-
fect of cutting the number of proposals with increased cov-
erage is a 1% improvement of the mean average precision
for the single model case. Finally, we use an ensemble of
6 GoogLeNets when classifying each region. This leads to
an increase in accuracy from 40% to 43.9%. Note that con-
trary to R-CNN, we did not use bounding box regression
due to lack of time.

We first report the top detection results and show the
progress since the first edition of the detection task. Com-
pared to the 2013 result, the accuracy has almost doubled.
The top performing teams all use convolutional networks.
We report the official scores in Table 4 and common strate-
gies for each team: the use of external data, ensemble mod-
els or contextual models. The external data is typically the
ILSVRC12 classification data for pre-training a model that
is later refined on the detection data. Some teams also men-
tion the use of the localization data. Since a good portion
of the localization task bounding boxes are not included in
the detection dataset, one can pre-train a general bounding
box regressor with this data the same way classification is
used for pre-training. The GoogLeNet entry did not use the
localization data for pretraining.

In Table 5, we compare results using a single model only.
The top performing model is by Deep Insight and surpris-
ingly only improves by 0.3 points with an ensemble of 3
models while the GoogLeNet obtains significantly stronger
results with the ensemble.

9. Conclusions

Our results yield a solid evidence that approximating the
expected optimal sparse structure by readily available dense
building blocks is a viable method for improving neural net-
works for computer vision. The main advantage of this
method is a significant quality gain at a modest increase
of computational requirements compared to shallower and
narrower architectures.

Our object detection work was competitive despite not

Team mAP Contextual
model

Bounding box
regression

Trimps-
Soushen

31.6% no ?

Berkeley
Vision

34.5% no yes

UvA-
Euvision

35.4% ? ?

CUHK
DeepID-
Net2

37.7% no ?

GoogLeNet 38.02% no no

Deep
Insight

40.2% yes yes

Table 5: Single model performance for detection.

utilizing context nor performing bounding box regression,
suggesting yet further evidence of the strengths of the In-
ception architecture.

For both classification and detection, it is expected that
similar quality of result can be achieved by much more ex-
pensive non-Inception-type networks of similar depth and
width. Still, our approach yields solid evidence that mov-
ing to sparser architectures is feasible and useful idea in
general. This suggest future work towards creating sparser
and more refined structures in automated ways on the basis
of [2], as well as on applying the insights of the Inception
architecture to other domains.
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