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Abstract

Jakarta is a superset of the Java language that is designed to support the GenVoca model of software
generation. Among its distinguishing features are code generation, language extensibility, multi-
class encapsulations, and subjectivity.

1  Introduction

Generators hold great promise in alleviating the onerous costs of producing and maintaining families of
customized, high-performance applications. Generators convert declarative specifications of target applica-
tions into optimized source code. An approach that is gaining popularity in software generation is to use
architectural specifications of target systems, where a specification is a composition of primitive building
blocks called components. The evolution of application software — i.e., the ability to add new features and
replace old ones — is accomplished by revising the composition of components that defines the target
application and regenerating.

There are two rather different kinds of generator technologies: compositional and transformational. Both
compose components in similar ways, but the nature of their components are quite different. Composi-
tional components encapsulate code that applications execute at run-time. Transformational components
encapsulate algorithms that generate the code that applications execute at run-time. The advantage of
transformational technologies is that domain-specific optimizations can be an integral part of software gen-
eration; such optimizations are performed at application generation-time, yielding efficient source code.
Compositional technologies generally don’t perform domain-specific optimizations (or if they do, the opti-
mizations are performed at application run-time, with a concomitant and sizable run-time overhead). Com-
positional technologies may be preferred over transformational technologies in domains where domain-
specific optimizations play a minimal role in application performance or in domains where components
must be composable at application run-time and cannot be limited to static compile-time compositions.

Rather different design and modeling methodologies exist for transformational generators (e.g., Draco,
KIDS) and compositional generators (e.g., OO Frameworks). However, a design paradigm has emerged,
called GenVoca, that unifies important aspects of both compositional and transformational approaches by
treating them as alternative ways of implementing component models of software domains. This is possi-
ble because GenVoca components define stereotypical refinements that occur in a domain. Such refine-
ments can be implemented as “stupid” compositional components (i.e., those that do not encapsulate
domain-specific optimizations) or as “intelligent” transformational components (that do encapsulate such
optimizations). Having a single modeling methodology that decomposes domains into reusable compo-
nents without a priori commitments to a compositional or transformational implementation, makes Gen-
Voca a very powerful methodology for conceptualizing generators and families of systems.

1.  This research was supported in part by DARPA contract F30602-92-2-0226 and The Applied Research Laborato-
ries at the University of Texas at Austin.
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GenVoca is a novel mixture of parameterized programming, object-oriented programming, and metapro-
gramming (i.e., programs that manipulate other programs). It is not surprising that the key concepts of
GenVoca are not supported by conventional programming languages. Consequently, these concepts must
be coded (and recoded) each time a generator is built. Coding generators from scratch is not scalable or
cost effective. Thus, creating a programming language that supports GenVoca (and thus simplifies the con-
struction of GenVoca generators) would be a major advance in software generation technology. Creating
such a language is the goal of our research.

Programming support for both compositional and transformational generators requires a very powerful
language. The language must be extensible, i.e., it should be possible to easily add new (primitive) domain-
specific data types and programming constructs. It must also support the creation and manipulation of pro-
gram fragments. (Such a capability would be used to transform program fragments that reference domain-
specific concepts into program fragments that directly implement these concepts). Most conventional pro-
gramming languages (e.g., C, C++) provide none of these capabilities. Lisp and CLOS, in contrast, do pro-
vide powerful features for language extensibility (e.g., Lisp macros) and program fragment creation (e.g.,
quote and unquote). Unfortunately, Lisp and CLOS are not the programming languages that generator
technologies will have their greatest impact. Extending a more conventional (i.e., imperative) object-ori-
ented languages will have a far greater impact and influence. For similar reasons, extending a more con-
ventional language will make the advances needed in programming languages more understandable and
accessible to the communities that would most benefit from generators. So in a real sense, bringing some
of the extensibility and program fragment capabilities of Lisp and CLOS to other programming languages
is a necessary but not sufficient condition for popularizing generators and simplifying generator construc-
tion. Because the parsing technologies for (mainly) functional languages like Lisp and CLOS are rather
different than those for imperative languages (e.g., C, C++, Java), there are major technical challenges in
realizing such a transition.

Originally, we envisioned C++ as the base language for our work. However, the stunning complexity of
C++ precludes extensions in any reasonable fashion. Java, on the other hand, is a streamlined object-ori-
ented programming language that is growing in popularity and is devoid of the complexities of C++. More-
over, it supports key features (e.g., class interfaces) that is a central requirement of GenVoca. This paper
outlines an extension to Java, called Jakarta2, that is designed to support GenVoca. Jakarta is presently
envisioned as a preprocessor to Java, but there is no a priori reason that it must remain so.

The design of Jakarta has been strongly influenced by our work on the Genesis and P2 generators,
Microsoft’s IP (Intentional Programming) project, and the Lisp, CLOS, RScheme and Beta programming
languages.

1.1  An Overview of Jakarta Preprocessing

Jakarta parses programs in multiple phases. A Jakarta program is first parsed into an abstract syntax tree
(AST). Each AST node represents a primitive language construct, where child subtrees denote the parame-
ters of that construct. (For example, an instance of an if-then-else construct would be represented by
a single node with subtrees for the boolean condition, the then-action, and the else-action). During the
first phase, the symbol table is populated with class definitions (e.g., exported methods and variables) and
each AST node is annotated with type information. Type checking is performed (bottom-up) during this
phase of parsing.

2.  Jakarta is the capital of Java, Indonesia. Neat place, good people, great food.
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There are three types of AST nodes: pure-Java, pure-Jakarta, and intentions. Pure-Java nodes are instances
of constructs in the Java language. Pure-Jakarta nodes are instances of constructs that Jakarta has added to
Java. The remaining nodes are called intentions. Intentions are instances of domain-specific constructs that
extend the Jakarta language; they correspond roughly to instances of Lisp macros.

Once a Jakarta program is parsed into an AST, two additional phases of parsing are performed — removal
of compiler directives and intension reductions — followed by code generation.

Removal of Compiler Directives. Compiler directives can be imbedded into Jakarta programs. These
directives instruct Jakarta to dynamically load libraries or to call functions in these libraries to generate
code (or more accurately, to generate ASTs that are substituted in place of compiler directives). An exam-
ple of code generation is the instantiation of templates. Templates are compiler functions; parameters to
templates are parameters to these functions. When a template function is invoked, it returns the AST of a
code segment where template parameters have been inserted at designated points.

Other possible compiler directives perform global reductions or global analyses. Examples of global
reductions are the application of object-oriented design patterns. A primitive design pattern, for example,
can promote methods and variables of specific subclasses to their superclasses. Applying such patterns
may have a global impact on a program, as many widely distributed statements in the program may be
updated. Thus complex, architectural-level modifications of programs, which are highly error-prone if per-
formed manually, can be performed correctly and automatically within Jakarta. A simple example of a glo-
bal analysis would be to output a globally revised program, and to terminate Jakarta. Thus, Jakarta can be
used as a general tool for metaprogramming (i.e., programs that manipulate other programs).

Upon completion of this parsing phase, the AST of the program contains no compiler directives and repre-
sents the complete source code to be processed.

Intension Reduction. The next phase deals with the reductions of intentions, which roughly corresponds
to the expansion of Lisp macros. In a top-down walk of the AST, each intention is replaced by an AST of
pure-Java and pure-Jakarta nodes; the AST subtree arguments of intentions may be modified in the pro-
cess. Such rewrites are performed by (Jakarta) functions that implement AST “macros”; AST macros can
be simple patterns in which macro arguments are inserted at designated points, or they are complex pat-
terns that are synthesized from arbitrarily-complex analyses. (Examples of the latter are domain-specific
code generators).3

Code Generation. A final top-down walk of the AST generates code. A function is invoked on the root of
the AST to produce the text of its Java equivalent; this recursively calls print functions of the roots of each
AST subtree.4,5

3.  Note that compiler directives may emulate Jakarta intentions. That is, using (ugly) compiler directives to make
external calls to generate code is equivalent to using syntactically-sugared extensions that trigger the same external
calls. Thus, it is possible that a template capability could be achieved both by compiler directives and through inten-
tions.

4.  If Jakarta were to be implemented as a true compiler, the code generation phase would replaced by a reduction of
intentions, where pure-Jakarta nodes would be intentions and their reductions would replace them with their pure-
Java AST representations.

5.   It may be possible to merge some of these parsing phases together (e.g., intension reduction and code generation),
which may (substantially) increase the speed at which Jakarta programs are compiled.
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1.2  Jakarta Extensions to Java

There are three basic extensions that Jakarta makes to Java: syntax tree constructors, compiler directives to
invoke externally-defined functions/reductions, and language extensibility.

• Surface Syntax Trees. Jakarta provides language support for generating, parameterizing, and compos-
ing code fragments in the form of surface syntax trees (SSTs). SSTs are identical to the ASTs that
Jakarta uses internally during program compilation, except that type checking and symbol table infor-
mation is not maintained. Constructors for SSTs are similar to the quote/unquote constructs in Lisp.

• Compiler Directives. Jakarta provides compiler directives that can be inserted into a program to
invoke externally-defined functions during that program’s compilation. As mentioned in the previous
section, these functions may dynamically load libraries, perform program transformations and analy-
ses, and generate code (e.g., instantiating templates).

• Encapsulated Language Extensions. Jakarta allows extensions to its grammar to support domain-
specific programming constructs. Parsing these constructs will introduce intention nodes into Jarkarta
ASTs. Jakarta provides capabilities for encapsulating domain-specific extensions (i.e., new grammar
productions and the Jakarta libraries that reduce intensions to pure-Java code). Prime examples of
extensions will be domain-specific generators. Thus, generators for different domains can be pack-
aged, purchased, and linked separately to Jakarta precompilers as the need arises. This will greatly
encourage the proliferation of generators.

1.3  GenVoca Extensions to Jakarta

The core features of Jakarta actually have little to do with GenVoca; GenVoca extensions will be con-
structed and packaged as an extension to Jakarta. There are three basic features that GenVoca makes to
Jakarta:

• Large scale components. GenVoca components are suites of interrelated classes that cooperate as a
unit (i.e., components are generalizations of OO frameworks). The GenVoca extension provides lan-
guage support for defining plug-compatible libraries of GenVoca components and their compositions.

• Subjectivity. A phenomena that arises in families of related systems is that objects that are common to
multiple systems often do not have the same interface. This variability of interfaces, called subjectivity,
has a profound impact on the organization of generators and component implementations: individual
components can enlarge interfaces that they share with other components by adding new methods. The
GenVoca extension provides language support for subjectivity and for viewing objects, components,
and software systems through different interfaces.

• Version Compatibility. Alteration of a shared interface (through the addition of new methods) nor-
mally requires recompilation of all modules that reference this interface. (A variant is known as the
fragile superclass problem). The GenVoca extension provides language support for altering interfaces
that are shared by libraries of components without requiring their wholesale recompilation. Thus,
components that implement or reference earlier versions of an interface can remain compatible with
components that deal with later versions.

1.4  Overview of Paper

This paper outlines the SST features of Jakarta and presents an overview of the GenVoca extension. The
designs for language extensibility and the handling of compiler directives are not yet complete, but will be
detailed in subsequent papers. A brief discussion on how extensibility and compiler directives will be
achieved is included.
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2  The Jakarta Language: Syntax Trees

Jakarta provides three key features for code generators: (1) creation, parameterization, and instantiation of
surface syntax trees; (2) automatic name mangling of identifiers; and (3) searching syntax trees. Each of
these features will be discussed in detail in the following sections.

2.1  Surface Syntax Trees

A central feature of Jakarta is support for code generation: i.e., linguistic features that enable Jakarta pro-
grams to synthesize other Jakarta programs. Let’s look at a simple problem of code generation to see where
the difficulties lie. Suppose we want to create a surface syntax tree for the expression 7+x*8. The corre-
sponding code to do so is:

AST_exp y; // variable of type AST expression

y = new AST_plus( new AST_const(“7”), AST_times( new AST_id(“x”),
new AST_const(“8”) ) );

where AST_plus is the AST node type for the addition operation, AST_times is the AST node type for
multiplication, etc. Obviously 7+x*8 is a trivial expression, yet constructing its SST manually by creating
and linking the appropriate AST nodes is a very tedious and error-prone task. Moreover, the resulting code
is virtually impossible to read and maintain. Manual creation of SSTs is impractical for all but the most
trivial of code fragments.

What is needed is a generator that produces SST code directly from easily readable and maintainable spec-
ifications. Jakarta has such generator:

y = exp{ 7 + x * 8 }exp;

exp{ … }exp are parentheses that enclose a syntactically correct Jakarta expression whose SST is to be
generated. Jakarta replaces the exp{ … }exp expression with the ugly one that nests calls to AST node
constructors. The above statement assigns the root of the SST for the expression (7+x*8) to variable y.6

Every non-terminal production of the Jakarta grammar could serve as starting point for parsing code frag-
ments. It turns out that only a handful of productions (such as expressions) really need to have generators.
Jarkarta specifically recognizes a set of productions/AST node types. To generate ASTs that are “values”
for these types, Jakarta has different kinds of “parentheses” — called SST constructors — that return syn-
tactically (i.e., grammatically) correct Jakarta SSTs. The following SST constructors have been identified,
although additional constructors may be added:

6.  Remember that SSTs are ASTs for which type checking has not been performed and linkages to the symbol table
have not been made. Such checking and linkages can be performed by special methods after SST creation.

AST Type Semantics Parentheses

AST_id method, class, and variable identifiers id{ … }id

AST_typ type names typ{ … }typ

AST_exp expressions exp{ … }exp

AST_xlst comma-separated list of expressions xlst{ … }xlst

AST_plst list of formal parameters plst{ … }plst
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Here are some other examples of their use:

AST_id n = id{ biff }id; // n is AST of identifier “biff”
AST_typ t = typ{ int }typ; // t is AST for the type “int”

// s is AST for statements “int i;
// if (foo.baz()) return 1;”

AST_stm s = stm{ int i; if (foo.baz()) return 1; }stm;

// m is AST for method “foo”
// c is AST for class “biff”
// p is AST for “package don; import x;”

AST_mth m = mth{ int foo() { return 3; }; }mth;
AST_cls c = cls{ class biff { biff() { } }; }cls;
AST_prg p = prg{ package don; import x; }prg;

// parameter and expression lists
AST_xlst xlst = xlst{ 4*7, 9*x,y }xlst;
AST_plst plst = plst{ int i, boo j, cls }plst;

 // type, modifier and import lists
AST_tlst  t = tlst{ foo, bar, myinterface }tlst;
AST_mod   m = mod{ abstract final private }mod;
AST_imp   i = imp{ import z; import fluff; }imp;

// list of variables, catch list
AST_vlst  v = vlst{ a, b, c, d }vlst;
AST_estm  e = estm{ a, 34*4, i = 45, j = 56*5 }estm;
AST_cat   k = cat{ catch ( int i ) {} catch ( int j ) {} }cat;

// array and variable initializers
AST_ai   ai = vi{ { 4*5, $exp(foo) } }vi;
AST_vi   vi = vi{ 45*5 }vi;

AST_stm statements stm{ … }stm

AST_mth methods mth{ … }mth

AST_cls interface and class declarations cls{ … }cls

AST_prg program prg{ … }prg

AST_tlst list of type names tlst{ … }tlst

AST_imp list of import statements imp{ … }imp

AST_mod list of modifiers mod{ … }mod

AST_vlst list of variable declarators vlst{ … }vlst

AST_vi variable initializer vi{ … }vi

AST_ai array initializer ai{ … }ai

AST_estm expression statements separated by commas estm{ … }estm

AST_cat catch phrases cat { … }cat

AST Type Semantics Parentheses
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SST constructors substantially simplify the creation of code fragments. In the following section, we show
how SSTs can be parameterized and composed.

Implementation Notes. The Java grammar is fairly easy to augment with SST constructors. I have
the augmented grammar and have test cases to validate the design.

2.1.1  Parameterization and Composition of Abstract Syntax Trees

Code fragments can be parameterized so that other code fragments can be substituted as parameter values.
Parameterizing SSTs can be done both implicitly and explicitly in Jakarta. The following sections explain
both approaches.

2.1.1.1  Implicit Parameterization and Composition

Jakarta AST variables are treated specially within SST constructors: they define implicit parameters. Con-
sider the AST variables y and s:

AST_exp y = exp{ foo.bar(8) }exp;

AST_stm s = stm{ if (y>4) return r; }stm;

When the second assignment is executed, variable s is assigned the SST for the statement (if
(foo.bar(8)>4) return r;). That is, the SST “value” of variable y is substituted directly into the
code fragment for s.

Implementation Notes. When Jakarta parses the code fragment of an SST constructor (at code
generation time), it examines each identifier. If the identifier is an AST variable, the value of that
variable is substituted into the AST; if the identifier isn’t an AST variable, code to generate a refer-
ence to that identifier is produced. For example, the code that Jakarta generates for statement s
above is shown below; the value of y is substituted directly (because it is an AST variable)
whereas a reference to identifier r (which is not an AST variable) is manufactured:

AST_stm s = new AST_if( new AST_gtr( y, new AST_const(“4”) ),
new AST_return( new AST_id(“r”) ) );

As another example, the body of a loop can be constructed before the loop itself. Through implicit param-
eterization, both the loop and body can be composed:

AST_stm Body = stm{ … }stm;

AST_stm Loop = stm{ for(int i = 1; i< 30; i++) { Body; } }stm;

The utility of this feature becomes evident when SST constructors are used within methods that instantiate
common code fragments:

AST_stm common( AST_exp y ) { return stm{ if (y>4) return r; }stm; };

AST_exp x1 = exp{ 5 }exp;
AST_exp x2 = exp{ 7*g }exp;

common(x1); // returns AST of “if(5>4) return r;”
common(x2); // returns AST of “if(7*g>4) return r;”
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There are two points worth noting. First, Jakarta ensures that the SSTs it creates and composes are syntac-
tically correct (i.e., grammatically correct). However, there is no guarantee that the resulting SSTs are
semantically correct (i.e., correspond to correct ASTs). For example, suppose variable g above is a bool-
ean. Thus, the SST produced by common(x2) — (if(7*g>4) return r) — will be syntactically cor-
rect, but semantically incorrect. The reason is that the common method only requires ASTs to be of type
AST_exp, not specifically ASTs of numerical expressions.

So why can’t semantic checking of SST constructors be done by Jakarta? It can once the SST of the full
program has been produced. However, semantically checking isolated fragments can be problematic.
Remember that programs are assembled from fragments. This means that the scoping and definition of
variables within code fragments will be difficult, if not impossible to determine: SSTs that declare variable
types may be created separately from SSTs that reference these variables. Only until the latter stages of
program assembly where fragments are pieced together and variable scopes can be determined, can rela-
tionships between variable declarations and references be made.7

Limitations. The use of AST variables to “implicitly” parameterize of SST constructors is likely to be the
most common way in which code fragments are defined and composed, simply because implicit parame-
terizations are really easy read and maintain. However, the Java grammar does not allow identifiers to
appear in arbitrary places. So there are limitations where AST variables can appear. The following rules
indicate the possible placement of AST variables in code fragments:

2.1.1.2  Explicit Parameterization and Composition

Whenever implicit parameters can’t be used or are not appropriate, explicit parameterizations or substitu-
tions can occur via SST escapes $x(…), where … is a Jakarta expression that evaluates to an AST of type
AST_x. The following is an equivalent declaration of the Loop variable defined in the previous section:

AST_stm Body = stm{ … }stm;

AST_stm Loop2 = stm{ for( int i= 1; i< 30; i++) { $stm(Body); } }stm;

7.  Actually, this is not quite true. Smaragdakis has added a “grouping” feature to Microsoft’s IP that dynamically
maintains scoping information. However, we are exploring a static solution that is similar to P2’s XP preprocessor.

Node Type Placement Guidelines

AST_id any place where an identifier can appear

AST_typ any place where a type might appear

AST_exp any place where an expression might appear

AST_xlst any place where argument lists might appear

AST_plst any place where formal parameter lists might appear

AST_stm any place where a statement might appear

AST_mth any place where a method or data member declaration might appear

AST_cls any place where a class might appear

AST_prg any place where programs (packages, etc.) might appear

TABLE 1. Guidelines for Implicit Parameterizations of Code Fragments
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There are escapes for each AST node type:

SSTs that are substituted by escapes are typed-checked to ensure that syntactically correct SSTs are
formed. SST escapes can only appear within SST constructors.

2.1.2  Recap

With SST constructors, Jakarta offers a very powerful and easy-to-use facility for manufacturing and com-
posing code fragments. These capabilities are analogous to Lisp’s quote and unquote. However, an impor-
tant practical improvement is the implicit parameterization of code fragments by AST variables. From our
experience, generators often utilize code fragments that are highly parameterized. By making all parame-
ters explicit (via SST escapes) would render the code fragments unreadable. The real benefit of the XP pre-
processor of P2 was to make the most common code fragment parameters implicit, thereby making code
fragments themselves easily readable and maintainable.

The next section discusses another fundamental improvement over Lisp quote and unquote facilities.

2.2  Name Mangling

A common problem in software generation is synthesizing code for some class K. Often it is the case that
the interface for K has been determined, and the problem becomes one of composing code fragments to
define the “body” of K, i.e., its data members and the bodies for each of K’s methods. As an example, the
interface to a container of elements may be known, but now the problem is to generate an implementation
for this interface.

Node Type SST Escape Function

AST_id $id(AST_id i)

AST_typ $typ(AST_typ t)

AST_exp $exp(AST_exp e)

AST_xlst $xlst(AST_xlst x)

AST_plst $plst(AST_plst p)

AST_stm $stm(AST_stm s)

AST_mth $mth(AST_mth m)

AST_cls $cls(AST_cls c)

AST_prg $prg(AST_prg p)

AST_tlst $tlst(AST_tlist t)

AST_imp $imp(AST_imp i)

AST_mod $mod(AST_mod m)

AST_vlst $vlst(AST_vlst v)

AST_vi $vi(AST_vi v)

AST_ai $ai(AST_ai a)

AST_estm $estm(AST_estm e)

AST_cat $cat(AST_cat c)

TABLE 2. AST Escapes
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It is also common for the “body” of K to be synthesized from components that encapsulate different
domain-specific features. In the P2 generator, for example, there are components that encapsulate code
fragments that allow elements of a container to be stored on a binary tree, doubly-linked list, etc. Thus,
composing a binary tree component (called bintree) with itself would allow elements of a container to be
simultaneously stored on two binary trees (presuming each binary tree would have a different key).

Suppose bintree added a data member (int i) to class K. Composing bintree with itself would add the
data member (int i) twice to K. Thus, K would have two integer variables with name i. Clearly, this is an
error. To repair it requires significant modifications to bintree: the names of its generated data members
would need to be altered so that naming conflicts are avoided when bintree is composed with other com-
ponents. (This naming problem is endemic to compositions of arbitrary components, and is definitely not
limited to this simple example).

A common solution to this problem is to mangle identifiers by providing unique extensions to names of
declarations and their references. Name mangling can be done manually, but at a significant cost. Program-
mers would have to create AST_id variables to contain mangled names; this is tedious, inefficient, and
error-prone. Jakarta provides language support to solve the name mangling problem using two ideas. First,
given an identifier n, Jakarta mangles it to n__#, where __# is called the mangle suffix and # is a unique
integer (called a mangle number) assigned by Jakarta. Second, there can be a set of distinct code fragments
that reference the same (class) variables and methods. In such cases, variable names and methods must be
mangled consistently — i.e., they must be given the same mangle suffix. This is accomplished by assigning
mangle suffixes to objects; code fragments that this object generates will have its method and variable
names mangled with the same mangle suffix.

The mangle directive declares specific identifiers to be mangled within SST constructors. Below is an
example of its use:

class X {
mangle i, j; // method or variable names to be mangled

AST_exp foo() { return exp{ i + j }exp; };
...

}

The mangle directive tells Jakarta that all references to identifiers i and j in SST constructors within class
X are to be mangled. Moreover, different instances of class X will have different mangle numbers. Consider
the following:

X a, b; // two different instances of X
(a.foo()).print();
(b.foo()).print();
(a.foo()).print();

Suppose the mangle number for a is 3 and for b is 4. The call a.foo() returns the SST of the code frag-
ment (i__3 + j__3), while b.foo() returns the SST of (i__4 + j__4). A repeated call to a.foo()
reproduces the code fragment (i__3 + j__3).

Implementation Notes. Jakarta replaces a mangle directive with the following String variable
__mangle (which contains a unique mangle suffix), plus the list of identifiers to be mangled. (This
latter list is used for mangle identifiers that are supplied only at application run-time (see
Section 2.2.2)).

String __mangle = Jakarta.new_mangle_string();
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__IdList __idlist = new __IdListNode(“i”, new __IdListNode(“j”,null));

When Jakarta reduces a mangle statement, in addition to outputting the above lines of code, it
remembers the list of identifiers to be mangled. (This list is also associated with the class that is
being parsed). When these identifiers are encountered within an SST constructor (at code genera-
tion time), Jakarta creates an identifier node that (when the node is printed) automatically attaches
the mangle suffix to the identifier’s name.

2.2.1  Indirect Mangling

It is possible that multiple Jakarta classes work cooperatively together and thus should share the same man-
gle information. This is accomplished by specifying the mangle using clause. Suppose code fragments in
methods of class Y are to mangle the identifiers declared in class X. This would be declared as:

class Y {
X origin;
mangle using origin; // specifies object from which __mangle taken

Y(X x) { origin = x; }

AST_exp bar() { return exp{ i * j }exp; }
...

}

In the above example, every instance of Y is associated with one instance of class X. The mangle suffix of a
Y instance is the mangle suffix of its corresponding X instance. Consider:

Y q, r;
q = new Y(a); // q shares mangle information of object a
(q.bar()).print(); // prints i__3 * j__3
r = new Y(b); // r shares mangle information of object b
(r.bar()).print(); // prints i__4 * j__4

Implementation Notes. The mangle using directive is easy to implement. In AST nodes that
represent identifiers to be mangled, there must be a reference to the mangle suffix. Usually, this is
a reference to the __mangle variable. However, in the above case of mangle using, the mangle
suffix is origin.__mangle. Thus, the argument of mangle using is the object that has the man-
gle suffix.

It is possible that a class Z might define some identifiers to mangle, and mangle (using another suffix) other
identifiers. The example below illustrates this possibility:

class Z {
X origin;
mangle k, l, m; // mangle identifiers k, l, m
mangle using origin; // and identifiers associated with origin

Z(X y) { origin = y; } // constructor

AST_exp baz() { return exp{ int k, i; }exp;
}
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Z z;
z = new Z(a);

Suppose the mangle number for z is 8. Then z.baz() returns the SST for (int k__8, i__3;).

2.2.2  Dynamic Mangling

It is possible for the names of identifiers to be manufactured at generator run-time. The runtime mangle
statement enables identifiers to be registered at run-time and mangled. Note that manufactured identifiers
can be inserted into SSTs only through identifier escapes and identifier SST variables. There is a (minor)
limitation on the use of dynamic registration: manufactured names are assumed to be distinct from identifi-
ers that are already present in SST constructors and those already listed in mangle declarations. Here is
an example:

class X {
...
AST_exp bop( String newSymbol ) {

runtime mangle newSymbol;
return exp{ $id(newSymbol) + 5 }exp;

}

AST_exp biff( String Symbol ) {
return exp{ $id(Symbol) }exp; }

AST_exp surprise( String Symbol ) {
return exp{ aaa + $id(Symbol) }exp; }

}

a.bop(“aaa”) returns the SST for (aaa__3+5), where again, __3 is the mangle suffix for a. A subse-
quent call a.biff(“aaa”) will generate the SST for (aaa__3), as identifier “aaa” will have already
been registered to be mangled. Note that a.surprise(“aaa”) generates the SST for (aaa+aaa__3).
The reason that (aaa__3+aaa__3) is not generated is that manufactured identifiers are assumed to have
names that are distinct from all other identifiers in SST constructors. Thus, the identifier aaa in
exp{aaa+$(Symbol)}exp is assumed to be distinct from any value $(Symbol) may subsequently
assume.

Implementation Notes. Jakarta translates runtime mangle x statements into statements that
add the identifier x to the IdList of the current object. (Jakarta might check to see if the name is
already present — if so, an exception is thrown). At the time an SST is being constructed (some-
where inside the code produced by Jakarta that implements an SST constructor), whenever a type
or symbol escape (or AST type or AST id variable) is seen, the identifier is compared with the
identifiers on the IdList. If the identifier is present, then its name is mangled, otherwise it is not.

2.2.3  Recap

The ability to have names mangled automatically and consistently is a fundamental need for code genera-
tors. Most name mangling can be done statically, at Jakarta application compile-time, rather than dynami-
cally at application run-time. Static mangling makes code generators more efficient, and is consistent with
the approach taken in the XP preprocessor of P2.
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2.3  Searching Syntax Trees

Searching ASTs for specific code fragments will be an important operation in Jakarta. Such traversals are
expressed by qualified foreach_node statements.

2.3.1  The foreach_node Statement

AST traversals are supported by foreach_node. The following counts the number of nodes in an AST
rooted at node t:

int count = 0;
AST_node n;

foreach_node n in t { count++; }

Another use for foreach_node is during the parse phase where intentions are reduced. This phase of
parsing is defined by the following loop:

foreach_node i in Program.root where i.intention
{
i = i.reduce(); // return root of new AST/SST

}

Program.root is a global variable that is maintained by Jakarta to contain a reference to the root of the
AST of the program that is being parsed. i.reduce() unlinks the subtree rooted at i from the AST and
replaces it with its reduced tree. The assignment statement is needed to set variable i to the root of this new
tree, so that searching will continue with its subtrees. The where phrase imposes a qualification on i for
the body of the loop to be evaluated.

Implementation Notes. To perform foreach_node traversals, AST nodes are linked directly to
their parent (a null pointer designates the root of an AST), and children nodes point to their sib-
lings. These linkages are also needed to simplify the process of replacing one AST with another.
The figure below illustrates these links:

To traverse an AST, only the firstchild() and goright() operations are needed. Let n be the
root of an AST that is to be traversed. The foreach_node statement:

foreach_node i in n where <qualification> { … /* user code */ };

has the reduction:

{ AST_node endi = n.goright(); // point to node past n (could be null)
for (i = n; i != endi; i = i.firstchild())
if (<qualification>)

{ … /* user code */ }
}

AST/SST nodes

parent-to-child links

sibling links

Legend
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Note that the identifier endi in the above code fragment might need to be mangled or be renamed
to an identifier that won’t clash with user-defined variable names. Mangling might be needed in the
case that foreach_node loops are nested, as there may be a confusion as to which endi is to be
used.

The algorithm for firstchild() is:

•   if there is a child, goto first child and return.

•   if there is no child and there is a next sibling, goto next sibling (i.e., goright()) and return.

•   otherwise, go up the AST until there is a non-null sibling pointer (or the AST root has been
reached); if the root is reached, return null otherwise goto next sibling and return.

2.3.2  Qualifying Syntax Trees

Very often one is interested in examining (transforming) syntax trees that satisfy a particular qualification.
Suppose one wanted to find all instances of the expression 7+8 in a program. This search could be
expressed by:

foreach_node n in Program.root
where (n instanceof AST_plus && n.arg[0] instanceof AST_const &&

n.arg[0] == “7” && n.arg[1] instanceof AST_const &&
n.arg[1] == “8”)

do { … }

Clearly, it is hard to understand this qualification, let alone write it. In fact, this is similar to the problem we
encountered earlier in writing code fragments. The solution then, as now, is to use SST generators.

Jakarta provides a powerful extension to the foreach_node statement for specifying qualifying patterns.
The phrase matching allows any SST constructor to be used as a search pattern. Thus, to find all instances
of the expression 7+8 would be expressed as:

foreach_node n in Program.root
matching exp{ 7+8 }exp

do { … }

The phrase matching exp{ … }exp is called a matching constructor. There are matching constructors
for all SST constructors.

A more common search pattern is knowing if a tree x is an instance of another tree y. An example would
be retrieving only those nodes that correspond to if-statements:

AST_exp X;
AST_stm Y,Z;

foreach_node n in Program.root
matching stm{ if (X) Y; else Z; }stm

do { … }

This example illustrates two important features. First, just as in the case of SST constructors, AST vari-
ables are treated specially within matching constructors as unbound variables. If node n matches the token
pattern within stm{ … }stm, the expression is true. If true, Jakarta additionally generates code that binds
the AST variables.



15

As an example, a possible action to take when an if statement is encountered is to negate the condition
and swap the Y and Z actions:

foreach_node n in Program.root
matching stm{ if (X) Y; else Z; }stm

do {
n = n.replace( stm{ if (!X) Z; else Y; }stm );

}

The x.replace(y) statement replaces the subtree rooted at x with the subtree rooted at y.8

Limitations. At present, we will assume that all AST variables that appear in matching constructors are
distinct. Thus, to search for if statements that have the same then statement as else statement would be
expressed as:

foreach_node n in Program.root
matching stm{ if (X) Y; else Z; }stm
where Y.equals(Z)

do { … };

It is possible that the implementation of foreach_node could recognize a replication of AST variables
and automatically generate the where phrase.

Another limitation, one that may be much more problematic is making sure Jakarta programmers under-
stand the pattern that they are specifying. For example, to search for all interface declarations in a program
may not be the following:

AST_ID X;
AST_MTH Y;

foreach_node n in Program.root
matching cls{ interface X { Y; } }cls

do { … }

The problem here is that there can be optional modifiers and extends phrases. The question becomes: is
this query asking for only interfaces that have no modifiers and extend no other interfaces? At present, we
will assume that users will provide us with a complete match (i.e., where AST variables are present to bind
to optional phrases. Thus, to search for all interface declarations would be specified by:

AST_MOD M; // modifier ast node
AST_TYP T; // type name AST node

foreach_node n in Program.root
matching cls{ M interface X extends T { Y; } }cls

do { … }

At the time of this writing, note that the AST_MOD and AST_TYP types have note been recognized in our
previous discussions. They will need to have AST constructors, escapes, too. The hope is that there won’t
be too many of these “additional” AST types that Jakarta will need to recognize.

As implementation and usage of foreach_node proceeds, we’ll encounter many other “limitations”. It is
my hope that the basic design is sound, even though some details need to be fleshed out.

8.  Note that when node n is replaced, the subtrees that will be searched next are !X, then Z, then Y.
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Implementation Notes. The matching phrase does two things: it generates boolean conditionals
for matching subtrees, and (assuming a match has been found) it generates assignment statements
for each AST variable. As an example reduction, the statement:

foreach_node n in Jakarta.root
matching stm{ if (X) Y; else Z; }stm

do {
n = n.replace( stm{ if (!X) Z; else Y; }stm );

}

will be reduced to:

{ AST_node endi = Jakarta.root.goright();
for (n = Jakarta.root; n != endi; n = n.firstchild())
if (n instanceof AST_IF)

{ X = n.arg[0];
Y = n.arg[1];
Z = n.arg[2];
{ … /* user code */ }

}
}

2.3.3  Matching Escapes

Whenever implicit parameters can’t be used or are not appropriate, explicit variables can be declared via
SST escapes. The following is an equivalent way of finding and negating if-statements:

AST_exp X;
AST_stm Y, Z;

foreach_node i in Program.root
matching stm{ if ($exp(X)) $stm(Y); else $stm(Z) }stm

do {
i = i.replace( stm{ if (!$exp(X)) $stm(Z); else $stm(Y) }stm );

}

Thus, SST escapes have a different interpretation within matching constructors: they define AST variables
that are to be bound.

2.3.4  Limited Searches of Syntax Trees

In some cases, there may be no need to search syntax trees beyond a certain point. For example, suppose
one wanted to print the names of all interfaces that were defined in program. The obvious statement to do
so is:

AST_id X;
AST_mtd Y;

foreach_node i in Program.root
matching cls{ class X { Y; } }cls

do { System.out.println(X); }

As classes are not nested, there is no need to search the subtree that encodes a class’s definition. To skip the
subtrees of the current node, the skip method is used:
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foreach_node i in Program.root
matching cls{ class X { Y; } }cls

do { System.out.println(X);
i = skip(i);

}

What the above example says is once a class node has been found (and whose name has been printed), skip
its subtree(s) and goto its sibling node. (The sibling node, in this case, will be another class or interface
node).

Implementation Notes. skip() is a general method, like firstchild() and goright(), of all
AST_node classes. There’s a fairly simple trick that makes an implementation of n.skip() fast:
create a dummy node when n.skip() is called; it is a terminal node whose sibling is the node
identified by n.goright(). The dummy node is not really part of the tree, and can be garbage
collected after it is used.

2.3.5  Recap

By providing language support to traverse ASTs and to find subtrees that match a given pattern, Jakarta
provides basic facilities for implementing templates and other more sophisticated code generators.

2.4  Implementation Guidelines

In this section, we review a number of guidelines in the construction of Jakarta.

White Space. The Jakarta precompiler should be designed so that white space and comments in the origi-
nal Jakarta program are preserved during translation. Thus, if one inputs a commented Java program as
input to Jakarta, exactly the same program (by diff equivalence) will be output. This can be accomplished
by pairing each token that is recognized by the Jakarta lexical analyzer with the white space, comments,
(e.g., fillers) that have appeared since the last token. Thus, a data member of every AST_node is a string
for white space.

Class Structure. Every AST node type will be represented as a class in an AST node hierarchy. The root
of this hierarchy is AST_node. Its immediate subclasses are: AST_stm, AST_mth, and AST_prg. As the
figure below shows, these classes have other subclasses. The actual number of AST node types that Jakarta
will need to recognize is a open-ended now. I would expect there to be couple dozen of these types in the
final version.

AST_node

AST_typ

AST_exp

AST_stm AST_mth

AST_cls

AST_prg

AST_id
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Class Operations. There are basic operations for every AST class: firstchild(), goright(),
skip(), reduce(), print(), AST_qualify() and AST_print(). The reduce() method invokes the
reduction algorithm for the corresponding AST node. Normally for all but intention nodes, reduce()
does nothing but recursively call its children. reduce() is called during the intention reduction phase of
parsing.

The print() method prints the Java (or Jakarta) syntax for each node. The AST_print() prints the Java
code that will produce the given AST. AST_qualify() prints the code for node qualification (and is used
in implementing matching constructors). Both print() and AST_print() are called during the code
generation phase of parsing. Here is an example of these print methods:

AST_exp x,z;
z = exp{ zzz }exp;

x = exp{ 7 + z }exp;

x.print(); // outputs ‘7 + zzz’
x.AST_print(); // outputs ‘new AST_plus(new AST_const(“7”),z);’
x.AST_qualify(); // outputs ‘i instanceof AST_plus &&

// i.arg[0] instanceof AST_const && i.arg[0].value == 7
// i.arg[1] instanceof AST_id && i.arg[1].value == “z”’

(Note: both the AST_print and AST_qualify methods really represent a transformation. AST_print
could just as easily replace a “+” node with the tree represented by “new AST_plus(...)”. As these
transformations are so basic to Jakarta, it is not clear whether they should be given only as string genera-
tors).
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3  Compiler Directives and Language Extensibility — DRAFT

At present, I’m still considering a number of options for introducing compiler directives and achieving lan-
guage extensibility. Here’s an outline of my current thinking.

Compiler Directives. Compiler directives will allow programs to dynamically link Jakarta with code gen-
erators, and to invoke functions of these generators. The syntax trees that are produced by these function
calls will be directly inserted into the program that is being compiled. Other options would be for these
functions to perform global reductions, such as implementing design patterns as discussed in Section 1.1.
The problem is defining a simple metaprogramming language that can be used for such purposes.

Language Extensibility. There’s a lot of work on extensible compilers. Much of this belongs to the Lisp
camp, where macros are first-class language entities. Programmers can write macros (similar to Lisp mac-
ros) that can rewrite their AST/SST arguments. The core of extensible languages is defined around macros
and their ability to reduce to a basic set of primitives. There are some difficulties with these approaches.
Lisp, for example, has no problems because its grammar is very simple: i.e., prefix expression, that are
essentially no different than ASTs (s-expressions). Adding a new node type is trivial, and its syntax is
equally simple (a prefix syntax is used).

When post-fix, pre-fix, mix-fix, etc. syntaxes are combined, along with operator precedences, (as they do
in imperative languages like Java), things quickly become complicated. Approaches that seem to be gain-
ing momentum are (a) limit language extensions to a certain set of predefined “patterns” or (b) complicate
the parsing by recognizing macro names and altering the parsing of the grammar to those of new exten-
sions. So in the latter case, the base grammar is fixed, but there are “interrupts” to transfer the parsing of
input tokens to other parsers.

A design approach that was followed in Genesis and P2 was that the generated code should look like code
that is hand-crafted. Thus, to make compilers/languages extensible would require the resulting grammar of
the extended language to look as if it were designed from scratch. This is possible if one takes the approach
of “merging grammars”. There is a base grammar that defines Jakarta, and there are grammar extensions,
which when merged with the base grammar, yields an extended version of the Jakarta grammar.

The idea is that extensions to languages should not alter the meaning of existing constructs. (Overloading
the semantics really complicates parsing, and is one of the primary reasons why C++ is so difficult to
parse). So, an extension to a grammar is itself a grammar: a set of productions that either will be added to
existing groups of productions or are “clean” additions. Thus, to extend Jakarta will require some grammar
hacking to (a) determine which productions need to be added and (b) where these productions should be
added in the existing grammar to account for precedences. By taking a “BNF-diff” of the original grammar
with the extended grammar, and encapsulating the difference, the result is an “extension” to Jakarta. To
install an extension, the additions are made to the grammar (and lexical analyzer), and the Jakarta precom-
piler is recompiled.

So language extensions won’t be trivial, but doable, in Jakarta. It will lack some of the elegance that is
being pursued with “macro” language approaches, but it will provide all the power needed for arbitrary
language extensibility. The GenVoca extension, discussed in the next section, is being designed with this
implementation approach in mind.


