CHAPTER 11

ELASTIC PROPERTIES OF FULLERENES
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ABSTRACT

The recently synthesized fullerenes and their close relatives, nanotubes, constitute un-
usual materials with interesting, if not spectacular, mechanical properties. Because
the field of mechanical properties of fullerenes and napotubes is young and rapidly
evolving, many of the current “values” of the mechanical constants (elastic moduli,
tensile strength, etc.) are preliminary and subject to refinement with improved theoret-
ical and experimental methods. Large uncertainties or inconsistencies between results
of different research groups are readily apparent in many parameter values quoted
helow.

Both theoretical and experimental studies have been performed relevant to mechan-
ical fullerene and nanotube response. This brief review tabulates the most important
results 1o date. Although theoretical findings are guoted, the emphasis in the text
is on experimental methods and experimental results. The reference list is exten-
sive and is intended as a primary resource for obtaining theoretical and experimental
details.

11.1. INTRODUCTION TO FULLERENES AND NANOTUBES

Fullerenes and nanotubes have their roots in carbon chemistry. The bonding structure of
the fundamental “molecular” units of both fullerenes and nanotubes is planar sp”. The
basic units {either small spherical molecules [1] or elongated molecular tubes [2]) may
organizc into higher-order structures including crystalline solids, where the primary

Hendbook of Elastic Properties of Selids, Liguids. and Guases. edited by Levy, Bass. and Stern

Vishane W2 Elastic Properties of Sofids: Theorv, Elements and Compownds,

Newel Mareriads, Technological Materials, Altovs, and Building Materials

Copyright € 2001 by Academic Press

ISBXN 0-12-343762-2 7 53500 All rights of reproduction in any form reserved.



ZETTL AND CUMINGS

attraction energy between the covalently bonded subunits is most often relatively weak
van der Waals, Hence, there are strong analogies between these structures and rare-gas
solids and layered graphitic-like materials.

Fullerenes are closed-cage pure-carbon shell structures, where the “fabric™ of the
shell is in part graphene-like. Graphene is a single atomic sheet of hexagonally bonded
graphite. To achieve closure, however, the fabric cannot contain only hexagons of
carbon; there must be exactly 12 carbon pentagons per closed fullerene melecule. The
first, most famous, and most extensively studied fullerene is of course Cyy, Buckmin-
sterfullerene [1]. Cqy is a highly spherical molecule, with the location of the carbon
atoms perfectly maitching the seam vertices of a soccer ball. This molecule was first
discovered in 1985 in the gas phase and was mass produced in bulk quantities several
years later {3]. It is a convenient molecular source of pure carbon. Stable fullerenes
with carbon number both smaller [4] and larger [5] than 60 have been produced. Cep
melecules are easily produced in isolated form and they are relatively unreactive. Large
collections of C¢y molecules can arrange into close-packed forms, and single crystal
specimens with dimensions several millimeters on a side have been grown. Below we
consider the mechanical properties of the isolated molecules and of the “bulk”™ molec-
ular crystals, Sizable single crystals of non-Cey fullerenes are rare and their mechanical
properties are virtually unexplored.

The empty spaces between Cgy molecules in solid crystalline Cgy may be inter-
calated with varicus atomic and molecular specics. The electronic properties of the
resulting compounds are interesting and include relatively high temperature super-
conductivity [6]. The stoichiometry of the superconducting materials is usually A3Cgp,
with 4 an alkali metal. The clastic properties of 43C, superconductors have only been
superficially studied. Under appropriate synthesis conditions, the intercalant species
fagain often alkali metals} can induce polymerization [7] of the Cgy subunits, with
a commoen stochiometry of the stable polymerized material AC;. We also consider
below the elastic properties of such ACq, polymerized fullerenes.

Carbon nanctubes are pure carbon tubules that can have dramatic geometrical aspect
ratios. Nancubes with diameters of order 1 nm and length several hundred microns are
not uncommon. A carbon nanotube can be thought of as a highly elongated fullerene,
where the pentagons needed lor closure are concentrated on the “caps” at the ends
of the nanotube. The wall fabric of the nanotube, in the ideal case, then consists
strictly of carbon hexagons. A related visualization of nanotubes is to consider them
as pure graphene sheets rolled up into a single seamless cylinder. This forms the so-
called single walled carbon nanotube (SWNT). The electronic properties of carbon
nanotubes can be highly sensitive to the diameter and chirality of the resulting tube [8,
9]. and some studies have indicated that the mechanical properties of carbon nanotubes
depend on tube diameter as well, If SWNTs are synthesized within a narrow diam-
eter distribution, the tubes that emerge from the synthesis chamber may be in a
“crystalline”™ form, where many lubes are assembled in a close-packed array with
parallel longitudinal axes. Such collections of SWNTs are termied nanotube ropes or
bundles [10].

Interestingly, it is possible to synthesize nanotubes in a "multiwall” {MWNT) form,
where from two 1o many (over 100} tubes nest almost perfectly onc inside the other
(Russian doll-like) [2]. The interaction between adjacent coaxial tubes is assumed 1o
be of the van der Waals type. while on a given tube the carbon-carbon bonds are
strong covalent sp’-like. Crystalline ropes or bundles of carbon MWNTs have not
been observed.

Nanotubes are not limited to pure carbon. Indeed, high-quality nanotubes have been
experimentally produced from many different “layered matenal™ hosts such as tran-
sition metal dichalcogenides [11], boron-nitride [12]. and other boron and/or nitrigen
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containing B,C .N. compounds [13, t4]. The mechanical properties of noncarbon nano-
tubes have been considered theoretically or experimentally only for selected B,C N
species.

A good general introduction to fullerenes and nanotubes can be found in the text
by Dresselhaus, Dresselhaus, and Ecklund [15].

11.2. MECHANICAL PROPERTIES OF FULLERENES

The strength of a chemical bond can often be inferred from its bond length. In sp*-
bonded diamond, the C—C bond length is 1.54 A, while in sp>-bonded graphite the
in-plane C—C bond length is 1.42 A. Indeed, graphite has an in-plane stiffness (Young's
modulus ~1 TPa) exceeding the corresponding elastic modulus of diamond (bulk
modulus 441 GPa). In a Cgg fullerene molecule, there are two bond lengths (asso-
ciated with the bond separating two hexagons and the bond separating a pentagon and
a hexagon); these are 1.46 A and 1.40 A. This suggests that an isolated Cgo molecule
might be quite “stiff.” Theoretical calculations [16] suggest that a single Cgq molecule
has an effective bulk medulus of 903 GPa. A crystalline solid of Cg; molecules is
predicted to have an effective bulk modulus of 668 GPa at a pressure that makes the
“hard spheres” of Cgy “just touch.” These are impressive numbers but they have not
been confirmed experimentally.

An early room temperature compressibility study [17] of selid Csy powders
performed using x-ray diffraction found a linear a-axis compressibility d(Ina)/dF =
2.3 x 10717 cm?/dyne, within experimental error the same as the interlayer (c-axis}
compressibility of hexagonal graphite. The same study found for solid Ce a room
temperature volume compressibility —d(In V)/dP = 6.9 £ 1 x 107! cm*/dyne, 3 and
40 times the values for graphite and diamond, respectively. These results confirm the
weak intermolecular bonding of Ceg solid. Subsequent studies [18-24] have found a
range of compressibilities. Other studies have also examined the velocity of sound and
Debye temperature [25-27].

Solid Cgo undergoes a molecular rotational orientation ordering transition at T =
260 K. Above this temperature, the crystal is fcc; below it is sc. This first-order struc-
tural transition affects the mechanical properties. In the high-temperature fcc phase the
bulk modulus is significantly higher than in the sc phase (8.8 GPa vs. 6.8 GPa) [13].
Details of the transition are spectacularly revealed in single-crystal vibrating reed
studies, where anomolies in the Young’s modulus of order several percent are found at
the 260 K fec-sc transition [20, 28). The vibrating reed studies also indicate a strongly
temperature-dependent Young’s modulus (43% decrease in the modulus from 6 K to
300 K), suggestive of large intermolecular anharmonicity. This anharmonicity has been
accounted for within the framework of van der Waals bonding between molecules [28].

Table 11.1. Mechanical properties of fullerenes.
Cen Ca AxCep A1 Ceyy

Compressibility 6.9 x IO_mcmzdynr" —d Inafdr:

RbiCgq © 1.52 % 10 2 GPa~t-32

K3Cep: 1.20 x 1072 GPa—h-3=
Bulk modulus 88. 6.8 GPal®1? 11 GPa2®  RhyCgy: 22, 205 GPa™™3 RbCgy: 287 GPa™ ¥

13.4 Gpa®* K10 28 GPa'0 KCgy 274 GPa™3

Young's modulus 159 GpPa®
Velocity of sound ty 21 % 100 cmis??
Velovity of sound o 36-4.3 x 105 cms!927
Debye temperature ~100 K28

185 K326
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The elastic properties of solid C; have also been examined. The Cz; molecule is
closely related to Cep but it is not spherical; rather it is elongated like a rugby ball,
The bulk modulus of rhombohedral Cy erystal is 11 GPa [29].

. The “doped™ fullerenes are of special interest because of their dramatic electronic
properties, including superconductivity. Extensive eXperimental and theoretical
mechanical studies have not been preformed. Experimental elasticity studies find
for the bulk meduli of K3Csy and Rb3Cqy 28 GPa and 22 GPa, respectively [30].
A separate study found the bulk modulus of Rb3Cgey to be 20.5 GPa [31]. The
pressure dependences of the lattice constant for K3Cey and RbaCep are, respectively,
—dInafdP =1.20 x 1072 (GPa~!) and 1.52 x 10~? (GPa™!) [32].

Polymerized AC¢ crystals containing K and Rb have been investigated structurally
using diamond anvil cell techniques and synchrotron scattering. These materials are
mechanically highly anisotropic; the a-axis is the polymerized direction. As anticipated,
the pressure dependence of @ is much less than that of b or ¢. The room temperature
zero-pressure bulk modulus is 28.7 GPa for RbCyy and 27.4 GPa for KCqy [33, 34].
These values significantly exceed the bulk modulus of pure (unpolymerized) Cegp.

11.3. MECHANICAL PROPERTIES OF NANOTUBES

Carbon nanotubes predate the synthesis of other noncarbon nanotubes and they have
been the the most extensively studied, both theoretically and experimentally. The
virtually defect-free graphitic honeycomb network of carbon atoms of both single-
walled carbon nanotubes and multiwalled carbon nanotubes suggests that various elastic
moduli, such as the axial Young's modulus, might experimentally approach “ideal”
graphite values. Indeed this is the case. The weak van der Waals interaction between
concentric nanotubes has also been exploited to fabricate low-friction bearings [35].

Many theoretical studies look at the elastic properties [36—49] and failure modes
[50~353] of nanotubes. An early but comprehensive overview of the theory is presented
by Ruoff and Lorents [37]. Here we will focus our discussion on experimental studies,
A helpful review of recent experimental work is presented by Slavetat, Forro, er al, [54].

The primary experimental hurdle to overcome in accurately determining the mechan-
ical properties of nanotubes is their small dimensions. Some measurements have been
performed on “bulk” samples of nanotubes (collections of many nanotubes, usually
randomly oriented and with ill-defined local density and intertube bonding) {55, 56],
but in general such experiments are difficult to interpret in terms of intrinsic mechan-
ical properties of individual nanotubes. Farly studies of the mechanical properties of
individual nanotubes were based on static transmission electron microscope (TEM)
imaging of nanctubes in as-prepared samples [57-59]. Occasicnally, external forces
due to the interaction of a nanotube with its neighbors were found to cause a tube to
buckle or collapse. From careful examination the failure modes, conclusions could be
drawn about nanotube flexibility. In some instances, the nanotubes were observed to
completely collapse into a ribbon-like structure, where the inner walls are separated
by enly the 3.4-Angstrom van der Waals distance [58]. The van der Waals attractive
force makes this structure a metastable state, and the competition between the curvature
energy to keep the tube open, and the van der Waals energy to keep the tube collapsed,
yielded a direct measurement of the van der Waals force between graphene sheets [59].
Other examinations of van der Waals forces of nanotubes with other surfaces have been
accomplished by atomic force microscopy [60, 61].

The first measurements of the Young's medulus of nanotubes came from direct
observation of thermally driven vibrations of a cantilevered nanotube [62]. The ampli-
tudes of the oscillations could easily be imaged inside a TEM, and the amplitude as
a function of temperature was mapped, giving an estimate of the Young's modulus
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only the outer layers of the multiwall nanotube were truly under tension. This yielded
a MWNT Young's modulus of 270 to 950 GPa, and a tensile strength of 11 to 63 GPa.

Also of note is a small collection of Raman spectroscopy studies that investigated
specifically the elastic moduli of carbon nanotubes {73-75]. The phonons at &k — 0
correspond 1o uniform compression or bending of the nanotubes, and thus give an
ensemble measurement of the elastic properties of many nanotubes, with good statistics,
For carbon SWNT, a Young's modulus of 2.8 to 3.6 TPa has been inferred, while for
MWNT the Young’s Modulus is 1.7 to 2.4 TPa.

There are several theoretical studies of the mechanical properties of noncarben
nanotubes. However, due to a dearth of suitable samples, there has only been one
experimental investigation. The thermal vibrations of a boron nitride MWNT have
been analyzed, and yield a Young’s modulus of 1.22 +0.24 TPa [76].

The extremely high moduli and strengths for nanotubes suggest that they might
make good mechanical elements on the nanoscale. Macroscopic-sized components,
however, would require the nanotubes to be embedded in some sort of composite.
Some carly studies have been done on nanotube composites [77-80], but results are
still preliminary.
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