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Abstract— This paper introduces a new method for represent-
ing two-dimensional maps, and shows how this representation
may be applied to concurrent localization and mapping problems
involving multiple robots. We introduce the notion of a manifold
map; this representation takes maps out of the plane and onto
a two-dimensional surface embedded in a higher-dimensional
space. Compared with standard planar maps, the key advantage
of the manifold representation is self-consistency: manifold maps
do not suffer from the ‘cross over’ problem that planar maps
commonly exhibit in environments containing loops. This self-
consistency facilitates a number of important autonomous capa-
bilities, including robust retro-traverse, lazy loop closure, active
loop closure using robot rendezvous, and, ultimately, autonomous
exploration.

This paper introduces the basic concepts of the manifold
representation and shows how it may be used to solve multi-robot
mapping problems. By way of validation, we include experimental
results obtained using teams of two to four robots in environments
ranging in size from 400 m2 to 900 m2.

I. INTRODUCTION

This paper introduces a new method for representing two-
dimensional maps, using manifolds in the place of two-
dimensional planes. Our motivation for creating this represen-
tation flows from the desire to perform autonomous tasks, such
as exploration and retro-traverse, in an environment that is only
partially mapped; moreover, these tasks must be carried out
concurrently with the simultaneous localization and mapping
process. We therefore require a map representation that is
at all times self-consistent (for autonomous behaviors, we
are primarily concerned with self-consistency with respect to
path-planning). Standard planar maps are ill-suited for this
purpose, due their tendency to become confused in environ-
ments containing loops. Consider, for example, the situation
shown in Figure 1: as the robot traverses a partial loop,
the path of the robot crosses over itself. This inconsistency
may be eventually be resolved when the robot closes the
loop; in the interim, however, a planar map cannot be used
for path-planning. In contrast, under the same conditions,
the manifold representation remains entirely self-consistent:
robots can always construct paths, so long as those paths are
embedded in the manifold. Furthermore, when the robot finally
closes the loop, it may be possible to collapse the manifold,
and recover a self-consistent planar map.

(a)

(b)

Fig. 1. Illustration of a partially closed loop. (a) Planar representation. (b)
Manifold representation.

The manifold representation facilitates a number of inter-
esting capabilities. For example, using incremental mapping
alone (i.e., no loop closures), a robot can always retro-traverse
to any previously visited location (or, more precisely, to any
point on the manifold). In this case, the same location in the
world may be represented more than once in the manifold:
if the robot traverses a loop in one direction, for example,
the manifold will develop a spiral structure, with the same
locations being repeated over-and-over again. In spite of this
ambiguity, however, the robot can always retro-traverse by
traveling back along the spiral structure.

The many-to-one relationship between points on the mani-
fold and points in the world gives rise to a second interesting
capability: lazy loop closure. Loop closure is the most difficult
part of the simultaneous localization and mapping process:
in order to close a loop, one must decide that two points in
the map correspond to the same point in the world (this is
the data-association problem). In the manifold representation,
such decisions can be indefinitely delayed, without risking
map consistency; thus, one may wait until robots acquire more
information to conclusively establish the correspondence (or
lack thereof) between two points. In the multi-robot context,
one may also take active steps to discover correspondence



points, using pairs of robots acting in concert. Thus, for
example, a pair of robots can arrange a rendezvous at two
points on the manifold that may or may not represent the same
location in the world: if the robots meet, the points match and
the loop is closed; if the fail to meet, the points are distinct
and there is no loop.

This paper makes no attempt to cover all aspects the
manifold representation outlined above. Instead, we restrict
ourselves to introducing the basic methodology and applying it
to the specific problem of multi-robot mapping. We take max-
imum likelihood estimation techniques that have previously
been applied to simultaneous localization and mapping [1],
[2], and adapt those techniques for the manifold representation.
For validation, we present experimental mapping results from
two different (large) environments, using teams of up to four
robots, under both manual and autonomous control.

II. RELATED WORK

TODO

III. MAPPING ON A MANIFOLD: CORE CONCEPTS

The key conceptual difficulty with manifold mapping is the
representation of the manifold itself. In principle, the manifold
is an arbitrarily complex structure with varying local curvature;
in practice, the representation must be discrete, and hence
some degree of approximation and linearization is inevitable.
In this section, we develop the basic concepts, definitions and
notation used in our approximated representation.

A. Patches

The manifold is discretized by dividing it into a set of
overlapping patches, each of which has finite extent and
defines a local (planar) coordinate system. Let Π denote the
set of such patches; we make the following definition:

Π = {π} : π = (θ, s) (1)

where an individual patch π consists of a free-space polygon
s describing the extent of the patch 1 , and a projected planar
pose θ that defines the patch-local coordinate system (θ is
obtained by projecting the origin of the patch onto a canonical
plane).

Given these definitions, the pose of any object on the
manifold can subsequently be described by a tuple ρ = (π, r)
specifying a particular patch π and the pose r of the object
with respect to that patch (r must lie inside the patch polygon
s). Importantly, since patches may overlap, the tuple ρ need
not be unique: one can also write down the same object’s
pose as ρ̄ = (π̄, r̄) where r̄ is the pose relative to some
overlapping patch π̄. Two questions naturally arise from this
apparent ambiguity: how does one establish that the tuples ρ

and ρ̄ represent the same pose on the manifold, and how does

1Strictly speaking, we use polysolids rather than polygons for representing
free space, since polysolids form a group under the operations of union and
intersection (polysolids can have holes). The term ‘polysolid’ appears to have
been coined by Hugh Maynard and Lucio Tavernini at the University of Texas
at San Antonio; their work was never published, but is similar in concept, if
not detail, the polygon sets described in [3].

one transform a pose specified with respect to patch π into a
pose specified with respect an overlapping patch π̄? Consider
the manifold illustrated in Figure 2: each point on the manifold
will project onto exactly one point on an imaginary horizontal
plane, and, conversely, some points on the plane will project
onto multiple points on the manifold. This observation leads to
the following condition: the tuples ρ and ρ̄ represent the same
point on the manifold if and only if the projections of the
polygons s and s̄ overlap, and the projections of r and r̄ are
identical. Mathematically, this condition is stated as follows:

(s⊕ θ) ∩ (s̄⊕ θ̄) 6= ∅ and r ⊕ θ − r̄ ⊕ θ̄ = 0 (2)

where ⊕ is a coordinate transform operator. Given a projected
pose θ and patch-relative pose r, the expression r ⊕ θ yields
the corresponding projected pose q. One can also define
the inverse operator ª: given two projected poses θ and
q, the inverse expression q ª θ recovers the patch-relative
pose r. These operators obey the normal rules for algebraic
associativity, but do not commute.

From the identity expressed in Equation 2, one can trivially
derive the coordinate transform equations for overlapping
patches:

r̄ = r ⊕ θ ª θ̄ and r = r̄ ⊕ θ̄ ª θ (3)

Collectively, Equations 2 and 3 provide the necessary tools
for working with manifold poses and their planar projections.
Importantly, one can use these equations to construct paths on
the manifold.

B. Relations

For concurrent localization and mapping, the projected
poses of the patches Π are not known a priori; instead we
have a set of relations that constrain the patches’ relative pose
(a scan-matching algorithm, for example, may establish point-
to-point correspondences). Let Φ denote the set of pairwise
relations between patches; we write:

Φ = {φ} : φ = (π, π̄;x, x̄, σ) (4)

where the relation φ implies that point x on patch π corre-
sponds to point x̄ on patch π̄; σ is the uncertainty associated
with the correspondence. One can write down similar defini-
tions for point-to-line, line-to-line, relative range and relative
bearing relations.

C. Fitting Patches

Given the above definitions, one can apply maximum likeli-
hood estimation (MLE) techniques to find the set of projected
poses Θ = {θ} that is most likely to generate the observed set
of relations Φ = {φ}. That is, MLE searches for the estimate
Θ̂ that maximizes the conditional probability P (Φ | Θ):

Θ̂ = arg max
Θ

P (Φ | Θ)

= arg max
Θ

∏

φ∈Φ

P (φ | Θ) (5)

where we make the additional assumption that the relations in
Φ represent statistically independent observations. Applying



the standard log-likelihood transformation to these equations,
one can equivalently search for the Θ that minimizes the
(negative) conditional log-likelihood L(Φ | Θ):

Θ̂ = arg min
Θ

∑

φ∈Φ

L(φ | Θ) (6)

This latter form is more convenient for most practical pur-
poses. For point-to-point relations with Gaussian uncertainty,
the log-likelihood for a single relation φ is given by:

L(φ | Θ) =
1

2σ2
(x⊕ θ − x̄⊕ θ̄)2 (7)

where x ⊕ θ denotes the projected pose of a point on patch
π and x̄⊕ θ̄ denotes the projected pose of the corresponding
point on patch π̄. Intuitively, one can visualize the two points
as being pulled together by a simple spring.

In principle, the maximum likelihood estimate Θ̂ can be
found be solving:

0 =
∑

φ∈Φ

∇L(φ | Θ) (8)

In the case of 2D-mapping, however, the gradient terms on the
right-hand side of Equation 8 generally contain transcendental
components, and hence there exists no closed-form solution.
Fortunately, a range of numeric optimization techniques can
used to find the minimum, including simple gradient de-
scent and its more refined brethren, such as the Levenburg-
Marquardt and Fletcher-Reeves algorithms [4].

The confidence in the estimate Θ̂ can be determined by
inspecting the local curvature of ∇L(Φ | Θ) around Θ̂.
Following the standard practice in the MLE literature [5], we
write down the stochastic Fisher information matrix as:

J(Φ | Θ̂) =
∑

φ∈Φ

∇2L(φ | Θ̂) (9)

The confidence interval σ̂i on any component i of Θ̂ is then
given by:

σ̂i = c

√

(

J−1(Φ | Θ̂)
)

ii
(10)

where c is an appropriate critical value (e.g., 1.96 for a 95%
confidence interval), and the ii subscript denotes a particular
component of the inverted Fisher information matrix. In prac-
tice, we are usually less interested in the absolute fit confidence
than we are in the relative confidence between a given pair of
patches; i.e., how well is the pose of patch π determined with
respect to patch π̄? This quantity can be determined using a
sightly modified version of the above procedure: we treat the
components of Θ̂ that correspond to patch π as constants, and
eliminate the corresponding rows and columns from the Fisher
information matrix. Inserting this reduced matrix into Equation
10 we obtain the component-wise confidence intervals for
every patch, relative to the “fixed” patch π. For the remainder
of this paper, we will use J(Φ | Θ̂) to denote this reduced
matrix.

IV. MULTI-ROBOT MAPPING

We turn now to the specific problem of multi-robot map-
ping, using the mathematical tools described in the previous
section. This problem can be broken into three sub-problems:
incremental localization and mapping, loop closure and island
merging.

Incremental localization and mapping is the basic mode of
operation for the mapping algorithm: as each robot moves
through the environment, odometry and laser data are used
to update the robot’s current pose estimate, and, under certain
circumstances, to make incremental additions to the map. The
basic process is illustrated in Figure 2, and described in detail
in the next section. Note that robots extend the map at the
edges of the manifold only; a robot that is retro-traversing to
a previously visited location will not add to the map.

This process punctuated by two events that require global
changes to the map: loop closure and island merging. Loop
closure is the process whereby two widely separated regions
of the map are brought together (see Figure 3). In Section
III-A, we showed that multiple points on the manifold may
project onto the same point on the plane; in the context of
mapping, this implies that two widely separated points on the
manifold may in fact represent the same location in the world.
Indeed, if one uses incremental mapping alone, any loops in
the environment will be “unrolled” to form spiral structures,
with the same series of locations repeating over and over again
in the manifold. Loop closure, then, is the process whereby
such repeated locations are identified, and the topology of the
manifold is modified accordingly.

In a similar vein, island merging is the process whereby
two unconnected regions of the manifold are combined into a
single representation (see Figure 4). In the context of multi-
robot mapping, there are two basic scenarios that give rise
to such islands: robots enter the environment from separate
locations, or robots enter the environment from the same
location, but at different times. In either case, we proceed by
building a separate island for each robot, and merging those
islands only when a suitable correspondence point has been
established.

The loop closure and island merging processes depend
on our ability to uniquely identify a particular location in
the world (the traditional data association problem). In the
case of single-robot mapping, there are two basic methods
for making this identification: recognizing a unique feature
associated with that location (including pre-placed fiducials)
or making plausible guesses based on patterns of non-unique
features. These two methods have been well treated in the
single-robot mapping literature [2], [6]–[8], and will not be
covered here. Instead, we focus on a third method that is
unique to the multi-robot mapping domain: using the robots
themselves as unambiguous landmarks. Whenever two robots
sight one another – a process we refer to as mutual observation
– we establish a correspondence between two points on the
manifold; mutual observations can therefore be used to close
loops and merge islands.



In the following sections, we describe the incremental
mapping, loop closure and island merging processes in detail.
Note that, throughout this presentation, we assume that the
mapping algorithm is centralized; i.e., data from all of the
robots is communicated to a common location, where it is
assembled to form a map.

A. Incremental Localization and Mapping

Incremental localization and mapping is performed indepen-
dently and concurrently for each robot on the team. Two pieces
of sensor data are used in this process: odometry data (which
measures changes in the robot’s pose) and laser scan data
(which measures the range and bearing of nearby features).

Let ott′ be the measured (odometric) change in pose be-
tween times t and t′, and let st′ be the laser scan that is
subsequently recorded. If ρt = (πt, rt) is the robot pose
estimate at some time t, the updated robot pose estimate
ρt′ = (πt′ , rt′) can be determined as follows.

1) Create a new patch π∗ = (θ∗, s∗) such that:

θ∗ ← ott′ ⊕ rt ⊕ θt and s∗ ← st′ (11)

i.e., the projected pose θ∗ is computed by combining
the measured (odometric) change in pose ott′ with the
robot’s current pose estimate ρt.

2) Create a local map around the current patch πt; the local
map is the set of patches Π∗ that are both nearby (in the
planar projection) and well fitted with respect to πt; that
is, Π∗ contains all patches π that satisfy the condition:

1.96

√

(

J−1(Φ | Θ̂)
)

θθ
< ε (12)

The notation here requires a little explanation: J(Φ | Θ̂)
is the Fisher information matrix computed for patch πt

(see Section III-C); the patch π is included in the local
map only if the confidence interval on every component
of θ is less than some threshold ε.

3) Match features in the new patch π∗ against features
in the local map Π∗. We omit the details of the scan
matching algorithm, and assume only that it produces
some set of relations Φ∗.

4) Use MLE to fit the new patch against the local map; i.e.,
find the projected pose θ∗ that is most likely to give rise
to the observed relations Φ∗:

θ∗ ← arg min
θ

L(Φ∗ | θ) (13)

The minimum value is found using numeric optimiza-
tion.

5) Compute the new robot pose estimate ρt′ = (πt′ , rt′) by
projecting the new patch back into the manifold.

πt′ ← arg min
π∈Π†

‖θ∗ ª θ‖

rt′ ← θ∗ ª θt′ (14)

where Π† is a subset of Π∗ containing only those patches
whose scan polygons overlap with πt; the potential

ambiguity in the projection is resolved by selecting the
nearest patch from this set.

Steps 3 and 4 of the algorithm may be applied iteratively (EM-
style) to improve the quality of the fit.

The key step in this algorithm lies in the creation of the
local map. In effect, that part of the manifold that is well
localized with respect to the robot is projected onto a plane;
the robot is then localized by fitting its laser scan against this
planar projection. In this context, the choice of the threshold
ε becomes crucial, since this parameter implicitly controls the
number of patches included in the local map; if ε is too small,
there may not be enough patches to adequately constrain the
robot pose; if ε is too large, the local map may contain gross
inconsistencies that lead to widely inaccurate pose estimates.

Having localized the robot, we may need to extend the map.
There are a number of conditions that can trigger this process:
e.g., the new patch is far from any of the existing patches in
the local map, or the new patch ‘covers’ a significant area of
the manifold that is not covered by the current local map Π∗.
If none of these conditions are true, the patch π∗ is discarded;
otherwise, the patch and its relations are appended to the map.
In this case, the robot pose estimate ρt′ = (πt′ , rt′) must also
reset such that the robot lies at the origin of the new patch;
i.e.:

πt′ ← π∗ and rt′ ← 0 (15)

B. Loop Closure

The loop closure algorithm is triggered by events (such as
mutual observation) that generate new relationships between
previously unrelated patches. The key challenge for this algo-
rithm lies not in the integration of this singular relation into the
map; rather, it lies in the integration of any additional relations
that may be induced as the change is propagated through
the map. Consider, for example, a pair of robots traveling
in opposite directions around a circular environment. If the
robots should fail to observe each other on the first few passes
(and thus fail to close the loop), the manifold will develop a
double spiral structure (one spiral for each robot). The loop
closure algorithm must be such that a single subsequent mutual
observation will the collapse the entirety of both spirals into
a single loop.

Our method for achieving this collapse is as follows: given a
new relation, the algorithm propagates changes outwards from
the closure point, alternating between inducing new relations
and re-fitting the map. The process terminates only when no
new relations can be induced. Let φab denote a new relation
between previously unrelated patches πa and πb; the algorithm
is as follows:

1) Add the new relation φab to the map and re-fit:

Θ ← arg min
Θ′

∑

φ∈Φ

L(φ | Θ′) (16)

2) Create a queue of patches; initialize the queue with the
set of all patches that are related to πa or πb.



(a) (b) (c)

Fig. 2. Incremental localization and mapping. (a) & (b) A new laser scan (dotted polygon) is fitted against the robot’s local map (solid polygon), to generate
a corrected robot pose estimate. (c) If the laser scan covers unexplored regions of the manifold, a new patch is added to the map.

(a) (b) (c)

Fig. 3. A loop closure triggered by a mutual observation. (a) & (b) Two robots observe each other, generating a new relation. (c) The change in topology
is propagated through the manifold, inducing new relations and forcing patches to be re-fitted.

(a) (b) (c)

Fig. 4. Merging islands after a mutual observation. (a) Two robots observe each other, generating a new relation. (b) & (c) The two islands are roughly
aligned, and the change in topology is propagated through the manifold.

3) Pop the first patch off the queue; call this patch π∗. In-
duce the local map Π∗ for this patch using the procedure
described in Section IV-A.

4) Use scan-matching to fit the patch π∗ to the local map
Π∗. From the set of relations Φ∗ found by the scan-
matching algorithm, eliminate those that are already in
the map; i.e., Φ∗ should represent the set of new relations
for patch π.

5) If Φ∗ is non-empty:
a) Add the new relations Φ∗ to the map and re-fit as

per step 1.
b) Add all patches that are related to π∗ to the queue.

The process continues until the queue is empty.
Compared to incremental localization and mapping, the loop

closure algorithm is relatively expensive: re-fitting the entire

map is non-trivial, and may be performed more than once
for any given loop closure. Fortunately, closure events are
relatively rare (their frequency depends on the number of loops
in the environment). In addition, the loop closure algorithm
is executed only once for each loop in the environment;
subsequent traversals of a loop will incur no penalty.

C. Island Merging

The island merging algorithm is triggered by events that
induce relations between patches belonging to separate islands
(patches are said to belong to the same island only if and only
if they are connected by some sequence of relations). In this
case, as with loop closure, we must admit the possibility that
there is substantial overlap between the two islands, and any
changes made at the point where the islands are merged must



(a) (b) (c)

(d)

Fig. 5. Occupancy grids generated by the mapping package. (a) SAIC site A (two robots). (b) SAIC site B (four robots). (c) USC Science Library (four
robots). (d) California Science Center (one robot).

be propagated throughout the map. The algorithm for island
merging is therefore identical to that used for loop closure,
with one exception: prior to merging, we treat the two islands
as rigid bodies, and quickly bring them into rough alignment,
thus saving a great deal of time in the re-fitting process.

Compared with incremental mapping, island merging is a
relatively expensive process. For a team of N robots, however,
the algorithm will be executed at most N−1 times; moreover,
since robots are likely to commence mapping from a relatively
small number of initial locations, most of these mergers are
trivial (i.e., involving islands with only a handful of patches).

V. EXPERIMENTS

The multi-robot mapping approach described in this paper
has been applied to a wide range of environments of varying
size and complexity: Figure 5 shows a selection of the final
occupancy grid maps produced by the algorithm; note that all
maps were generated autonomously, and in real time. Many
of these maps, and the data-sets used to generate them, can
be downloaded from the Radish [9] web-site.

Figure 6 shows the results for one particularly challeng-
ing experiment, conducted in a large test environment. Four
robots were deployed into this environment from two dif-
ferent locations to execute an autonomous exploration algo-
rithm. The robots were comprised of a Pioneer2 DX base, a

SICK LMS200 scanning laser range-finder, Sony PTZ camera,
and a pair of fiducials (to facilitate mutual recognition); the
Player robot device server [10] was used to control the robots.
For this experiment, the relative pose of the two entry points
was unknown; each pair of robots was therefore required
to explore and map independently, giving rise to the two
unconnected islands shown in Figure 6(c). After approximately
10 minutes, however, the two sets of robots encountered one
another, and, using this mutual observation, the two maps
were merged into one (Figure 6(d)). The combined robot team
then proceeded to complete the exploration and mapping task,
yielding the final occupancy grid map shown in Figure 6(b).

It should be emphasized that exploration and mapping was
entirely autonomous, with the exception of a single user
intervention to direct a robot into the otherwise unexplored
room at the bottom left of the map. Maps were generated in
real time, in an environment approximately 600 m2 in area.

VI. CONCLUSION AND FURTHER WORK

While the manifold techniques described in this paper
may be used to generate maps from robots under manual
control, our key motivation in designing this representation
is to support autonomous behaviors for incompletely mapped
environments. As a result, our current research is heavily



(a) (b)

(c) (d)

Fig. 6. (a) The mapping team: each of the four robots carries a unique laser-visual fiducial. (b) Occupancy grid map produced during a multiple-robot,
multiple-entry trial: two robots entered from the door at the right top, another two robots entered from the door at the right bottom (the relative pose of
the two doorways was unknown). The environment is approximately 600 m2 in area. (c) A pair ‘sketch’ maps prior to merging (the sketch map is a vector
representation showing the currently explored free space). Also show is the topological map used for navigation on the manifold. (d) Combined sketch map
following merging; the indicated robots have made a mutual observation.

focused on this topic. To date, we have created an autonomous
exploration algorithm that exploits the manifold map to direct
and coordinate multiple robots; our near-term aim is to extend
this algorithm to include planned rendezvous: i.e., the use of
robots in pairs to explore regions of the manifold that appear
similar.
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