MILCOM 2002

IP ADDRESS ASSIGNMENT IN A MOBILE AD HOC NETWORK

Mansoor Mohsin and Ravi Prakash
The University of Texas at Dallas
Richardson, TX

Abstract— A Mobile Ad Hoc Network (MANET) consists of a set of iden-
tical mobile nodes communicating with each other via wireless links. The
network’s topology may change rapidly and unpredictably. Such networks
may operate in a stand-alone fashion, or may be connected to the larger In-
ternet. In traditional networks, hosts rely on centralized servers like DHCP
for configuration, but this cannot be extended to MANETS because of their
distributed and dynamic nature. Many schemes have been proposed to
solve this problem. Some of these approaches try to extend the IPv6 state-
less autoconfiguration mechanism to MANETS, some use flooding the en-
tire network to come up with a unique IP address, and others distribute
IP addresses among nodes (using binary split) so that each node can inde-
pendently configure new nodes. None of these existing solutions consider
network partitioning and merging. In this paper, we propose a proactive
scheme for dynamic allocation of IP addresses in MANETSs. Our solution
also uses the concept of binary split and takes into consideration the previ-
ously unsolved issues like partitioning and merging and abrupt departure
of nodes from the system. We show that our solution is scalable and does
not have the limitations of earlier approaches.

Keywords— MANET, auto-configuration, IP address.

I. INTRODUCTION

A Mobile Ad Hoc Network (MANET) consists of a set of
identical mobile nodes communicating with each other via wire-
less links. The network’s topology may change rapidly and un-
predictably. Such a network may operate in a stand-alone fash-
ion, or may be connected to the larger Internet.

Since there is no built-in infra-structure required for the net-
work to form, all the nodes have the capability to maintain all
the resources of the network in a distributed fashion. Hence the
nodes rely on each other to keep the network connected.

One of the most important resources is the set of IP addresses
that are assigned to the network. When a new node wants to
join a network, it has to be assigned an IP address as part of its
initialization.

Address autoconfiguration in MANETS is still an unresolved
issue. The IETF Zeroconf working group deals with autoconfig-
uration issues. One simple solution is proposed by [1] in which
each node randomly configures itself and then performs dupli-
cate address detection to resolve conflicts. This solution is not
scalable as it floods the entire network while performing du-
plicate address detection. Another approach is based on IPv6
stateless autoconfiguration [2] [3]. This solutionis limited in the
sense that it only works with IPv6 and is dependent on the under-
lying routing protocol used. In general, we can categorize the IP
assignment solutions to be either reactive or proactive. Reactive
protocols require a consensus among all the nodes of the net-
work on the new IP address that is to be assigned, whereas in the
proactive approach, each node can independently assign a new
IP address without asking permission from any other node in the
network. The former scheme is described by [4] and the latter
scheme is described by [5] [6]. In this paper, we will present a

This work is supported in part by the National Science Foundation CAREER
grant CCR-0093411.

proactive approach based on the binary split idea of [5] [6].

II. SYSTEM MODEL

We consider an autonomous Mobile Ad Hoc Network work-
ing on its own. It has no gateway or connection to the external
world. The network is formed by a group of nodes coming to-
gether. The nodes can join and leave the network any time and
are free to move around. Hence the size and topology of the
network is dynamic and unpredictable in nature.

There is no single DHCP server. Instead, all nodes collec-
tively perform the functionality of a DHCP server. Each node
has the capability of configuring a new node by providing it with
an IP address. All the nodes of the network synchronize from
time to time to keep the latest information about the network.

A. Requirements

A protocol for assigning IP addresses should meet the follow-
ing requirements:
o There should be no conflict in IP address assignment, i.e., at
any given instant of time there should not be two or more nodes
with the same IP address.
o An IP address is assigned only for the duration the node stays
in the network. When the node departs the network, its IP ad-
dress should become available for assignment to other nodes.
+ A node should be denied an IP address only when the whole
network has run out of its available IP addresses. In other words,
if any of the nodes has a free IP address, this address should be
assigned to the requesting node.
o The protocol should handle network partitioning and merging.
When two different partitions merge, there is a possibility that
two or more nodes have the same IP address. Such duplicate
addresses should be detected and resolved.
+ The protocol should make sure that only authorized nodes are
configured and granted access to network resources.

B. Key Terms and Definitions

IP Address Block: A consecutive range of IP addresses. Usu-
ally the size of an an IP address block is a power of two.

IP Address Leak: A situation when the union of all the IP ad-
dress blocks associated with all the nodes is less than the IP
addresses for the the whole network. In other words there are IP
addresses that are neither associated with any node nor available
with any node as free IP addresses.

IP Address Conflict: A situation when two or more nodes in a
network are assigned the same IP address. Detection of IP ad-
dress leaks is explained in section V.

Fartitioning: The division of a network into two or more dis-
joint sub-networks. In the simplest case, a partition may consist
of only one node. Partitioning leads to IP address leak (Section
VIII).



Merging: The combination of two or more networks into one
bigger network. Merging results when two or more partitions
come in the range of each other. Merging has the potential of
causing IP address conflict (Section VIII).

III. THE BUDDY SYSTEM FOR IP ADDRESS ASSIGNMENT

Buddy systems [7] are a type of segregated lists that support
an efficient kind of splitting and coalescing. Binary buddies are
the simplest and best-known kind of buddy system [8]. In this
scheme, all buddy sizes are a power of two, and each size is
divided into two equal parts. All the buddies are aligned on a
power-of-two boundary offset from the beginning of the heap
area. Each bit in the offset of a block represents one level in the
buddy system’s hierarchical splitting of the heap area — if the
bit is 0, it is the first in a pair of buddies, and if the bit is 1, it
is the second in the pair. These operations can be implemented
efficiently with bitwise logical operations.

In a Buddy System for IP Assignment every node has a dis-
joint set of IP addresses that it can assign to a new node without
consulting any other node in the network. The basic idea is as
follows:

1. In the beginning, there is only one node in the network that
has the entire pool of IP addresses.

2. When an un-configured node, A, wishes to join a network, it
requests the nearest configured neighbor node, B, for an IP ad-
dress. Node B assigns the requesting node A an IP address from
its pool of IP addresses. It also divides the set of IP addresses
into two and gives one half to the requesting node A (keeping
the other half with itself).

3. A node can leave the network either gracefully or abruptly.
When node A leaves a network gracefully, it gives its pool of IP
addresses to any node B nearby. Node B has the responsibility
of handling this set of IP addresses — it can either keep this
block of IP addresses with itself or it can find the buddy of node
A (i.e. the node whose IP address block is a buddy of node
A’s TP address block) and forward this block of IP addresses to
the buddy. On the other hand, when node A leaves the network
abruptly it leads to IP address leak (because there is some IP
address that is neither assigned to any node nor available for
assignment to an un-configured node). This situation is handled
later on when the nodes synchronize and exchange information
about the latest status of the network.

4. Nodes synchronize from time to time to keep track of the IP
addresses assigned and detect any leaks in the available pool of
IP addresses. Every node keeps a record of all the IP address
blocks in the network by maintaining a table similar to the one
given below:

TABLE I
IP ADDRESS TABLE

NodeID IPAddresses
1 0 - 31

32 - 63
3 64 - 127

MILCOM 2002

This table is sorted with respect to the IP addresses. This table
can be implemented as a binary tree. A particular block of IP
addresses can be searched in the table in O(log n) time.

IV. ASSIGNING A NEW IP ADDRESS

Let the node requesting an IP address be a client node and the
node that actually assigns the IP address be a server node. In
this way we can view the scheme of assigning an IP address as
a handshaking protocol between the server and the client.

1. The client periodically sends broadcast messages using its
hardware address.

2. When a server receives this broadcast message, it responds
by sending a reply message using its IP address and the client’s
hardware address. It is possible that two or more servers reply
to the same broadcast message.

3. The client sends an acknowledgment message back to the
server. If the client has received more than one reply messages
from different servers, it sends the acknowledgment message
only to the first server and ignores the rest.

4. When the server receives this message, it realizes that it is
ready to assign a new IP address to the requesting client node. If
the server has multiple blocks of IP addresses (as a result of de-
partures of neighbors), it assigns one of these blocks to the client
node. Otherwise, it divides its set of available IP addresses into
two disjoint subsets. It then sends one subset to the client node
and keeps the other subset with itself. The server also sends its
latest version of IP address table to the client.

5. When the client receives this set of available IP addresses,
it assigns itself the first IP address from this set and keeps the
rest as its available set of IP addresses. It then sends a confirm
message to the server indicating a successful configuration.

6. When the server receives this confirm message, it terminates
the TP assignment process.

It is possible that a node has allocated all the IP addresses
from its IP address block but some other nodes in the network
still have some available IP addresses. If this is the case and
a new request for IP address assignment arrives, then we can
employ the following three solutions:

1. The server node searches its IP address table for a neighbor
node that still has some available IP addresses. The server then
requests that neighbor node for some available IP addresses.
The neighbor node divides its block of IP addresses into two
and gives one half to the server (keeping the second with itself).
The server then continues with the configuration of the client
using this acquired block. If none of the neighbors has free IP
addresses available, then the server checks for nodes which are
at a distance of two hops, and so on.

2. The server sends a multicast message to all its neighbors for
a block of available IP addresses. The server accepts the reply
of the neighbor that replies first. The rest is the same as case
1. If none of the neighbors has free IP addresses available, then
the server sends a multicast message to the nodes that are at a
distance of two hops from the server, and so on.

3. The server node searches its IP address table for the node that
has the biggest block of IP addresses. If two or more nodes have
the same number of free IP addresses available, then it simply
selects the nearest one. The rest is the same as case 1.



MOHSIN AND PRAKASH

The first two solutions are very similar. The only difference
is that in the first solution the server searches the IP addresses
table whereas in the second solution the server sends multicast
messages. The first one is efficient in terms of the number of
messages it sends whereas the second one is efficient in terms of
time required to discover a node that has free IP addresses avail-
able. In both the solutions, the server node increases the radius
by one hop and searches for a node that has free IP addresses
available until it finds one.

The third solution is different. The server node targets the
node that has the most number of free IP addresses available. If
all the IP addresses in the network have been assigned, the server
does not need to exchange any messages to determine that. The
advantage of this scheme is that it leads to less fragmentation
as available IP address blocks get evenly distributed over the
network whenever a node runs out of its free IP addresses. This
is extremely useful when the network is getting concentrated at
a given location and the nodes in that location run out of free IP
addresses.

In terms of the amount of state information maintained, the
second solution requires the least amount of state information
because it does not need to know about the IP address block
of any node in the network, whereas the third solution requires
the most amount of state information as it needs to know about
the IP address block of all the nodes in the network. The first
solution, however, requires an intermediate amount of state in-
formation because the server only needs to know about the IP
address blocks of it’s neighbors.

In this paper, we will focus our attention on the third solution.

A. Format of Messages

The following messages are used in the assignment of a new
IP address:
+ request This is the broadcast message that the client sends
periodically to start its configuration process. The source field
of this message is the client’s hardware address and destination
field contains the broadcast address.
« reply This is the message that a potential server sends to the
client when it receives a request message. This message lets the
client identify the server it will be dealing with.
+ ack This is the acknowledgment message that the client sends
to the server in response to the reply message to permit the server
to start the configuration process.
+ addressBlock The server sends this message to the client. It
contains the block of IP addresses that the client can use for the
configuration of other requesting nodes. The first address of this
block is used by the client as its own IP address.
+ confirm This is the confirmation message by the client to the
server indicating that it has been configured properly. When
the server receives this message, it terminates the IP assignment
process.
+ borrow This is the message sent by the server to any other
node asking for a free block of IP addresses. The server uses
this message when it runs out of available IP addresses to assign
to a new requesting node.
+ deny The message is used by a server to a requesting client
indicating that it has no free IP address available. When the
client receives this message it realizes that there is no IP address

available in the entire network and it cannot get configured.

B. Timers

The following timers are used in the assignment of a new IP
address. Note that the name of the timer depend upon the mes-
sage it is waiting for:

« replyTimer The client starts this timer after sending the re-
quest message and stops it when it receives the reply message
from the server. When the timer expires, it sends the request
message again and resets the timer.

+ addressBlockTimer The client starts this timer after sending
the ack message to the server and stops it with it receives the
addressBlock message from the server. When the timer expires,
the client assumes that the server has left the network before
completing its configuration process, so it starts the IP assign-
ment process from scratch again.

+ confirmTimer The server starts this timer after sending the
addressBlock message to the client and stops it when it receives
the confirm message from the server. When the timer expires,
the server assumes that the client has left the network before
completing it configuration process and does nothing, otherwise
it updates its IP address table (described in the next section) and
make a new entry for the client.

V. NODE SYNCHRONIZATION

Nodes of a MANET synchronize from time to time to keep
record of IP address assignment in the entire network and detect
any IP address leaks. The synchronization process involves ev-
ery node broadcasting its pool of IP addresses. This broadcast
is used by every other node to update its IP address table.

A. Detecting IP Address Leaks

If a node leaves the network abruptly, or if the network is par-
titioned into two or more networks, there are IP addresses that
are assigned to nodes which are no longer part of the network.
We need to devise a mechanism to detect such IP address leaks,
and then take corrective actions to reclaim those IP addresses.

The detection of IP address leaks is simple. Let there be nodes
i and j such that i and j are buddy nodes of each other. In order
to detect IP address leak every node scans the IP address table
(section IIT) for its buddy’s IP address block, i.e., node i will scan
the IP address table for node j and vice versa. If node i discov-
ers that the IP address block corresponding to node j is missing
from the table, it concludes that node j is missing and the net-
work has been unable to reclaim j’s IP address block. Node i
then merges node j’s IP address block with its own. The advan-
tage of this scheme is that every node is responsible for finding
out if its buddy node is missing and acquiring that buddy’s IP
address, as compared to flooding the entire network to find out
IP address leaks.

VI. RETURNING A PooOL OF IP ADDRESSES

We will adopt the same convention of client node and server
node for this section. The node that has to return the pool of IP
addresses is the client node and the node that accepts the pool
of IP addresses is the server node. The protocol is designed in
such a way to minimize work done by the departing node as far
as possible. This is because the departing node might not have



enough time to complete the whole process of giving its block
of IP addresses to the node with its buddy block. The departing
node just initiates the process before leaving the network and it
is up to the network to make this a graceful departure.
1. When a client node decides to leave the network, it informs
of its departure to any of the neighboring nodes (server node).
2. When the server node receives this message, it marks the IP
addresses of the client as being available and sends a message
back to the client signaling that it may now leave the network.
3. Upon receiving this message, the client node sends a bye()
message to the server and leaves the network. This message re-
confirms the client’s intention to leave the network. If the client
does not send this message it means that it has changed its mind
and no longer wishes to leave the network.
4. When the server receives this bye() message, it is sure that the
node has left the network. It then finds the buddy of the client
(by looking up its IP address table) and requests it to acquire
the client’s block of IP addresses, or it can keep this IP address
block with itself for configuring other nodes.
5. The buddy node acquires the block of IP addresses and sends
a confirmation message back to the server.
6. On receiving this message, the server is sure that the block
has been acquired successfully, so it terminates the process.
Note that if anything goes wrong in the above process, for ex-
ample, if the client leaves the network without sending the bye()
message, it will be treated an address leak and will be reclaimed
when the nodes synchronize.

A. Format of Messages

The following messages are used in a graceful departure of a
node:
+ depart The client sends this message to the server when it
wants to leave the network. The server can be any of the neigh-
boring nodes.
« ok The server sends this message to the client after marking
its entry in the IP address table. When the client receives this
message, it is sure that the server will take care of its IP address
block, so it can leave the network.
+ bye The client send this message to the server indicating that
it has left the network and the server can now send its IP address
block to its buddy node.
+ acquire The server sends this message to the buddy of the
departing node asking it to acquire the IP address block of the
client.
+ done The buddy of the departing node sends this message
to the server indicating that it has acquired the IP addresses of
the client. When the server receives this message it deletes the
departing client’s entry from the IP address table and relaxes as
it no longer needs to worry about taking care of the client’s IP
address block.

B. Timers

The following timers are used in the graceful departure of a
node:
+ okTimer The client starts this timer after sending depart mes-
sage to the server and stops it when it receives the ok message
from the the server. When the timer expires, the client can ei-
ther start the departure process again or it does nothing and just

MILCOM 2002

leaves the network assuming that it is no longer a part of the net-
work. Note that the latter case leads to IP address leaks and it is
up to the network to resolve this situation.

+ byeTimer The server starts this timer after sending the ok
message to the client and stops it when it receives the bye mes-
sage from the client. When the timer expires, the server pings
the client node. If it hears nothing from the client, it assumes
that the client has left, so it starts the process of assigning the
client node’s IP address block it its buddy.

VII. THE ALGORITHM

The algorithm for the client using the Abstract Protocol No-
tation (APN) is given below:

const threshold;

bool begin := true;
bool configured := false;
int count := 0;

bool firstReply := true;

begin = true A count < threshold —
broadcast request;
start replyTimer;
begin := false;

count = threshold —
self-configure();
configured := true;

receive reply from server A firstReply —
stop replyTimer;
send ack to server;
start addressBlockTimer;
firstReply := false;

receive addressBlock from server —
stop addressBlockTimer;
configured := true;

configured = true —
send depart to server;
start okTimer;

receive ok from server —
stop okTimer;
send bye to server;

releaseIPAddress();
configured := false;
count := 0;

timeout (replyTimer) —
begin := true;
count := count + 1;

timeout (addressBlockTimer) —
begin := true;
count := count + 1;

timeout (okTimer) —
configured := false;

The corresponding server algorithm for the IP address assign-
ment is given below:

bool availableBlock := true;

receive request from client —
send reply to client;
start ackTimer;



MOHSIN AND PRAKASH

receive ack from client —
stop ackTimer;
if availableBlock = true then
divideBlock () ;
send addressBlock to client;
if free IP address is available then

availableBlock := true;
else
availableBlock := false;
fi
else
checkIPAddressTable();

if no node has a new IP address then
send deny to client;
else
send borrow to newServer;
start addressBlockTimer;
fi
fi
receive confirm from client —
updateIPAddressTable();
receive addressBlock from newServer —
stop addressBlockTimer;
newAddressBlock = divideBlock (addressBlock) ;
send newAddressBlock to client;
if free IP address is available then
availableBlock := true;
else
availableBlock := false;
fi
receive depart from client —
send ok to client;
start okTimer;
receive bye from client —
stop byeTimer;
findClientBuddy () ;
send acquire to clientBuddy;
start doneTimer;
receive done from clientBuddy —
stop doneTimer;
updateIPAddressTable();
timeout (confirmTimer) —
pollClient();
if client is present then
updateIPAddressTable();
else
skip;
fi
timeout (byeTimer) —
pollClient();
if client is not present then
findClientBuddy () ;
send acquire to clientBuddy;
start doneTimer;
else
skip;
fi
Most of the functions given in the above algorithm can be
implemented in a number of ways. Given below is a brief de-

scription of the different possibilities:

The function self-configure () is called when a node dis-
covers that it is the only node in the network and needs to con-
figure itself. This node has the entire block of IP addresses and
assigns itself the first IP address of that block. This makes the di-
vision of IP address blocks very easy, as a node can keep the first
half and give the second half to a requesting node. configure ()
too works on the same principle. It also has a block of IP ad-
dresses (obtained from a server node) and assigns the first IP
address from that block to itself. Both these functions also up-
date their copy of IP address table. Whenever a node gets con-

figured, it sends a broadcast message to the network informing
of its arrival. This helps in updating the routing and IP address
tables. The function releaseIPAddress () is very simple. All
it does is assign null values to the IP address block, it own IP
address and the IP address table. It is worth mentioning here
that if we are dealing with gateways and subnets then the above
three functions should also deal with this situation.

updateIPAddressTable () adds or deletes an entry in the IP
address table to reflect the latest state of the network. Adding
a new entry means arrival of a new node and splitting of an
IP address block into two smaller blocks. Similarly, deleting
and entry means departure of node and merging of two IP ad-
dress blocks into one bigger block. When a node updates its IP
address table it does not immediately informs this to all other
nodes in the network. This is because as long as a node has
a pool of IP addresses, it is autonomous in configuring client
nodes. Other nodes get to know of this only when needed, e.g.
when a node has exhausted its IP address block and it asks for a
block from some other node. Even if this does not happen then
the time to time node synchronization will keep the information
updated throughout the network.

The function checkIPAddress () scans the IP address table
for the node that has the largest IP address block. This func-
tion is used by a server node that has run out of its IP ad-
dress block wants to borrow a block from some other node.
findClientBuddy () is also a similar function. It also scans
the IP address table but it takes the IP address of the client as
a parameter and returns the IP address of the node that is the
buddy of the given client node.

divideBlock () divides an IP address block into two blocks.
It returns the second half of the original block encapsulated as
the addressBlock message that can be sent to the client.

The function pollClient () simply pings the client just to
find out whether it is alive or not.

VIII. NETWORK PARTITIONING AND MERGING

One main advantage of the Buddy System for IP address as-
signment is that it works very well with network partitioning
and merging. In order to differentiate two or more partitions,
each partition is associated with a PartitionID which is a univer-
sally unique identifier, UUID. Hence, it is guaranteed that every
partition will have a unique PartitionID.

There can be two cases when a new PartitionID is generated.
First, when a new network is formed, i.e. when a node discov-
ers that it is the only node in the network, it generates a new
PartitionID and assigns to itself. Later, whenever a new node
wishes to join the network, this PartitionID is passed to the new
node as a part of the configuration process. The second case is
when an existing network is partitioned into two or more parti-
tions. When a node discovers that it has been partitioned from
the main network, then each node in that new partition is as-
signed a new PartitionID. The protocol to detect network parti-
tioning is described in [4].

Now let us consider what happens when a network gets parti-
tioned and the different partitions merge after some time. Let A
and B be two partitions after a network is partitioned into two.
As long as A and B have some IP address available, they do not
assign themselves a new PartitionID. The Buddy System for IP



address assignment will continue to work under such conditions.
If the two partitions A and B merger before they run out of IP
addresses, then we do not need to do anything. In other words,
there is no problem if disjoint partitions merge.

On the other hand, consider the situation when A has used all
its IP address and a new request comes in. In this case, partition
A generates a new PartitionID and acquires the entire IP address
block of partition B. Now if A and B merge then their inter-
section is not null and there are IP address conflicts. In order to
resolve such conflicts, one of the conflicting nodes in either A or
B has to give up its IP address block. Our algorithm requires the
node with the larger IP address block to give up its IP address
and acquire a new IP address. In this way the number of changes
required to resolve the conflicts is minimum. The details of the
algorithm are given below:

find the node in other partition with same IP address
if there is no such node then
adjust PartitionID, if necessary
else
let A = node in other partition with same IP address
if blockSize = A’s blockSize then
give up IP address
request for an IP address from A
else if blockSize < A’s blockSize then
divide block into two
give the second half to A
(A will be requesting for an IP address)
adjust PartitionIDs
else
request for an IP address from A
end if
end if

Figure 1 illustrates how IP address conflicts are resolved using
the above algorithm. Nodes A and B have the same IP address.
Node A gives up its IP address since its block size is greater than
node B’s block size. Node B then divides its IP address block
into two and gives the second half to A.

Fig. 1. Block sizes before and partition merging

Referring to the figure, several improvements can be made to
the above algorithm. Instead of dividing block B into two and
giving one half to A, we can divide the largest block, in this case
D, into two and give one half to A. In this way, IP addresses will
be much more uniformly distributed among the nodes. Also if
we have some information about the amount of network a node
is using, then we can decide which node to give up its IP address.
For example, suppose that A has a lot of telnet and ftp sessions
going while B is idle, then it’s a good idea to give B the second
block while A keep the first block.

IX. PERFORMANCE MEASURES

Assigning a new IP address is very efficient, as only the client
and server nodes are involved in this process and there are no
overheads. There are a finite number of messages needed for
this protocol.

MILCOM 2002

Synchronization of nodes involves broadcast messages as ev-
ery node periodically broadcasts its information about its block
of IP addresses. So, in a network with n nodes, we will have
n broadcast messages during a finite interval of time. We
can adopt a lazy synchronization mechanism here in which the
nodes synchronize only when needed. This significantly reduces
the number of messages in a given amount of time.

When a node departs a network, again we have a finite num-
ber of message exchanges. This is possible because the server
node can search for the node with the buddy block from the table
and it does not need to send any broadcast messages.

As far as memory requirement is concerned, it depends on the
size of the table every node has to maintain. In the worst case, all
IP addresses has been assigned and each block of IP addresses
consists of just one IP address. In this case, the number of entries
in the table are equal to the size of the network. Note that the
buddy scheme not only helps minimize the size of the table but
also helps minimize fragmentation of IP address blocks.

X. CONCLUSION AND FUTURE WORK

We presented a simple solution for automatic IP address as-
signment of nodes in a MANET. The solution employs the
buddy system, a well known method for memory management.
The solution has low overheads, and is capable of handling node
arrivals, departures, and network partitioning.

A major issue that has been ignored in this paper is security.
We assumes that each node trusts every other node, but if this is
not the case then the following situations can arise:

+ A node requests IP addresses for nodes that do not exist. In
this way a node can acquire all the IP addresses denying others
to participate in the network.

+ A node assigns IP addresses to other nodes without following
the given protocol. This can lead to IP address conflicts which
might be difficult to resolve.

« A node selectively gives wrong information to other nodes.

The synchronization process in our protocol depends on re-
liable broadcast. Since no such broadcast exists in a mobile
distributed environment, one can question the robustness of the
protocol. There is need for further research on security and reli-
able multicast/broadcast communication in MANETS.

REFERENCES

[11 C.E. Perkins, E. M. Royer, and S. R. Das: IP Address Autoconfiguration
for Ad Hoc Networks. Technical Report draft-ietf-manet-autoconf-00.txt,
Internet Engineering Task Force, MANET Working Group, July 2000.

[2] S. Thomson, and T. Narten: IPv6 Stateless Autoconfiguration, RFC 2462,
December 1998.

[3] Kilian Weniger, and Martina Zitterbart: IPv6 Autoconfiguration in Large
Scale Mobile Ad Hoc Networks, University of Karlsruhe, Germany.

[4] Sanket Nesargi and Ravi Prakash: MANETconf: Configuration of Hosts in
a Mobile Ad Hoc Network, Proceedings of INFOCOM 2002.

[51 A.J. McAulley, and K. Manousakis: Self-Configuring Networks, MIL-
COM 2000, 21st Century Military Communications Conference Proceed-
ings, Volume 1, Pages 315-319.

[6] A. Misra, S. Das, A. McAulley, and S. K. Das: Autoconfiguration, Reg-
istration, and Mobility Management for Pervasive Computing, IEEE Per-
sonal Communications, Volume 8, Issue 4, August 2001, Pages 24-31.

[71 Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles: Dy-
namic Storage Allocation: A Survey and Critical Review, International
‘Workshop on Memeory Management, September 1995.

[8] Kenneth C. Knowlton: A Fast Storage Allocator, Communications of the
ACM, Volume 8, Number 10, October 1965.



