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Abstract

This paperdiscussestwo efficient methods for imagebasedrendering. Both algorithms
approximatetheworld object.Oneusestheconvex hull andtheotherusesthevisualhull.
We show that theoverheadof usingthe latter is not alwaysjustified andin somecases,
mightevenhurt. We demonstratethemethod onrealimagesfrom a studio-like settingin
whichmany camerasareused,aftera simplecalibration procedure.

Thenoveltiesof thispaperincludeshowing thatprojectivecalibrationsufficesfor this
computationandprovidingsimplerformulationthatis baseonlyonimagemeasurements.

1 Introduction

Thispaperconsiderstheproblemof image-basedrendering givenmany imagesaround an
object.Giventhis collectionof views we wantto generatea new view of thescenefrom
somegivencamera.For theapplicationof view synthesis,thegoalis to quickly generate
a new imagefor eachvideo frame. In this case,the construction of a full geometrical
model is not needed. Whenthe object in the scenemoves,eachframemay presenta
substantiallydifferentobject.Model construction is a complex operation andupdatingit
evenmoreso.

In recentwork, [12] showedthatthiscanbedonewithoutusingvoxelsor opticalflow.
This resultsin a simplermethod of usingthevisualhull ([9]) for view synthesis. In this
paperweshow thatstrictEuclideancalibrationis notneeded andsothesamegeometrical
computationcanbedonewhenonly projective calibrationof thecameras is performed.
We discussa specialcaseof thevisualhull – theconvex hull – whosespecialform leads
to simpleralgorithmsthatmaysuffice,and,in somecasesmight bepreferred.

1.1 Previous Work

Thereis a anabundanceof work on scenemodeling from multiple views. In [1] optical
flow is usedto synthesizenovel views from two similar views. In [4] severalviews are
usedto texturea 3D graphical model,resultingin a realisticlooking scene.This requires
aconsiderableamount of manual work andthusis notapplicableto aconstantly changing
scene.Themulti-camera studiosettingin [7], in which many synchronizedcamerasare
usedto capturea sceneresemblesour setting. Two methodsareusedin [7]. Onerelies
onapairwisestereoalgorithm in whichdepthmapsfrom severalnearby camerapairsare
combined.Theresultingsurfacesarethencombinedandtexturedin space.Shortcomings
of this approachincludetherelianceon texture for establishingcorrespondence,low ac-
curacy resultingfrom thesmallbaselinebetweenthecamerasandaheavy computational
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Figure1: Convex andvisualhulls of a simplescene.1(a) Two bounding planesin each
imagedefinetheconvex hull. 1(b) Theresultingconvex hull is usedasanapproximation
to the shape.1(c) Any number of bounding planesin eachimagedefinethevisual hull
1(d) Theresultingvisualhull. As canbeseen,thereareghost artifactsin theshape.
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Figure2: Imagewarpingprocess:2(a) Top view of a sceneobject. 2(b) Silhouetteis
extractedin two views. 2(c) Theintersectionof thesilhouettesdefinestheapproximation
of the object. 2(d) For eachpixel in a new view, a ray is castandintersectedwith the
convex hull. 2(e) Backward-facing planesare eliminated. 2(f) Only one intersection
pointsatisfiesall theconstraints.2(g) Thispoint is projectedontothesourceimage.2(h)
Thepixel is copied ontothetargetimage.
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(a) Imageandsilhouette (b) Boundary (c) 2D Convex
hull

(d) 2D Visual
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Figure3: Representingthe silhouettes:(a) Oneof the input imagesandthe silhouette
which is extractedautomatically. (b) theboundaryof thesilhouette.(c) Theconvex hull
of thesilhouetteis usedto definetheconvex hull of the3D object.(d) Approximationof
thesilhouettewith upto 100line segments. Thecollectionof segmentsdefinedthevisual
hull of the3D object. As canbeseen,thisoptional stepchangesthesilhouettevery little.

load. [9] definesthe Visual Hull which is usedin work asin [8] wherea discretecom-
putationof the visualhull shows theusefulnessof sucha representationfor multi-view
synthesis.Theuseof voxels simplifiesshaperepresentation,which is otherwisehard. Its
drawbackis theadded quantizationerrordegradingthereconstruction.In orderto over-
comethis, paperssuchas[3, 5] and[10], useothermeansto “smooth” thevoxels. Also,
the 3D volumetric representation limits the usability as it allows only small number of
voxels to beuseddueto significantmemory andcomputationalrequirements.[11] uses
anOctreerepresentationin orderto alleviate this. Note that theneedto positionthe3D
grid itself requires Euclideancalibration.

This paper is organizedasfollows. Thedifferent representationsandtheir construc-
tion isdiscussedin section2 followedbyadetaileddescriptionof thealgorithmsin section
3. Section4 comparesthetwo methods.

2 Model Construction

We assumethat many projectively calibratedviews of the world areavailableandthat
automatic extraction of thesilhouettesof theobjectsis done(using[6]) . Thegoal is to
usethisinformationtocreatenew views. Creatingthenew viewsrequiressomeestimation
of theshapeusingwhich, we canwarptheexisting imagesto createa new view.

For this purpose,therepresentation of theshapeneeds to beableto answeronetype
of query: Whatis theintersectionof anygivenraywith theshape?

In this paperwe considertwo shaperepresentations.Theconvex hull andthevisual
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hull. As seenin figure1, bothrepresentationsproducea polyhedralmodel. Theconvex
hull resultsa convex polyhedronandthe visual hull may resulta morecomplex shape,
possiblywith severalconnectedcomponents. Bothshapesareupperboundsontheactual
objectandthevisualhull providesa tighterbound.

Oncewe have the parameters of the new imagewe want to synthesize (centerof
projection, orientation, size,etc.) we cansimulatethe processof takingan image. We
shoot(lift) a ray througheachpixel asshown in figure 2. Theclosestintersectionof this
raywith theobjectis theworld point whosecolorwouldberecordedin thispixelposition.
Sincetherearemany views of theobject,a goodestimateof this color canbegivenby
inspectingtheprojection of thispointontothegivenimages.

2.1 Convex Hull

The convex hull of a shapeis definedas the intersectionof all half-spacescontaining
it. Given a finite collectionof views, candefinea finite setof suchhalf-spaceswhose
intersectionis guaranteed,by thedefinitionof intersection, to containtheconvex hull. As
we only haveafinite setof views,we termit theapparentconvex hull.

Givenanimageof theobject,andthesilhouette in thatimage,eachline thatis tangent
to thesilhouette definesa world planethatis tangentto theobject(seefigure4(b)).

Let
�

bea line in someimage,whosecameramatrix is � . The4-vector ��� ��� �
is a world plane containingall the world pointsthat project onto

�
. This planedivides

theworld points � into two groups, thoseon theplane( � � ���
	 ) andthosenot on it
( � � ����
	 ). Since � is definedwith respectto a givenview, we canalsodistinguishthe
two sidesof it insidetheviewing frustumandso � candefinea half spacethatcontains
all theworld pointswhoseprojection ontotheimageliesononesideof

�
. � canbescaled

sothataworld point ����� ����������������� lies “outside”of theshapeif � � �� !	 .
If
�

is tangentto the imageof the object then �#"� �$� � is tangent to the object.
Thereforetheintersectionof all thehalf spacesthatcanberecoveredfrom thegiveninput
imagesdefinetheapparent convex hull of theobject. The intersectionof any world ray
with theconvex hull is theintersection with oneof theplanesthatdefinesit.

Theconvex hull representationof the objectis thena collection of planes%&�('*),+'.-0/ ,
eachof them is accompanied by an imageline % � '1)2+'3-4/ with its corresponding camera
matrix.

2.2 Visual Hull

Oneof the definitions of the visual hull is asthecollectionof world pointsthat project
insideall thesilhouettesin all possibleimages.Usingthisdefinition,givenafinite collec-
tion of images,any given world point will belong to thevisualhull only if its projection
ontoall theimageslies insidethesilhouette.

Justastheconvex hull canberepresentedasa collectionof linesin thegivenimages,
thevisualhull canberepresentedby line segmentswhereeachsegmentis locally tangent
to the silhouette(seefigure 3). This lets us treat the visual hull asan extension of the
previous case,or vice versa,treatsthe convex hull asa specialcaseof the visual hull.
Theusefulnessof this representationis twofold. First,we reducetheamount of datathat
needstobestoredastherearefewerpixelsontheboundarythaninsidethesilhouette.And
second,we canuselesssegmentsfor thedescription with hardly degradingtheshape.
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While a line segmentdoesnot inducea volumein spacethatwe canlaterintersect,it
doesanswertheonly questionthatweneedin order to doview synthesis.Let 5 besome
ray in theworld. If theprojectionof 5 on theimageintersectsthe line segment6�7 (see
figure4) thentheray 5 might intersectthevisualhull at thepoint thatis theintersection
of 5 and the planedefinedby the line containing the segment. The true intersection
pointhasto lie insidethesilhouetteandsoinformationfrom otherimages canrefinethis
computation.

Theuseof line segments insteadof (infinite) linesmakesthevisualhull morecom-
plex andmorecomputationallyintensive. Thegainis thatit providesabetter(i.e. tighter)
representationof theshape.In section4 we show that this addedcomplexity is not nec-
essarilyneededfor view synthesisof simpleobjects.

Thevisualhull representationof theobjectis thenthecollectionof line segments in
eachimage %98:6 ' �;7 '=< ),+'.-0/ accompaniedby their correspondingcameramatrices.

3 Algorithm Descriptions

In thissectionwedescribe thealgorithmsweuseto generatenew viewsusingtheconvex
andthevisualhulls. Thespecialform of theconvex hull leadsto asimpleralgorithm that
is substantiallydifferent.

Theconceptual algorithm in bothcasesis similar: we lift araythrougheachpixel and
thenfind theintersection of theraywith theshape.Theworld pointthatis theintersection
is projectedontoasourceimageandthusinducesawarpingfunctionwhichgeneratesthe
target image.Thedifferencebetweenthetwo methodsis theactualintersectionwith the
shape.Also, specialgeometrical propertiesareusedin eachcaseto bypasssomeof the
work.
Therearethreeimportant observationshere:

1. Both the convex andvisualhulls resultin polyhedralmodels andso themapping
betweensourceimageandthe target imageis done via 2D planar homographies.
Thetaskof thealgorithmsis to find thecorrecthomography for eachpixel.

2. Theabove definitiondoesnot require a Euclideanframeof reference,astheonly
relationshipis thatof incidence(andnot,say, perpendicularity)

3. As both representationsusetangent planes,a 3D ray intersectsa facetonly if its
projection intersectsthe line that definedthe facet. This enablesus to do all the
computationsin (2D) imagespace.

Thecollectionof raysgiven by thenew view needsto beintersectedwith therepresenta-
tion of theobject. We describethetwo differentmethodsbelow. Theintersectionof the
rayswith theobject givesthe(projective)depthwhichcanbeusedfor view synthesis.

3.1 Rendering via Convex Hull

Let � bethenew view. Let > "�@?9A�B3B 8C� < bethecenterof projection of thenew camera.
Raysthatemanatefrom � might intersecttheconvex hull at two points,front andback.
Regardlessof thedistanceto thesepoints, we caneliminateoneof themas > hasto be
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Source Image

Target Image
H

(a) Theverticesof theconvex hull in-
ducea subdivision of theimage.Each
polygon is mappedvia a planar ho-
mographyD to theoriginal image.

O

l
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(b) An imageline E definesthe world
plane F throughtheorigin of thecam-
era. F is tangent to the object if E is
tangent to the silhouette. The crucial
observation hereis thata3D ray G in-
tersects F only if its projection inter-
sects E . This lets us use F implicitly.

outsideof the half-spacedefinedby the planethat it is viewing. This can be seenas
projectivebackfaceculling.

After thissimplestepweareleft with acollectionof planesthatareall facingtheright
way. Theintersectionpoint of eachray 5 with theconvex hull hasto bein theinsideof
theremaining half-spaces.

Thesimplestway of implementingit is to intersect5 with eachof theplanes� and
maintainthe only onethat satisfiesall of the constraints. This would require HI8KJMLON <
whereJ is thenumber of pixelsin thenew imageand N is thenumber of planes.

A betterway to do this is to compute thedualconvex hull of theplanesandusethe
resultingedgesto divide the imageinto at most J convex polygonsasshown in figure
4(a),eachcorrespondsto a facetof theconvex hull. Computation of thedualconvex hull
is HI8PN � B.QSR N < andthemapping of eachpolygon canbedone via thegraphics hardware
and thus is independentof the number of pixels. The number of planes( N ) is several
orders of magnitudesmallerthanthennumberof pixels( J ).

3.2 Rendering via the Visual Hull

Let 5 bearayemanatingfrom thenew view � . In eachreferenceimage,theprojectionT of 5 mayintersectsomeof thesegments. Eachintersectiondefinesasemi-finiteinterval
along T andtheseintervalsdefinethepossibleregionsin the3D world that 5 canintersect
theobject.Theintersectionof 5 with thevisualhull is thecommon regions in all given
viewsandsoweneedto combine (intersect)theseregions.

Let UOV and UWV V betwo views. Let XYV/ �ZX[V\ �^]3].] X[V_ betheresultingcollectionof 2D seg-
mentsdefinedin U`V . Eachsegment X0V' ��� acbedgf;bZ'*�;a*b QSh ' � is definedby the(possiblyinfi-
nite) beginning andendingboundaries,according to someparameterization,of the lineT V . Someotherview UiV V , with segments XYV V/ �;X[V V\ ]3].] X[V Vj , hasa differentparameterizationof
theray T V V andthusin orderto compute theintersectionof thetwo rangesweneedto map
oneontotheother. As both T V andT V V areprojectionof 5 , they arerelatedthroughasingle
1D projective transformationthatcanbeeasilyrecoveredaspartof theinitializationstep.
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Figure4: Eachline segment in eachimagedefinesa boundaryfor thevisualhull.

In our implementationweparameterizethepointalongtherayasa linearcombinationof
theepipole in theimageandthepointat infinity alongtheray. Oncerecoveredit mapsthe
secondview ontothefirst andall that is left is to intersectthe two ranges,which canbe
donein time that is linearin thenumberof segments.Finally, thefirst intersectionpoint
is thepoint whoseprojection is theclosestto theepipolein thereferenceimage,which is
thefirst boundarypointaftertheintersection.
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Figure5: Computationof thevisualhull. (a) raysarecastfrom somegivenview point.
(b) Another view definesthepossibleintersection rangesof therayswith thevisualhull,
shown asbold line segments. (c) anotherview is added andtheranges areupdated.The
update is donein 2D (seetext).

4 Experiments

Oursettingincludes64cameraslocatedin theKECK laboratory attheuniversity of Mary-
land.They arearrangedon eightcolumns at four cornersandthefour wall centersof the
room, andsynchronizedto captureimagesat video frame rate. We usethe methodde-
scribedabove to calibratethesystem.Thepointmatchesfor thecalibrationarecollected
by waving apoint light sourcein thestudiofor a few minutes.Its locationis extractedau-
tomaticallyandis usedfor projectivecalibration.Thelight is visible in about 40%of the
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Figure6: Comparisonof view synthesiswith convex andvisualhulls. The left column
showsthesourceimageusedfor texturing. Theright column showsthedesiredtarget im-
agefor comparison.Theinnercolumns show thewarpingof thesourceimageto recreate
thetargetimage.In thefirst row thetwo camerasareabove eachother, forming anangle
of about kl	nm . Note theghostarmin thevisualhull image.Thesecondrow corresponds
to a o9plm anglebetweenthecameras.
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(a) (b) (c) (d)

Figure7: Behaviour in caseof segmentation errors. Oneof thesilhouetteswasextracted
incorrectly 7(a). Theconvex hull remainsthesame7(b) but thevisualhull is distorted.
7(d)shows thetarget imagefor comparison.

views in eachframe,andwe automatically choosea subsetof cameras thathave points
in common for the calibration. The computationis propagatedonto the othercameras.
For robustness,we usetheRANSAC algorithm to rejectoutliers. A random sample(of
6 or 12 points) is chosenanda candidate cameramatrix is computedastheleastsquares
solutionof theprojection equation [2]. Thechosensolutionis theonethatminimizedthe
medianof thetotal distancesbetweenthemeasured6 V V andthere-projectedones.We do
not compensatefor radialdistortionalthough thecamerasareknown to have a distortion
of severalpixelsontheboundary. Thecalibration givescameramatricesthathavemedian
reprojectionerrorof up to half apixel while rejectinglarge outliers.

Figure6 comparesthedifferencebetweenwarpingwith theconvex hull andthevisual
hull. Weuseonesourceimageandwarpit to anexistingtargetimage,whichwasnotused
in therendering,asa measurementof thequality of thesynthesis.We choseviews that
are far apart. In the first row the camerasarealigned vertically and their optical axes
form anangleof about kS	 m . Both imagessuffer from parallax. Note theghost armthat
appeared in the reconstruction from the visual hull. In the secondrow the camerasare
alignedhorizontally, forminganangleof abouto9p4m .

Although the object is not convex, thereis a little differencein quality of the ren-
derings. Thewarpedimagesarecomposedby thepixels in the target imagethathadan
intersectionwith the hulls. Thedifferencesbetweenthe imagesaredueto thedifferent
planesthatwereusedto definetheshape.In figure6(f) for example, it is evident thatthe
planesform a convex blob andsothefiguretendsto curve forward. In figure6(g)on the
otherhand,furtherplanesareusedandsothewarpingis lessmonotonous.

The convex hull hasan advantageover the visual hull. As automaticextraction of
thesilhouetteis known to beproblematic,it oftenhappensthatoneimagecontains bad
segmentation andpartsof theobjectsareleft out asis shown in figure7. In suchcase,
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thevisualhull will carve thesepiecesaway while theconvex hull might not beaffected.
As bothmethodsdefinetheshapeasan intersection, they arelesssensitive to over seg-
mentation. If thesilhouettein oneimageis too large, it will justnotcontributeto thefinal
shape.

5 Summary and Conclusions

We havepresenteda unifiedframework for usingtheconvex andvisualhull thatrequires
only imagemeasurementsandprojectivecalibration. It is extendibleanarbitrarynumber
of views. Future researchincludesincorporationof moreefficient algorithms to do the
classificationof pixelsto theplanarfacetsthatdefinetheshapeandthefusionof several
imageto producea target imagethatis of higherquality thantheinputones.
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