
University of Southern California

Center for Software Engineering

Technical Report
USC/CSE-99-TR-514

March 10, 1999

Qualifying Report
for partial fulfillment of Computer Science Department

requirements

Integrating Architectural Views in UML

Alexander Egyed

Center for Software Engineering
Henry Salvatori Computer Science Building 328

University of Southern California
Los Angeles, CA 90089-0781, USA

aegyed@sunset.usc.edu

Acknowledgements: This research is sponsored by DARPA through Rome Laboratory under
contract F30602-94-C-0195 and by the affiliates of the USC Center for Software Engineering:
Aerospace Corp., Air Force Cost Analysis Agency, Allied Signal, Bellcore, Boeing, Electronic
Data Systems, E-Systems, GDE Systems, Hughes Aircraft, Interactive Development
Environments, Institute for Defense Analysis, Jet Propulsion Laboratory, Litton Data Systems,
Lockheed Martin, Loral Federal Systems, MCC, Motorola, Network Programs, Northrop
Grumman, Rational Software, Science Applications International, Software Engineering Institute,
Software Productivity Consortium, Sun Microsystems, TI, TRW, USAF, Rome Laboratory, US
Army Research Laboratory, and Xerox.

USC

C S E

Abstract

To support the development of software products we frequently make use of general-purpose

software development models (and tools) such as the Unified Modeling Language (UML). However,

software development in general and software architecting in particular (which is the main focus of our

work) require more than what those general-purpose models can provide. Architecting is about:

1) modeling the real problem adequately

2) solving the model problem and

3) interpreting the model solution in the real world

In doing so, a major emphasis is placed on mismatch identification and reconciliation within and

among architectural views (such as diagrams). We often find that this latter aspect, the analysis and

interpretation of (architectural) descriptions, is under-emphasized in most general-purpose languages. We

architect not only because we want to build (compose) but also because we want to understand. Thus,

architecting has a lot to do with analyzing and verifying the conceptual integrity, consistency, and

completeness of the product model.

The emergence of the Unified Modeling Language (UML), which has become a de-facto standard

for OO software development, is no exception to that. This work describes causes of architectural

mismatches in UML views and shows how integration techniques can be applied to identify and resolve

them in a more automated fashion. In order to do so, this work introduces a view integration framework

and describes its major activities – Mapping, Transformation, and Differentiation. To deal with the

integration complexity and scalability of our approach, the concept of VIR (view independent

representation) is introduced and described.

Table of Contents

1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT 1

1.1 OO AND THE SOFTWARE CRISIS 1

1.2 MODELS AS A MEAN OF ABSTRACTION 2

1.3 MODELS AND VIEWS 3

1.4 THE UNIFIED MODELING LANGUAGE (UML) 5

1.5 FROM INCEPTION TO TRANSITION 8

1.6 SOFTWARE ARCHITECTING 10

2 VIEW INTEGRATION 14

2.1 MISSING INTEGRATION IN MODELS AND VIEWS 14

2.2 WHAT IS INTEGRATION? 15

2.3 THE VIEW INTEGRATION PROBLEM 17

2.3.1 WHY INTEGRATE VIEWS? 17

2.3.2 WHY INTEGRATE ARCHITECTURAL VIEWS? 19

2.3.3 WHY INTEGRATE ARCHITECTURAL VIEWS IN UML? 19

2.4 MOTIVATION 20

3 SCOPE AND LIMITATIONS 23

4 RELATED WORK 25

5 VIEW MISMATCHES 32

5.1 VIEWS 32

5.1.1 DIMENSIONS OF VIEW INTEGRATION 32

5.1.2 TYPES OF VIEWS 35

5.2 EXAMPLES OF MISMATCHES 36

5.2.1 MISMATCH BETWEEN CLASS LAYERS 36

5.2.2 MISMATCH CLASS AND SEQUENCE DIAGRAMS 38

5.2.3 CARDINALITY MISMATCH 38

5.2.4 MISMATCH BETWEEN STATE AND COLLABORATION DIAGRAMS 39

6 VIEW INTEGRATION FRAMEWORK 42

6.1 MODEL-BASED DEVELOPMENT 42

6.2 INTEGRATION ACTIVITIES 45

6.3 MAPPING 47

6.4 TRANSFORMATION 50

6.5 DIFFERENTIATION 52

6.6 IDENTIFIED VIEW MISMATCHES 53

6.7 ASSUMPTIONS 57

7 AUTOMATING THE MISMATCH IDENTIFICATION 58

7.1 PROVIDING TECHNIQUES TO IDENTIFY MISMATCHES 58

7.2 USING ROSE/ARCHITECT TO ADDRESS THE LAYERING MISMATCH 59

7.3 USING SCED TO ADDRESS STATE/SEQUENCE DIAGRAM MISMATCH 61

7.4 TRACE OBSERVATION 63

7.5 APPLYING INTEGRATION TECHNIQUES TO ACTIVITIES 67

7.6 SHORTFALLS OF THE VI TECHNIQUES 67

7.7 SYSTEM MODEL (BASE MODEL; REPOSITORY) 68

7.7.1 MISSING INFORMATION IN UML MODELS 69

7.7.2 AVOIDING INFORMATION DUPLICATION 70

7.7.3 EXAMPLE OF MISMATCH IDENTIFICATION IN THE BASE MODEL 73

7.7.4 BASE MODEL AS A VIEW INDEPENDENT REPRESENTATION 73

7.7.5 REAL VIEWS AND DERIVED VIEWS 75

7.7.6 OTHER ISSUES 75

7.8 EXTENDING THE NOTATION AND SEMANTICS 76

7.8.1 DESCRIBING RULES AND CONSTRAINTS 76

8 MISMATCH RESOLUTION 78

10 INTEGRATING THIS WORK 80

10.1 MBASE 80

10.2 ARCHITECTURAL MISMATCHES DURING SYSTEM COMPOSITION 81

10.3 ADL VIEWS AS MINI-SPIRALS 83

11 FUTURE WORK 85

12 CONCLUSION 86

13 REFERENCES 88

14 APPENDIX 92

14.1 COMPLETE SET OF RULES IN ROSE/ARCHITECT 92

1

1 Object-Oriented Software Development

The art of being wise is the art of knowing what to overlook – William James

Object-oriented (OO) software development has come a long way since the introduction of the

first OO programming language Simula in 1967. Simula was first to present the idea that data and functions

should be kept together. Not much later Smalltalk, the first pure object-oriented language, emerged. The

potential of the object-oriented programming paradigm was, however, not fully realized until the late

1980s. Since then we have seen the object-orientation of many traditional programming languages like C,

Pascal, and even ADA. Today, the object-oriented programming paradigm dominates the market and it is

“in” to talk and to think object-oriented.

1.1 OO and the Software Crisis

The reasons for the OO hype are rooted deep in software engineering and its problems. [Siegfried

1996] writes that the “object-oriented paradigm gives us tools for fighting the software crisis: Object-

oriented techniques make it possible for us to handle large systems, change them, reuse parts of old systems

in new systems, ease the communication between customer and developer, and much more.”

Even though OO development has indeed brought many advantages, the hopes of having found

the solution to the software crisis have not become true. Even smaller aspects, such as increasing

reuseability (which was and probably still is one of the strongest drivers of the OO movement), have not

paid off as it was anticipated because “when we are fighting the software crisis we are fighting human

nature and human inability to handle complexity.” [Siegfried 1996]

However, this does not mean that object-oriented software development has failed in its mission.

Quite to the contrary, there have been great successes. For instance, combining data and functions into

objects led to cleaner interfaces, higher internal cohesion, and less coupling between the objects (all

desirable attributes). Furthermore, the object paradigm reflects the real world more closely. In doing so,

software objects do not only reflect the properties of real objects but also their behavior. Nevertheless,

using an object-oriented programming language does not solve all our problems.

2

Object technology is not the famous silver bullet Fred Brooks refers to when he talks about the

software werewolf [Brooks, 1995]. Brooks lists as the major reasons for the existence of the software crises

its four inherent properties: complexity, conformity, changeability, and invisibility. None of these

properties are eliminated though the use of the object-oriented paradigm, albeit some are eased by it.

[Carmichael 1994]’s statement, that with little doubt “object technology is the latest in a long line of

pretenders to the role of ‘Silver Bullet,’” certainly gives us some hope that this technology may yet be

indeed useful in fighting the software crisis.

1.2 Models as a Mean of Abstraction

What makes software so complex and so difficult to grasp is the fact that the number of

information loaded onto a single person is vastly exceeding the capabilities of the human mind. We are not

able to handle thousands of pieces of information at any given time. Instead it seems that the human short-

term memory is quite limited in that respect. The 7±2 rule is a well-known example. This rule states that

the human mind can usually only handle 7 distinct things (plus or minus 2) at the same time.

Given that restriction, one may ask how we could have possibly evolved humanity in general (and

engineering in particular) as far as we did? Obviously, even the simplest piece of technology consists of

more (much more) than 9 pieces! The answer to that is probably the concept of modeling. If we encounter

too much information, we consciously and/or unconsciously group this information in some way which

makes it easier for us to recall it later on.

Thus, the field of Software Engineering uses this human capability of abstraction to create

“theories, methods, and tools which are needed to develop […] software.” [Sommerville 1996] Those

theories, methods, and tools in turn use further abstractions until we have pieces which are small enough

for us to comprehend without any further abstraction. [Siegfried 1996] describes this need for abstraction

clearly when he says that “it is not the number of details, as such, that contributes to complexity, but the

number of details of which we have to be aware at the same time.”

3

Being able to abstract information does, however, not mean that we are able to solve a complex

problem. To do that, we use modeling techniques not only to abstract but also to solve problems in the

abstraction. Figure 1 shows this process in the field of mathematical systems theory. There a problem

solver uses some mathematical formula (function f(x)) to translate a problem from the real world to the

model. Then, the problem in model form, if it is simple enough, is solved to yield a model solution.

Applying the translation backward will give us a real solution out of the model solution. If the model

problem would have been to difficult to solve, we could have applied the same technique recursively again

(the previous model problem now being the real problem). As long as we end up with a new model

problem which is easier to solve than the real problem we will eventually find a model problem which is

simple enough for us to solve. Figure 1 shows that in Mathematics finding a solution to the real problem is

reduced to finding a solution for the model problem.

1.3 Models and Views

In software development we make use of models in a similar fashion. The introduction of the

object-oriented development paradigm did neither stop their use nor their extensions. Quite the contrary,

new models were created which could be used to represent new aspects which were unique to OO. Like in

other (software) engineering domains, the models can be very distinct in their characteristics. Many models

are (at least partially) graphical in nature, utilizing another advantage of the brain, that of being very

efficient in handling pictures (a picture is worth more than a thousand words). Yet, other models are more

textual, spanning the use of plain English to some type of formal or semi-formal language.

f(x) f-1(x)

Model Problem Model Solution

Real Problem Real Solution

Figure 1: Mathematical Systems Theory

4

Most of those modeling techniques were found to be of great value for some aspect of software

development, and, thus, based on them, a large number of development techniques emerged. It was only

natural that people started to combine those techniques into development methodologies, which worked

well together, and which seemed to cover the most important and interesting aspects of the development

process. Over time, the community was able to standardize some of the development models, providing

more general models, which in turn were applicable to a larger domain of software-intensive systems. The

Unified Modeling Language (UML) [Booch-Jacobson-Rumbaugh 1998] is the result of the endeavor to

unify object-oriented analysis and design techniques and their associated diagrams into a common model.

The principles, which guided the mathematical model in Figure 1, are, however, still visible in software

engineering models (see Figure 2).

Figure 2 shows the task of going from a real software problem (via some high-level, logical model

of the problem) to a software solution (which in turn is described in some formal way, e.g. programming

language). As mentioned before, that task of solving the real problem directly is often too difficult to do

without any models and thus, Figure 2 shows the usage of some diagrams (models), such as the Class

Diagram, Sequence Diagram and the State Diagram to bridge the gap. The real picture is of course more

complex since it usually involves multiple levels of abstractions. Nevertheless, the basic idea is still the

same.

With that we are coming to the term View. So far we have used the word model in many ways. We

said that a diagram is a model, a mathematical representation is a model, we had a problem and a solution

model, and so forth. In this work we will not use the term Model this general but instead we will refer to a

physical
View

Real Problem Real Solution

ClassD

SequenceD
StateD

logical
View

Figure 2: Software Engineering Theory

5

model as the union of all its representations – or as a union of all it’s views. The IEEE Draft Standard 1471

refers to a view as something which “addresses one or more concerns of a system stakeholder.” By

stakeholder we mean an individual or a group which shares concerns or interests in the system (e.g.

developers, users, customers, etc.). Applied to our context, a View is a piece of the Model which is still

small enough for us to comprehend and which also contains relevant information about a particular

concern. As such, the diagrams depicted in Figure 2 really show views of the problem/solution model.

Given this, it would be ideal for us to only use views which can be used for all/most development

concerns. The only drawback is that we do not have many of those views we could apply throughout the

development process. One reason is the audience for which those views are intended. If the audience is a

customer or user then the emphasis is to have something which is nice and simple to understand, and which

models the ‘what’ of a system. This does not mean that the developers and other stakeholders involved in

the development process would like to use views which are hard to understand, however, those people need

to be able to specify in a higher level of precision using less ambiguity, which usually makes those

descriptions harder to understand in order to describe the ‘how.’

In an extreme case, we could say that the user and customer would like to use a natural language

(e.g. English) to define a problem but the developer would have to use a structured and formal language to

create a solution (e.g. programming language). The one being highly understandable but very ambiguous,

the other being much less understandable but very precise. A partial solution to this problem is the use of

some sort of semi-formal language which is still easy to understand but not very ambiguous. This option is

the most useful approach currently available, but it has shortfalls both in general understandability and

precision. Finding a language which is both easy enough for anybody to understand and yet highly precise

has not been achieved. This brings us back to our need of having multiple views for different stakeholders.

1.4 The Unified Modeling Language (UML)

In the remainder of this work we will primarily use the Unified Modeling Language (UML) as the

foundation of our development model. In this section we will briefly describe UML, which is currently the

leading object-oriented analysis and design model. UML’s views are for the most part graphical diagrams.

6

However, it must be understood that UML is only a part of our development model (as the next chapter

will explain) since it is missing important concepts.

UML [Booch-Jacobson-Rumbaugh 1998] is the result of a collaboration of numerous companies

and OO modeling experts, led by Rational Software Corporation, and it borrows heavily from Booch

[Booch 1994], OMT [Rumbaugh et al. 1991], and other OO models [Coad-Yourdon 1991a][Coad-Yourdon

1991b][Jacobson 1992]. The lead designers of UML were Booch, Jacobson and Rumbaugh.

“UML is a language for specifying, visualizing, constructing, and documenting the artifacts of

software systems, as well as for business modeling and other non-software systems” [Booch-Rumbaugh-

Jacobson 1997]. These different but overlapping uses of the model (or language) can only be achieved by

supporting a variety of views. Some of these views (representations) can be seen in Figure 3. This figure

shows four of the most popular graphical design techniques which are currently supported by UML; the

collaboration diagram, class diagram, use-case diagram, and state diagram.

These views and others are briefly explained in the following. A more detailed description of some

of these views is given later. Please refer to [Booch-Rumbaugh-Jacobson 1997] for a detailed description of

UML (Version 1.2).

• Use Case (e.g. Use Case Diagrams): Depicts the interaction between the user and the system

or between one system and another. In doing so, use cases provide a high-level view of the

usage of a system which frequently shows the interaction of multiple functions of the system.

E.g. the task of editing a document involves the functions open document, edit document, and

save document.

• Interaction (e.g. Sequence and Collaboration Diagrams): Sometimes also referred to as Mini-

Uses. Interaction diagrams show concrete examples (e.g. test case) of how components

communicate. They can often be seen as an actual test cases which involve the use of a single

function (see use case). A function can refer to the GUI (e.g. open file) or to subcomponents

of the system.

• Objects and Classes (e.g. Class Diagrams, CRC Cards): Classes are the most central view in

UML (and all other OO models). They depict the relationships between classes and objects

7

which are the smallest stand-alone components in OO. Relationships can depict instances,

part-of relationships, dependencies, and others.

• Packages (e.g. Package Diagram): Packages are used to group classes into layers and

partitions. As such they show the functional decomposition of a system.

• State Transition (e.g. State and Activity Diagrams): This well-known technique is used in

UML to describe the states a class can go through. In UML, state diagrams are restricted to a

single classes only. Activity Diagrams are a generalization of state diagrams in that they can

also be used to depict events or other ‘transitional’ elements.

• Deployment (e.g. Deployment Diagrams): Shows the relationship of the components of the

system during deployment. As such it presents a physical view of the system. It is, therefore,

frequently used to depict the component dependency of the actual implementation.

UML does, however, not cover the entire sot of useful stakeholder views. In addition to the views

described above, the following are often considered to be very important extensions:

State Transition Diagram

Class Diagram

A B

1:

2:

3:

Collaboration Diagram

Use Case Diagram

Figure 3: Some of Diagrammatic Views support by UML

8

• Information Flow (e.g. Data Flow Diagrams): Shows the functional flow of information.

This view is particularly useful to users and customers since the human mind tends to think in

terms of flow of information (documents, etc.). However, the decomposition yielded through

this type of view is not well matched to object-oriented design.

• Interface/Dialog (e.g. Interface Flow Diagrams): Describes the usage of the user interface of

the system which again does not reflect any OO structure. Instead, it reflects the use cases in

describing which functionality needs to be available where in the user interface (GUI). The

Interface/Dialog Diagram reflects what the user sees of the system.

An object constraint language (OCL) [Booch-Rumbaugh-Jacobson 1997] supports the UML

model and provides some limited integration within and between those views. OCL is a formal language

for expressing constraints on model elements in UML. Since users can extend UML (e.g. through

stereotypes), OCL can also help in integrating new techniques into UML. For instance, some work was

done in integrating Architecture Description Languages, like C2 and Wright into UML [Medidovic 1998].

We will make use of OCL in further integrating architectural views in UML.

1.5 From Inception to Transition

Naturally, a software development model should contain enough information so that it may be

useful throughout the entire development life-cycle. Thus, the development model should have views

giving information about the requirements, the organization, the people, the technology, the history of

changes, the structure of the product, its transition, and so forth.

Seeing the model solely as a collection of views is however not right either. A development model

should be more than that. For instance, it should give information on how to use the model and its views.

As such, it needs to answer questions like ‘what has to be done first’ and ‘who needs to do what.’

Traditionally, models which give guidelines are commonly referred to as process models or life-cycle

models and the probably best-known but also most controversial process model is the Waterfall Model

[Royce 1970]. It defines the development process as a rather sequential process (feedback loops are

allowed) with an upfront planning stage, followed by high level design and implementation. Even though it

9

is widely acknowledged that a purely sequential process is generally infeasible to follow, the stages it

defines are still visible in many newer process models.

In the literature we often read that the Waterfall model is dead and clearly no other model has as

of this date gained a similar popularity. Especially the object-oriented community seems to hold the belief

that OO development is different and that regular process models do not seem to apply here. Even though

the latter may be true, this does still not mean that process models are obsolete. The wisdom which was

gathered and incorporated into the Waterfall model (or any other process model for that matter) was useful

not because we used those process models but because we needed assistance with the intrinsic properties of

the software “werewolf”– complexity, conformity, changeability, and invisibility. As it was mentioned

above, the object-oriented paradigm may ease some of those problems but the fact remains that we are still

dealing with the same problems we have dealt with 30 years ago – even with OO.

We therefore can only conclude that the myth that we do not need a life-cycle (process) model

because we are using OO design and/or programming languages [Siegfried, 1996] is exactly that – a myth.

Siegfried states this very nicely when he says that “using object-oriented methods does not mean that we

can ignore what we have learned since the 1950s.” Most of the lessons, best practices, guidelines, etc.

which we have accumulated in the last 30 years are still as valuable and useful as they were before. It is just

the way we have to use them which changed with the OO paradigm. Supporting a useful process model for

OO development is therefore an essential step in integrating our OO views and there are a number of very

good approaches. For instance, there is the WinWin Spiral Model [Boehm 1996] and the Rational Unified

Process [Kruchten 1999]. Figure 4 shows an overview of the Rational Unified Process as it has integrated

with the LCO, LCA, and IOC Anchor Points of the WinWin Spiral Model (defined later). It shows the

major UML stages of an OO development process called Inception, Elaboration, Construction, and

Transition. Each stage may use one or more iterations (e.g. spiral cycle) to complete it and each milestone

must deal to some degree with the process components listed on the left. For instance, initially, we focus

most on requirements capture and analysis whereas later we concentrate more strongly on implementation

and test. However, all of the activities proceed concurrently, as it can be seen in the figure. Even during

construction new requirements may be identified, thus, the iterative nature of the life-cycle model. It is out

10

of the scope of this work to go deeper into this subject. For more an overview on process models also refer

to [Chroust 1992].

1.6 Software Architecting

It is out of the scope of this work to incorporate all forms of development views. As mentioned

above we will restrict ourselves mostly to UML views (which are explained in more detail later) and even

there we will emphasize the high-level design and architectural views only. This section will therefore

describe what we mean by the Architecture of a system.

To define what software architecture is, is already a problem in itself. Not many people can agree

on a single definition. Thus, let me start by describing the common usage of the term which is based on the

analogy to building architectures (an early definition is given by Wolf-Perry [1992]. The analogy between

buildings and software may not be striking on first glance but the following may make it clearer.

Both buildings and software have an implementation representation; the actual building in bricks,

stones, etc. and the implementation of the software product in a programming language. Both building and

software architects use logical descriptions (blueprints) to describe the implementation. The building

architect does so by describing the building’s essential features without committing too much to specific

Iterations

preliminary
iteration(s)

iter.
#1

iter.
#2

iter.
#n

iter.
#n+1

iter.
#n+2

iter.
#m

Iter.
#m+1

Supporting

Requirements Capture

Analysis & Design

Implementation
Test

Management
Environment
Deployment

Process Components

Organization
Along
Content

Activity levels vs. time

LCA IOCLCO

Elaboration Construction TransitionInceptionStages

Figure 4: Rational Unified Process with the WinWin Spiral Model’s Anchor Points

11

construction details such as what kind of building materials to use. Similarly we would like to architect

software without overcommitting to implementation details (e.g. what programming language to use). The

building as such may stand for many years but may undergo some changes – superficial ones or more

profound structural ones. In general, software has to undergo more changes throughout its life time – some

more to the eye (GUI) others more profound. Both buildings and software have in common that some

design decisions (which must be done early on) may have considerable impact on other decisions later on.

For instance, a wall that needs to support a ceiling cannot easily be moved or removed (if at all). Similarly,

some design decisions in software (e.g. commitments to COTS products) may impose similar constraints.

Furthermore, building architects are able to reuse some of their architectural information. For

instance, if a settlement with a number of similar (not necessarily identical) houses is built, the architect

may still be able to use most parts of the blueprint of a house for the others. In times where software

development concepts such as product lines are gaining in popularity, we clearly would also like to have

something equivalent to that for software architecting. And finally, a building architect is able to describe a

building in sufficient detail so that construction workers can build it without too much interaction with the

architect. Thus, the architectural description of the building is complete enough to minimize additional

mouth-to-mouth interaction between designers and builders – attributes we also would like to see in

software architecture descriptions.

Clearly, software architecture and building architecture have many things in common, at least in

principle. In practice, software architecture descriptions do not come anywhere close to the preciseness and

general understandability of building architecture descriptions. However, in the long run we hope that we

may yet come closer to that goal.

Recently, there has been some attempt in standardizing what architecting means. The IEEE Draft

Standard 1471 is one of the latest. Let us provide their definition for architecture which illustrates some of

the challenges in defining the term.

Every system has an architecture, defined as follows:
An architecture is the highest-level conception of a system in its environment where: the
‘highest-level’ abstracts away from details of design, implementation and operation of
the system to focus on the system’s ‘unifying or coherent form’; ‘conception’ emphasizes
its nature as a human abstraction, not to be confused with its concrete representation in a
document, product or other artifact; and ‘in its environment’ acknowledges that since

12

systems inhabit their environment, a system’s architecture reflects that environment.
[IEEE 1998]

This definition’s primary problem is vagueness: it could apply equally well to “architecture,”

“requirements,” or “operational concept.” Another problem we see with this definition is that it seems to

emphasize too little onto the analysis and interpretation of architectural descriptions. We architect not only

because we want to build but also because we want to understand. Thus, architecting has a lot to do with

analyzing and verifying the conceptual integrity, consistency, and completeness of a design. This does not

mean that above description excludes the analysis of architectures. Quite contrary. Everybody

acknowledges its existence as part of architecting. However, it seems that builders of architectural

descriptions only think about their analysis as a second thought and then mostly in vague terms. UML is

certainly a very good example of that. This deficiency will be investigated shortly.

Architecting in UML may be seen in Figure 5. This figure shows UML views and other views

which often are part of the major development stages (from the developers point of view) – the analysis,

architecture, and design of a software system. The arrows depict the dependencies of the views onto

information in other views. This figure should not be taken too literally since we tried to capture the major

flows of dependencies only. For instance, the picture shows that the classes and objects affect the

implementation (e.g. code in C++) but not vice versa. This is, of course, not always true. There are cases

Prototype and
Simulation

Interface
(Dialog)

Classes and
Objects

Interaction

Deployment

State Transition

Requirements

Physical Data

Implementation

Analysis

Architecting and
High-Level Design

Low-Level Design

Analysis

Architecting and High-Level Design

Low-Level Design

Data Flow
Use Cases and

Figure 5: Architectural Views in UML

13

where the implementation may trigger changes in the architecture (e.g. due to choice of COTS product). As

a general rule, it is good practice to anticipate these dependencies and address them via prototyping and

analysis as emphasized in Figure 4.

Further, the associations of the development artifacts (such as classes, use cases, etc.) to the major

phases of the life cycle can indicate primary associations at best. Again, we tried to capture the major

associations of those development artifacts and the views in which they are frequently used. It is this

ambiguity in how to associate and relate those artifacts which already poses our first problem in OO

development. Traditional life-cycle models such as the Waterfall Model are less useful in OO development

because of the activity and artifact overlaps we discussed in Figure 4. This fact can also be seen in Figure 5

where some development artifacts, such as classes and objects, are used and shared extensively during the

entire development process. This ambiguity, in the definition of development stages and phases, is however

also a good thing since it provides some continuity between the life-cycle stages and, thus, brings the

development stages closer together. The conceptual breaks, which so frequently happen between the

analysis and design stages, are eased.

14

2 View Integration

The beginning is the most important part of the work – Plato

2.1 Missing Integration in Models and Views

In the previous chapter we defined what it means to do OO software development. We talked

about models and views, and used UML as an example. We confirmed the continuous need for a life-cycle

model to guide us through the development process and we talked about architecting as being one of the

most critical development stages from the software developer’s point of view.

With that we basically described everything a well-equipped development team has access to these

days. However, we still have a major problem. When we described the mathematical problem solving

approach (see Figure 1) we concluded that modeling (architecting) replaces the finding of a solution to the

real problem by the finding a solution to the model problem. For that very reason, software development

models were devised which serve as counterparts to the mathematical model. However, are our software

engineering models (like the one we showed in Figure 5) really equivalent to the mathematical model in

solving the problem (see Figure 6 for a comparison)?

What if the (software) model which we created to represent the real world is not adequate? A

solution we might find to that model problem would therefore not be correct. This implies that we are not

only confronted with the challenge of finding a (model) solution to a model problem but also to find a

Use Cases and
Data Flow

Prototype and
Simulation

Interface
(Dialog)

Classes and
Objects

Interaction

Deployment

State Transition

Requirements

Physical Data

Implementation

Analysis

Architecting and
High-Level Design

Low-Level Design

f(x) f-1(x)

Model Problem Model Solution

Real Problem Real Solution

versus

Mathematical Problem Solving

Software Problem Solving

Figure 6: Two Problem Solving Approaches

15

model of the real world which adequately represents it for our needs. This is like solving the right problem

vs. solving the problem right! As such the Mathematical Problem Solving Approach is really doing three

things (corresponding to the three arrows):

• Model the real problem adequately

• Solve the model problem

• Interpret the model solution in the real world

Which part of the software model in Figure 6 is doing the modeling? Which part is doing the

solving? And which part is doing the interpretation of the solution? None? But, what does this tell us about

conventional software development models such as the UML? For instance, what is the best

implementation of a software product if it does not reflect the architecture? What is the best architecture if

it does not satisfy the requirements?

The only conclusion we can draw from that case is that Architecting is more than what

conventional development models provide. Architecting is to model, to solve, and to interpret. And

techniques such as the ones used by UML are just providing assistance. Therefore, this work is about

integrating views so that they provide more than just structural assistance. In particular, we will investigate

the integration of some architectural views in UML and what techniques we can deploy to bridge the gap

between what architectural models are and what they should be.

2.2 What is Integration?

We have used the word Integration or ‘what it means to integrate’ but so far we have not

described it. This section will do that. The term Integration, as such, is part of everybody’s vocabulary.

Therefore, let us check how the Merriam-Webster Dictionary defines that term. There, Integration is

defined as:

1) The act or process or an instance of integrating: as a) incorporation as equals into
society or an organization of individuals of different groups (as races) b) coordination of
mental processes into a normal effective personality or with the individual’s environment
2) The operation of finding a function whose differential is known; the operation of
solving a differential equation

16

This set of definitions for the term Integration is very general. That should, however, not surprise

us since this is how the word Integration is used. In Software Engineering it applies to Technology,

Organization, and People; it affects management, products, humans, politics, standards, models,

enterprises, and much more. Sage and Lynch’s work about Systems Integration and Architecting [Sage-

Lynch 1998] provide a very comprehensive overview of what integration in our context means. They found

that “Systems Integration is an activity omnipresent in almost all of systems engineering and management.”

They further found that “the term lacks precise definition and is used in different ways and for different

purposes in the engineering of systems.”

In software engineering and software architecting, the word Integration is used frequently. It often

refers to the process of assembling components (or subsystems) into a system. As such, the term integration

stands for an activity that starts later on in the life-cycle once some components of the software system are

developed. Another case, where the term Integration is used, refers to the unification of standards,

processes, and models. For instance, the Integrated Capability Maturity Model (iCMM) of the FAA (which

is a union of various CMM models (such as the SW-CMM [Paulk 1995], SE-CMM [Kuhn 1996], SA-

CMM [Ferguson et al., 1996] and so forth) is one such attempt to combine standards to a more general one.

The Unified Modeling Language (UML) is another such case, where various object-oriented development

models (Booch, OMT, and pieces of many others) were combined into a integrated single OO development

model.

In this work, the term Integration is used, in yet another way, to determine the semantic integrity

of development models (or views, diagrams, etc.) in order to evaluate or improve quality aspects of the

development model. Desirable qualities we would like to see in a development model (or its instances such

as the product or domain models) are consistency, completeness, correctness, and so forth. So we may ask

ourselves:

• What does it mean, for one view to be consistent with another view?

• When do I know, whether one view presents a complete picture of the entire system?

• How do I know that what I did is correct and faithfully represents what my customer wanted me to do?

17

On a close look, this form of integration is, however, not very different from the meaning

described above. For instance, when we perform a component integration where we evaluate the integrity

of components while assembling them to a bigger component (or even system) this is quite analogous to

performing a view integration where we evaluate the integrity of views while assembling them to a bigger

model. The one describes the product integration, the other the view integration. Both are facets of

Integration (see also [Grady 1994] for an overview of these facets).

2.3 The View Integration Problem

2.3.1 Why Integrate Views?

Above we briefly described an object-oriented development model (UML) which satisfies the

need of our stakeholders (such as users, designer, programmers, and maintainers) for views which can be

used by them to describe and communicate. We further briefly described a process which can be used to

guide them and advise them on how to use those views in creating a useful and feasible software product.

And we also described the deficiency of that approach when it comes to solving the problem (to model, to

solve, and to interpret).

This deficiency in views would not exist if we could have a few perfect views that could be used

by all stakeholders (as described above) and which were precise enough but still easy enough to use. These

views, unfortunately, do not exist. Instead, we are confronted with a number of loosely coupled, sometimes

quite independent views. This is not really what we want. [Nuseibeh 1996] wrote that “multiple views often

lead to inconsistencies between these views – particularly if these views represent, say, different

stakeholder perspectives or alternative design solutions.”

Thus, if we have to deal with multiple views we would like to have at least tightly coupled ones.

Since a view represents only one aspect of the system to be modeled, they are meant to be together – only

together can they fully describe the system. However, we also need those views to be different (and

independent) enough to provide useful meaning to their respective stakeholders. Therefore, what we need

18

are views which are independent and can stand on their own, but with their contents being fully integrated

with the contents of the other views to ensure their conceptual integrity. Thus, we need View Integration.

We also need integration, because the views often use different underlying paradigms and, thus,

the results of modeling a system in one view may be different than modeling the same system in another

view. For instance, a non object-oriented analysis and design stage would yield functional model elements

as its major components (which are more suitable to be implemented in a functional programming

language). Instead, using object-oriented design techniques (or views) would already structure the system

in a more object-centered fashion and thus, its implementation will be more straightforward in an OO

language.

In Figure 5 we showed both object oriented (classes, interaction) and functional views (data flow,

state transistion) which are commonly used together in OO development. So if two different people would

start creating a system, one using OO techniques and the other using functional ones, we would most likely

get two different solution approaches for the same system. Even if each view were correctly solving the

problem, they would still not make much sense together. This is because the one type of technique would

yield a system which is structured by its functions whereas the other one would be structured by objects

which have behavior (functions). Further, if modeling is done separately (one view at a time) we may get

inconsistencies between them. The notation described above does not describe the semantics of the model

and how it is (or is not) supposed to be used. Life-cycle process descriptions may help in that but they are

usually not detailed enough and for the most part they are not supported by tool.

Thus, what we need is a development model which is not only defined syntactically but also

semantically. Such a model would also need tool support which would not only enable the architects to

create a model instance for a system which is syntactically correct but the tool should also be able to verify

the semantic integrity of the model instance (at least to some degree).

The integration of architectural views (as the title says) is about adding semantics to our

architectural views so that the integrity of the whole is improved.

19

2.3.2 Why Integrate Architectural Views?

The reason why we chose the integration of architectures was because it is the most important part

of the design. This is best explained by [Siegfried 1996] who wrote that “there is no replacement for

making a sound systems architecture early in a project.” Architecting is the start of a development process

from a pure engineering point of view. Architecting is also early in the development life-cycle which means

that problems and faults are still relatively easy (and inexpensive) to fix. Should architectural errors be

carried into the implementation phase or even further, the cost of fixing them are some orders of magnitude

higher [Boehm 1981]. Further, architectural descriptions are already low-level enough to be less

ambiguous. Thus, there is more precise information available from which we can draw from. Integrating

requirements (which is equally important) is much harder to do since we would require techniques such as

natural language understanding which do not exist in a level of sophistication suitable for our needs.

2.3.3 Why Integrate Architectural Views in UML?

The beginning of this work already indicated why we chose object-oriented technology as another

cornerstone of this work. OO is more and more dominating the market and UML has evolved into the most

significant OO analysis and design methodology. The Object Management Group (OMG), furthermore, has

standardized UML for the Object Management Architecture (OMA). “The adoption of UML provides

system architects working on Object Analysis and Design with one consistent language for specifying,

visualizing, constructing and documenting the artifacts of software systems, as well as for business

modeling.” [OMG 1997] We also chose UML because others have already made some progress in

integrating UML views. Thus, summarizing previous sections we can say that views alone are not solving

the consistent architecture representation problem because they:

• are standalone/independent

• involve different types of modeling elements

• are for different audiences/stakeholders

• are often used concurrently

20

This means that same or similar information is entered multiple times and that related information

must be kept consistent manually. The View Integration Problem exists because it is often not apparent

what information is duplicated or inconsistent. Therefore, finding means of ensuring the conceptual

integrity are based on the ability of identifying duplicated model elements and integrating their properties.

2.4 Motivation

The absence of view integration is not a new discovery. Quite the contrary. As mentioned before,

many model descriptions talk about the need of keeping the model(s) consistent. Sometimes, process

models provide additional guidelines on what activities one can do to improve the conceptual integrity of

architectures. For instance, a case study in using the WinWin Spiral Model [Boehm et al 1998] suggests

using Architecture Review Boards [AT&T 1993] after the LCO (life-cycle objectives) and LCA (life-cycle

architecture) stages to verify and validate the integrity of the analysis and design. A similar viewpoint can

be seen in countless other research work:

• [Sage-Lynch 1998] describe various aspects of integration (enterprise wide). They frequently

stress “the important role that architecture plays in system integration.” They present the need

for three major views: enterprise view, systems engineering and management view, and

technology implementation view – and they stress to ensure consistency among these views.

• [Rechtin 1991] emphasizes strongly the validity and consistency of requirements as well as

the interface definitions. He further suggests the need for problem detection and diagnosis.

• [Gacek et al 1995] present the results of a survey of people who are somehow involved in

software development processes (developers, customers, maintainers, aquisitioners, etc.).

There they found that, with respect to architects, the three major concerns were “1)

requirements traceability; 2) support of tradeoff analyses; and 3) completeness, consistency of

architecture.”

• [IEEE 1998] speaks of Architecture Evaluation. “The purpose of evaluation is to determine

the quality of an architectural description, and through it assess the quality of the related

architecture.” They further state the need of evaluation criteria against which the architecture

can be verified.

21

• [Kuhn et al 1996][Humphrey 1995][Paulk et al 1995] who defined the Software and Systems

CMM (Capability Maturity Model) stress the need for integration and quality control as part

of the software life-cycle. Especially the SE-SMM (Systems CMM) identified Integration,

Validation, and Architectural Evolution as key process areas.

• [Nuseibeh 1995] wrote that “inconsistency is an inevitable part of a complex, incremental

software development process” and that “the incremental development of software systems

involves the detection and handling of inconsistencies.”

• [Wang-Cheng 1998] propose a more rigorous object-oriented design process to deal with the

shortcomings of the OMT model. We share their view when they say that “the lack of a well-

defined semantics for the individual [OMT] models and their integration hinders the overall

development process.”

• [Perry-Wolf 1992] realized the importance of software architectures early on and they state as

one of the four major benefits of architectures that they are “the basis for dependency and

consistency analysis.”

• [Shaw-Garlan 1996] describe architecture very provocatively as being “a substantial folklore

of system design, with little consistency or precision.” They further state that “software

architecture found its roots in diagrams and informal prose. Unfortunately, diagrams and

descriptions are highly ambiguous.”

These references, and many more, talk about the need for (or lack of) integration. Nevertheless,

they usually do not describe the involved activities in detail (the works of [Nuseibeh 1995] and [Wang-

Cheng 1998] are exceptions in that they provide some mechanism which we will discuss in Related Work).

Sometimes this is done on purpose, such as in the CMM since they do not wish to favor a particular

integration approach. However, in most cases it seems that the architects and designers have only few

powerful tools when it comes to ensuring the integrity of their work.

On the other hand, those techniques which are sometime suggested are often aimed to make

people talk to each other. For instance, the Architecture Review Board [AT&T] or the Inspection Process

[NASA 1993] are primarily tailored at getting the most capable people together so that they may share their

22

information. These techniques may follow a defined process (e.g. checklists) and may yield very effective

results but the actual activities of identifying and correcting defects are still done manually without much

automated assistance.

This deficiency, the lack of automated assistance in identifying and resolving architectural

mismatches, is the motivation for this work.

23

3 Scope and Limitations

If a man will begin with certainties, he shall end in doubts;
but if he be content to begin with doubts he shall end in certainties – Francis Bacon

The UML modeling technique has become a de facto industrial standard for object oriented

software development. This was described previously as being an important reason why we chose it for this

work. Nevertheless, UML is not quite complete. Its definition is ambiguous in many places and many

interrelationships between views are not defined. Since it is not the scope of this work to formalize UML

we will use other peoples interpretation and formalization whenever necessary and applicable (e.g. [Cheng

et al. 1995] or [Övergaard 1998]).

Further, as mentioned before, we will restrict ourselves to some views. Thus, we will make no

attempt to integrate the entire palette of UML views. Furthermore, we cannot guarantee that our integration

approach will be able to cope with all forms of inputs. It is not our goal to be as complete/consistent as

possible; but as complete/consistent as feasible. [Nuseibeh 1996] shares this view when he talks about

viewpoint integration.

To address the challenge of integrating views, we will introduce a number of integration

techniques. Similarly, these techniques may not work under all circumstances; neither will they cover all

required aspects. This work does not emphasize individual integration techniques even though they are

worthy research topics in themselves but instead it tries to emphasize how those techniques can be used

together to identify potential mismatches and on how to resolve them.

This brings us to the next limitation. The rules and constraints we present in this work for

identifying mismatches are not guaranteed to yield correct results under all circumstances (this restriction is

a natural extension of above restrictions). Thus, mismatches that are identified with our techniques must be

regarded merely as potential mismatches but not as factual ones.

Another restriction of this work is the issue of mismatch resolution. We will primarily investigate

the issue of mismatch identification. We will only secondarily investigate how to automatically resolve

mismatches with minimal or no feedback from the architect.

24

Having defined all the things this thesis will not do, we will now summarize what the scope of this

thesis is. This thesis involves primarily four tasks:

1. Come up with a view integration framework as a foundation to support the definition and

(automatic) identification of (potential) mismatches.

2. Finding techniques for the view integration activities defined in above framework. For this we

will partially rely on existing technology but we will also introduce some new concepts.

3. Combining those techniques to make them work together (this step is primarily necessary

because we use some techniques from other researchers; those techniques need some

adaptation by us to be useful for our purposes).

4. Identify (potential) mismatches based on rules (constraints). Some mismatch resolution

options will be investigated as well.

25

4 Related Work

All intelligent thoughts have already been thought; what is necessary is only to think them again –
Johann Wolfgang von Goethe

In one form or another, the view integration problem has been worked on by numerous

researchers. This section discusses their works and also discusses in what ways their works differ from

ours. It is important to note that their works are not independent or in any way orthogonal to ours. [Sage-

Lynch 1998] wrote that “unfortunately, there appear to be no detailed definitions that distinguish between

various types of integration, and this may appear to make the subject disjoint. [… However] integration is

generally always being performed, but it is not clear as to where it is performed or how to accomplish it

successfully.”

This means that integration is part of every aspect of the development life-cycle and, thus, our

work and the related work presented in this section, fit somehow into the greater scheme of the view

integration problem. Integrating this Work (a chapter later on) will briefly investigate this deeper aspect.

Because of the depth of the integration problem it is far out of the scope of this work to present a complete

survey, however, the following list should give the reader a reasonable detailed overview:

1. Sage and Lynch [Sage-Lynch 1998]: We start this overview with their work because they

seemed to be one of the few sources who have attempted to summarize all key aspects of

integration even across the boundary of software. Their work on Systems Integration and

Architecting covers integration aspects, principles, and practices on the system level going far

down into details of systems and software development. Their recent summary is an excellent

work of 50 pages and we could not possibly provide a better one here. They talk about the

need for integration on the systems engineering level and present the results and findings of

numerous researchers. Systems engineering differs from software engineering in that it tries to

cover all that is offered by the latter but more. It also covers hardware aspects and how

software is integrated with it. With that in mind they address the need of (software)

26

architectural integration, however, the scope of their work did not permit more than an

overview. If the reader of our work would like to know how our architectural integration

approach fits into the ‘bigger picture’ we can only recommend their article.

2. Abd-Allah and Gacek [Abd-Allah 1996][Gacek 1998]: Their works address a very similar

problem to ours – that of how to identify architectural mismatches. However, we take very

different approaches in doing so. Their work investigates mismatches on a rather very high-

level, that of software component composition. So for instance, if a software product is

composed of a number of subcomponents – some of which may be COTS (Commercial-of-

the-Shelf) components – then based on certain properties of these components there could be

some potential mismatches. One of the key differences of their work to ours is that they treat

components of the software product as black boxes. This is also their major weak point since

it is unclear what property values to assign to components whose internal structure is

unknown (e.g. COTS). Our work also differs in that we do not try to cover the integration of

software components with COTS components but instead we are treating a software

component as a white box and our work investigates primarily on how to avoid architectural

mismatches within one such box. Nevertheless, their work can be used to extend ours in

identifying mismatches if our architecture (box) should be integrated with other COTS

products.

3. Garlan, Monroe, and Wile [Garlan et al 1997]: The last few years have brought several

architectural description languages (ADL). Usually, each ADL stands for itself and in the

context of this work can be seen as a view. However, the work of above researchers on an

architectural interchange language called ACME (see Figure 7) has produced something else:

an mechanism to share and exchange information between various ADLs (examples of ADLs

are C2 [Taylor et al 1996], Darwin [Magee-Kramer 1996], Rapide [Rapide 1996], UniCon

[Shaw et al 1995], Wright [Allen-Garlan 1996], just to name a few; [Shaw-Garlan 1996]

provide a more comprehensive overview of what ADLs and styles are). Fundamentally, their

27

work is similar to what we are doing with respect to UML views, however, their work

concentrates on ADLs. The set of ADLs supported by ACME does not necessarily exclude

UML (there are some who argue that UML is another ADL), however, ACME itself does not

provide mechanisms to check for inconsistencies across various views. Nevertheless, having a

mechanism to share modeling elements is an integral step in identifying and resolving

architectural mismatches. Thus, we think their work could be fundamental in fully integrating

ADLs.

4. Robbins, Medvidovic, Redmiles, and Rosenblum [Robbins et al 1998]: Their work

presents a bridge between the ADLs presented in the previous bullet and UML. Here OCL

(Object Constraint Language, which is part of UML [Booch 1997]) was used to represent two

ADLs (C2 [Taylor et al 1996] and Wright [Allen-Garlan 1996]) in UML. The relationship is

one sided in that UML is used to represent C2 and Wright but not vice versa. Even though this

work gives a nice insight on how UML and other ADLs can be merged, it comes short of fully

integrating those views. Nevertheless, their work may be seen as a foundation for further

integration with the advantage of not having to define exchange mechanism between UML

and C2/Wright views. With C2/Wright represented in UML the same integration techniques

presented in our work may be applied to integrate them as well.

Unicon
(CMU)

Rapide
(Stanford)

MetaH
(Honeywell)

Aesop
(CMU) Wright

(CMU)

C2
(UCI)

ACME

Figure 7: ACME and View Integration

28

5. Easterbrook, Finkelstein, Kramer, and Nusbeibeh [Easterbrook et al 1994]: Their work

is strongly based on their concept of ViewPoints which is similar to our views. Their work is

very close to ours in that it presents some views and corresponding rules to identify

inconsistencies within and between them. They further define a formal notation to represent

those view. Even though their motivation and initial approach are very similar to ours their

work differs from ours in many ways. For one, they focus primarily on other methodologies

(other than UML) and sometimes on rather high-level (requirements specifications) views

(e.g. the data flow diagram) and they discuss consistency rules primarily for the distributed

aspects of software products. Thus, they do not address the problem of information

transformation between views. Furthermore, they do not investigate this problem in very

detail but instead are content in showing the feasibility of their approach and discuss the

benefits of a more rigorous investigation of that problem. We see their work partially as a

foundation of ours because it provides useful insight on how to approach this problem but we

also see their work as an extension to ours in that they address some distributed/concurrency

issues which we do not.

6. Wang, Cheng, and Richter [Wang et al 1997]: Their work acknowledges and addresses a

deficiency of UML, which we have already discussed extensively above – the lack of

precision and formalism. In various articles they propose ways on how to eliminate that

problem by presenting formal methods which they integrate with OMT [Rumbaugh 1991]. So

they substitute Object Models with Algebraic Specifications, various OMT semantics with

Algebraic semantics and Instance Diagrams with Algebras. We consider their work as another

foundation to ours in that we also needed to substitute UML with more precise formalism.

However, they see the use of these formal extension less in automatic consistency checking

but instead in combining the strength of both views – the readability of OMT with the

precision of algebraic specifications. Thus, the issue of integrating their views with each other

and with other views is not fully addressed; nevertheless recognized.

29

7. Schönberger, Keller, and Khriss [Schönberger 1998] and Koskimies, Systä, Tuomi, and

Männistö [Koskimies et al 1998]: These two groups of researchers worked on a similar

issue; that of view transformations. Both concentrated on UML Scenarios and how they can

be transformed and merged into state diagrams. The latter group additionally developed a tool

called SCED which automatically performs these transformations. Although the former group

did not come up with an automated support, the algorithms they provide are somewhat more

sophisticated in that they also address concurrency issues in the model. Even though both

groups did not have view integration in mind when they build them, their work is fundamental

when it come to view integration. We will make use of their techniques and a short

description of it will follow later. Nevertheless, both their works come short in addressing

transformations among other views but scenarios and state diagrams.

8. Belkhouche and Lemus [Belkhouche-Lemus 1996]: Their work reflects the opinion that

views are independently created and analyzed, however, view transformation systems should

be used to transform important design information for consistency checking. Their work lacks

a well-formalized foundation and as such the types of inconsistencies and incompletenesses

they can identify are very limited. Their work can also be used as an example of the state

explosion problem which occurs by sequentially applying transformation algorithms without

end. So they show a case of a Data Flow Diagram (DFD) and a State Chart (SC) and identify

15 relationships (!) between those two diagrams and 2 subsequent derivations (through

transformation) of each of them. For instance, if the derivation (transformation) f(DFD) yields

a SC and g(SC) yields a DFD, then the derivation f(g(SC) yields yet again a SC and so forth.

These two derivations could be applied recursively forever, resulting in an infinite number of

intermediate diagrams and relationships between them.

9. Delugach [Delugach 1996]: Parts of his work is similar to the ones discussed above. So he

takes two types of diagrams, e.g. a data-flow diagram (DFD) and a class diagram, cross-

30

references all items which are named the same (the deficiency of this mapping mechanism is

not addressed in his work) and transforms them onto a conceptual graph diagram. What

makes his work interesting (and unique) is that he uses an algorithms which verbally

describes the relationships of components in that conceptual graph. An architect or user can

now read those descriptions (which are in plain English) and reason about whether they make

sense. Thus, his work shows another interesting way on how the view integration problem can

be addressed, however, his work provides no automatic way of conflict identification and

resolution. Nevertheless, it could be very useful to apply this technique in parallel with some

more automated means of analysis (such as ours).

10. Grundy, Hosking, Mugridge, and Amor [Grundy et al]: Like some of the works above,

these researchers address the integration problem by translating diagrams (views) onto a

conceptual model (called the repository or base view). Overlaps between the design

components are identified through the usage of common names (!). Their work is also rather

high level and does not only address software development but also other domains, such as

views in building architectures. Another restriction of their work is that they do not address

the problem of representing conceptually different views in their base model. Instead they

show how this can done between a class diagram and the corresponding source code.

Nevertheless, their work adds a very interesting dimension to integration which is not

addressed by our work. That of identifying inconsistencies in following a software process

model (e.g. some activities were not performed, etc.). As such, they address the product

inconsistencies and process inconsistencies as very related problems. This view is also shared

by us and we will briefly address this deeper aspect of integration later on in this work.

11. Engels, Heckel, Taentzer, and Ehrig [Engels 1997]: The final work presented here is the

work of these researchers. Some aspects of their work are again similar to the ones discussed

before. In their work their thrive to create a system model out of a number of related views.

Like before, their work assumes that the same names are used or a name conversion

31

dictionary is maintained. Views are then combined stepwise to a system model by merging

two views at a time recursively until all of them are merged. They fall, however, short in

defining automated analysis mechanisms for consistency checking. Nevertheless, their work

can be used to abstract views (currently only object models) into more general object models

or class models. The most interesting aspect of their work is, however, something else. They

also present methods for showing how an object diagram changes over time. For instance,

each method (function) which is called might add, remove, modify, or not do anything to the

current object model. Thus, they define methods in term what changes they cause in the object

model (e.g. newAccount, if successful, will add one Account object to the object diagram).

This kind of knowledge of the impact of methods can then be used for consistency checking;

an aspect they did not explore in their work. Our work, however, will make use of that.

The works presented above do not cover the complete picture of what is going on in this field.

However, it gives an overview of the major approaches. The diversity of the work above is another reason

why this work thrives not to just add another technique. Many ideas described in their research are

excellent and, thus, our work tries to also take the best of what already exists and build it into something

bigger.

32

5 View Mismatches

If you fail, fail early – Philippe Kruchten

So far we have talked about the view integration problem in a very high level fashion. This chapter

will explore this issue in more detail. First, we will categorize views followed by some examples of

architectural mismatches between views of same or different categories (dimensions).

5.1 Views

5.1.1 Dimensions of View Integration

To get a better understanding of how views fit together, consider Figure 8. For our purposes we

divide views into three major dimensions; horizontal, vertical and process. The vertical and horizontal

dimensions are also often referred to as layers and partitions whereas the process dimension reflects the

life-cycle (time). These three dimensions are briefly described in the following. It is worth noting that these

vertical integration
- layers
- packages

horizontal integration
- static
- dynamic

process (time) integration
- analysis
- architecting
- low-level design

View A

View B

View C

architecting:
- expertise
- heuristics
- formalism

Figure 8: Dimensions of Views

33

dimensions are also three view integration dimensions since we would like to integrate views within their

various dimensions but also across dimensions.

Vertical View Dimension

The vertical dimension reflects the system decomposition. Usually, higher levels (layers) show the

system in a more abstract fashion whereas lower levels show the system in more detail. Each layer should

represent a complete system, however, it might not do so in one diagram. Mismatches between vertical

views are therefore mismatches where one layer does not represent the same interrelationships (within and

between diagrams) as another layer. In UML, system decomposition is primarily achieved though

class/object diagrams and associated packages. Other diagrams, such as state diagrams do not reflect the

system decomposition. They may, however, still be used in each layer to repeat the same modeling

constructs in an increasingly detailed and abstracted form.

Once a system is decomposed into subsystems, additional refinements (layers) of that subsystem

must, then, not reflect the entire system any more but instead only that particular subsystem. If this is the

case, other subsystems have to be similarly represented by their own layers and all those (sub) layers

together should represent the complete system again. Thus, there may be another category of mismatches

between (sub) layers if the partitions of those layers are not fully separated and consistently applied. In

some cases, subsystems may not need further refinements because they already are detailed enough

whereas in other cases subsystems (layers) may still be in need of further refinements. If this happens, the

already adequately refinement subsystem(s) (which do not need further refinements) may also be used (e.g.

accesses, called, etc.) by all subsequent refinements of other lower layers so that the entirety may still

represent a complete system. This case also shows that the level of detail achieved by a layering is often not

clearly defined and it may vary within each layer. The only important aspect is whether the sum of its part

represents a complete picture again and that the logical divisions (partitions) of the system into subsystems

is reflected consistently on all levels of abstractions.

There are however variations in how this can be done. For instance, the physical design should be

a continuation of the logical design. This does however not mean that physical layers have to use the same

type of views or the same set of features of logical layer. For instance, the physical design (as compared to

34

the logical one) should only use modeling elements that can be directly implemented. So, if a system layer

is physically described in a class diagram and it is going to be implemented in C (a non-OO language) than

some elements of class diagrams, such as inheritance, should not be used in the physical design anymore.

Nevertheless, the partitions into which subsystems are divided are still valid and should be the same for

both logical and physical views. Thus, it is not required that layers must use the same type of view (e.g.

class diagrams).

Horizontal View Dimension

The only restriction we have from the vertical integration is that the set of views used in each layer

must represent the entire system completely. However, each layer may still be represented by different sets

of views. It may do so using different types views or even different decompositions (although the latter is

not recommended as discussed before). Thus, in the horizontal layer, a view is not required to model a

complete system (or subsystem depending on the layer).

Horizontal views are frequently further divided into static and dynamic views. The difference of

these two groups is related to the presumed execution time. Dynamic views represent the system (or more

likely a partition of it) at a particular point of time or time interval. For instance, object diagrams show the

objects that exist at a particular time; sequence diagram show the calling dependencies between various

objects during a time interval. Dynamic views often represent samples of the state or interaction of the

system and its components during their execution. Class diagrams on the other hand are static

representations of all allowed dependencies of a system and its components throughout the execution.

Views in that category represent more general aspects of the system behavior and their constructs are

always applicable.

Most forms of representations (diagrammatic or not) can be used in this horizontal manner. This

fact has made some people belief that architectures are ‘flat’. However, this is, as Philippe Kruchten said

during his keynote address at the GSAW’98, one of the ten major misconceptions about software

architectures [Kruchten 1998].

Process View Integration

Although, this form of integration is often ignored, it is actually very important. The integration

over time (or process integration) reflects the integration of product artifacts during the life cycle. Note that

35

we are not speaking of making sure that a process model is followed consistently but to make sure that the

changes a product artifact goes through over time are captured. This activity is also often referred to as

version control or configuration management but it is also another dimension of the view integration

problem. If we loose the rationale why things happen the way they did (or changed the way they did) we

loose some important design information.

For instance, if we have two alternative design approach, each with unique advantages and

disadvantages, clearly, we would like to make sure that both alternatives are reflecting the same problem

and do so completely. So it may make sense to compare those two design approaches, and if it is only to

ensure completeness. This integration aspect is, however, only of secondary importance to our work. We

nevertheless list it because the activities and techniques presented in this work apply to this form of

integration, as well.

5.1.2 Types of Views

Currently this work makes use of the following types of views. For a more detailed description

please refer to the UML notation and semantics guide [Booch-Jacobson-Rumbaugh, 1997]. Later on in this

work, we will expand on this list and show in a high level fashion how other architectural representations

can be included as well (e.g. ADLs).

Diagrammatic views:

• Class/Object Diagrams

• Sequence Diagrams

• State Diagrams

• Interface Diagrams

• Collaboration Diagrams

Textual views:

• Object Constraint Language (OCL)

• Programming languages (C++)

36

• Attributes and other properties of UML model elements

5.2 Examples of Mismatches

Having defined views in terms of their dimension, we will now complement that by showing more

concrete examples of (potential) architectural mismatches between and within those view dimensions.

5.2.1 Mismatch between Class Layers

The first example shows a simplified air traffic control system (see Figure 9). The system is

presented in two layers and, as discussed above, each layer is supposed to presents the system in a complete

fashion. The first layer shows the interaction of the Flight component which has some dependencies with

Mechanic, Pilot and Flight Controller. The second layer refines this relationship by decomposing the

Flight component into Flight Plan, Aircraft, and Flight Authorization - The Flight Plan being dependent on

the Pilot, the Aircraft with its instance Boeing 747 being dependent on the Mechanic, and Flight Controller

being dependent on Pilot.

Flight Controller

PilotFlightMechanic

Model Elements of Layer 1

Model Elements of Layer 2

Possible Mismatch:
dependency of Flight to

Flight Controller not
reflected in lower level view

Aircraft

Mechanic Pilot

Aircraft

Flight Plan

Flight

Flight Authorization

Boeing 747

Flight Controller

Figure 9: Potential Mismatch between two Layers (Completeness)

37

Although there is a Flight Controller in the lower level diagram, the higher level dependency from

Flight to Flight Controller is not obvious. It would be dangerous to conclude (or in this case incorrect to

conclude) that there is a dependency simply because there are lines going from Flight, via Pilot to Flight

Controller.

Although, a human analysts would be able to detect this kind of architectural mismatch, for a

computer to come to the same conclusion is not obvious. For a trivial example like this one, the need for

automated assistance in identifying and resolving mismatches may not be obvious. However, more

complex projects involve thousands of modeling elements. There mismatches between views cannot be

seen this easily anymore and the task of finding and resolving them becomes very time consuming –

frequently having strong effects on project schedule and cost. Thus, automated assistance in identifying and

resolving them would result in major benefits.

aerodynamics

enginetires

car
get speed

get shape

get shape

my car : car V8 : enginemy tires : tiresMeasurement 1 :
aerodynamics

get shape

get shape

get speed

get RPM
tire shape changes
with the speed

Possible Mismatch:
Tires are part of the Car and
should not be able to call any

method of Car (above). This is,
however, the case below.

Figure 10: Potential Mismatch between Class Diagram and Sequence Diagram

38

5.2.2 Mismatch Class and Sequence Diagrams

Figure 10 is another example of an architectural mismatch. The figure shows a class diagram and a

sequence diagram of a simplified Aerodynamics System. The Aerodynamics component acquires

information about a Car, which consists of the parts Tires and Engine, and calculates some aerodynamic

behavior of the car. The sequence diagram (below) shows this for a particular instance of My Car. A

potential mismatch between the two diagrams arouses around the components Tires and Car. Since Tires

are part of the Car, only the Car object (My Car) should be able to call methods in Tires. The sequence

diagram violates that rule. Possible ways of resolving that issue are either to change the relationship

between Car and Tires or to change the calling sequence (e.g. the latter can be done by having

Aerodynamics pass along the speed of the car as a parameter).

5.2.3 Cardinality Mismatch

Figure 11 shows an example of a mismatch between a static and some dynamic views. The class

diagram (top) shows the static view between a Patient and his/her Visiting Record during a stay in a

 : John’s Current
Visit Record

 : Smith’s Current
Visit Record 2

 : John Smith

create

create

delete

delete

Patient Current Visiting Record1..11..11..1 1..1

Possible Mismatch: Connectivity in
static view (above) exceeds limits in

dynamic views (below). Two
instances of John’s visiting record

cannot exist at any given time

John’s Current Visit Record
<<instance>>

John Smith
<<instance>>

Smith’s Current Visit Record 2
<<instance>>

Figure 11: Potential Mismatch between a Static View and two Dynamic Views

39

hospital. Even though a patient may have stayed in the same hospital more than once before, he/she should

nevertheless have only one current visiting record at any given time. This static rule is violated in both, the

object diagram (lower left) and the sequence diagram (lower right). The object diagram shows an instance

of Patient John Smith and it also shows that he has two current visiting records. Similarly, the sequence

diagram shows that a new visiting record for John Smith is created even though one already exists. Please

note that both dynamic diagrams are consistent. The inconsistency is only between the class and object

diagram as well as between the class and sequence diagram.

5.2.4 Mismatch between State and Collaboration Diagrams

The last mismatch sample, discussed in this chapter is depicted in Figure 12. It shows a more

complex setting in that it becomes less obvious that there are potential mismatches. It shows another

perspective of the hospital system we discussed above. Here we see the system from a clerk’s point of

view, who is using the screen to create visiting records for patients. The state diagram of the Screen class

(top) shows that information about a patient is entered and validated. Afterwards, a visiting record for that

patient is created.

The sequence diagram (bottom) shows that data is validated, patient information is retrieved and,

for a given patient information not found, a patient and a visiting record is created. On the other hand, the

state diagram of the Screen class (top) shows that information about a patient is entered and validated and

after the patient database is checked a visiting record is created.

The sequence (lower-right) and collaboration (lower-left) diagrams conflict because either request

patient data is missing or named differently (assuming that get patient data is an equivalent method). There

are further potential mismatches. So for instance, both the collaboration diagram and Screen’s state

diagram have one component each which is not accounted for in the other diagrams. In case of the

collaboration diagram, the class DB is introduced which could be the database for Patient and Visiting

Record. However, this interaction is not shown in the sequence diagram which may indicate some

incompleteness. Furthermore, the User Input of the state diagram is not reflected in both, the sequence and

collaboration diagrams.

40

Figure 12 also adds another problem to our view integration challenge. This example does not

always use the same names for same/similar things. For instance, get patient data and request patient data

may be identical and for us, the architects, this may be obvious, but for the computer this is not. Thus, we

are confronted with the challenge of automatically identifying this relationship.

The other problem we can see in Figure 12 is even more severe in that even if we use consistent

naming, it is still not obvious what parts correspond to what. For instance, to which model element in the

sequence or collaboration diagram does the state Visiting Record Created relate to? If we would say the

create arrow that calls Visiting Record from Screen we might be close but this is not completely true. The

create arrow just calls the method. No Visiting Record and no Patient have been created at that point. So

the state Visiting Record Created clearly does not correspond to that arrow but instead it corresponds to the

point when the create method is finished and execution control is returned to Screen. So the state Visiting

Screen Visiting Record

validate

create

get patient data

create

patient not
found

user input

validate input check patient DB

visiting record
created

Enter pressed

ID valid

ID invalid

State Diagram for Class Screen

Patient

validate

Screen

DBVisiting
Record

Patient

1: request patient data

2: fetch
patient

data
3: create

4: create

5: add patient

6: add visiting record

cr
ea

tio
n

of
 P

at
ie

nt
 n

ot
 v

is
ib

le
 in

 S
cr

ee
n

missing

named differently

Figure 12: Potential Mismatch between State-, Sequence- and Collaboration Diagrams

41

Record Created corresponds to the void after the create method when the control is returned to Screen. In

other words, that state does not relate to any sequence diagram model element in particular.

Whereas the naming problem above can be approximated with the use of a naming dictionaries

(which keeps track of all synonymous model element names), finding an adequate way on how to relate

state diagrams with sequence diagrams is less simple.

42

6 View Integration Framework

No model is correct, but some are useful – Albert Einstein

Having identified views and their dimensions, as well as having shown examples of possible

mismatches, we will now elaborate further on what we have to do to integrate those view. As we mentioned

before, integration is primarily about identifying inconsistencies. [Nusbeibeh et all 1994] refined that and

wrote that the term inconsistency indicates that some form of rule has been broken which expresses the

relationship between development objects (model elements). It is these kind of rules we are aiming for.

However, rules alone are not useful if they cannot be applied automatically to check for consistencies.

What this mean is, that there is more to view integration than consistency rules. What we need is an

environment where those rules can be applied. This section will present such a framework and necessary

activities.

6.1 Model-based Development

As discussed previously, views are nothing more than an abstraction of relevant information from

its model. Views are necessary to present those information in some meaningful way to the user (developer,

System Model
...

View
Synthesis

View
Analysis

Architect 2

Architect 3

Architect n

Architect 1

abstract reconcile

iterate

Figure 13: Model-based Development - a view independent representation

43

architect, customer, etc.) – something the model does not do. When we talk about the need for tightly

coupled views, we are really talking about the need of having an integrated model that is adequate in

representing views (and their various instances). There, views may be abstracted (derived) from the model,

worked on, and then reconciled with the model to ensure that the changes are still consistent with the

model. So the model contains a union of the information of all its views, however, with as minimal

duplication as possible. In that respect we are talking of the model as a View Independent Representation

(see Figure 13).

Views and the View Independent Representation (VIR) is a paradigm shift which is similar to that

of functional vs. object oriented programming. In OO development we do not see functions as the

components of the system but instead we see the system as objects that have functions (behavior).

Similarly, in VIR we do not see views as components of the system representation but instead we see the

system representation as consisting of models which have views (or viewpoints). As functions give

meaning to objects, views give meaning to models. We are speaking of model-based software development.

This implies that the model is more than the sum of its views (contrary to what most development

models are today, e.g. UML). The stakeholders (e.g. architects) can then derive views from that model, fill

in the missing blanks, and reconcile the changes with the model. This means that all information about a

software system is captured with as little redundancy as possible in the model even though the views,

which are derived from that model, may repeatably use the same information and, thus, have redundancy.

Naturally, this concept of a view independent representation is not an easy one to come by.

Actually, one can see this approach as being the opposite of the standalone views (analogy to stovepipe

systems) we have these days. Brig. Gen. Mitchell, outlined these two extremes in a different setting during

his GSAW’98 keynote address. So he spoke of the Etruscan people, who lived in Northern Italy between

1000BC and 505BC. They were eventually conquered by the Romans because their clans did not unite

against their common threat but instead tried to face it everyone for itself. As the other extreme, he spoke of

the Autoshave system which an inventor tried to patent. The Autoshave system is a mask with razors

inside. The idea is to only put on the mask and the face would get shaved automatically. When confronted

with a side effect of his mask – that his invention would cut anybody whom the mask would not fit

precisely – he just replied ‘well yes, but only once’ (!).

44

The view independent representation (VIR) is the counterpart to the standalone views in that it

tries to represent all views. Some views may, however, be just too different from the other ones and, thus,to

difficult to integrate into a common system model (e.g. ADL components and connectors). Nevertheless,

model-based development may still work for most views (or at least most information within those views).

Thus, we aim to find a reasonable compromise between the Autoshave and Etruscan approach.

There is, however, also another reason why we would like to have a common base model.

Consider, for example, Figure 14, where we can see the complexity involved in integrating views with each

other. In order to share information gained from one view with all other views, each of them would have to

be somehow integrated with all the other views. In our example we have six views which, in absence of a

common reference model, would require to be integrated in 15 (!) different ways. Seven views would

already result in 21 different ways of integrating them. Thus, each additional view would force (n-1)

additional ways of integration if n is the number of all views to be integrated. In total n (n-1) / 2 ways of

integration are required for n views to be fully integrated.

Clearly, we are confronted with a non-linear explosion of integration work (n2 for a big n). The

concept of VIR (or model-based development) would, however, reduce the view integration complexity to

a linear problem as depicted in Figure 15. With the existence of a VIR, the integration work would be

reduced to mapping or translating each view so that it is fully (or sufficiently) represented in the VIR and

then we could define consistency and completeness rule based on the VIR. Thus, each view needed only to

View 2
View 4

View 1

View 6

View 3

10

14

12

4

9

13

5

6

7

1

View 5

2
8

3

11

15

Figure 14: Complexity in Integrating Views

45

be translated once and all consistency and completeness rules needed only to be represented in one type of

style (language, etc.) and not in a view-dependent form. Therefore, this work will utilize the concept of

VIR and build on that.

6.2 Integration Activities

In the beginning of this section we explained that there is more to view integration than

consistency rules. What we need is an environment where we can apply those rules in a meaningful way.

This work, therefore, introduces a view integration framework that describes integration activities. We will

present some corresponding integration techniques that may be seen as instances of activities in the next

chapter.

Our integration framework was already illustrated in a high-level fashion in Figure 13. There, a

system model was used to represent the knowledge base of the designed software system. Software

developers use views to add new data to the knowledge base and to review existing data (view synthesis).

Interacting with both, the system model and the view synthesis, is the view analysis. As soon as new

information is added, it can be validated against the system model to ensure its conceptual integrity. Figure

16 shows how the view analysis can be further subdivided in three major activities – Mapping,

Transformation, and Differentiation.

View 4

View 3

View 2

View 1

View 5

View 6

System
Model
(VIR)

Figure 15: Linear Integration Work using VIR

46

• Mapping: Identifies related pieces of information through the use of naming dictionaries (manual

process), traces and trace simulation (e.g. the use of same physical classes and methods), and certain

forms of associations/patterns (e.g. common interfaces).

• Transformation: Manipulates model elements in views so that they (or pieces of them) can be shared

with other views (or in representing the system model itself). For instance, we may use abstraction

techniques to generalize a detailed diagram, we may use view translations to exchange information, or

we may rearrange model elements (or pieces) in different manners to create new perspectives (e.g.

merging or splitting).

• Differentiation: Traverses the system model to identify (potential) mismatches within the system

model. (Potential) mismatches are described in form of rules and constraints. Furthermore, mismatch

resolution rules can be associated with the mismatch identification rules to propose options on how to

resolve them. Differentiation is only possible because new information about model elements is made

available through Transformation and their relationships are defined through Mapping.

It must be noted, however, that these activities are not orthogonal to each other. Obviously, we can

only make useful transformations if we know the proper mapping of model elements. However, what may

not be obvious on first glance, this relationship is also true in reverse. Information derived through view

View
Synthesis

(graphical and textual)

Differentiation
(Comparison)
identify differences
between base model,
rules, and constraints

View Analysis

Transformation
(Extraction)
- through abstraction
- through translation
- through filter

Mapping
(Cross-Referencing)
- through names
- through traces
- through association

System Model
view independent

base model

Figure 16: View Integration Activities

47

transformation can clarify many ambiguities in the mapping. Thus, one view/activity may be used to clarify

ambiguities in other views/activities. To apply the ADL framework onto our view integration approach,

Transformation corresponds to components (e.g. boxes and arrows in diagrams) and Mapping corresponds

to Connectors (e.g. relationships between boxes and arrows). The configuration derived through

Transformation and Mapping is the foundation for analyzing the conceptual integrity (Differentiation) of

the system.

6.3 Mapping

In order to deal with inconsistent naming of modeling elements some form of mapping activity is

needed. In a simple case, mapping is done through some traces or name dictionaries. However, since both

of those have to be done manually, they not only add an additional source of possible defects but also

increase the manual overhead in applying integration techniques. The goal is therefore to have some

automated mapping technology. The following methods can be useful in identifying mapping.

Mapping through Common Names

This should work at least for all components of the same type. E.g. if there are two diagrams that

both use a class with the same name than it can be assumed to be the same. This technique does not

necessarily work for connectors or components of different types (e.g. name of class vs. name of state). In

case of connectors, the situation is similar (same names may still imply same behavior for connectors of the

same type) If a component (e.g. class) exhibits the same set of connectors (methods, attributes) this may

also be used to derive some relationships between them (e.g. instance or inheritance). We distinguish

between basically four cases: multiple connectors same/different type; multiple components of

same/different type. Mapping has to deal with all those in different ways.

Mapping through Design Features

Certain configuration characteristics such as feedback loops or shortcuts (e.g. in state diagrams) can be

used to reason about mapping. The SCED technique we will present later on shows a nice example of that.

There we use a tool to transform sequence diagrams into a state diagram with the purpose of comparing the

48

transformed view with existing state diagrams. In an ideal case, where the original view and the

derived/abstracted view are consistent, both views should exhibit patterns like the ones above in the same

sequence (not necessarily at the same position) regardless of what names are used.

Mapping through Design Patterns

If a high (or low) level diagram uses a component of a particular pattern then characteristics of

that pattern can be used to identify its corresponding components in the lower (or higher) level diagram.

For instance, [Gamma et al 1994] defined various types of design patterns such as Iterator, Observer, and

Command, to name a few. These patterns exhibit unique characteristics that may be used to identify them in

other level diagrams. It is assumed that their existence is known, e.g. through the use of stereotypes in

UML (see Figure 17).

Mapping through Common Interfaces

In cases where some mapping for some components exist but not for others, the interconnectivity

may be used to identify corresponding model elements. For instance, if there are two views which contain

components A and B and both views are connected via some helper classes which are named differently

then it could be possible that those helper classes are identical.

Also the type of connectivity (e.g. dependency relationships in class diagrams) can be used to

identify mappings. For instance classes may be grouped into three categories, Actor, Agent, and Server,

corresponding to the whether they provide only services, trigger requests or mediate requests. This

information in turn may be used to identify the layering of components (e.g. a actor class is probably not

part of the functional framework, or a server class is probably not a user interface component).

COTS A interface A

COTS B

COTS A

class B class B

«Wrapper»

Figure 17: Mapping through Design Patterns or Styles

49

Mapping through Similarity in Name

Frequently it can be seen that the names of components and connectors are not identical, but

nevertheless similar. Using the similarity of names is, therefore, another mapping technique.

Mapping through Observing Test Scenarios during System Execution

Observation of test cases while they are executed on a software system (or part of it) can as well

help in establishing mapping. In this case we combine the system model with the actual implementation

and execution of the software product to identify dependencies between them. The identified dependencies

are useful for many things but foremost for the verification of the conceptual integrity of the software

model by cross-referencing the product implementation with its corresponding system/software model. As

such the most significant byproduct are traces between the model elements and the actual implementation

of the software product (the solution). Using these traces enables us to further reason about architectural

interdependencies based on what implementation pieces they share (or have in common). We will discuss

the TraceObserver technique in more detail later.

Having described techniques for mapping, it must be stressed that those techniques must not

always yield correct results. It could very well be that different interpretations are possible upon which

either all are automatically investigated or a human being must be consulted to make a decision as to what

is correct. Furthermore, no single mapping technique will likely be sufficient. It is more likely that a

combination of above techniques and others are necessary to yield a higher collective effectiveness. All that

also applies to view transformation.

One of the major challenges of integrating views is to figure out where they overlap, what

information they can exchange, and what might be useful for other views. Since, we do not know in

advance what naming conventions architects follow (if any) while designing their systems we cannot make

the simplistic assumption of the existence of consistent names. This deficiency was already visible in many

integration approaches we discussed in Related Work before.

50

Mapping can also be integral in avoiding (or minimizing) the state explosion problem. For

instance, if a model element in one view is changed, propagating the changes to all affected other model

elements require the identification of all affected components (=> mapping). Summarizing, we can say that

Mapping depends heavily on the existence of view redundancy. Without view redundancy, we would not

be able to establish mapping. This shows the dilemma we are in. For one, we need redundancy to identify

relationships between views but on the other hand it is this redundancy which is the cause of

inconsistencies in the first place. Thus, redundancy is a necessary evil.

6.4 Transformation

The issue of transformation is often considered the core of view integration. Although this is not

entirely true as we discussed above, view transformation nevertheless constitutes a major challenge because

the modeling information provided by one view are not readily compatible with other views. Thus, we need

transformation to translate views in such a way so that their elements can be shared, exchanged, or

compared (same types of model elements and the same level of abstraction). As a rule of thumb there are

basically two categories of translation techniques:

1. The transformed view uses modeling elements of the same type as the source (e.g. source was

a class diagram and so is the transformed view)

2. The transformed view uses modeling elements of different types as the source (e.g. source

was a sequence diagram and transformed view is a state diagram)

Transformation through Abstraction

 Abstraction ensures that modeling elements express information in the same/similar level of

detail. We will present an abstraction technique in the next chapter when we introduce Rose/Architect.

There we have a technique which parses lower-level class/object diagrams and abstracts (simplifies) them

to yield higher-level (less complex) diagrams. Although, the Rose/Architect tool only works for class

diagrams this concept can easily be expanded to capture other views, such as sequence diagrams, state

diagrams, etc.

51

Transformation through Translation

The SCED technique we will describe in the next chapter will be an example of how information

can be translated into another view. Key problem in this approach is that the semantic meaning of

information is not the same any more and this may cause problems in the process of translating modeling

information. This means that components (boxes) in one view do not match components in other views.

The same applies for connectors. More often than not, translation requires input from various resources,

sometimes even humans since one source view does not often provide all necessary information.

Transformation through Patterns

Patterns are again useful in transforming information. In Mapping we introduced them in order to

find related information based on the patterns they exhibit. However, patterns can also be used in

translating information. For instance, we could abstract information based on the patterns it recognized in a

lower-level diagram and, thus, replacing them with simpler (higher-level) patterns. Patters are, however,

also useful in transforming between different types of views. For instance, if we have a database containing

standard patterns and how they would be represented in different styles (or views) then we can use that

information for view transformation.

Transformation through Common Components

In cases were modeling information about a particular aspect of the design is scattered in different

locations (diagrams, views), we can create new views out of combining information from various locations

in a different manner. Take for instance the state diagram in Figure 18 that has two state transition

scenarios (A->C->E and B->C->F). Both scenarios have the state C in common. This state can be used as a

point of interaction between both scenarios. Thus, we can create a new state diagram A->C->F. This

concept also works for other views such as class diagrams, sequence diagrams and collaboration diagrams.

Another example would be when a single diagram does not depict all related modeling

information. There, a new diagram could be created that merges information (interaction, properties, etc.)

of that modeling element in a different way.

52

Replacing a substructure of a diagram (or a modified version of thereof) by another structure is

another example. For instance, we could replace a high-level component by its corresponding lower-level

components or vice versa without changing the remaining elements in that view.

Transformation through Trace Observation

This technique was discussed in mapping but it can also be applied to view transformation. So for

instance, we can create object models and object interaction scenarios based on observations of the system

execution. Multiple object models can then be abstracted into class models and so forth.

6.5 Differentiation

Transformation enables us to share modeling information with other views and Mapping enables

us to classify modeling information to identify relationships among them (correspondence of information).

Having this established, the last integration activity is Differentiation, where views and derived views

(viewpoints) are compared in order to identify (potential) mismatches between them.

The term Viewpoint was adopted from [Nuseibeh et al 1994] who defined viewpoints as being

pieces of views. In our case, viewpoints are mainly derived or abstracted views that provide another

viewpoint or perspective to the view they are compared with.

Since it would be too difficult to create differentiation techniques for all possible views and

viewpoints, we will make use of the VIR concept introduced previously. Thus, our work uses translation

and mapping to create a view independent representation (VIR) model of the system which captures view

and viewpoint information in some defined manner. The Differentiation activity then traverses that model

A

C

C

F

E

B

same component (state) used to merge/split diagrams - execution
may be in a way which is not foreseen by either diagram

Figure 18: Transformation though common components and rearranging substructures

53

in order to identify mismatches within it. This latter comparison can be done using two principal

techniques:

1. (Graph) Comparison Algorithms: In case a viewpoint shows a configuration of several

modeling elements of similar type and level of abstraction, then a comparison may be done by

simply traversing its nodes (components) and connectors.

2. Constraint/Rule Checking: Viewpoints often only express pieces of information about a

modeling element but not necessarily their configuration. Thus, these pieces may be captured

in form of rules and constraints (e.g. using UML’s Object Constraint Language) which in turn

may be validated against each other and other modeling information.

6.6 Identified View Mismatches

Having talked about view integration activities, the following will now focus on what kind of

architectural mismatches exist. The next chapter will then describe (semi) automatic ways of identifying

them. With mismatches we understand primarily inconsistencies (conflicting constraints). Incompleteness

is a refinement of inconsistency in that it represents an inconsistency with the corresponding higher-level

software system representation (e.g. software system requirements, architectures, etc.).

Section 5.2 already showed a number of mismatch cases. This section will now generalize them,

View
(or instance of view)

Problem within a
single instance of

a view

Problem within a
set of instances

of a view

Problem between
a set of instances
of different views

Constructs which
describe a view (e.g.

formal notation)

*

defin
ed by

Figure 19: Categories of Mismatches

54

describe them, and group them. As such this section 1) identifies constructs (e.g. what is a layer) and 2)

identifies constraints/mismatches within and between these constructs (e.g. object interaction may not skip

layer) – see also Figure 19. With respect to view mismatches we distinguish between three basic types:

mismatches between a single instance of a view, mismatches between a set of view instances of the same

view type (e.g. high and low level class diagram – e.g. Figure 9), and mismatches between a set of view

instances of different view types (e.g. sequence and state diagram – e.g. Figure 12).

It must be stressed, however, that the following list does not represent a complete representation of

mismatches. It is not our goal to be as complete as possible at this stage but instead to be as a complete as

necessary in order to create a meaningful integration model. This list will be expanded as the research

progresses.

Layer

• If there are layers – observe whether the objects in these layers communicate through the proper

channels. E.g. their interactions are not supposed to skip layers and are only allowed to call

components in the same layer and the one underneath. Issues: Can we automatically detect layers? And

if yes, which objects belong there?

• Missing Interaction of Components: Ensure whether component interaction in higher-level diagrams is

reflected in lower-level diagrams. For instance, Figure 20 below shows two class diagrams. The upper

A C B

C1

C0

C2

A

B

D

Possible Problem:
Relation to D not indicated

below

Figure 20: Potential Interface Mismatch

55

one shows the interaction from class C with the classes A, B, and D. The lower diagram shows a more

detailed C, which is broken up into its subcomponents C0, C1, and C2. The lower diagram also shows

the interaction with classes A and B (as the one above) but fails to show the interaction with class D.

This missing interaction must not necessarily be a fault since the interaction of C0-C2 with D may be

omitted in the lower view (e.g. it may not be relevant for the lower view). Thus, it must also be verified

that none of the components C0-C2 are referring to D in any other view.

• Diagram does not depict components of the same importance: If we assume that D would be a part of

C in above example then this may indicate that the higher level is depicting a low-level component

(D). D is only a sub component of C and thus should not be relevant in the higher-level view.

Component/Connector Incompatibility

• Wrong Direction of Call/Trigger/Message: Figure 11 showed the case of a connector between two

classes (aggregation) which do not match the calling direction in the sequence diagram.

• Wrong Cardinality: Figure 21 shows a case were the cardinality between two classes is not reflected in

object diagram.

• And/Or connections (e.g. in state diagrams) must also be reflected in CollD.

• Verify 1:1 (or 1:many) mapping between Analysis, Design and Implementation: This can be done via

the traces which were observed during execution. If design traces are ‘part of’ analysis traces then the

one-to-one mapping has been observed (-> proper partitioning)

class A 1 2 A1

B1

B2

B3class B

class model object model

Possible Problem:
connectivity in object diagram exceeds

allowed values

Figure 21: Potential Connectivity Mismatch

56

• Bi-directional calls are not allowed for some types of connectors: E.g. Object A calls object B and vice

versa although A is part of B (aggregation relationship).

• Labeled connectors do not match attributes: E.g. a class diagram may describe methods as attributes. A

sequence diagram may then use those methods. Figure 22 shows such a case (it is assumes, however,

that both diagrams correspond to the same level of abstraction).

Styles and Patterns

• Style or Pattern Characteristics Violated: For instance, if a view is categorizing components (e.g.

classes) into layers then all other views (with their classes and interactions) must also observe the

calling dependencies of that layered architecture.

• Pattern definition of higher-level diagram is not reflected in lower-level diagram.

Process

• Type of view or modeling element should not be used at some development stages: E.g. the physical

view limitation. In the physical view only those model elements should be used that are reflected in the

implementation program language. E.g. if the inheritance connector is used in the physical view but the

implementation language is ‘C’ than there is no simple (one-to-one) mapping between the physical

view and its implementation.

Peter : Patron

 : Clerk
c reate

modi fy

delete

Patron

create()
delete()

operation missing

Figure 22: Mismatch between Class Operator and Sequence Diagram

57

6.7 Assumptions

In order for some mismatch rules to be meaningful, assumptions about views and their usage will

have to be made. For instance, the following are possible assumptions about layering.

Layers

• If a component is not refined in layer n+1 then layer n’s version is latest.

• A lower-level component may be connected to a higher level component if and only if there is

also a connection between that higher-level component and the corresponding higher-level

component of the lower-level element.

This list needs to be expanded and therefore more assumptions of this nature will be specified at a

later stage of this work. The list of assumptions can be seen as constraints opposed by the view or system to

be modeled and against which mismatch rules are compared. The next chapter will talk about this issue in

more detail.

58

7 Automating the Mismatch Identification

The whole of science is nothing more than a refinement of everyday thinking – Albert Einstein

The goal of the view integration framework presented in the previous chapter was not only to

point out integration activities and concepts on how to deal with mismatches but also to create a foundation

for automating the mismatch identification and resolution process.

7.1 Providing Techniques to Identify Mismatches

This section introduces several view integration techniques. The reason why we distinguish

between view integration activities and view integration techniques is because the techniques often tend to

overlap in their abilities to satisfy mapping, transformation, and differentiation. They also often tend to be

too imprecise, and thus, we need to make use of different techniques in order to satisfy integration

activities. Like before, we are confronted with two primary choices on how to use and integrate techniques

for our purpose.

1. Integrate all techniques with each other

2. Integrate techniques with activities and all activities with each other (system model)

These choices are not coincidentally similar to the choices we had with respect to integrating

views. Again, we see the need for applying a system model as a foundation to integrate views simply

because integrating techniques would result in a non-linear increase in integration complexity.

We furthermore present those techniques in the context of the mismatch examples in section 5.2

above. There we asked the question whether it is possible for a computer to identify those mismatches

automatically. Because of the different semantic meanings of the modeling information in views, this did

not seem to be an easy task. This section will introduce three techniques, called SCED, Rose/Architect, and

TraceObserver that can be used to transform above examples in such a form that a direct and automatic

comparison of their modeling information becomes possible.

59

7.2 Using Rose/Architect to address the Layering Mismatch

In order to deal with the layering mismatch example in section 5.2.1, we need a mechanism which

is able to abstract (simplify) class diagrams. For that we can make use of Rose/Architect (RA), which

utilizes patterns and heuristics to deal with that issue. This technique takes advantage of the fact that some

structures in views (e.g. collections of classes and their relationships in class diagrams) exhibit some

recurring characteristics or patterns that can be identified and replaced.

Rose/Architect [Egyed-Kruchten 1999] does that by identifying patterns of three classes and

replacing them with simpler patterns using transitive relationships. In class diagrams, a transitive

relationship describes the relationship between classes that are not directly connected. A relationship may,

however, exist through other classes (e.g. helper classes) which form a bridge between them (e.g. in case of

our example, Aircraft and Mechanic are not directly connected but a relationship is still given through the

helper class Boeing 747). Thus, if some formula is discovered which could derive transitive relationships

with sufficient accuracy, then some automatic support in simplifying and abstracting class diagrams could

be provided in tool form. This would allow architects to abstract important classes from existing, more

detailed models by eliminating the ‘helper classes’ and, thus, would further enable them to portrait and

Table 1: Some Abstraction Rules from the Rose/Architect Model

Rules Component Connector È Component Connector È Component

Generalization È Class Generalization È
1 Class

Generalization È
Class

Generalization È Class Dependency È
2 Class

Dependency È
Class

Generalization È Class Association È
3 Class

Association È
Class

Generalization È Class Aggregation È
4 Class

Aggregation È
Class

[…]
Ç Generalization Class Aggregation È

55 Class
Aggregation È

Class

Ç Dependency Class Generalization È
56 Class

×××
Class

Ç Dependency Class Dependency È
57 Class

×××
Class

Ç Dependency Class Association È
58 Class

×××
Class

Ç Dependency Class Aggregation È
59 Class

Ç Dependency
Class

60

analyze the interrelationships between classes even if the classes were scattered in different locations

throughout the model (e.g. in different diagrams, or in different packages and name spaces).

RA provides this mechanism and [Egyed-Kruchten 1999] describes this technique in much more

detail. Table 1 shows an excerpt of the rule set defined in RA. Rule 4, for instance, describes the case of a

class which is generalized by a second class (opposite of inheritance) and that parent class is an aggregate

(part) of the third class. This three-class pattern can now be simplified by deleting the middle class and

creating a transitive relationship (an aggregation in this case) which goes from the first class to the third

one. The underlying RA model describes these rules and how they must be applied to yield an effective

result.

Figure 23 shows those RA refinement steps using above rules in the case of the Flight to

Mechanic relationship of our example. After applying two rules (rules 4 and 59 respectively) we get a

simplified pattern of two classes and a dependency relationship between them. If this is also done for the

other classes Pilot and Flight Controller, we get an abstracted version of the layer 2 class diagram (see

Figure 24). This abstracted view can now be compared directly with the original class diagram we used in

Figure 9. Thus, through the use of RA we are now able to convert one view so that it represents information

in a very similar manner as in the other view. Comparing views can now be done by simply using some

graph comparison algorithm.

This integration technique has, however, the drawback that it can only be used to abstract

information of the same type of view (e.g. class diagram). Although, this technique could also be applied

for other types of views, it still does not help us when we want to compare modeling element of different

types of views as this is the case in with the other examples. The next section addresses that issue.

Use Rule 4

Use Rule 59

Boeing 747 MechanicAircraftFlight

MechanicBoeing 747Flight

MechanicFlight

Figure 23: Using Rose/Architect to abstract (simplify) class diagram

61

7.3 Using SCED to Address State/Sequence Diagram Mismatch

Example 2 in Figure 12 showed an architectural mismatch between a state diagram and a sequence

diagram. In this view, it is even less obvious how information can be compared, mainly because the

meaning of the components and connectors (boxes and arrows) are not the same anymore. Although it may

appear that the states correspond roughly to the arrows in the sequence diagram, this is not correct. Take for

instance, the state checking patient DB which seems to correspond to get patient data. It is clear that the

former (checking patient DB) includes the action of getting the patient data but this function also needs to

check whether this operation was successful. There is also another distinction between those two diagram

types. The state diagram shows the generic case of what states the Screen may go through. On the other

hand, the sequence diagram is a sample (test) case. It is perfectly legal to have different sample cases (e.g.

say another one where patient is found in the DB) matching the same state diagram.

In order to be able to compare those two types of diagrams we will make use of a diagram

mapping technology developed by [Koskimies et al 1998] and [Schönberger et al 1998]. Both have

independently created technology for the purpose of transforming data between sequence diagrams and

state diagrams, the former group also having built a support tool called SCED.

Flight Controller

PilotFlightMechanic

Abstracted Class Diagram using RA

Originial Class Diagram Potential mismatches between
layers can now be identified

automatically

Flight Controller

PilotFlightMechanic

Figure 24: Layering Mismatch more obvious through common base line

62

Koskimies et al [11] wrote that “the problem of synthesizing a state diagram on the basis of a set

of scenario diagrams resembles the problem of learning a program from its sample traces.” This implies

that a single scenario diagram (as depicted in Figure 12) would not represent a general ‘scenario’ (except

maybe in the most trivial of cases). Thus, to make this problem more interesting (and useful) we need more

scenarios to be able to validate our state diagram. For that purpose, Figure 25 introduces an additional

scenario (right side).

State diagrams for all involved classes may now be created by feeding above scenarios into a tool

like SCED. The core of that tool consists of a state diagram synthesizer which can automatically create a

state diagram reflecting the information of the individual scenarios. In case of the hospital scenarios above,

the resulting state diagram may be seen in Figure 26 (upper half). The lower half shows the original state

diagram from Figure 12. Like in the previous example, it is now possible to compare both views more

easily because of the use of the same diagrammatic view type.

However, this example also shows that transforming information alone may not be sufficient in

enabling automatic comparison. It would be hard for a computer to automatically identify mismatches

simply because it is still unclear whether the boxes and arrows mean the same thing. For instance, both

diagrams have four states. Thus, an automated tool could make the wrong assumption that user input

corresponds to do:validate, validate input to do:get patient data and so forth. Thus, it may be necessary to

manually adjust the mapping between views using the knowledge of the architects.

Screen Patient Visiting Record

validate

create

get patient data

create

patient not found

Screen Patient Visiting Record

validate

get patient data

create

patient found

Figure 25: Another Scenario for SCED Mismatch Identification Approach

63

Nevertheless, even without manual adjustment, automatic comparison of these views would still

identify potential mismatches. For instance, the original state diagram exhibits a feedback loop between the

first two states that does not exist in the second one. Similarly, the derived state diagram has a shortcut

from the second state to the last (forth) state which cannot be seen in the original one. Thus, the fact that

these patterns in one view cannot be seen in the other view may already indicate potential mismatches. On

the other hand, if both state diagrams would exhibit the feedback loop then this pattern could be used to

guess which model elements correspond to each other. Finally, there may be even other diagrams (not seen

here) which, after being transformed, may shed additional light onto this situation.

7.4 Trace Observation

The next technique shows a reengineering approach to view integration. This approach combines

the model with the actual implementation and execution of the software product to identify dependencies

between them. The identified dependencies are useful for many things but foremost for the verification of

the conceptual integrity of the software model which is achieved by cross-referencing the product

do: validate do: get patient data

do: create visiting record

[patient found]

[patient not found]

Derived State Diagram using SCED

user input

validate input check patient DB

create visiting record

Enter pressed

ID valid

ID invalid

Original State Diagram for Class Screen

do: create patient

Mismatch between
state diagram and

sequence diagrams
can now be
identified

automatically

Figure 26: Sequence/State Diagram Mismatch more obvious though common base model

64

implementation with its corresponding system/software model. As such the most significant byproduct are

traces (mapping) between the model elements and the source code of the software product (the solution).

The left side of Figure 27 shows the typical life-cycle view of software development. Once a

solution (implementation) has been created, using the top-down life-cycle approach, the behavior of the

solution can be observed using the test scenarios which were created in the process. The captured

observations in turn, which correspond directly the test scenarios, can be mapped back to the problem

(requirements, architectures). Test scenarios are preferably created during the problem description stage

and are refined in the analysis and design stage.

This techniques only works once an executable product, prototype, or simulation is available so

that scenarios may be tested against it and the resulting internal activities of the product (or prototype) can

be observed. Since observations correspond directly to scenarios and scenarios in turn corresponds directly

to problem descriptions (requirements, architecture) a trace from implementation to requirements or

architecture is established. It is our belief that this alternative process makes the tracing less difficult and it

even fits nicely into existing testing activities. What remains is establishing and maintaining scenarios.

Figure 28 shows a simple example. It shows some high-level artifacts such as a class diagram and

associated state and sequence diagrams (e.g possibly using SCED to derive the one from the other). Since

the sequence diagram models the behavior of a system (component) it can be used as an input to test the

system. There are various tools which perform static and dynamic analysis based on the source code and

the execution and the output of these tools then reveal what happened during the execution. Thus, using

sequence diagrams we can established a relationship (mapping) between the scenario and the physical low-

level representation of the system. Since we also know what high-level components the scenario

Problem

Solution

Analysis

Design

Scenario

Observation

Figure 27: Combining Top-Down and Bottom-Up

65

corresponds to, we also get the relationship between high-level components and the implementation. In the

figure this is indicated through fat arrows. Indicated also through the dotted circle is the result of another

test execution of another class.

Figure 29 expands on that idea and shows two high-level diagrams and their corresponding

scenarios. Through trace observation we again get the relationships to their lower-level components. Using

both execution results we can now also make additional assumptions about the relationship of the high-

level components. For instance, the observation of the second execution (c1 on the right hand side) showed

that the same classes and additional ones were used as in the first execution (x1). Thus, for the high-level

design this could imply an aggregation relationship between the involved components C and X. This type

of information can then be used to validate components of the higher-level diagrams. Thus, the trace

observation approach serves both mapping and transformation:

Design

Implementation

ClassBridgingConnectors[currSystem.bridgingConnectors.length];
 int numConns = 0;
 // See if new parts share some data
 for (int i = 0; i < currSystem.bridgingConnectors.length; i++) {
 if (currSystem.bridgingConnectors[i].type.equals("sharedData")) {
 share = true;
 problemConn[numConns] = currSystem.bridgingConnectors[i];
 numConns++;
 }
 }
 if (share) {
 // See if composing parts may run concurrently
 boolean runConc = false;
 for (int i = 0; i < currSystem.bridgingConnectors.length; i++) {
 if (currSystem.bridgingConnectors[i].type.equals("spawn")) {
 runConc = true;
 break;
 }
 }

 int numAuxPairs = 0;
 // See if new system contains bridging control connectors (either calls or
 // spawns) and/or bridging data connectors with one of the involved parts
 // being layered
 for (int i = 0; i < currSystem.bridgingConnectors.length; i++) {
 if (!inPairs(auxPairs, numAuxPairs,

class
diagram state

diagram

sequence
diagram

physical design
and code

Figure 28: Using TraceObserver for Mapping and Transformation

66

• Mapping between low-level and high-level components

• Mapping between various high-level components

• Transformation of behavior diagrams to structural diagrams (the sequence diagram is mapped

to a physical class diagram which in turn could be refined using Rose/Architect)

• Transformation of low-level structural/behavioral diagrams to corresponding high-level

structural/behavioral diagrams.

X Y

x1

c1

A B

C
W uses a subset of X - may

mean that W is part of X

D

B

C0

E

D

HG

F

Figure 29: Mapping between high-level Components

67

7.5 Applying Integration Techniques to Activities

Above techniques showed ways on how to address architectural mismatches between and within

views. As we discussed in the beginning of this section, we distinguish between three major dimensions of

views – the vertical dimension (different view layers), the horizontal dimension (different view types) and

the process dimension (different view configurations). Above examples showed one of each.

Rose/Architect is an example for a vertical integration technique, SCED is one for horizontal integration,

and TraceObserver is a process integration technique (although it also falls into the other categories). In a

real development environment it is very likely that a combination of those techniques (and others) is

necessary to yield effective results. For example, a state diagram may be derived using SCED but it must

still be abstracted (simplified) in order to be comparable to the original state diagram (e.g. in our hospital

example, the create visiting record state in the original view could be broken down to do:create visiting

record and do:create patient). Table 2 summarizes the integration techniques in their usefulness in

addressing the integration activities discussed before. It basically shows that the issues of mapping and

transformation are addressed but not the issue of mismatch identification itself which has to be done

through other means. We will discuss Differentiation in more detail shortly.

7.6 Shortfalls of the VI techniques

The hospital system example (Figure 12) also showed that the assumptions of a common name

base are not only unrealistic but also impossible between some types of views. For instance, as it was

mentioned before, the boxes and arrows in state diagrams are not semantically the same as the ones in

sequences diagrams. Thus, it is clear that the names derived through transformation will most likely not

Table 2: Usefulness of Integration Techniques for Integration Activities

Integration Activities

Integration Techniques

Mapping Transformation Differentiation

Rose/Architect + ++ -
Tracing through Execution ++ + -
Collaboration to State Diagram - ++ -

68

match any other name. This is also true for the Rose/Architect model when it comes to the naming of

transitive relationships. This is the reason why we talked about the need for Mapping in view integration.

Further, SCED, the sequence diagram to state diagram conversion is automatic one direction but

not in the other. Possible ways of addressing that are:

1. Base model can store additional information about the origin of the state diagram viewpoint

(=> the state diagram which was derived from sequence diagrams) so that the missing

information is available when a backward comparison is applied. It is the view’s

responsibility to ignore that additional information so that the state diagram view still looks

the same.

2. Verify which other objects offer the same/similar operators (if they are know). E.g. in the case

of our patron and visiting record example, if the state says checking patron DB than it is clear

that the patron object is referred to. Similarly the name of connectors may be used too.

This implies that the integration techniques are addressing some aspects of view integration but

not others. This is not surprising since they were not created for this use. To compensate for their

deficiencies we again have to look to the base model which we will discuss next. It is save to say that no

individual technique will probably be sufficient in the long run – just like the software crisis where the

cumulative set of best practices are the answer, techniques for integration need to be applied together.

7.7 System Model (Base Model; Repository)

The system model has been mentioned many times in this work but so far we have not elaborated

on it. This section will therefore focus on this very important aspect of view integration. The following

summarizes the needs and goals of the system model. We need it in order to:

• Avoid Redundancy (view independent representation)

• Reduce View Integration Complexity/Scalability

• Provide a common data foundation for Differentiation (rules and constraints)

69

• Hide additional information about modeling elements not visible in views but that are needed

for mapping and transformation

Since UML already has a well-defined model foundation (described in UML itself) it seems

natural to use it for our purposes. However, the UML model is only adequate in describing the syntactic

structure of its views. It was not tailored towards two key criteria of above list – that of view redundancy

and information hiding. This does not necessary invalidate the UML models for view integration but view

integration would loose some of its strength if it is used as is. It is therefore the goal of this work to create a

model which is compatible to the original UML model but which does not exhibit the deficiencies of the

former.

On the other hand, it is also unlikely that the model presented in this work will satisfy all our

needs, not to speak about all view integration needs. Thus, with respect to the base model we aim to find

something which satisfies most or needs as well as being open enough for other techniques to be integrated.

The following describes the proposed model.

7.7.1 Missing Information in UML Models

The UML model captures all relevant view information for all views it incorporates, however, not

many of the inter-view relationships between them. Consider for example Figure 30. This figure depicts a

three-class-diagram setting. Although, UML is able to describe each diagram adequately, it fails to capture

any of the relationships between them. The rounded boxes and dashed lines are examples of such missing

information. Only when we know these kinds of inter-view relationships, we are better able to understand

the bigger picture outlined here.

Figure 30 also shows the layer extension which categorizes modeling elements (or even whole

diagrams) into layers/partitions/etc. This figure further shows the refinement extension where components

and connectors are associated with higher-level components and connectors. Not all this information must

be entered manually. The mapping techniques mentioned before can be used to populate the system model

with this kind of information. For example, we see that C0 – C3 are a refinement of C and we also see that

both C (the higher-level component) as well as C1 (a part of the lower-level structure) have a dependency

70

relationship to A. Thus, the fact that the one connector is a refinement of the other could be concluded

through some automated ways. Nevertheless, it is very unlikely that automated techniques could derive this

sort of conclusion without at least some basic inter-view information available.

7.7.2 Avoiding Information Duplication

Figure 31 shows another example of an annotated UML diagram. It shows two class diagrams and

uses the aggregate connector to show refinements between the two class diagrams (upper-left and middle).

The upper-right corner shows a layering diagram (those diagrams are not directly supported by UML,

however, we can use UML’s extension mechanisms to represent it) that categorizes classes into layers.

Finally, the lower-half of the figure shows a sequence diagram, depicting some of the interactions between

these classes. In the current state, above model contains extensive redundancy. Consider for example class

C which is contained in all four diagrams. Each diagram adds another piece of information – the first

defines it, the second refines it, the third categorizes it, and finally the forth instantiated it. Although, the

UML model would be able to deal with this type of redundancy to some limited degree, it is not sufficient

for our needs.

refinement refinementrefinement refinement

A

D

BC

C2C1 C3

C0
B1 B2

B3

layer n+1

layer n

Figure 30: Annotated UML model with VIR extensions

71

Thus, another way of representing above figure would be in form of a base model. One such base

model was described by Grundy [Grundy et al 1996]. However, he did not create a base model to capture

different views but his model was limited to class diagrams and source code only. Nevertheless, this type of

model seems highly beneficial since it breaks down the model into all its atomic pieces of information.

Figure 32 shows an example of a base model for above UML diagrams. Components in this base

model are linked to other model elements in such a way that if a component is changed other components

affected by that change can be notified. Note that the connectors in UML diagrams are components in the

base model, making them first class citizens. In case of a modification to a component, a message is sent to

A

B

C5

C

DB

C

GUI layer

Framework
layer

a : A d : D c : C c31 : C3

create

C2

C3

create()

C1

C4

C

A

Figure 31: Class Diagram and Sequence Diagram in UML

72

the others (neighbors) and if the other element changes it will likewise propagate a change request to all its

neighbors.

The rectangular boxes in Figure 32 correspond to the boxes in Figure 31 (this is done for

simplistic reason, the next section will give another more atomic base model example) and the rounded

boxes show interrelationships between them. This base model exhibits the following features:

A

C

B

class

class diagram
name

dependency

dependency

part-of

C5 C4

C1

dependency

C3

dependency

dependency

C2

class diagram

part-of

part-of

part-of

part-of

layer

GUI layer

D

layer

class diagram

a c

d

c31

instance-of

instance-of

instance-of

instance-of

calls calls

calls

calls

sequence D

13

2

4

layer boundary

Framework
layer

dependency

operation

create

Figure 32: Corresponding Base model

73

• Relationships of components and connectors to diagrams (e.g. class diagram box) are shown

in the same style as other relationships (e.g. dependencies between components)

• Components and connectors are interrelated through multiple dimensions. Consider for

example class C again which is connected to 14 (!) other modeling elements in the base

model.

• No component or connector that means the same is repeatably stored in the base model. Thus,

redundancy is minimized.

• Related components are often directly associated with each other. For instance, interactions in

the sequence diagram can readily be verified with interactions in the class diagram since their

components are directly connected.

7.7.3 Example of Mismatch Identification in the Base Model

Figure 33 shows another example of UML views (a class diagram on the right and a sequence

diagram on the left) and its corresponding base model. Instead of representing classes in boxes as we did in

the last example, this example of a base model refines those into more atomic structures. Again, modeling

elements are represented with as little redundancy as possible. This figure shows also an example of an

architectural mismatch between the class diagram and the sequence diagram. The sequence diagram calls

both the patient and the visiting record with a ‘create’ operator (which is supported by the class diagram),

however, only the visiting record component has one such operator defined – not so the patient component.

Since components and connectors are directly interrelated in the base model, this form of mismatch can be

easily identified there.

7.7.4 Base Model as a View Independent Representation

The base model extends a view in that it also provides all information about modeling elements

that were stripped away by a view. This is like architecting a building where a 2D view of a building does

not reveal the depth of that view. The base model may be seen as being a 3D model of the building and

views are 2D interpretations of it. Changes in the 2D views must not affect other views but likely will.

74

Thus, changes in the views must be propagated to the 3D model to ensure consistency. The base model is

therefore a meta model of all its views. Thus, we have to:

1. Transform views onto the base model. All views that can be mapped onto this model may be

compared there.

2. Transform views into other views if they cannot be represented in the same base model.

aScreen:
Screen

validate

create

get patient data

create

patient not
found

John Smith:
Patient

Smith’s Record:
Visting Record

Screen Patient

Visiting Record

create()

class"Screen" "Current Visiting Record"

sequence D

1

aScreen

instance-of

John Smith

instance-of

instance-of

calls

"create"

calls

2

calls

calls
43

Smith’ Record

class

class
"Patient"

"validate"

"get patient
data"

"patient not
found"

condition

5

operator

dependency

dependency

Figure 33: Views, Base Model, and a (potential) Mismatch

75

3. Transform derived/abstracted views (viewpoints) onto the base model.

In the latter two cases we also have to expand the base model in such a way that information

which might be lost through transformation are still captured. Basically we need to store all information to

be able to reverse the conversion and again yield the same (semantically identical) original model.

7.7.5 Real Views and Derived Views

The base model must, however, not only deal with view information and their known

interrelationships but also with all sorts of derived and abstracted information. For instance, if a technique

such as SCED or Rose/Architect is used to identify mismatches then the base model should also capture

their results. Here, special care must be taken as to not to confuse real architectural information (entered by

architects) with hypothesized information (automatically generated) since the latter is less faithful.

Nevertheless, there are good reasons why derived information should be captured in the base model.

• Similar information may be derived sometimes in the future

• Manual assistance given while deriving view can be considered ‘real’ information, however,

those might only be useful in the context of the derived view.

• They further constrain the existing base model and thus they are needed for Differentiation

(which is based on the base model).

7.7.6 Other issues

• Undo/redo changes

• Renaming/changing information and how to propagate that

• Algorithms for mapping

• Algorithms for transformations

• Algorithms for differentiation

• Life-time and Extend of mismatches or related mismatches

76

7.8 Extending the Notation and Semantics

Although we can create the base model any way we wish, we nevertheless are bound by what

UML views (or others) are capable off. It is not the intent that people use the base model and add

information to it, although, this options should be possible since some more experienced people might find

it more powerful. Thus, information in the base model must somehow be entered through views. This

implies that this work also needs to extend UML views to accommodate the needs of the base model.

Fortunately, UML incorporates extension mechanisms (e.g. stereotypes) and we will make use of that.

However, since a UML component may only have one stereotype attached, we will have to investigate

other extension mechanisms as well. Issues are:

• How to represent Rules and Constraints?

• Can the UML model be integrated with our base model (OO base model)?

• How to deal with non-UML and non-architectural specifications? E.g. more detailed

specification from code?

7.8.1 Describing Rules and Constraints

Since the system model must reflect the synthesis and the analysis of a product, it has to be able to

handle structural information as well as semantical ones. The former are already captured in some detail in

UML, however, the latter need to be described somehow else. For that we use rules and constraints. We

distinguish two types of constraints in a system model:

1) Constraints opposed by a view or style used (e.g. calling hierarchy of layers) and

2) Constraints opposed by a domain (e.g. no two current visiting record shall exist for one

patient)

77

Rules describe the legal or illegal aspects of views and the system then compares these rules with

the constraints opposed by the views and domains in order to identify mismatches (see also Figure 34). The

base model we discussed previously can also be described and interpreted as constraints. For instance, the

fact that John is an instance of Patient constraints John to the structure and behavior of Patient. The

mismatch example in Figure 33 violated the rule that definition and instance must use the same operators

and attributes. In order to describe rules and constraints, we are currently considering the use of either OCL

(Object Constraint Language) [Booch-Jacobson-Rumbaugh 1997] or Z [Bowen-Hinchey, 1995]. Since the

former is supported by UML it is a more likely choice.

Set of Rules

View 1 Set of
Constraints

Set of
Constraints

View 2

Base Model

Figure 34: Rules and Constraints

78

8 Mismatch Resolution

Good order is the foundation of all good things – Edmund Burke

Previously we focused our attention on how to find mismatches – but once found, how can we

deal with incomplete/inconsistent information? Can approximation concepts be used to fill the gap? In case

of the mismatch examples in Figure 33 the violated rule can be resolved by either implementing all its

constraints or eliminating them. Thus, the two choices we have are 1) create an operator named create for

Patient or 2) delete the call from Screen to Patient. Since these options are direct derivations of the rules

and constraints, they could be derived automatically and presented to an architect to make the final

decision.

We don’t belief that the actual mismatch resolution should be done fully automatic. This issues is

related to a previous endeavor of self-correcting source codes for compilers which ultimately failed because

of the social and technical complexities involved. However, we belief that presenting the architect not only

with (potential) mismatches but also with ways on how to resolve them is highly beneficial in both dealing

with mismatches and in understanding them. Furthermore, it might be very beneficial to also devise

techniques that deal with the issue of which options are better. To come back to our example of Figure 33

and our two choices discussed above, are both options equally good? We can investigate this by actually

executing those options.

1) Remove the create call to Patient from the sequence diagram: A side effect of that would be

that although our immediate mismatch rule is resolved, we find that now we do not have an

example any more which shows the dependency of Screen to Patient in the class diagram. Or

another way of saying this is, we had two arguments in favor of a call from Screen to Patient:

the dependency connector in the class diagram and the call connector in the sequence

diagram; but only one argument against it.

79

2) Add a create operator to Patient in Class Diagram: This option also resolves our immediate

mismatch rule and no further side effects are created – meaning no other mismatch rules were

violated.

Thus, it seems that option number 2 is the better one and should be presented to the architect with

a higher confidence. Mismatch resolution is not the central focus of our work here. Nevertheless, we think

that our framework is also very suitable for incorporating it.

80

10 Integrating this Work

When we build, let us think that we build forever – John Ruskin

In Chapter 4 we introduced related work of other researchers. There we claimed that integration is

part of every aspect of the development life-cycle and, thus, our work and the related work presented in that

chapter, fit somehow into the greater scheme of the view integration problem. This section will elaborate

on that.

10.1 MBASE

In order to determine whether a software/system architecture is satisfactory (meets stakeholders’

expectations) one needs considerably more than a specification of components, connectors, configurations

and constraints. Considering the architecture as an island, as we did to some degree in this work, puts one

at a serious disadvantage in evaluating its adequacy.

[Boehm, et al., 1999] has been developing, applying and refining an approach called MBASE

(Model-Based Architecting and Software Engineering) [Boehm-Port, 1998] to address this issue. It focuses

on ensuring that a project’s product models (architecture, requirements, code, etc.), process models (tasks,

activities, milestones), property models (cost, schedule, performance, dependability), and success models

(stakeholder win-win, IKIWISI (I’ll Know It When I See It), business case) are consistent and mutually

enforcing.

Figure 35 summarizes the overall framework used in the MBASE approach to ensure that a

project’s success, product, process and property models are consistent and well integrated. At the top of

Figure 35 are various success models, whose priorities and consistency should be considered first. Thus, if

the overriding top-priority success model is to “Demonstrate a competitive agent-based data mining system

on the floor of COMDEX in 9 months,” this constrains the ambition level of other success models

(provably correct code, fully documented as a maintainer win condition). It also determines many aspects

of the product model (architected to easily shed lower-priority features if necessary to meet schedule), the

81

process model (design-to-schedule), and various property models (only portable and reliable enough to

achieve a successful demonstration). In the context of our work, we are primarily concentrating of ensuring

the integrity of the product model. However, for our work to be truly useful, it also needs to be integrated

with the other types of models.

10.2 Architectural Mismatches During System Composition

Furthermore, our work did not address a wide range of architectural views but instead focused on

UML views only. As such we did not investigate architectural description languages (ADL). As mentioned

in Chapter 4, there are numerous groups working and ADLs and their integration (e.g. [Garlan et al 1997],

[Robbins et al 1998], and [Gacek 1998] to list just a few).

Our view integration effort fits into theirs in a number of ways. For one, UML views are

considered to be more general-purpose views and thus ADL views may be used to analyze some aspects in

more detail. Other ADL integration efforts are more high-level then ours and, thus, they may be used in

advance to identify possible mismatches earlier.

Success Models
Win-Win, IKIWISI, Business-Case, Mission Models,...

Product Models
Domain
Artifacts
- Requirements
- Architecture
- Code
- Documentation
Packaging
- Embedded
- Shrink Wrap
- Turn Key
Product Line

...

Process Models
Life-Cycle
- Waterfall
- Evolutionary
- Incremental
- WinWin Spiral
Anchor Points
Risk Management
Activities
- CMM KPAs

...

Property Models
Cost & Schedule, Performance, Assurance, Usability,...

Evaluation &
Analysis

Product Development & Evolution Process

Milestone Content, Planning & Control

Entry/Exit
Criteria

V&V
Criteria

Figure 35: MBASE Overview

82

For instance, the work of [Gacek 1998] fits into the latter category. Figure 36 is an example that

shows components of systems that are described through some properties and styles. The information

management system described here consists of five major components. Two of those components, Existing

Information System and Oracle, are part of the current management system. New capabilities are added

through My Application, which uses another database. On top of that, a component called My Sync is in

charge of ensuring consistency between both databases.

The components Existing Information System, Oracle, and Object-Oriented Database are COTS

(commercial off the shelf) products and their internal structure is largely unknown – although the general

type of style and some architectural properties are known. The remaining components, My Application and

My Sync on the other hand are very well know since those are applications to be developed in-house.

Knowing some of the properties of systems and their components allows us now to reason about potential

mismatches that could occur while composing them. This is basically what the work of [Gacek 1998] and

Existing
Information System

Event-Based

My Application

Object-Oriented

Knowledge Base

Oracle

Object-Oriented
Database

Pipe and Filter

My Sync

Information Management System

Figure 36: System Composition Example

83

[Abd-Allah 1996] characterizes. With their tool, named AAA (for Architect’s Automated Assistant), we

can now describe our proposed system in terms of known properties and the tool then infers potential

mismatches based on those properties. Thus, their work represents and analyzes architecture although their

components remain black boxes.

On the other hand, our work can be used in a more detailed level to investigate mismatches within

one such box. For instance, in above example, the component My Application is an object-oriented

component where UML is used to describe the details. Therefore, our work may be used to describe

mismatches within the My Application box, whereas their work can be used to describe potential

mismatches when we combine My Application with other (COTS) components.

10.3 ADL Views as Mini-Spirals

Another way of integrating ADLs with UML (or the software development process at large) is to

substitute the general-purpose language whenever appropriate. This was indicated above when we said that

UML views are considered to be more general-purpose views and, thus, ADL views may be used to

analyze some aspect in more detail. [Medvidovic 1998] provides an interesting analysis of that aspect (see

General Spiral-Cycle
Process Model

ADL
Cycle

1

...UML

ADL
Cycle

2

Figure 37: General-Purpose Models and ADLs

84

Figure 37). This figure depicts the use of ADLs (and other more formal design methods) as being mini-

spirals within the existing process model (e.g. another spiral model in this case). View integration in this

type of example has to ensure the conceptual integrity of the pre- and post conditions of those mini-spirals.

It is out of the scope of this work to do a more comprehensive analysis on how other integration

approaches fit together. Nevertheless it would be interesting to know how fundamentals of our approach

would work with other integration ideas – for instance, how well does our base model (system model) work

with ADLs which use conceptually different types of components and connectors.

85

11 Future Work

Even when the laws have been written down, they ought not always to remain unaltered - Aristotle

Issues concerning future work were already addressed throughout this work. This section will

summarize the key aspects again. We basically distinguish two types of future work: 1) what we hope to

accomplish as part of our thesis work and 2) what we belief this general area should accomplish.

Future Work for this Thesis:

• Define the structure and constraints of the base model

• Define mismatches in form of consistency and completeness rules

• Describe extensions to the UML model

• Identify and Describe Mapping, Transformation, and Differentiation techniques

• Provide more comprehensive mismatch examples using several integration techniques

• Define mismatch resolution options and their accuracy

Future Work for View Integration in general:

• Find a more Universal Model – a true View Independent Representation

• Automating the mismatch identification and resolution process

• Reduce the state explosion problem

• Process, Property, and Success model integration (MBASE)

• ADL integration

86

12 Conclusion

The secret of success is constancy to purpose – Benjamin Disraeli.

Views are nothing more than an abstraction of relevant information from its model and, thus,

views are necessary to present information in some meaningful way to stakeholders (developer, architect,

customer, etc.) – something the system model does not do. Because of views, “inconsistencies are

inevitable in software development […] processes and products. They provide a focus for further

development […], and can be regarded as ‘desirable’ in that they highlight issues that need further

attention. As such, they should be tolerated, analyzed and acted upon.” [Hunter-Nuseibeh 1997] Therefore,

we talk about the need for view integration, and thus, we also talk about the need of having a system model

integrated with its views. Although, a full integration effort may seem impossible at this point, it can still be

attempted for significant parts.

With that purpose in mind, this work presented a framework and some techniques to help software

developer in ensuring the conceptual integrity of their models, and thus ensuring the consistency of views.

Major problems we have not yet fully addressed are:

• Finding (or developing) integration techniques covering a wide range of views

• Dealing with the state explosion problem in mapping and transforming views and as such with the

issue of scalability

• Addressing the issue of automatically supported mismatch resolution (as compared to just automated

mismatch identification)

Despite those problems, we feel that the potential benefits of using integration techniques, such as

the ones above, are immense. We have shown that it is possible to (at least partially) automate the task of

mismatch identification and since computers are clearly much more efficient in comparing views, this

87

implies that substantial manual labor can be saved (currently, consistency checking is probably still the

largest development activity that is done almost entirely manually). Another benefit of our approach is that

mismatches may be identified as early on as they are created. Every time new data is added to the model,

tools (e.g. agents) can validate them. This in turn can save substantial rework cost later on.

88

13 References

Abd-Allah, A. (1996) “Composing Heterogeneous Software Architectures,” Doctoral Dissertation, Center
for Software Engineering, University of Southern California, Los Angeles, CA 90089-0781, USA.

Allen, R. and Garlan D. (1996) “The Wright Architectural Specification Language,” 24 September
(http://www.cs.cmu.edu/afs/cs/project/able/ftp/wright-tr.ps).

AT&T (1993) “Best Current Practices: Software Architecture Validation,” AT&T, Murray Hill, NJ.

Cheng, B.H.C., Wang, E.Y., Bourdeau, R.H., Richter, H.A. (1995) “Bridging the Gap Between Informal
and Formal Approaches to Software Development,” Proceedings of Software Engineering Research
Forum, November.

Chroust, G. (1992) “Modelle der Software Entwicklung,” Oldenbourg Verlag

Coad, P. and Yourdon, E. (1991a) “Object-Oriented Analysis,” Yourdon.

Coad, P. and Yourdon, E. (1991b) “Object-Oriented Design,” Yourdon.

Belkhouche, B. and Lemus, C. (1996) “Multiple View Analysis and Design,” Proceedings of the Viewpoint
96: International Workshop on Multiple Perspectives in Software Development.

Boehm, B.W. (1981) “Software Engineering Economics,” Prentice Hall.

Boehm, B.W. (1996) “Anchoring the Software Process,“ IEEE Software, July, pp.73-82.

Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1998), “Using the WinWin Spiral Model: A Case
Study,” IEEE Computer, July, pp. 33-44.

Boehm, B., Port, D. (1998) “Conceptual Modeling Challenges for Model-Based Architecting and Software
Engineering (MBASE),” Proceedings of Conceptual Modeling Symphosium.

Booch, G. (1994) “Object-Oriented Analysis and Design with Applications,” Second Edition, Addison-
Wesley.

Booch, G., Jacobson, I., and Rumbaugh, J. (1997) “The Unified Modeling Language for Object-Oriented
Development,” Documentation set, version 1.0, Rational Software Corporation.

Brooks, F. P. (1995) “The Mythical Man-Month,” Addison Wesley.

Bowen, J. P., Hinchey, M. G. editors (1995) “ZUM’95: The Z Formal Specification Notation,” 9th

International Conference of Z Users, Volume 967 of Lecture Notes in Computer Science.

Delugach, H.S. (1996) “An Approach to Conceptual Feedback in Multiple Viewed Software Requirements
Modeling,” Proceedings of the Viewpoint 96: International Workshop on Multiple Perspectives in
Software Development.

89

Ehrig, H., Heckel, R., Taentzer, G. and Engels, G. (1997) “A Combined Reference Model- and View-Based
Approach to System Specification,” International Journal of Engineering and Knowledge Engineering,
Vol.7 No.4, pp. 457-477, World Scientific Publishing Company.

Ferguson, J., et al. (1996) “Software Acquisition Capability Maturity Model,” Technical Report,
CMU/SEI-96/TR-020, ESC-TR-96-020.

Finkelstein, A, Kramer, J., Nusibeh, B., Finkelstein, L., and Goedicke, M. (1991) “Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development,” International Journal on
Software Engineering and Knowledge Engineering, March, pp. 31-58.

Gacek, C. (1998) “Detecting Architectural Mismatches During System Composition,” Doctoral
Dissertation, Center for Software Engineering, University of Southern California, Los Angeles, CA
90089-0781, USA.

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B. (1995) “On the Definition of Software System
Architecture,” in Proceedings of the First International Workshop on Architectures for Software
Systems - In Cooperation with the 17th International Conference on Software Engineering, Seattle,
WA, 24-25 April 1995, pp. 85-95.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994) “Design Patterns – Elements of Reuseable Object-
Oriented Software,” Addison-Wesley.

Garlan, D., Monroe, R.T., Wile, D. (1997) “ACME: An Architecture Description Interchange Language,”
Proceedings of CASCON’97, November.

Grady, J. O. (1994) “Systems Integration,” CRC Press, Boca Raton, FL.

Grundy, J.C., Hosking, J.G, Mugridge, W.B., Amor, R.W. (1996) “Support for Constructing Environments
with Multiple Views,” Proceedings of the Viewpoint 96: International Workshop on Multiple
Perspectives in Software Development.

Humphrey, W.S. (1995) “A Discipline for Software Engineering,” Addison-Wesley, Reading, MA.

Hunter, A., Nuseibeh, B. (1998) “Managing Inconsistent Specifications: Reasoning, Analysis, and Action”
TOSEM 7(4): 335-367 (1998)

IEEE (1998) “Recommended Practice for Architectural Description,” Draft Std. P1471, IEEE.

Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G. (1992) Object-Oriented Software Engineering-A
Use Case Driven Approach, Addison-Wesley Publishing Company.

Koskimies, K., Systä, T., Tuomi, J., and Männistö, T. (1998) “Automated Support for Modelling OO
Software,” IEEE Software, January, pp. 87-94.

Kruchten, P. B. (1998) “The Common Misconceptions about Software Architecture,” Proceedings of the
2nd Ground Systems Architecture, El Segundo, CA.

Kruchten, P. B. (1999) “The Rational Unified Process,” Addison-Wesley.

90

Kuhn, D.A. (1996) “A Discription of the Systems Engineering Capability Maturity Model Appraisal
Method Version 1.1,” CMU/SEI-96-HB-004, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1996.

Magee, J. and Kramer J. (1996) “Dynamic Structure in Software Architectures,” in Proceeding of the ACM
SIGSOFT’96: Fourth Symposium on the Foun-dations of Software Engineering (FSE4), San Francisco, CA,
October, pp. 24-32.

Oreizy, P., Medvidovic, N., and Taylor, R. (1998) “Architecture-Based Runtime Software Evolution,”
Proceedings of the 20th International Conference on Software Engineering.

Övergaard, G. (1998) “A Formal Approach to Relationships in the Unified Modeling Language,”
Proceedings PSMT’98 Workshop on Precise Semantics for Software Modeling Techniques.

Mitchell, H.J. (1998) “An NRO Vision for Ground Systems Architecture,” Proceedings of the 2nd Ground
Systems Architecture Workshop, El Segundo, CA.

NASA (1993) “Software Formal Inspection Process Standard,” NASA-STD-2202-93.

Nuseibeh, B., Kramer, J., and Finkelstein, A. (1994) “A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specification,” IEEE Transactions on Software Engineering,
pp. 760-773, October.

Nuseibeh, B. (1995) “Computer-Aided Inconsistency Management in Software Development,” Technical
Report DoC 95/4, Department of Computing, Imperial College, London SW7 2BZ.

Nuseibeh, B. (1996) “Towards a framework for managing inconsistency between multiple views,”
Proceedings of the Viewpoint 96: International Workshop on Multiple Perspectives in Software
Development.

OMG (1997) “Object Management Group Adopts Unified Modeling Language and Meta Object Facility
Specifications,” Press Release of the OMG, November 17.

Paulk, M.C., Weber, C.V., Curtis, B., and Chrissis, M.B., Eds. (1995) “The Capability Maturity Model:
Guidelines for Improving the Software Process,” Addison-Wesley, Reading, MA, 1995.

Rapide (1996) “Guide to the Rapide 1.0 Language Reference Manuals,” Stanford University, 5 December
(http://anna.stanford.edu/rapide/lrms/overview.ps).

Rechtin, E. (1991) “System Architecting, Creating & Building Complex Systems,” Prentice Hall,
Englewood Cliffs, NJ.

Perry, D. E. and Wolf, A. L. (1992) “Foundations for the Study of Software Architectures,” ACM SIGSOFT
Software Engineering Notes, October.

Robbins, J.E., Medvidovic, N., Redmiles, D.F., Rosenblum, D.S. (1998) “Integrating Architecture
Description Languages with a Standard Design Method”, Second EDCS Cross Cluster Meeting in
Austin, TX, ftp://www.ics.uci.edu/pub/arch/papers/TR-ICS-UCI-97-35.pdf.

Royce, W. W. (1970) “Managing the development of large software systems: Concepts and techniques,”
Proceedings of ICSE 9.

91

Rumbaugh, J., Blaha, M., Premerlani, W., and Eddy, F. (1991) “Object-Oriented Modeling and Design,”
Prentice Hall.

Sage, Andrew P., Lynch, Charles L. (1998) “Systems Integration and Architecting: An Overview of
Principles, Practices, and Perspectives,” Systems Engineering, The Journal of the International Council
on Systems Engineering, Wiley Publishers, Volume 1, Number 3, pp.176-226.

Schönberger, S., Keller, R.K., and Khriss, I. (1998) “Algorithmic Support for Model Transformation in
Object-Oriented Software Development,” Technical Report GELO-82, Université de Montréal,
Montreal, Quebec, Canada, February.

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., and Zelesnik, G. (1995) “Abstractions for
Software Architecture and Tools to Support Them,” IEEE Transactions on Software Engineering, vol.
21. no. 4, April 1995, pp. 314-335.

Shaw, M. and Garlan, D. (1996) “Software Architecture: Perspectives on an Emerging Discipline,”
Prentice Hall.

Sheard, S.A., Lake, J.G. (1998) “Systems Engineering Standards and Models Compared”, Proceedings of
the Eighth International Symposium on Systems Engineering, Vancouver, Canada, pp. 589-605.

Siegfried, S. (1996) “Understanding Object-Oriented Software Engineering,” IEEE Press.

Sommerville, I. (1996) “Software Engineering,” Addison-Wesley.

Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Robbins, J.E., Nies, K.A., Oreizy, P., and
Dubrow, D. (1996) “A Component- and Message-Based Architectural Style for GUI Software,” IEEE
Transactions on Software Engineering, pp. 390-406, June.

Wang, E.Y., Richter, H.A., and Cheng, B.H.C (1997) “Formalizing and Integrating the Dynamic Model
within OMT,” Proceedings of the IEEE International Conference on Software Engineering, May.

Wang, E.Y., Cheng, B.H.C. (1998) “A Rigorous Object-Oriented Design Process,” Proceedings of the
International Conference on Software Processes (ICSP5), June.

14 Appendix

14.1 Complete Set of Rules in Rose/Architect

