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ABSTRACT
We present a detailed statistical analysis of the characteris-
tics of partial Web graphs obtained by sub-sampling a large
collection of Web pages.

We show that in general the macroscopic properties of
the Web are better represented by a shallow exploration of a
large number of sites than by a deep exploration of a limited
set of sites. We also describe and quantify the bias induced
by the different sampling strategies, and show that it can be
significant even if the sample covers a large fraction of the
collection.

1. INTRODUCTION
The number of Web pages that can be indexed by search

engines is estimated in over 11.5×109 pages [22, 7]. The Web
represents the greatest endeavour of all times in the field of
collecting and sharing knowledge, and introduces significant
challenges in retrieving, classifying and ranking its contents.

Web information retrieval techniques often make several
assumptions on the properties of the Web, and characteriza-
tion studies aim at providing a firm basis for those assump-
tions. Web characterization studies require representative
samples of the Web, for instance, for comparing Web rank-
ing or Web crawling techniques. In the case of Web crawling,
the subsets obtained by sampling are used by researchers as
a benchmark for testing different crawling strategies before
employing them in effective crawling.

However, the computational resources for global scale crawl-
ing can be prohibitively large for most organizations, with
this type of crawl having an estimated cost close of over US
$1.5 Million [17], considering only the network connectivity
costs.

The large amount of resources needed for performing a
large crawl of the Web, and for analyzing the resulting data,
can become even more problematic when studying Web dy-
namics. For studying the evolution of a changing Web,
most researchers use periodic snapshots of the state of the
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Web at different times. Obtaining each such snapshot takes
a large amount of network resources and disk space for stor-
age, and this limits the size and/or frequency of the snap-
shots.

In this context, processing time, disk space and network
usage can be reduced greatly by using adequate sampling
methods, able to extract small but representative samples
from the Web pages. The research question this paper ad-
dresses is: what is the most efficient and effective way of
sampling a subset of a the web of a country?

By efficient, we mean that we want to sample only a
fraction of the graph, by effective, we mean that the sample
has to be representative of the link structure of the overall
graph. The main contributions of this paper are:

• We compare different methods for Web sampling by
sub-sampling a large Web collection.

• We evaluate each method by studying several link-
based metrics over the resulting sample.

• We show that deep crawling over a limited set of Web
sites is not appropriate for studying the characteristics
of the macroscopic structure of the Web, and that it is
much better to have a representative sample of many
different Web sites, even if the exploration has to be
more shallow to download the same amount of pages.

The next section discusses previous work on this topic,
and Section 3 presents the collection and tools we use. Sec-
tion 4 compares the sampling strategies by presenting a de-
tailed statistical analysis of the obtained sub-samples. Fi-
nally, Section 5 presents our conclusions.

2. PREVIOUS WORK
Our work is concerned mostly with link analysis and the

macro structure of the link graph and the “bow-tie” struc-
ture depicted by Broder et al. [15]. This structure repeats
at smaller scales, as observed in [18], and it can be further
decomposed into smaller structures [20, 6].

There are basically two types of sampling techniques that
are used for analyzing the Web. Sampling by random walks,
and vertical sampling.

Sampling by random walks implies starting at a given
page and follow out-links at random; this type of sampling
is biased towards pages with high connectivity, as they are
more likely to be reachable by a random walk. A technique
for countering that bias is due to Henzinger et al. [24]; their
method involves a second phase in which the nodes found
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during the random walk are re-sampled. The sampling prob-
ability for the second pass is inversely proportional to the
PageRank the nodes get in the first pass, so this approxi-
mates a uniform sampling. The bias induced by a random
walk like this on a Web graph has also been studied by Boldi
et al. [12].

Vertical sampling involves delimiting previously a set
of Web pages to be crawled, and then studying the obtained
samples. This delimitation is typically done considering a
restriction on the domain name of the hosts crawled. This
can be done either by considering only a large first-level do-
main (such as brown.edu [31], nd.edu [2], etc.), or by taking
the web domain of a country, this is the set of pages under
a common country-code top-level domain. There have been
several studies of vertical sampling of countries including
[11, 21, 5] among many others (for a recent survey of several
of them, see [3]). A related study that considers links among
national domains is presented in [10].

A study that is related to ours is [32], in which the au-
thors study how several Web collections taken from different
subsets of the Web differ in terms of their macro structure.
Those collections were basically disjoint, while here we com-
pare subsets of a larger sample.

When characterizing a large graph, many aspects of the
topology of the graph can be studied. Reference [16] presents
a comprehensive survey on the type of statistics that can be
extracted.

3. EXPERIMENTAL FRAMEWORK
This section introduces the test collection we use for ex-

tracting the sub-samples and the strategies used for sam-
pling.

3.1 Collection
We are using a collection of pages under the country-code

of Slovakia (SK), obtained by a breadth-first crawl carried
by the Laboratory of Web Algorithmics1 in June 2005.

The crawling found 13,478 hosts starting from a large set
of seed URLs, with limits of up to 100,000 pages per host,
and 16 levels of links from the starting pages. Compared to
other crawls used for Web characterization [11, 3, 21] this is
a very deep crawl; in other crawls, up to 20,000 pages per
host and 8 links of depth are typical limits.

The obtained graph has 50.6 million nodes and 1.9 billion
arcs, this is roughly 38 links per page. The full graph uses
about 7.4 GiB of disk space uncompressed (this is, using 4
bytes per arc).

We note that our view of the Web is itself a sample ob-
tained by BFS, as it is not possible to obtain a copy of the
full Web, which may contain, for all practical purposes, an
infinite number of pages. A breadth-first crawler with cer-
tain limits is the standard tool for studying characteristics
of the Web. This paper focuses on finding out how to obtain
the same characteristics of a large BFS crawl by sampling
less pages, and on measuring the biases that are induced by
different sampling methods.

1Laboratory of Web Algorithmics, Dipartimento di
Scienze dell’Informazione, Universitá degli studi di Milano,
http://law.dsi.unimi.it/.

3.2 Tools
We used the web graph compression framework [13] so the

graph uses only 728 MiB on disk. Remarkably, this is less
than 2 bits per arc on average. We obtained the samples
by processing the compressed graph. To extract strongly
connected components and compute most of the statistics
presented here, we used the semi-external algorithms imple-
mented in the COSIN library [27].

With respect to the hardware, the most important aspect
was to have a reasonable amount of RAM to speed up the
semi-external algorithms of the COSIN library. We used
a normal PC with a Pentium-4 processor at 2.8 GHz and
2 GiB of RAM. We stored several partial snapshots of the
Web graph and used about 150 GB of disk space in two
SCSI disks in RAID-1 (mirror), although we could have used
less by studying the partial graphs sequentially and then
deleting them. The total running time for all the analysis
was roughly two days, and link-based ranking computation
was the most expensive part.

3.3 Sampling methods
Our sampling methods pick some nodes according to some

schema, and then include an edge in the sampled graph if
both its source and destination nodes were picked. We fixed
the fraction of nodes to be picked by each sampling method
to 0.1, 0.2, 0.5, 0.8 and 0.9.

The schemes used for picking nodes are the following:

Uniform random sampling Pages are chosen uniformly
at random with a certain probability. This sampling
strategy is actually not possible for a standard Web
crawler that must discover pages by following links,
but we used it as a baseline for the comparison.

Sampling by selecting entire sites Sites are chosen uni-
formly at random with a certain probability, and all
of the pages inside a site are included in the sample.
We continued this process until we have a predefined
fraction of the nodes in the graph. This is feasible
in practice and the crawler must be instructed not to
follow links outside the sampled sites.

Sampling by breadth-first search (BFS) All the initial
pages of sites (the starting or home page, located in the
root directory of the site and typically named “/index.*”
or just “/”) were sampled. We consider those pages to
be at depth equal to 1. All of the pages that are linked
by those pages are considered to have depth equal to
2, and so on. This strategy simulates a BFS search
that stops when a given threshold of nodes is reached.

Sampling by OPIC The OPIC algorithm (online page-
importance computation) was introduced by Abite-
boul et al. [1] as an algorithm for ranking pages while
discovering them. It can be seen as a biased breadth-
first search in which the pages that are highly linked
are more likely to be chosen. To implement this algo-
rithm in external memory, we approximated it by re-
calculating page importance 20 times during the sim-
ulated crawl (instead of after inserting every node).
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4. EVALUATION
This section presents the empirical evaluation of the sam-

pling methods.

4.1 Overlap
There is some degree of overlap between the sampling

strategies. In Table 1 we show the overlap between sam-
pling by breadth-first search (BFS), by OPIC, and by sites.
The overlap between two sampling strategies is measured as
the fraction of nodes that are sampled by both. In this case,
the measurement is done over the largest strongly connected
component of the resulting graph.

Strategy
Strategy Sample size by OPIC by sites

by BFS 10% 60.5% 57.4%
20% 65.9% 64.9%
50% 69.3% 71.8%
80% 59.5% 71.1%
90% 71.0% 71.7%

by OPIC 10% - 50.0%
20% - 59.0%
50% - 66.1%
80% - 70.0%
90% - 68.2%

Table 1: Overlap of the samples obtained by varying the sam-
pling strategy. The sample sizes are given relative to the entire
collection.

If we focus in a particular cut-off value, for instance 50%,
we can see that the overlap among our samples is between
2/3 and 3/4, meaning that the obtained samples are neither
entirely equivalent nor entirely disjoint. OPIC is more sim-
ilar to breadth-first search than to sampling by sites. This
similarity is also observed when analyzing other measures.

4.2 Microscopic measures
Before studying the global-scale connectivity of the graph,

we study link metrics that can be measured in every node.
The most natural metric to start with is the degree. We
begin by analyzing the total degree, considering the sum of
the in-degree and the out-degree. In our sample, the average
degree is 38.1 links.
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Figure 1: Average degree in the different samples.

As we can see in Figure 1, the sampling by BFS consis-
tently overestimates the average degree, while the other sam-
pling strategies tend to underestimate it. Obviously the ran-
dom sample generates a very disconnected graph (remember

that we keep in the resulting graph and edge if both ends of
the edge are sampled) and thus underestimates the degree
even more.

The overestimation of the degree observed in the sample
obtained by BFS, means that pages that are topologically
close to the “root” page of a Web site are more connected
than “deeper” pages. This is consistent with the observa-
tion that most of the inter-site links (links among pages in
different sites) are pointing to the home page of a site [10].

As for the distribution of degree, for both the in-degree
and out-degree it is known that it follows a power-law; we
used Hill’s estimator [25] for computing the exponent. This
requires a step in which we plot a cumulative distribution
and manually assess which is the range in which the data
exhibits a power-law distribution. Table 2 shows the re-
sult. In the case of out-degree the distribution is typically
log-normal or double-pareto [28] and we are providing the
exponent for the tail of the distribution (pages with high
out-degree).

Strategy Sample size In-degree Out-degree

Random 10% 1.81 3.91
20% 1.80 3.08
50% 1.91 3.76
80% 2.30 3.31
90% 2.12 3.44

by BFS 10% 1.81 3.09
20% 2.02 3.19
50% 1.80 3.10
80% 2.15 3.07
90% 1.80 3.60

by OPIC 10% 2.13 3.19
20% 2.02 3.61
50% 1.84 3.26
80% 1.84 3.10
90% 2.25 3.73

by sites 10% 1.86 3.97
20% 2.06 3.05
50% 1.88 3.48
80% 2.22 3.46
90% 2.23 3.36

Full collection 100% 1.83 3.66

Table 2: Exponents of the power-law exponent for the distribu-
tion of the in-degree and out-degree in the collection.

In all the sampling strategies, the exponents are kept
within a reasonable range of the actual value (except for
the out-degree exponent). There is no clear advantage for
any of the sampling strategies, and there is a large vari-
ability in the obtained exponent for all of them. Even the
strategy that samples nodes at random performs reasonably
well. The fact that is it relatively easy to obtain a power-
law distribution by sampling a large Web graph can also be
compared with the observation in [19] that this distribution
is also relatively easy to obtain by using synthetic graph
models such as preferential attachment [8].

A related measure is edge reciprocity, that is, the frac-
tion of edges that are reciprocal. This is measured by com-
puting the overlap between the out-neighbors and in-neighbors
for all nodes in the graph. This can be done easily by sequen-
tially scanning both the graph and its transposed version.



In the full graph, the edge reciprocity is 0.12, meaning that
on average 12% of the out-neighbors of a node have a link
back to it.

As shown in Table 3, all the strategies perform reasonably
well except for the small sub-sample (10%) of the OPIC
strategy. This overestimates the edge reciprocity by a factor
of 50%, while breadth-first search underestimated the edge
reciprocity by a factor of 20% when sub-sampling half of the
nodes.

Sample size
Strategy 10% 50% 90% 100%

Random 0.13 0.13 0.12
by BFS 0.13 0.10 0.13
by OPIC 0.18 0.11 0.13
by sites 0.11 0.15 0.13

Full collection 0.12

Table 3: Edge reciprocity in the different sampling strategies.

Assortativity: the degree of the nodes in a large scale-
free network induces a natural “hierarchy” that can be used
to define different classes of nodes. A network in which
most nodes are connected to other nodes in the same class
(for instance, most of the connections of highly-linked are
to other highly-linked nodes) is called “assortative” and a
network in which the contrary occurs is called “disassor-
tative”. This distinction plays an important role in the
propagation of epidemics [23].

We measured the correlation coefficient between the in-
degree of a page and the average in-degree of its neighbors.
We also measured the assortativity of the out-degree. As
per Table 4, the Web graph is slightly disassortative in the
in-degree, a phenomenon that has been observed in other
scale-free networks [29].

Sample size
Strategy Type 10% 50% 90% 100%

by BFS Indeg. -0.045 -0.021 -0.018
Outdeg. 0.279 0.140 0.922

by OPIC Indeg. -0.012 -0.023 -0.018
Outdeg. 0.279 0.173 0.921

by sites Indeg. -0.055 -0.073 -0.050
Outdeg. 0.061 0.970 0.920

at random Indeg. -0.055 -0.044 -0.017
Outdeg. 0.920 0.911 0.916

Full collection Indeg. -0.017
Outdeg. 0.917

Table 4: Assortativity obtained with different sampling strate-
gies. This includes the assortativity of the in-degree and of the
out-degree.

Interestingly, even if we sample 90% of the nodes by sites
we still obtain an overestimation of the assortativity coeffi-
cient of the in-degree by a factor of 3. The sampling by sites
actually gives the worst approximation in our experiments
when compared to the other techniques.

On the other hand, if we observe the correlation coeffi-
cient of the out-degree of pages that are linked, we observe
an assortative behavior (> 0.9). This means that pages that
are connected to each other are very likely to have a simi-
lar out-degree. This fact is better captured by the random

sampling and the sampling by sites than with the other tech-
niques. All the sampling methods detect the fact that the
network is assortative in its out-degree even with a small
sample, but they differ greatly in their estimation of the
actual coefficient.

PageRank distribution: the tail of the distribution of
PageRank [30] scores in the graph follows a power-law. A
power-law has also been observed by some authors in the
distribution of the values of the authority score given by a
static (global) version of the HITS [26] algorithm.

Table 5 shows the results of calculating the exponent in
the tail of the distribution of PageRank in the different sam-
ples. Surprisingly, even the random strategy achieves a good
performance in approximating this exponent, and the worst
approximations are given by (small) sub-samples created
with the strategy that samples entire sites, and with the
strategy based on OPIC.

Strategy Sample size θ Iterations Residual
[×10−5]

Random 10% 2.23 30 60
20% 2.29 30 30
50% 2.28 19 9.629
80% 2.30 18 9.587
90% 2.31 15 9.869

by BFS 10% 2.13 12 7.436
20% 2.36 13 8.934
50% 2.27 15 8.981
80% 2.25 15 9.494
90% 2.28 15 9.804

by OPIC 10% 2.56 12 9.799
20% 2.61 14 8.891
50% 2.33 15 9.321
80% 2.27 15 9.548
90% 2.27 15 9.745

by sites 10% 1.88 17 9.871
20% 2.23 16 9.564
50% 2.27 20 9.028
80% 2.26 17 9.720
90% 2.27 15 9.393

Full collection 100% 2.31 30 1.668

Table 5: Power law exponent θ of the tail of the distribution
of PageRank, number of iterations required for convergence and
residual after the computation. The max. number of iterations
was set to 30 and the maximum residual to 10−6.

The iterations required for the convergence of PageRank
are also depicted in Table 5. We imposed two limits: 30
iterations or less than 10−6 of L2-norm in the difference be-
tween two consecutive iterations. The more disconnected
the graph is (as in the strategy that samples nodes at ran-
dom and the strategy that goes by sites), the longer the
computation takes.

PageRank/Degree correlation: in general, there is no
correlation between in-degree and out-degree in our sam-
ple, but there is clearly a correlation between in-degree and
PageRank (this is an indication that despite its drawbacks,
in-degree is also reliable as a measure for ranking [33, 14]).
Sampling at random or by sites provides a poorer estimator
of the correlations between PageRank, indegree and out-
degree in this graph, as shown in Table 6.



Correlation
Strategy Size In/Out In/PR Out/PR

by BFS 10% 0.060 0.709 0.024
20% 0.036 0.704 0.019
50% 0.023 0.746 0.008
80% 0.032 0.746 0.005
90% 0.037 0.745 0.005

by OPIC 10% 0.088 0.734 0.022
20% 0.051 0.706 0.015
50% 0.025 0.745 0.005
80% 0.032 0.754 0.005
90% 0.038 0.745 0.005

by sites 10% 0.031 0.523 0.005
20% 0.043 0.676 0.020
50% 0.073 0.561 0.005
80% 0.033 0.725 0.005
90% 0.049 0.609 0.006

at random 10% 0.050 0.599 0.010
20% 0.047 0.567 0.007
50% 0.040 0.616 0.006
80% 0.033 0.739 0.004
90% 0.034 0.747 0.004

Full collection 100% 0.034 0.733 0.004

Table 6: Correlation between PageRank, in-degree and out-
degree.

4.3 Macroscopic measures
The web graph has a well defined structure that was made

evident by the study in [15], where its bow-tie shape was de-
picted. The Web graph nodes are organized in five different
sets. The first set is an unique large strongly connected
component, known as CORE. Starting from this set, we can
identify a set of nodes that can reach the nodes in the CORE
but that can not be reached from them. This set is called
IN. Conversely, we can identify the OUT set comprised by
the nodes that can be reached by the ones in the CORE but
can not reach them.

A fourth set, called TENDRILS, consists of nodes not in
the CORE that are reachable from the nodes in IN, or can
reach the nodes in OUT. “TUBES” is the intersection of
TENDRILS-IN and TENDRILS-OUT. The last set, DISC,
is comprised by all the remaining nodes organized in a num-
ber of independent SCCs. All the components we have de-
scribed are depicted in Figure 2.

The dimensions of the bow-tie components are computed
using a simple algorithm that, exploiting the fact that the
largest strongly connected component has a large size com-
pared to the other strongly connected components, allows
to detect the CORE easily by using sequential forward and
backward traversals of the graph.

In our graph, the CORE represents roughly 71% of the
graph and the OUT component about 29% of the graph.
The other components are very small, as shown in Table 7.
Does this mean that our graph is significatively different
than the one analyzed in [15] and other Web characterization
studies? We think not, for the following reason: we observe
that, as the crawl goes deeper and deeper (in relation to
the number of starting points), all the new nodes that are
found lie in the CORE and OUT components (possibly also
moving some nodes from OUT to CORE as new connections
are discovered), so the relative size of the IN component goes

Figure 2: Bow-tie structure of the Web.

Component Size %

CORE 35,874,391 70.8%
IN 65,570 0.1%

OUT 14,668,250 29.0%
TENDRILS 21,545 0.0%

TUBES 0 0.0%
DISC. 6,398 0.0%
Total 50,636,154 100.0%

Table 7: Relative sizes of the bow-tie components in the full
graph.

to zero. In the case of [15] the crawl is quite deep but the
number of starting points is also very large, this explains
the size of their IN component. In Figure 4 we can see the
evolution of the relative sizes of the components.

The best approximation of the relative sizes of the CORE,
IN and OUT components is given by BFS, and the strat-
egy that samples sites performs quite poorly in this task.
Interestingly, the strategy that samples by OPIC provides
a better approximation of the size of the OUT component,
possibly because it is biased towards high-quality nodes that
have many in-links. Table 8 at the end of this paper details
how the components evolve as the sampling size is increased
in the different strategies.

Extended bow-tie: Refinements of the bow-tie model
were proposed by [20, 4]; these models search for sub struc-
tures of the largest SCC. As shown in Figure 2, in the CORE
component we call a page an entry point if it is directly
reachable from IN and an exit point if it can reach OUT di-

Figure 3: Left: depiction of an unstable node that forms a
“petal”. Right: depiction of an unstable node that forms a “con-
nector”.
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Figure 4: Relative sizes of the CORE, IN and OUT components
of the bow-tie structure.

rectly. We also observe several nodes that we call unstable,
that belong to the CORE but are only attached to it by
two links. As shown in Figure 3, we observe two types of
unstable nodes, that we call petals and connectors.

In general, all the strategies make a good work at cap-
turing these components with some advantage for OPIC.
Table 9 at the end of the paper details these findings.

Levels in IN, OUT: We say that nodes that are at 1-
click distance from any node in the CORE are in the level 1,
at 2-clicks in the level 2 and so on. We measured the num-
ber of nodes in each level in the IN and OUT components.
This feature is really important since it provides a direct
criteria to decide how deep we have to go in order to collect
a predefined amount of nodes in the IN and OUT sets.

Table 10 (at the end of the paper), shows that sampling by
sites performs very bad in finding the distribution of pages
per levels, and also that BFS is better than OPIC in es-
timating the distribution of pages into levels in the OUT
component of the graph.

5. CONCLUSIONS
After analyzing these results the conclusion seems robust:

for many measures the BFS and OPIC strategies perform
much better than sampling by sites. This seems to indicate
that many characteristics of the connectivity of the Web
arise from the interaction among many different sites, pre-
sumably under the control of different Web site administra-
tors.

Even a very deep crawl fails to capture some important
characteristics of the Web graph if it is done over a limited
set of sites. On the other hand, the most significant prob-
lem we observed when sampling by BFS is that it tends to
overestimate the average degree of pages.

Our findings seem to indicate that for large-scale Web
characterization studies, the set of starting pages must
be as large as possible. During this study, we have ob-
served again and again that it is much more important to
have pages from many different Web sites than to crawl
thousands of pages from every Web site in the sample.

We have also observed an interesting phenomenon in the
distribution of the relative sizes of the components in the
bow-tie structure: that the IN component shrinks as
the crawling goes by. This happens because the crawler
discovers more new pages in the CORE and OUT component
than in IN. In general, the existence of a relatively large IN
component in the bow-tie structure as depicted in [15], may
be just a direct consequence of the sampling strategy used.
This merits further study.

For future work, we plan to extend both the coverage and
scope of this research, in terms of considering more metrics
(such as clustering coefficient) and to test our findings by
sampling other large Web graphs. We are also interested in
the study of the dynamics of the Web.
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Table 8: Relative sizes of the components obtained by the sampling strategies.

Strategy Sample size EntryPoints ExitPoints Bridge Connectors Petals

Random 10% 34% 17% 9% 35% 34%
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Table 9: Results of measurements in the extended bow-tie model.
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Levels in the IN component

Strategy Sample size Levels level 1 level 2 level 3 level 4 level 5
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by OPIC 10% 10 71% 23% 4% 1% 1%
20% 8 77% 16% 2% 5% 0%
50% 9 87% 12% 1% 0% 0%
80% 7 84% 14% 2% 0% 0%
90% 5 84% 14% 1% 0% 0%

by sites 10% 30 47% 23% 7% 7% 2%
20% 15 24% 40% 8% 17% 3%
50% 38 73% 15% 9% 2% 1%
80% 106 78% 19% 2% 0% 0%
90% 5 86% 12% 2% 0% 0%

Full collection 100% 7 86% 14% 0% 0% 0%

Levels in the OUT component
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