
Bridging Web Applications and Perceptual User
Interfaces

Ingo Lütkebohle, Sven Wachsmuth, and Franz Kummert

Angewandte Informatik, Universität Bielefeld
{iluetkeb,swachsmu,franz}@techfak.uni-bielefeld.de

Abstract. We present a system that bridges the perceptual user inter-
face paradigm and web applications, through automatic analysis of the
user interface layout. Perceptual input is mapped to application elements
automatically by a new approach, the “Interface Robot”, thus dramati-
cally reducing the effort to adapt existing applications. In addition, we
demonstrate how knowledge about the user interface provides a power-
ful, yet easy to obtain, constraint to improve robustness of perceptual
interpretation. First evaluation results for the approach are given with
respect to a prototypical web application using hand-gestures.

1 Introduction

In many areas, from ubiquitous mobile phones and PDAs, through large displays
in public installations, to less common scenarios such as personal robots, the
previously dominant interaction devices – keyboard and mouse – have been
found impractical or undesirable, due to size and environmental constraints or
the amount of attention they require [1]. Perceptual user interfaces (PUIs), in
contrast, take advantage of the wide range of human interaction modalities to
alleviate some or all of these constraints.

However, input analysis in PUIs poses a much harder problem than the clear
and accurate inputs of keyboard and mouse. While recognition of speech and
gestures has made great strides in recent years, it has also become clear that
their correct interpretation requires (at least) contextual information, as the
input itself is often highly ambiguous. Determining context perceptually is often
just as hard as the original recognition problem, however, and therefore, a more
viable approach is to use application specific knowledge. Traditionally, this has
required considerable expert customization for each application [2].

This paper introduces an approach that reduces customization effort by de-
termining the UI context (position, size and function of UI elements) automati-
cally from the active display of web applications. A reusable component dubbed
“Interface Robot” will be presented that performs the necessary analysis and
control from inside an ordinary web-browser and facilitates communication with
the vision system.

While the UI context does not specify what the user is doing (in the world)
it limits what the user could be doing (to the interface). We therefore consider
the UI context a valuable constraint for interpretation of perceptual data.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

2

In the remainder of this paper, we will first discuss earlier work in the chosen
area, then introduce the web architecture and argue why it is a particularly
suitable foundation for perceptual user interfaces. Subsequently, we introduce
the method and the resulting architecture for multi-modal interaction. Finally,
the evaluation on an example application is described.

1.1 Related Work

Perceptual user interfaces in general are well summarized in [3].
Reducing the effort for PUI development has been addressed more recently

by Kjeldsen et. al [4]. They propose a flexible architecture based on XML descrip-
tions of the application UI and also make an important step to “componentize”
perceptual inputs by providing a set of generic user interface components. How-
ever, the description format is specific to their system and does not make use
of existing standards. According to Borkowski et. al [2], the earlier approach
also requires considerable expertise in vision systems for adaptation, a drawback
which they aim to address in their system through the use of robust vision algo-
rithms. They also provide small, flexible input components that can be combined
to create new types of input elements. In both cases, the effort of providing a
description of the visual interface is left to the application developer.

In contrast to these systems, the proposed approach re-uses the existing UI
specification of web applications, which exists in the form of the standard HTML
format. Additionally, initialization of the vision system also makes use of context
information, thus adapting to changing conditions automatically.

Using perceptual inputs for existing applications has been advocated by the
W3C when, in 2002, a working group was formed to specify multi-modal input
formats [5]. This effort addresses only transport, not interpretation, of multi-
modal inputs. We provide interpretation in the application context by mapping
inputs to the existing interface elements autonomously.

2 Web Technologies for PUIs

This section introduces the most important terms and concepts of the web ar-
chitecture. The web has seen continuous, rapid development over more than 15
years with several technology generations. Despite this, the basic concepts re-
main unchanged and we will concentrate on what makes the web architecture
suitable for our purposes. Unless otherwise noted, all of the formats and proto-
cols have been specified by the World Wide Web Consortium (W3C) [6].

2.1 Terms and Concepts

The World Wide Web (Web) is a client-server system, where web-browsers
(clients) communicate with web-servers via the stateless HTTP protocol. Web
documents are given in the Hypertext Markup language (HTML), which embeds
machine-readable semantic descriptions in the content, with visual appearance

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

3

being specified in auxiliary Cascaded Style Sheets (CSS). Examples of semantic
descriptions relevant for interaction include “links” and “input” elements. Inter-
nally, the browsers represents document elements as well as display attributes
(e.g. the position) in the standard Document Object Model (DOM).

2.2 Client-Side Interaction Capabilities

HTML can embed JavaScript, a scripting language, to provide direct interaction
with the user and, most importantly for us, inspect and modify the DOM at
runtime through the “Interface Robot”. This can affect both content and visual
appearance. Additionally, the browser generates events about changes to the
interface, such as page load, scrolling, mouse-clicks and so on. Conversely, these
can also be synthesized through JavaScript.

While we consider the web architecture very promising, there is one aspect
we are concerned about, namely the update speed of the user interface. Web
browsers have originally been designed to display static web-pages and interac-
tive content was restricted to video plug-ins or Java applets. At the moment,
the so-called “reflow”, that is, the re-layouting and display of the page after a
change to the structure, takes considerable time. The exact time depends on
the amount of change incured and is thus not precisely predictable. For “small
changes” browser developers give an estimate of 100 reflows per second as the
maximum attainable [7].

2.3 Reuse and Variability of Interfaces

Adapting existing interfaces to new devices is always a challenge and re-design
may be required. Web applications in particular have a history of interface flex-
ibility necessitated due to different web client capabilities. The web architecture
has also frequently been extended in its reach, e.g. for mobile devices. Early on,
these developments came with specialized standards (e.g. WAP/WML for mo-
bile phones) but over time, both the HTML/CSS combination and the devices
themselves have matured to encompass these new applications directly, based
on the belief that applications should support varied devices all at once. CSS in
particular was put forward to separate content and appearance and thus enable
versatile display of the same content. Learning from this history, initiatives to
increase accessibility [8] and standards compliance [9] have emerged, promoting
a disciplined, extensible way of designing interfaces.

We therefore believe that the HTML/CSS combination in particular and the
web application space in general are particularly suited as a basis for broadening
the reach of perceptual user interfaces. This is not to say that all web applications
could be used unchanged, but we predict that quite a few can, and for others,
the adaptation effort is most likely considerably reduced.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

4

Fig. 1. Components of the Proposed System

3 System Architecture

The defining characteristic of the proposed system is that it augments a pre-
existing web application. The following section will demonstrate how a per-
ceptual user interface can be grafted onto an existing application (the “host”-
application) without having to modify that application directly.

3.1 Hand Tracking

The most standard part of the proposed system is a hand-tracking component,
implemented using the iceWing vision framework [10]. iceWing is a modular
image processing architecture based on a Directed Acyclic Graph of processing
“plug-ins”. Besides image processing, it also provides network communications
functionality, in this case through HTTP.

The image processing steps described in the following provide a simple way
for detection of hand motion and show the characteristics necessary to take ad-
vantage of the interaction context. We start by detecting motion using temporal
differencing, which is a simple technique that subtracts two successive frames,
applies a threshold to eliminate noise and binarizes the result to show motion
only. Due to its small history of just one frame, it reacts very fast to changes in
the scene, such as lighting.

Then, the detected motion is aggregated over a number of interest regions,
which are derived from the activatable area of the user interface (see section 4 for
details). Additionally, fingertips are detected using a simple fingertip template
[11]. Lastly, the motion inside the interest regions is aggregated over the last
10 frames. From those regions that received input over a threshold during this
period, and have a fingertip match in them, the highest is selected.

3.2 Interface Robot

The central part of the proposed system is a JavaScript library that we have
dubbed “Interface Robot”: It serves a dual purpose:

1. Analyze user-interface to determine size and position of elements.
2. Forward user input from the vision system to the host application.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

5

JavaScript allows us to determine the position of an element on the display
in exact pixel coordinates by examining certain attributes of the DOM [12].
This information has to be updated every time the page is scrolled or otherwise
changed. To do so, the interface robot registers for page load and scroll events,
which are standard in all modern browsers [13]. The gathered information is
formatted as an XML message and pushed to the information broker using an
HTTP POST request.

In fact, there is much more information available from the DOM tree, not just
size and position but also the element-type, formatting and style, the location
in the hierarchy and so on. Of these, we currently use the element-type to find
activatable elements, specifically, anchors having a HREF-Attribute.

Temporal
Consistency

Check

Differencing

Compute
Activation

Fingertip
Detector

Analyze
Interface

Modify
User

Interface

Give
Feedback

Hand Tracker Integration Broker Interface RobotWorld

Stored History

Motion
Image

Fingertip
Candidates

Frame t

Element
Activation

Frame t-1

Interface
Elements

Hand
Position

update

Fig. 2. UML Activity Diagram of the Proposed System

3.3 Information Broker through HTTP

To decouple the Interface Robot from the tracking implementations, we utilize
a central message exchange component that distributes messages between all
attached components, depending on the content of the message. All messages
are formatted as XML and exchanged over HTTP.

Using HTTP allows easy integration with the Interface Robot in the web-
browser but unfortunately, the usual request-response style of HTTP client-
server interaction does not support delivery of information after the initial re-
sponse. To achieve high interactivity, we would like the Interface Robot to be
notified immediately upon completion of vision processing, without having to
resort to polling.

Fortunately, in recent years a new, asynchronous request method informally
known as AJaX [14] has gained widespread support in browsers and we have

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

6

implemented asynchronous notification using AJaX as follows: The interface
robot creates an asynchronous HTTP request using the XMLHTTPRequest API
and specifies a JavaScript function to be called on receipt of data. In the browser,
the request method returns immediately and will not block the UI. Instead, the
callback function is called for every chunk of data as it is received, allowing for
instantaneous processing.

4 Using Interaction Context During Recognition

In this section, we will describe the constraints that information about the user
interface can provide in general and then describe how we make use of it in our
hand-gesture prototype.

At first glance, it might appear sufficient to track the hand of the user, acquire
its position from frame to frame and use that for interaction, e.g. in place of
the mouse position. This simple view unfortunately neglects the initialization,
that is, determining what to track at any given moment. We call this particular
instance of initialization the selection problem. Even in the simplest case of one
person, one has to deal with two hands already and in our trial experiments, we
commonly saw people switch hands during the interaction, e.g. to reach different
sides of the large display.

Furthermore, determining hand position only is most likely insufficient to
achieve the promise of perceptual user interfaces – after all, if we can only offer
a (coarser) mouse-replacement, it will be hard to convince users that this is
worth their while. The hand offers many more modalities than just position
but as it constantly changes shape, some way of distinguishing meaningful and
meaningless motion has to be devised and the proximal context of an interaction
element seems a natural distinguishing feature.

4.1 Interaction Context for Gesture Interpretation

In the proposed prototype, we use the interaction context in two ways: Firstly, we
weight fingertips and motion according to proximity to a user interface element,
thereby selecting the hand closest to an element. Secondly, we apply a simple
motion intensity check to detect “waving”-gestures and use the context to weight
the motion by proximity to an interface element. This allows us to get good
results from a simple recognizer and at the same time ignore any outside noise.

The effect of the proximity weighting can be seen in figure 3(a), where c1

and c2 correspond to interface elements, the surrounding regions to the area
considered and p to an example hand match.

The activation is computed as the motion around an element, weighted by
element proximity, and proximity of the hand, then choosing the maximum.
More formally, let pi be the x,y-position of the ith hand-candidate and cj , dj the
center respectively the size of the jth activatable interface element and m(x, y)
a binary image that is the output of motion detection. Set the relative position

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

7

pi

c2c1
d x

d y

(a) Interest Regions (b) Tracking Results

Fig. 3. Context Combination Schema and Display from Application

rij := pi − cj respectively the coordinates (x, y)j := (x, y)− c. The 2d-Gaussian
expσ(x, y) has variance σ. Then the activation aj is determined by

aj := max
i

expdj
(rij) ·

∑
xj ,yj

[
expdj

(xj , yj) · m(x, y)
]

In the end, the user interface element with the highest activation is chosen.

5 Evaluation

The integration architecture was evaluated on a prototypical application to
demonstrate usability and, in particular, gather some insight into the amount
and type of feedback required, as we expected that to be the most problematic
aspect of using a web-based application.

For the pilot test, the subjects were divided into four groups, using a simple
“Thinking Aloud” setup [15], where participants describe their interpretation of
the programs behavior during the test. It was complemented by a questionnaire.
Test subjects were students from a variety of disciplines, excluding computer
science. The test itself took about 5 minutes but we often let subjects “play
around” for considerably more time.

In the interest of brevity, the following discussion will be qualitative, quanti-
tative results are available in section 3 of the full study report [16]. A live demo
will also be shown during the ICVS 2007.

5.1 Example: Image Viewing and Manipulation

As a testbed for the approach, we applied it to a sample web application that
allows the user to browse an image collection and perform basic manipulation
operations, such as rotation, contrast adjustment, etc.. See figure 4 for a screen-
shot.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

8

(a) browse view (b) edit view

Fig. 4. Sample application screenshots from [16]

User Interface As you can see, the application consists out of a large image
in the center, a strip of images at the top that serves to change the current image
and a number of buttons at the sides of the image that allow further manipula-
tion. The manipulation buttons at the side are spaced widely and therefore easy
to distinguish even with coarse position control. The image change area at the
top is more of a challenge, because the activatable areas are close together and
accidental selection of the wrong button may become an issue.

Feedback We used two types of feedback: Two of the groups received feed-
back in the form of a large, round cursor, indicating the currently tracked hand
position. This cursor was drawn on top of the application by the interface robot.

The two other groups were shown the motion difference image from the cam-
era directly. The image was displayed directly using iceWing, as we had difficulty
overlaying it on top of the web interface at sufficient speed. At the moment, we
are still investigating better methods for displaying feedback information using
web-native technologies.

5.2 Overview of the Experiment

The task given to the participants was to find a certain photographic image
using the application and then rotating it by 90 degrees in the edit view.

One group of participants was only informed about the general idea of the
application: That it was an image browser operated using gestures. Another
group of participants was given specific information about some limitations of
the system and its implementation.

5.3 Discussion

Firstly, all groups were able to successfully use the described system and achieve
the desired test result. However, it was immediately obvious that both time-to-
completion and user satisfaction varied substantially.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

9

Knowledge about Implementation We did not see an influence of knowl-
edge about the implementation. Both the group that received no information ex-
cept that their hand would be tracked and the group that did receive information
about system limitations achieved similar interaction speed.

Type of Feedback There was one issue where the type of feedback made a
substantial difference: When users left the area viewable by the camera. In the
case of a simple position feedback, this problem was not detected by the user
and caused confusion. While the knowledgeable group knew about this potential
problem, they still had the same problems in getting back into the viewable area.
The group that was shown the motion image, however, managed to avoid this
problem entirely by using visual feedback to avoid borders.

Button Activation We initially suggested that people use a “waving”-
motion to activate the buttons. This, however, induced a significant simultaneous
position change and was difficult to control.

Fatigue People became fatigued very quickly, due to the effort required for
holding up a hand above the level of their elbow. We received several requests
to position the scroll-bar at the bottom of the application, as this would have
been usable while keeping the hand at hip-level.

6 Conclusion

We have shown that not only can web applications be used with perceptual
user interfaces (PUIs) but that the user interface analysis they afford provides a
powerful constraint for robust pattern analysis. Furthermore, we have introduced
a reusable component, the Interface Robot, that allows bridging PUIs and web
applications in an automated fashion.

This architecture, we believe, affords two improvements: Firstly, it allows ex-
tending the reach of PUIs to a whole new range of applications, easily. Secondly,
the use of interface analysis provides a very powerful constraint to improve ro-
bustness not just for interpretation of inputs but also for the selection problem
and adaptation to novel environments.

Obviously, a number of open issues remain. As the evaluation indicates, the
feedback strategy needs to be improved to give users more information about
how the system perceives them. We also need to address the fatigue issue, e.g.
by allowing to keep the hand at around hip-level. With regard to the input sup-
ported, the current prototype analyzes only the application itself. This means
that the interaction does not extend to operations afforded by the browser ap-
plication, such as scrolling and going back in the history. We plan to investigate
the use of gestures to synthesize some or all of these events.

A mid-term development will be exploration of adaptive interfaces, that
change their display in reaction to the perceptual input. We expect this to ease
analysis and improve robustness and user satisfaction. This kind of interface
modification on the fly is supported naturally by Web applications through CSS
changes and is one of the original motivations that has led us to pursue this
direction.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

10

6.1 Acknowledgments

We thank the students in the “Interactive Displays” project for thoughtful dis-
cussion and lots of experimental insights: Jörg Eitemüller, Corina Fietz, Jan
Hammerschmidt, Andre Homeyer, Daniel Katzberg, Janick Martinez Esturo,
Nikita Mattar, Kai Rabien, Frederic Siepmann, Dennies Wiebusch and Christoph
Wortmeier. We also gratefully acknowledge the support of the German Ministry
of Education and Research – BMBF (project ERBI).

References

1. Oviatt, S.: Ten myths of multimodal interaction. Communications of the ACM
42(11) (1999) 74–81

2. Borkowski, S., Crowley, J.L., Letessier, J., Berard, F.: User-centric design of a
vision system for interactive applications. In: ICVS ’06: Proc. of the 4th IEEE Int.
Conf. on Computer Vision Systems, IEEE Computer Society (2006)

3. Turk, M., Robertson, G.: Perceptual user interfaces (introduction). Commun.
ACM 43(3) (2000) 32–34

4. Kjeldsen, R., Levas, A., Pinhanez, C.: Dynamically reconfigurable vision-based
user interfaces. Machine Vision and Applications 16(1) (December 2004) 6–12

5. Larson, J.A., Raman, T., Raggett, D.: W3C multimodal interaction activity
http://www.w3.org/2002/mmi/.

6. W3C Specifications: http://www.w3.org/.
7. Wilton-Jones, M.: Efficient JavaScript: Repaint and reflow (November 2006)

http://dev.opera.com/articles/view/efficient-javascript/.
8. Web Accessibility Initiative: http://www.w3.org/WAI.
9. Web Standards Project: http://www.webstandards.org/.

10. Lömker, F., Wrede, S., Hanheide, M., Fritsch, J.: Building modular vision systems
with a graphical plugin environment. In: ICVS ’06: Proc. of Int. Conf. on Vision
Systems, IEEE (January 2006)

11. Kjeldsen, R., Pinhanez, C and. Pingali, G., Hartman, J., Levas, T., Podlaseck, M.:
Interacting with steerable projected displays. In: Proc. of Automatice Face and
Gesture Recognition. (2002)

12. Koch, P.P.: Find position http://www.webcitation.org/5MhIsV4he.
13. Koch, P.P.: Event compatibility tables. http://www.webcitation.org/5MhIqat5p.
14. Garrett, J.J.: Ajax: A new approach to web applications (February)

http://www.adaptivepath.com/publications/essays/archives/000385.php.
15. Nielsen, J.: Usability Engineering. Academic Press (1993)
16. Lütkebohle, I., Lohse, M.: Experimental results of IDAB experiment on user expec-

tations and feedback performance. Technical report, Applied Computer Science,
Bielefeld University (2007)

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

