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Abstract

We aim to detect and diagnose code misbehavior that
wastes energy, which we call energy bugs. This paper
describes a method and implementation, called Carat,
for performing such diagnosis on mobile devices. Ca-
rat takes a collaborative, black-box approach. A non-
invasive client app sends intermittent, coarse-grained
measurements to a server, which identifies correlations
between higher expected energy use and client proper-
ties like the running apps, device model, and operating
system. Carat successfully detected all energy bugs in a
controlled experiment and, during a deployment to 883
users, identified 5434 instances of apps exhibiting buggy
behavior in the wild.

1 Introduction

Mobile computing, especially in the form of smart-
phones and tablets, is becoming ubiquitous. Recent work
[18] acknowledges the rise of a new class of software
misbehavior on these devices: energy bugs. These bugs
consume energy by performing activities not intrinsic to
the app’s function. The poor battery life that results from
these problems generates frustration among users, poor
press for the vendors, and can render devices unusable.

A user of a mobile device with battery problems wants
to understand what is depleting the battery, whether that
is normal, and what can be done. Any solution for this
user must adhere to several hard constraints:

e No hardware modifications. Such solutions are ex-
pensive, require technical skill, and void warranties.

e No kernel modifications. Hacking an OS requires
skill; even “jailbreaking” may brick the device or in-
troduce bugs or security vulnerabilities.

e Black-box apps. The user does not have access to the
source code for most of the apps they run or, usually,
the ability to instrument binaries.

Distribution mechanisms like Apple’s App Store and
Google’s Play Store make it easy to get instrumentation

onto off-the-shelf devices, so long as that instrumenta-
tion is in the form of a standard app that offers a valuable
service. An app that can provide insight into poor battery
life, and actionable advice for improving it, clearly meets
this requirement.

Unfortunately, a single app instance has limited diag-
nostic power because not all energy use is energy mis-
use. There is no a priori specification of energy bugs
(in contrast to many correctness bugs). The app could
measure every local signal—even with kernel or hard-
ware modifications—and still not know whether the ob-
served energy use is normal. The information is simply
not present on a single device.

If, instead, we had a community of devices, these
questions would become tractable. Measurements taken
and aggregated from multiple clients would allow us to
collect more data more quickly, account (statistically)
for individual variation in configurations and usage, say
whether energy use is normal or not, and predict the ex-
pected improvement of taking particular actions.

In this paper, we present a collaborative method for
detecting and diagnosing energy problems by looking for
deviation from typical battery use (see Section 2) and an
implementation as an app for iOS and Android called Ca-
rat (see Section 3). Carat uses the community to infer a
specification (expected energy use) and flags particular
kinds of deviation from that specification. We validate
the precision and costs of our method using power meter-
ing hardware (see Section 4) and the detection accuracy
using synthetic bug injection. Using data from a deploy-
ment to 883 users, Carat revealed 5434 instances of apps
exhibiting energy bugs in the wild (see Section 5).

2 Method

Our method builds and compares conditional probabil-
ity distributions of rates of energy use in a community;
e.g., the rates when an app is running on a client with
a particular OS version (the subject distribution) may be
higher than when running on clients with another OS ver-
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Figure 1: We compare expected values of conditional energy
drain rate distributions to classify apps as hogs, bugs, or neither.

sion (the reference distribution). We classify behavior by
comparing different types of subject and reference dis-
tributions. Although we have been investigating more
sophisticated machine learning techniques, such as clus-
tering and statistical modeling, this paper focuses on a
simpler, yet effective, computation.

2.1 Hogs and Bugs

Informally, an app is an energy hog when using that app
drains the battery much faster than the average app. An
app has an energy bug when some running instances of
the app (i.e., the ones in which the bug manifests) drain
the battery much faster than other instances of the same
app (i.e., the ones in which the bug does not manifest).

First, build a (reference) distribution of battery dis-
charge rates for a community using devices normally:
playing games, making phone calls, leaving it idle, etc.
Now, introduce an app A into the community, which
some subset of clients will install and use, possibly in
place of certain other apps. Build another (subject) dis-
tribution consisting only of rates observed while A is run-
ning. If the expected battery life while A is running is
lower than the expected lifetime without A—positive D
in Figure 1—we call A an energy hog. An app could be a
hog because of a coding error that affects many clients or
because an app legitimately needs to use large amounts
of energy to serve its function. Regardless of the cause,
avoiding hogs improves battery life.

An app B that is not a hog may still use much more
energy on some client X. If the expected discharge rate
of B running on client X (subject distribution) is higher
than that of B running on other clients (reference distri-
bution), we call B an energy bug on client X. An energy
bug is therefore a pair: an app and a client it afflicts. An
energy bug may be caused by a coding error that affects
a subset of clients, a rare configuration (“correct” or oth-
erwise), or unusual user behavior. If the buggy app is
getting caught in a bad state, restarting the app may re-
turn the app to normal; otherwise, the remedy is the same
as for a hog. As with hogs, this pragmatic definition em-
powers users to understand and improve the battery life
of their device without requiring technical expertise.

2.2 Comparing Rate Distributions

As discussed in Section 2.1, to detect hogs and bugs we
compare two distributions of the battery drain (see Fig-
ure 1). Let ¢ be the conditions of the subject distribution
(e.g., app A is running) and ¢’ be the conditions of the
reference distribution (e.g., app A is not running). Let
R(c) be the conditional distribution of rates when ¢ holds
and E[R(c)] be its expected value. Setting the condi-
tions ¢ (subject) and ¢’ (reference) as described above, we
classify the app as a hog or bug if the absolute distance
D =E[R(c)] — E[R(c")] (shown) is greater than zero; the
relative distance (used in our implementation) is

E[R(c)] — E[R(c')] E[R(c)]
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The expected improvement in battery life if the client
were to change from c to ¢’ (such as by killing a hog or
getting a bug into a normal state) follows directly from
this distance metric. The expected value of each dis-
tribution (E[R(c")] and E[R(c)]) is equivalently the ex-
pected rate of energy use, which can be used to predict
expected battery life improvement L when moving from
one regime to the other (starting from full charge and
fully drainin.g the battery): L = m - % Carat
suggests actions that would improve battery life and the
expected improvement for an average client.

2.3 Computing Rate Distributions

To compute rate distributions, our method must first con-
vert a set of samples from a single client into a set of
rates. A sample is a measurement taken at a particular
point in time that consists of the battery level (%) and
a list of properties about the client. Let s, = (b, p,F)
denote a sample taken at time ¢, where the battery level
was observed to be at fraction 0 < b < 1 and the battery
state was p (e.g., unplugged). The remaining features are
denoted collectively as a set F' of key-value pairs (e.g.,
“AppXRunning=YES”).

First, sort the samples by ¢ and filter them (using the
p values) to retain only those adjacent samples that span
a period during which the battery was discharging. This
reduces the initial set of all samples to a set of consecu-
tive pairs. We compute discharge rates from these pairs.

Our method allows for imprecision in battery levels
and timestamps by converting a consecutive pair s; =
(b1, p1,F1) and s, = (b2, p2, F>) to a rate distribution R.
If both endpoints, (b,#;) and (by,1,), are exact, then the
rate is r = }g:f’l 2 with probability 1. Discharging yields
a positive rate. Otherwise, we estimate a probability dis-
tribution for the rate. There are a variety of techniques
one might employ, depending on the nature of the uncer-
tainty. On i0S, for example, we use a prior distribution
computed from more precise measurements to infer the
distribution of less precise measurements.
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Figure 2: The Carat architecture, showing the crowd-based
front end, the central server with the analysis running in the
cloud, and the stored samples and results.

We associate this distribution with a set of features
F' computed from the features of the constituent pair of
samples (F; and F>) by taking the union: F' = Fj U F.
We conservatively say that an app was running during
the period [t1,1,] if it was seen in either sample. It would
be straightforward to use a different function if the se-
mantics of the features demanded it.

2.4 Feature Correlation

To facilitate diagnosis, the analysis looks for correlations
between high energy use and features. For example, we
might discover that a bug is more likely to manifest on a
particular version of the operating system, which in turn
might suggest to a developer what code is misbehaving.

We omit the details, but report that feature correlation
helped diagnose bugs in the wild, such as on Kindle in
Section 5.4 where WhisperSync was using far more en-
ergy when syncing over GSM. Our analysis discovered
the bug exclusively hit iPads lacking WiFi. Similarly,
the Facebook Messenger bug afflicted particular Android
device models.

3 Implementation

The Carat architecture consists of an app (see Sec-
tion 3.1), a central server (see Section 3.2), and an analy-
sis running in the cloud (see Section 3.3). Figure 2 shows
an overview of our implementation.

3.1 Carat App

We implemented Carat on the iOS and Android plat-
forms. It is available as a free download on Apple’s App
Store, Google’s Play Store, and on GitHub, all of which
are linked from the project homepage!.

Carat runs as a user-level app on stock devices. This
places platform-specific restrictions on what information
is accessible and when our app is allowed CPU time to
measure it. Our implementation records state informa-
tion, using the public APIs, in persistent storage until the
app is brought to the foreground, at which point it com-
municates with the Carat server over TCP. Our commu-
nication model is client-initiated (since they are situated
behind NATs) and utilizes Apache Thrift to define the
service interface.

The main screen of Carat is the Actions list, which
presents personalized actions the user can take to im-

prove battery life, sorted by the expected improvement if
that action is taken. For example, it might show an action
“Kill Skype” that would result in an expected increase of
47m 21s. This means our analysis observed that a typ-
ical device running Skype will run a full battery down
to zero 47 minutes sooner than a typical device running
typical apps but not Skype. Carat will suggest restarting
bugs, admitting the possibility that the instance is caught
in a bad state; if restarting does not help, it may be a
configuration problem or specific to user behavior. Fi-
nally, it will suggest upgrading the operating system if
it observes that a newer version is correlated, across the
community, with better battery life.

The My Device tab shows information about the
client’s device and a number called a J-Score, which is
the percentile into which the client’s battery life falls
within the community; a J-Score of 95 means a better
battery life than 95% of devices. The Hogs tab shows
the top hogs ever reported to have run on the device. The
same is true for bugs under the Bugs tab.

3.2 Carat Server

The Carat server collects samples from clients running
the Carat app and stores them for later use by the analy-
sis engine, and it serves actions and other results of the
analysis to clients requesting them. These results include
customized action lists, bug lists, and hog lists.

The server is a 1253-line Java application (excluding
code auto-generated by Thrift) hosted on Amazon EC2,
with mechanisms to scale by spawning new instances
and to load-balance incoming connections. The data is
stored in Amazon’s DynamoDB.

3.3 Backend Analysis

The backend analysis is a 4k-line Scala program also run-
ning on EC2. It reads the sample data from the database
and performs the calculations described in Section 2.

The analysis converts samples to rate distributions and
loads them into Spark RDDs, a distributed data struc-
ture that provides caching. Spark is a cluster comput-
ing framework that presents a MapReduce-like inter-
face, with support for caching intermediate results [25].
Spark was designed for iterative and incremental com-
putations, which is precisely what our analysis performs.
The results—including hogs, bugs, J-Scores, and feature
correlations—are stored in DynamoDB where they are
retrieved on-demand by the client.

4 Ground Truth and Overhead

In order for Carat to accurately account for when energy
is being used without incurring unacceptable overhead,
it must convert intermittent (and sometimes low preci-
sion) battery level samples into energy drain rates in a
way that is faithful to the ground truth. We attached a
Monsoon Power Monitor? to actual mobile devices (an



iPhone 4S and an LG Optimus 2X) and confirmed that
our implementation generates accurate energy distribu-
tions while consuming few resources. The methodology
and results are similar on both platforms; we present the
i0S experiment.

To test the fidelity and cost of sampling, we used a re-
peatable four-hour script of activities (e.g., browsing the
web and idle periods). One of the authors manually ran
through the script under three arrangements: (1) hooked
to the power meter with and (2) without Carat running
and (3) not hooked to the power meter with Carat run-
ning. We compare (1) and (2) to quantify the overhead
of running Carat; we compare (1) and (3) to ensure the
meter was not influencing Carat’s measurements and to
assess the fidelity of the sampling and rate estimation.
For the runs without Carat, where our app appears in the
script, we substituted the standard Weather app.

The battery levels reported by the public API, which
Carat uses, track the actual use of power by the device,
never deviating more than 1.2% from ground truth.

Furthermore, the energy rate distribution computed
from the Carat samples using our statistical inference
method approximates the distribution computed with the
summarized measurements from the power meter hard-
ware (13,549 samples at effectively 0.0001% resolu-
tion); using the samples from this four-hour experiment,
Carat overestimates the average discharge rate by only
0.0015%/sec.

Carat does not impose significant overhead with re-
spect to energy use, even when taking samples, report-
ing them to the server, and downloading analysis results.
In fact, our power metering hardware indicates that run-
ning through our script with Carat running used less en-
ergy than executing that same script with the Weather app
running in its place: 53.691 mAh or ~3.5% of the bat-
tery less. Our method can afford to perform such sparse,
low-overhead sampling on individual clients because it
aggregates data from a large number of clients.

S Deployment Results

We collected 22,053 samples from 207 iOS devices and
157,323 samples from 676 Android devices, from which
our method detected 1159 hogs and 5434 instances of
apps exhibiting energy bugs (see Sections 5.2 and 5.4) as
well as all 3 energy bugs that we injected into a private
deployment of 75 iOS users (see Section 5.3).

5.1 Performance and Scaling

The success of our approach depends on an active com-
munity and generates better results as that community
grows, so the implementation must be scalable.

Network traffic scales linearly with the size of our
deployment, at a rate far below 1 byte per second per
client. A handful of Carat servers could, therefore, sup-

port a community composed of every mobile device in
the world. Sample reporting is presumed to be unreli-
able; a client with no disk space or network access is
allowed to throw away data, while an overloaded server
may drop packets.

Our implementation of the analysis can recompute all
results from 181,248 raw samples in 31m 40s on a single
machine (8 threads on 4 virtual cores). The computation
is massively parallel; each distribution and comparison
can be performed independently.

5.2 Hogs

Of the 2664 apps seen during our deployment, 1159 were
categorized as hogs. Recall that an app is a hog if the
community-wide average discharge rate while running
the app is greater than the average rate while not run-
ning it (see Section 2.1) and that we can compute the ex-
pected improvement in battery life by killing a hog (see
Section 2.2). Hogs may be caused by an oft-triggered
code bug but may also be simply intrinsic to the app. We
present one example.

Pandora Radio: Carat reports that the Pandora Radio
iOS app, which 23 users ran, is a hog and that killing
it will increase an average client’s battery life by 21m
47s. This is corroborated by user reports, one of which
claimed Pandora drained the battery to 30% in a few
hours even with the screen off>. This is likely an example
of a hog behaving as intended: using the radio or WiFi,
the speakers, the screen, and other energy-consuming re-
sources. Nevertheless, killing this app is likely to im-
prove battery life.

5.3 Injected Bugs

We added energy bugs to an existing app—initially with-
out apparent misbehavior—to confirm that Carat is able
to detect the change. (In Section 5.4, we identify bugs in
the wild.) We chose the Wikipedia Mobile iOS app made
by Wikimedia Foundation because it was an open-source
app being used by many of our clients, but was reported
as neither a hog nor a bug. We added several behaviors
that consume large amounts of energy when we activate
them. These misbehaviors represent a subset of those we
expect to see in practice, with each one abusing (repeat-
edly using) a different resource: radio, CPU, and GPS.
We installed this buggy instance on one of our test de-
vices, an iPhone 3GS. We ran the app for one day for
each injected bug, activating the app a handful of times
during the day but only leaving it open for a couple of
minutes. At the end of the third day, we ran the analysis
with the real, non-buggy data from a 75-user iOS deploy-
ment as the reference distribution and once each with the
data from exactly one of the buggy days as the subject
distribution. Indeed, after performing the injection, Carat
correctly detected each of the three bugs (no false neg-



atives) and no new bugs were incorrectly reported (no
false positives).

5.4 Wild Bugs

Recall that a bug is an app that is not a hog (it usually
consumes below-average energy) but consumes far more
energy on some clients than others (see Section 2.1). The
total number of possible bugs that Carat could report is
the Cartesian product of the clients and the non-hog apps.
There were 651 client IDs that returned samples during
the deployment and there were 1345 apps that were nei-
ther hogs nor daemons (system processes that users can-
not easily terminate). Of the 875,595 possible bugs our
method could have reported, the analysis only produced
5434 (for 644 unique apps). In other words, less than
0.62% of the bug subject distributions had a positive dis-
tance relative to the reference, meaning that most apps
have similar energy rate distributions across devices.

Kindle (i0S): This electronic book app was reported
as a bug for 5 of the 11 clients running it. The sup-
port forums blame the problem on WhisperSync*, which
synchronizes notes, bookmarks, previous location, and
Popular Highlights. When syncing over GSM, in par-
ticular, the device uses much more energy than syncing
over WiFi. The forums could provide only anecdotes,
whereas our experimental data support this hypothesis;
of the 5 iPads that ran Kindle in our deployment, all the
GSM iPads reported Kindle as a bug and all the WiFi
iPads did not.

Facebook Messenger (Android): This app was a bug
for 17 of the 53 clients running it. Certain device mod-
els were especially afflicted, particularly the Samsung
Galaxy S II (Pearson correlation 0.24). The worst in-
stance reduced battery life by almost six hours. This re-
calls reports of energy bugs in the main Facebook app
reported elsewhere [20] and suggests the extent of the
problem in practice.

5.5 Result Confidence

As the number of clients and samples increases, so does
the accuracy of our results. In particular, Carat’s estimate
of the expected value—the crucial number used to com-
pute distances—tends to converge to the true value. Fig-
ure 3 shows the shrinking relative error of this estimate
for six apps seen in our deployment. In practice, the true
rate distribution may be neither stationary nor identically
distributed, such as in the presence of an energy bug. Ca-
rat reported the Facebook iOS app as an energy bug, and,
looking back at Figure 3, we can see that app has a bump
in the curve.

6 Limitations and Future Work

Carat takes a passive, black-box approach to energy de-
bugging, which carries inherent limitations. Without vis-
ibility into the mechanisms (as with invasive methods
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Figure 3: As the number of clients reporting samples increases,
the relative error in our estimate of the expected discharge rate
shrinks. (i0S data shown.)

like CarrierlQ’) and without the ability to perturb the
system (i.e., cannot modify other apps), the best possi-
ble result is to say what aspects of the system are likely
to be involved with the problem. Carat provides this, us-
ing as much data as it can access, and it does so by cor-
relating real-valued signals from components with no a
priori assumptions about their relationships. This kind
of approach has proven fruitful in prior work [15, 16].

Our results are limited by the data. If no client ever
runs a particular buggy app, Carat will not detect a prob-
lem; if two apps are always run together and one is a bug,
they will both be categorized as buggy and there is noth-
ing that correlation can do to disambiguate. The likeli-
hood of spurious correlations increases with the number
of features (apps and configurations) and decreases with
more data; we are working to grow our deployment.

We are building an API that would allow app develop-
ers to instrument their code, providing Carat with insight
into the states and settings of those apps, as well as how
users are interacting with them.

7 Related Work

There is a rich body of work in diagnosis for correct-
ness and performance [2, 4, 5, 9]. Recent work identified
an emerging class of software misbehavior that afflicts
battery life [18]. We believe ours is the first statistical
approach for diagnosing these so-called energy bugs.

Our approach is a form of statistical debugging, in
which (loosely speaking) deviant behavior is called a
bug [6]. Such methods have been used to identify code
paths correlated with failure [13], concurrency bugs [11],
shared influence (surprising behavior that is correlated
in time) [15, 16], invariant violation [10], and configu-
ration errors [24]. These statistical methods frequently
make use of a large number of instances or users of these
programs, which is sometimes called a community. A
recent paper suggested a collaborative debugging frame-
work called MobiBug for mobile devices [1], but they
focused on crash problems.

Many projects have sought to profile energy use on
mobile devices [7, 8, 17, 19], sometimes for predic-



tion [22, 23], mitigation [3, 14], or developer tools [12].
Human interface studies have shown that 80% of mo-
bile users will take steps to improve their battery life
[21]; Carat recommends specific, personalized actions
for users to take and even estimates the benefit they are
likely to see. We believe this is one of the distinguishing
features of our work.

8 Conclusions

This paper presents a method for diagnosing energy bugs
in the wild, given incomplete and noisy instrumentation
measurements from a community of clients. We im-
plemented this method as an app for iOS and Android
called Carat and deployed it to several hundred users.
Our method detected thousands of instances of energy
misuse, and provided, in several cases, diagnostic infor-
mation regarding which device models or OS versions
the misbehavior most affects. We also validated our im-
plementation with hardware measurements and synthetic
bug injection, demonstrating that Carat can accurately
estimate energy use and detect bugs. We believe this is
the first statistical detection of energy bugs in the wild,
and represents a crucial extension of previous work in
distributed and statistical debugging to include a new
class of misbehavior related to mobile energy use.
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