
Towards the Application of Reinforcement Learning

to Undirected Developmental Learning

Jonathan Mugan
Computer Science Department
University of Texas at Austin

Austin Texas, 78712 USA
jmugan@cs.utexas.edu

Benjamin Kuipers
Computer Science Department
University of Texas at Austin

Austin Texas, 78712 USA
kuipers@cs.utexas.edu

Abstract

We consider the problem of how a learn-
ing agent in a continuous and dynamic world
can autonomously learn about itself, its en-
vironment, and how to perform simple ac-
tions. In previous work we showed how an
agent could learn an abstraction consisting of
contingencies and distinctions. In this paper
we propose a method whereby an agent using
this abstraction can create its own reinforce-
ment learning problems. The agent generates
an internal signal that motivates it to move
into states in which a contingency will hold.
The agent then uses reinforcement learning to
learn to move to those states effectively. It can
then use the knowledge acquired through re-
inforcement learning as part of simple actions.
We evaluate this work using a simulated phys-
ical agent that affects its world using two con-
tinuous motor variables and experiences its
world using a set of fifteen continuous and
discrete sensor variables. We show that by
using this method the learning agent can au-
tonomously generate reinforcement learning
problems allowing it to do simple tasks, and
we compare its performance to that of a hand-
created reinforcement learner using tile cod-
ing.

1. Introduction

A major goal of Epigenetic Robotics is to discover
how an agent (robot or human) can learn high-level
concepts of objects and actions from low-level sen-
sory and motor experience. In previous work, we
have shown how an agent can identify contingencies
among events in its world, can learn new distinctions
and increasingly accurate rules to predict those con-
tingencies, and can backchain through those rules to
accomplish certain goals. Backchaining is adequate
for combining actions with few dependencies among
them. The contribution of this paper is to extend

our method to handle situations where actions have
significant interactions. Such situations can often be
identified via the preconditions of other desired ac-
tions. We use these preconditions to define the state-
space for a simple reinforcement learning problem.
The result of learning is a policy to navigate through
the state space and achieve those conditions.

We apply reinforcement learning in the context
of undirected developmental learning by having the
agent generate these reinforcement learning prob-
lems autonomously. The agent generates a reinforce-
ment learning problem by defining a state space and
a goal within that space. The agent uses only a rele-
vant subset of the variables for the state space to keep
the reinforcement learning problem small. However
even with a small number of variables, reinforcement
learning in continuous domains is difficult. To over-
come this, our agent learns a discretization for these
state variables that conforms to the dynamics of the
environment.

The agent generates these reinforcement learning
problems using the learned abstraction that consists
of events, contingencies, and distinctions. A contin-
gency temporally links the occurrence of one event
E1 with the occurrence of another event E2. For
each contingency, the agent can search for new dis-
tinctions that delimit regions where this contingency
is more reliable. Using these distinctions, the agent
can then greedily search for context variables whose
discrete values accurately predict the reliability of
the contingency. The agent can then create a re-
inforcement learning problem from the contingency
and the context whose goal is to reach a state in
which the contingency is reliable. The state space for
this problem consists of the variables in the context,
and the discretization for those variables is deter-
mined by the learned distinctions. The action space
for all of the generated reinforcement learning prob-
lems is determined by the distinctions learned on the
motor variables.

We first summarize the abstraction learning algo-
rithm of [Mugan and Kuipers, 2007a] and [Mugan

WORLD 1 2: E E⇒C

perceptstate
action

Landmarks (c)
(a)

(b)
Behavior

Learn Landmarks (c)

Learn Contingencies (a)
Learn Context (b)

Figure 1: (a) The agent interacts with the world to learn

contingencies stating that when one event E1 occurs, that

another event E2 will soon occur. (b) The agent then

makes each contingency into a rule. For each rule the

agent learns a context C that consists of a set of variables

upon which the agent can learn a conditional probability

table CPT (r) = Pr(succeeds(r)|C) that tells the agent

the probability of E2 following E1 given the values of the

variables in the context. (c) The agent also learns distinc-

tions in the form of landmarks that it uses to discretize

its input.

and Kuipers, 2007b]. We then describe how an agent
can use this abstraction to generate reinforcement
learning problems. We then describe how the agent
explores by using a “rich get richer” strategy to con-
tinually choose which contingency to bring about.
Next, we evaluate our learning algorithm using a
simple but realistic physical simulation. We demon-
strate that the autonomous agent’s performance is
comparable to the performance achieved by a hand-
created, tile-coding reinforcement learning algorithm
trained only on the evaluation task. Finally, we dis-
cuss the results and related work, and then conclude.

2. The Learned Abstraction

In this section we summarize the abstraction pre-
sented in [Mugan and Kuipers, 2007b] and we dis-
cuss the backchaining method presented in [Mugan
and Kuipers, 2007a]. A summary of the learn-
ing process is shown in Fig. 1. Distinctions are
made using landmarks, we use landmarks to con-
vert each continuous variable ṽ into a discrete (qual-
itative) variable v. These landmarks divide the
infinite set of values for the continuous variable
ṽ into a discrete set of qualitative values Q(v)

called a quantity space [Kuipers, 1994]. A quantity
with two landmarks might be described by (v∗1 , v

∗
2),

which implies five distinct qualitative values, Q(v) =
{(−∞, v∗1), v∗1 , (v

∗
1 , v

∗
2), v∗2 , (v

∗
2 ,+∞)}. For example,

if v∗1 = 100.0 and v∗2 = 200.0 and ṽ(t) = 287.53 then
v(t) = (v∗2 ,+∞). This allows the agent to work with
discrete values.

Once we have qualitative values, we can define
events. If a is a qualitative value of a discrete variable
A, meaning a ∈ Q(A), then the event E = At→a is
defined by A(t − 1) 6= a and A(t) = a. That is, an
event takes place when a discrete variable A changes
to value a at time t, from some other value.

Once the agent can recognize events, it can learn
contingencies. We define a contingency E1 ⇒ E2

to consist of two events, the antecedent E1, and the
consequent E2 such that if the antecedent event E1

occurs then the consequent event E2 is more likely
to occur within a short time period (currently 0.25
seconds) after E1 than it would have otherwise.

For each contingency E1 ⇒ E2, the agent creates a
predictive rule r = 〈C : E1 ⇒ E2〉 to maintain statis-
tics for when the contingency holds. These statistics
are over the predicate succeeds(r) that is true when
the contingency holds. Using the statistics gathered
on succeeds(r), the agent learns a context C that
consists of a set of qualitative variables. The con-
text induces a conditional probability table CPT (r)
on the predicate succeeds(r). In Bayesian network
terminology, the variables in C are the parents of
succeeds(r). This context allows the agent to pre-
dict when the contingency will hold.

The agent also learns new landmarks by using
succeeds(r) as a supervisory signal. It does this by
storing the real values of all variables for the last
200 activations. This allows the agent to find new
landmarks using the standard cutpoint detection al-
gorithm of Fayyad and Irani [2003] . Inserting a new
landmark v∗ into (v∗i , v

∗
i+1) allows that interval to

be replaced in Q(v) by two intervals and the divid-
ing landmark: (v∗i , v

∗), v∗, (v∗, v∗i+1). Adding this
new landmark into the quantity space Q(v) refines
existing rules and also allows the agent to learn new
contingencies involving the events v→(v∗i , v

∗), v→v∗,
and v→(v∗, v∗i+1).

Once the predictive rules are learned they can be
used for backchaining as described in [Mugan and
Kuipers, 2007a]. During backchaining, the agent can
immediately set the values of its motor variables. If
the agent desires to bring about an event E2 that is
not on a motor variable, then it must look for a rule
r = 〈C : E1 ⇒ E2〉. If the event E1 is on a motor
variable the agent can immediately set it, otherwise
it must look for a rule that predicts E1, continuing in
this fashion until a motor variable is reached. This
allows the agent to achieve goals that consist of single
events.

{ , }: [0] (,0)x y xr c c d b= → ⇒ → −∞ɺ

r succeeds r failsr fails
()CPT r

(a)(b)
(c) -table :Q × →ℝS A(d)

yc

xc

yc

xc

(())Good CPT r

:rπ →S A

yc

xc × × ×(e)
Figure 2: (a) The rule r = 〈{cx, cy} : d→ [0] ⇒ ḃx→
(−∞, 0)〉 is an example of a rule learned by the robot. It

states that if the distance d between the hand and the

block goes to 0, then the event ḃx→(−∞, 0) of the block

moving to the left will occur. The predicted success of

this rule depends on the context variables cx and cy that

give the location of the hand in the frame of reference of

the block. (b) The agent gathers experience in the world

to learn the context values for which r is successful. The

agent learns that the hand must be to the right of and

level with the block for r to be successful. (c) Based on

C = {cx, cy} the agent creates a conditional probability

table CPT (r) for r and uses a threshold to determine the

set Good(CPT (r)) of values of C for which the rule r is

likely to succeed. (d) The agent can then define a simple

reinforcement learning problem in which C defines the

state space S, and Good(CPT (r)) defines the goal states.

The agent is rewarded for reaching a state in which the

rule r is likely to succeed. To do this, the agent creates

a Q-table that maps S × A to a value, where A is the

set of primitive actions (defined by the qualitative values

of the motor variables ux and uy). (e) The agent then

defines a policy πr by associating each cell in S with the

primitive action with maximum value.

3. Generating Reinforcement Learn-
ing Problems

The abstraction learning method described in the
previous section results in a set of landmarks on vari-
ables and a set of predictive rules. For each rule
r = 〈C : E1 ⇒ E2〉 the agent has learned a condi-
tional probability table CPT (r) over the variables
in the context C on the success of the contingency
E1 ⇒ E2. To use rule r to form a complete action
to bring about event E2, the agent needs to get into
the part of the state space that CPT (r) predicts will

lead to the successful completion of E2. We refer to
this part of the state space as Good(CPT (r)) where

Good(CPT (r)) = (1)
{q ∈ Q(C) |Pr(succeeds(r)|q) > θsr}

where the constant θsr was set by hand to be 0.6
based on experiments. The agent learns a policy
πr to get into this good part of the state space
Good(CPT (r)) using reinforcement learning. The
result is that the policy πr coupled with the ability
to bring about E1 through backchaining serve as a
complete action to bring about E2. An example of
this process is shown in Figure 2.

The agent autonomously generates a reinforce-
ment learning problem to learn a policy πr for each
rule r = 〈C : E1 ⇒ E2〉 that has a context C that
contains more than one variable and Good(CPT (r))
is not empty. (Recall that goals over single a variable
can be achieved by backchaining.) The state space
S for the problem based on r is determined by the
variables {v1, . . . , vn} in the context C

S = Q(v1)× . . .×Q(vn)

Continuous action spaces are challenging for rein-
forcement learning agents, but this agent is able to
take advantage of the landmarks learned on its mo-
tor variables to create an action space A. To do this,
we define a set

Q(U) = Q(u1)× . . .×Q(un)

where u1, . . . , un is the set of motor variables. We
can then define a primitive action a ∈ A as choosing
a u ∈ Q(U), taking random values from the ranges
of the qualitative values in u, and maintaining those
values until the state S changes or the real values un-
derlying the variables that make up S stop changing.
The reward function is a pseudo-reward function that
is defined using a goal-reward representation [Koenig
and Simmons, 1996] where the set of goal states is
Good(CPT (r)).

Using this representation, the agent learns a value-
action function Q : S×A → R. It does this using the
Sarsa(λ) algorithm [Sutton and Barto, 1998] where
λ = 0.9, α is 1 divided by the number of times the
state-action combination has been taken, and the dis-
count parameter γ = 0.9.

During learning, the agent uses ε-greedy action se-
lection where ε = 0.25. A learning episode begins
when the rule is invoked by the agent, and it ends
when the agent makes it to a goal state or when 20
primitive actions have been taken. Once the value-
action function is learned, a policy πr can be simply
to choose the best action for each state s ∈ S. An
example of a policy that is learned by the agent is
shown in Figure 3.

HandBlock
−∞

−∞ 2.61− 1.77

3.30−

1.90−

2.32

+∞

+∞

xc

yc

Figure 3: This figure shows the learned policy πr of a

reinforcement learning problem for hitting the block to

the left. The state space S is determined by the land-

marks on the variables in the context C = {cx, cy} of

the rule r. The variables cx and cy give the location of

the hand relative to the center of the block in the x and

y directions respectively, and the dotted lines represent

landmarks on cx and cy. Because both the hand and the

block are squares with a diameter of 2.0, a perfect set

of landmarks for both cx and cy would be {−2.0,+2.0}.
The small arrows represent the action given by policy πr

for each state. To hit the block to the left, the hand must

be on the right side, and so the policy directs the hand

under the block to the right-hand side. The large arrow

represents the motor command issued by backchaining to

complete the action.

4. Exploration

In [Mugan and Kuipers, 2007a] the agent explored by
picking goals it could achieve with moderate success
and working to achieve them. In this work, the agent
is motivated by the drive to improve the reliability
of predictive rules. The agent explores by continu-
ally activating a predictive rule r = 〈C : E1 ⇒ E2〉
and then working to bring about the contingency
E1 ⇒ E2 (to keep from getting in a rut, the agent
may take a random motor babbling action with prob-
ability 0.2). Exploration follows a developmental
pattern that begins with the contingencies close to
the agent’s motor variables and progressively moves
to external objects. This occurs because the agent
learns contingencies outward from its motor vari-
ables. The agent learns the contingency E1 ⇒ E2

if event E2 is more likely to occur if event E1 has oc-
curred, and the agent already has a rule that reliably
predicts the event E1.

When a rule r is activated, if the current state of
the agent is not in the set of states Good(CPT (r)),
then the agent first works to bring the agent to one

of those states by using backchaining if the context
consists of a single variable, or by using reinforce-
ment learning if the context consists of more than
one variable. The agent then works to bring about
the event E1 by backchaining.

The agent’s learning is undirected. The set of pos-
sible predictive rules, and thus the set of possible
learning targets, is determined by the abstraction
learning process. During exploration the agent must
continually choose which of the rules to pursue. To
do this, the agent uses two criteria. The first crite-
ria is the increase in reliability Ir of rule r. If we
use brelt to denote the current best reliability of r
and brelt−τ to be the best reliability that r had τ
activations ago, then

Ir = brelt − brelt−τ (2)

This first criterion is inspired by the calculation of
similarity-based learning progress of Oudeyer, Ka-
plan, and Hafner [2007].

However, this may still leave too many choices for
the agent. Given the current context of the agent, we
want to focus its attention on contingencies that it
can reliably bring about. To do this, the agent uses
a second criteria, the predicted reliability Pr of rule
r in the current context, to add a “rich get richer”
element to its choice. The predicted reliability Pr is
defined as

Pr = Pr(succeeds(r)|C, s) (3)

where Pr(succeeds(r)|C, s) means the probability of
success of r in the current state s.

The agent then calculates the weight wr of a rule
r as wr = max(ε, IrPr) where ε = 0.001 to ensure
that no rule is completely ignored. It then chooses
rule r with probability pr where

pr =
wr∑
i wri

(4)

This method of calculating the weights so that wr =
max(ε, IrPr) was chosen because it worked well in
experiments. A more rigorous comparison of differ-
ent methods of exploration would be an interesting
area of future work.

5. Experimental Evaluation

It is difficult to directly evaluate an autonomous
learning agent. During training the agent is not
given any external task and decides on its own what
to learn. We therefore evaluate our agent indirectly
by picking a task that seems natural to an outside
observer. We then determine how well the agent
can use the knowledge it has acquired to perform
this task. To evaluate the claim that the agent has
learned to perform an action, we compare the perfor-
mance of our autonomous agent on this task to the

performance of a hand-created reinforcement learner
trained only on this task.

We evaluate our algorithm using the simulated
agent shown in Figure 4. The evaluation task we
have chosen is for the agent to hit the block in a spec-
ified direction. The agent learns to hit the block dur-
ing its undirected exploration by learning contingen-
cies that predict the movement of the block. These
contingencies generate reinforcement learning prob-
lems that allow the agent to learn to get into the right
position to hit the block, and once in that position
it can backchain to the motor variables to make the
hand movement that strikes the block. We trained
ten agents total, five autonomous agents described
in this paper, and five hand-created learning agents.
Videos of the autonomous agent can be viewed at
www.cs.utexas.edu/˜jmugan/DevelopmentalAgent.

We trained each agent in the environment shown
in Figure 4 for 340,000 timesteps (almost five hours
of physical experience). During this time, the hand-
created agents continually repeated episodes of the
task, and the autonomous agents performed the
learning algorithm described in this paper. During
training of the autonomous agents, if the block fell off
the tray, moved out of reach of the agent, or was not
moved for an extended time, the block was moved to
a random location within reach of the agent. For all
agents we stored the state of each agent’s knowledge
every 20,000 timesteps during training (correspond-
ing to about sixteen minutes of physical experience).
We then ran the evaluation for each agent using their
respective stored knowledge bases.

Each evaluation consisted of 100 trials. At the
beginning of each trial the block was placed in a ran-
dom location within reach of the agent and the eval-
uator picked one of three goals: hitting the block to
the left, hitting the block to the right, or hitting the
block forward. The agent then had 300 timesteps
to use its knowledge to hit the block in the correct
direction. A trial was terminated unsuccessfully if
the agent hit the block in the wrong direction. The
evaluation metric was the success rate for hitting the
block during the 100 trials.

We tested both types of agents under two goal se-
lection regimes, uniform and hard. During both uni-
form and hard goal selection, the evaluator selects
the goal randomly, with a uniform distribution, and
filters out goals that are impossible to achieve. (For
example, if the block is on the far left, the agent can-
not get its hand on the left side of the block to move
it to the right.) During hard goal selection, easy goals
are also filtered out, where a goal is easy if it can be
achieved with a single straight-line motion. (Dur-
ing the training period for the hand-created agents,
a goal selection regime was randomly chosen at the
beginning of each episode, and then the goal was
chosen based on that regime.)

Figure 4: A simulated agent and environment is imple-

mented in Breve [Klein, 2003]. It has a torso with a 2-

dof orthogonal arm and is sitting in front of a tray with

a block. The robot has two motor variables ũx and ũy

that move the hand in the x and y directions, respec-

tively. The perceptual system creates variables for each

of the two tracked objects in this environment: the hand

and the block. The hand is described by two continu-

ous variables h̃x(t), h̃y(t) that represent the location of

the hand in the x and y directions, respectively. The

variables corresponding to the block are b̃x(t), b̃y(t), and

ba(t). The variables b̃x(t), and b̃y(t) have the same re-

spective meanings as the variables for the hand, and the

Boolean variable ba(t) represents whether the block is in

view. The relationship between the hand and the block is

represented by the continuous variables c̃x(t), c̃y(t), and

d̃(t). The variables c̃x(t) and c̃y(t) represent the coordi-

nates of the center of the hand in the frame of reference

of the center of the block, and the variable d̃(t) repre-

sents the distance between the hand and the block. For

each continuous input variable ṽ(t) there is also a direc-

tion of change variable v̇(t), giving a total of seventeen

variables. The values of all variables are updated by per-

ceptual trackers at each timestep as the objects move.

5.1 The Hand-Built Learner

The hand-built reinforcement learning agents used
linear, gradient-descent Sarsa(λ) with binary fea-
tures [Sutton and Barto, 1998] where the binary fea-
tures come from tile coding. We chose this method
because tile coding is a standard method for cop-
ing with continuous variables in reinforcement learn-
ing [Santamaria et al., 1997]. Tile coding works by
using multiple partitions of the state space such that
each partition (tiling) is offset just a little from the
others. This allows the agent to generalize more ef-
fectively than using a single partition with higher
resolution.

We now explain the details of the tile coding im-
plementation. The motor variables ux and uy were
each divided into 10 equal-width bins, and the di-
rection of change variables were each divided into 3

bins: (−∞,−0.05), [−0.05, 0.05], (0.05,∞). The goal
was represented with a discrete variable that took on
three values, one for each of the three goals. The re-
maining variables were treated as continuous. There
were 16 tilings, the tiling was done using a hashing
function with a memory size of 65,536. The param-
eter values used were λ = 0.9, γ = 0.9, and α = 0.1.
To prevent the task diameter from being too high,
during both training and testing the agent chose a
new action every 10 timesteps (0.5 seconds). Action
selection was ε-greedy where ε = 0.05.

5.2 Results

The results are shown in Figure 5 and Figure 6. As
the agent gains more experience in the world its abil-
ity to perform the task improves. We also see that
the agent has indeed learned the action as its per-
formance under both the difficult and uniform task
selection regime is comparable to that of the hand-
created learner.

The hand-created learner enjoys the advantage of
only being trained on the evaluation task. But the
hand-created learner is at an important disadvan-
tage, it does not know which variables are important
for the task. Our agent learns which variables are
important autonomously by adding them to the con-
texts of predictive rules, and this allows it to perform
comparably even though it learns more than how to
perform the evaluation task. For example, our agent
learns when the block will disappear off the tray. It
does this by learning landmarks on bx and by delimit-
ing the edges of the tray suggested by the event of the
block disappearing ba→false. It then learns a contin-
gency when says when bx reaches the edge that the
block will disappear. It also learns the limits of its
movement by learning landmarks on the maximum
values hx and hy. When these variables are added to
the contexts of the rules that predict how the hand
moves, they specify that the hand can move in a di-
rection if it is not at the limit. The agent also learns
to move away from the block instead of towards it.

The agent can use the knowledge learned during
one task to learn another. Of particular importance
is that the agent learns a discretization of the action
space. Each motor variable is initially given a land-
mark at 0, but it takes a force of 300 in the simulator
to move the arm in any direction. Our agent finds
those important landmarks and can then use that
knowledge when learning a new task. In contrast,
the hand-created learner would need to be trained
from scratch for each new task and would not be
able to easily use what it learned in previous tasks
for future tasks.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cumulative Experience (x 1,000 timesteps)

R
at

e
of

 S
uc

ce
ss

autonomous agent
hand−created agent

Figure 5: Results under the hard goal selection regime.

Both the autonomous agent and the hand-created agent

improve with experience. The hand-created agent train-

ing only on the task initially has better performance, but

the autonomous agent later matches it. All error bars

are standard error.

6. Discussion

During a typical run the agent creates an average
of 30.80 (s = 3.77) reinforcement learning problems.
These reinforcement learning problems include those
that allow the hand to move into position to hit
the block, as is shown in Figure 3, those that move
the hand into position to change the relationship be-
tween the hand and the block, and some that do not
appear useful to an outside observer. Each of these
reinforcement learning problems is relatively small
because the learned abstraction provides a relevant
set of state variables and landmarks. This allows for
rapid learning.

One concern with learning algorithms that con-
struct knowledge is computational efficiency. To
learn the contingencies the agent must maintain
statistics on every pair of events. This can be ex-
pensive, but it is not prohibitive because with the
assumption of a maximum number of landmarks per
variable, the number of pairs of events isO(n2) where
n is the number of variables. In this case, the agent
handles the learning of contingencies with no diffi-
culty, but a focus of attention would be necessary
with a large number of variables. The agent must
also maintain statistics on each rule learned. In a
typical run the agent learns about 250 to 300 rules.
In this case we drop rules if their reliability falls too
low, but more sophisticated methods could be em-
ployed.

One important feature that our environment does
not have is variables whose behavior is highly depen-
dent upon the values of other variables. One example
of this is a serial arm, this is currently under inves-

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cumulative Experience (x 1,000 timesteps)

R
at

e
of

 S
uc

ce
ss

autonomous agent
hand−created agent

Figure 6: Results under the uniform goal selection

regime. As with the hard goal selection regime, both the

autonomous agent and the hand-created agent improve

with experience, and the autonomous later matches the

performance of the hand-created agent. All error bars

are standard error.

tigation.

7. Related Work

In this work we have shown how an agent can au-
tonomously learn a model of its environment and
generate its own reinforcement learning problems.
The model learning portion of [Mugan and Kuipers,
2007a] and [Mugan and Kuipers, 2007b] is inspired
by Drescher [1991], although we move beyond that
work by learning in a continuous environment. A
related body of work [Zettlemoyer et al., 2005, Pa-
sula et al., 2007] presents a method that allows an
agent to learn probabilistic planning rules. Using
first-order logic they learn rules that given a con-
text and an action provide a distribution over re-
sults. These rules then allow them to do planning.
Our work can be considered complementary to this
work because our algorithm allows the agent to learn
a discrete state space and a set of basic actions, both
of which are assumed by their algorithm.

The generation of reinforcement learning problems
is closely related to learning options. Options [Sut-
ton et al., 1999] allow an agent to break up a large
reinforcement learning problem into a set of tempo-
rally extended actions. McGovern and Barto [2001]
proposed a method whereby an agent autonomously
finds subgoals based on bottleneck states that are
visited often during successful trials. Subgoals have
also been found by searching for “access states” [Sim-
sek and Barto, 2004, Simsek et al., 2005] that allow
the agent to go from one part of the state space to
another. We define the subgoals for reinforcement
learning to the regions defined by landmarks in which

a predictive rule is reliable. Our focus on learning
distinctions also distinguishes our work from the hi-
erarchical reinforcement work of Bakker and Schmid-
huber [2004], which clusters low-level observations.

The agent can also define options to achieve salient
states [Barto et al., 2004,Singh et al., 2005]. Bonarini
et. al. [2006] define options for states that are rarely
reached or are easily left once reached. Both of these
bodies of work define an intrinsic reward signal based
on prediction error, motivating the agent to explore
parts of the space for which it currently does not have
a good model. This form of intrinsic motivation is
also used in [Huang and Weng, 2002,Marshall et al.,
2004]. However, focusing attention to states where
the model has poor prediction ability can cause the
agent to explore spaces where learning is too diffi-
cult. Our agent’s intrinsic motivation is inspired by
the work on intelligent adaptive curiosity [Oudeyer
et al., 2007] that motivates the agent to explore parts
of the space where it is making progress in learning
the results of actions. We add an additional factor
to motivate the agent to not only explore where it is
making progress, but also where it already has some
competency. This helps to further focus the agent’s
attention, which may become increasingly important
as developmental agents explore more complex envi-
ronments.

8. Conclusion and Future Work

The contribution of this paper is a method for en-
abling an undirected learning agent to apply rein-
forcement learning, allowing it to handle situations
where actions have significant interactions. The
agent discretizes its continuous environment while
learning contingencies. The subspaces where these
contingencies are reliable then serve as goal states
for the agent. This allows the agent to create its
own reinforcement learning problems to reach those
states. These reinforcement learning problems are
made simple because the state space has been dis-
cretized in a way that aligns with the natural en-
vironment, and because the relevant variables have
been identified.

Currently, hierarchical reinforcement learning
[Barto and Mahadevan, 2003] is an active area of re-
search. Of particular interest is how an agent can
autonomously build its own hierarchy. The work
presented here provides a step towards that goal.
Central to our method are contingencies linking an
antecedent E1 event with a consequent event E2,
wrapped in a rule that has a context that says when
the contingency will be reliable. Both this context
and the antecedent provide natural subtasks. In fu-
ture work we will explore how these subtasks can be
put together into a coherent whole.

Acknowledgements

This work has taken place in the Intelligent Robotics
Lab at the Artificial Intelligence Laboratory, The
University of Texas at Austin. Research of the In-
telligent Robotics lab is supported in part by grants
from the Texas Advanced Research Program (3658-
0170-2007), from the National Science Foundation
(IIS-0413257, IIS-0713150, and IIS-0750011), and
from the National Institutes of Health (EY016089).

References

Bakker, B. and Schmidhuber, J. (2004). Hierarchi-
cal Reinforcement Learning Based on Subgoal
Discovery and Subpolicy Specialization. Proc. of
the 8-th Conf. on Intelligent Autonomous Sys-
tems, pages 438–445.

Barto, A. and Mahadevan, S. (2003). Recent Ad-
vances in Hierarchical Reinforcement Learning.
Discrete Event Dynamic Systems, 13(4):341–
379.

Barto, A., Singh, S., and Chentanez, N. (2004). In-
trinsically motivated learning of hierarchical col-
lections of skills. Proc. of the 3rd Int. Conf. on
Developmental Learning.

Bonarini, A., Lazaric, A., and Restelli, M. (2006).
Incremental Skill Acquisition for Self-Motivated
Learning Animats. Lecture Notes in Computer
Science, 4095:357.

Drescher, G. L. (1991). Made-Up Minds: A Con-
structivist Approach to Artificial Intelligence.
MIT Press, Cambridge, MA.

Fayyad, U. M. and Irani, K. B. (1993). Multi-
interval discretization of continuousvalued at-
tributes for classification learning. In Proc. Int.
Joint Conf. on Articial Intelligence, volume 2,
pages 1022–1027.

Huang, X. and Weng, J. (2002). Novelty and Rein-
forcement Learning in the Value System of De-
velopmental Robots. Proc. 2nd Inter. Workshop
on Epigenetic Robotics.

Klein, J. (2003). Breve: a 3d environment for the
simulation of decentralized systems and artificial
life. In Proc. of the Int. Conf. on Artificial Life,
pages 329–334.

Koenig, S. and Simmons, R. (1996). The effect of
representation and knowledge on goal-directed
exploration with reinforcement-learning algo-
rithms. Machine Learning, 22(1):227–250.

Kuipers, B. (1994). Qualitative Reasoning. The
MIT Press, Cambridge, Massachusetts.

Marshall, J., Blank, D., and Meeden, L. (2004). An
emergent framework for self-motivation in devel-
opmental robotics. Proc. of the 3rd Int. Conf. on
Development and Learning (ICDL 2004), Salk
Institute, San Diego.

McGovern, A. and Barto, A. G. (2001). Automatic
discovery of subgoals in reinforcement learning
using diverse density. In Proc. Int. Conf. on
Machine Learning, pages 361–368.

Mugan, J. and Kuipers, B. (2007a). Learning
distinctions and rules in a continuous world
through active exploration. In Proc. of the Int.
Conf. on Epigenetic Robotics.

Mugan, J. and Kuipers, B. (2007b). Learning to
predict the effects of actions: Synergy between
rules and landmarks. In Proc. of the Int. Conf.
on Development and Learning.

Oudeyer, P., Kaplan, F., and Hafner, V. (2007).
Intrinsic Motivation Systems for Autonomous
Mental Development. Evolutionary Computa-
tion, IEEE Transactions on, 11(2):265–286.

Pasula, H., Zettlemoyer, L., and Kaelbling, L.
(2007). Learning Symbolic Models of Stochas-
tic Domains. Journal of Artificial Intelligence
Research, 29:309–352.

Santamaria, J., Sutton, R., and Ram, A. (1997).
Experiments with Reinforcement Learning in
Problems with Continuous State and Action
Spaces. Adaptive Behavior, 6(2):163.

Simsek, O. and Barto, A. (2004). Using relative
novelty to identify useful temporal abstractions
in reinforcement learning. Proc. of the Twenty-
First Int. Conf. on Machine Learning, pages
751–758.

Simsek, O., Wolfe, A., and Barto, A. (2005). Iden-
tifying useful subgoals in reinforcement learning
by local graph partitioning. Proc. of the Twenty-
Second Int. Conf. on Machine Learning, pages
816–823.

Singh, S., Barto, A., and Chentanez, N. (2005).
Intrinsically motivated reinforcement learning.
Advances in Neural Information Processing Sys-
tems, 17:1281–1288.

Sutton, R., Precup, D., and Singh, S. (1999). Be-
tween MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning.
Artificial Intelligence, 112(1-2):181–211.

Sutton, R. S. and Barto, A. G. (1998). Reinforce-
ment Learning. MIT Press, Cambridge MA.

Zettlemoyer, L. S., Pasula, H., and Kaelbling, L. P.
(2005). Learning planning rules in noisy stochas-
tic worlds. In AAAI, pages 911–918.

