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Abstract

Landau–Kolmogorov inequalities have been extensively studied on both continuous and discrete domains for an

entire century. However, the research is limited to the study of functions and sequences on R and Z, with no

equivalent inequalities in higher-dimensional spaces. The aim of this paper is to obtain a new class of discrete

Landau–Kolmogorov type inequalities of arbitrary dimension:

‖ϕ‖�∞(Zd) ≤ μp,d‖∇Dϕ‖p/2d

�2(Zd)
‖ϕ‖1−p/2d

�2(Zd)
,

where the constant μp,d is explicitly specified. In fact, this also generalises the discrete Agmon inequality to higher

dimension, which in the corresponding continuous case is not possible.

Keywords: Lieb–Thirring inequalities, Landau–Kolmogorov inequalities, discrete inequalities, discrete spaces,

functional inequalities, sequence spaces

1. Introduction

In 1912, Hardy, Littlewood and Pólya proved the following inequalities for a function f ∈ L2(R):

‖ f ′‖L2(−∞,∞) ≤ ‖ f ‖1/2L2(−∞,∞)
‖ f ′′‖1/2L2(−∞,∞)

, (1)

‖ f ′‖L2(0,∞) ≤
√

2‖ f ‖1/2L2(0,∞)
‖ f ′′‖1/2L2(0,∞)

, (2)

with the constants 1 and
√

2 being sharp. These results sparked interest in inequalities involving functions, their

derivatives and integrals for a century to come. Specifically, in 1913, Landau proved the following inequality: For

Ω ⊆ R, and f ∈ L∞(Ω):

‖ f ′‖L∞(Ω) ≤
√

2‖ f ′′‖1/2L∞(Ω)
‖ f ‖1/2L∞(Ω)

,

with the constant
√

2 being sharp. This result in turn was motivation for A. Kolmogorov, where in 1939 he found

sharp constants for the more general case, using a simple, but very effective inductive argument to extend the case

to higher order derivatives:

‖ f (k)‖L∞(Ω) ≤ C(k, n)‖ f (n)‖k/nL∞(Ω)
‖ f ‖1−k/n

L∞(Ω)
,

where, for k, n ∈ N with 1 ≤ k < n, he determined the best constants C(k, n) ∈ R for Ω = R. Since then, there

has been a great deal of work on what are nowadays known as the Landau–Kolmogorov inequalities, which are in

their most general form:

‖ f (k)‖Lp ≤ K(k, n, p, q, r) ‖ f (n)‖αLq‖ f ‖βLr ,

with the minimal constant K = K(k, n, p, q, r). The real numbers p, q, r ≥ 1; k, n ∈ N with (0 ≤ k < n) and α, β ∈ R
take on values for which the constant K is finite (Gabushin, 1967).

However, literature on discrete equivalents of those inequalities remained very limited for a long time. In 1979, E.

T. Copson was one of the first to find equivalent results for sequences, series and difference operators. Indeed, he

found the discrete equivalent to (1) and (2). For a square summable sequence, {a(n)}n∈Z ∈ �2(Z) and a difference

operator (Da)(n) := a(n + 1) − a(n), we have:

‖Da‖�2(−∞,∞) ≤ ‖a‖1/2�2(−∞,∞)
‖D2a‖1/2

�2(−∞,∞)
, (3)
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∥Da∥�2(0,∞) ≤ √
2∥a∥1/2

�2(0,∞)∥D2a∥1/2
�2(0,∞), (4)

with the constants 1 and
√

2 yet again being sharp. Z. Ditzian (1982/83) then extended those results to establish

best constants for a variety of Banach spaces, adding equivalent results for continuous shift operators f (x + h) −
f (x); x ∈ R, f ∈ Ł2(R).

Comparing inequalities such as (1) and (2), with (3) and (4) respectively, it was suspected that sharp constants were

identical for equivalent discrete and continuous Landau–Kolmogorov inequalities for 1 ≤ p = q = r ≤ ∞. Indeed,

in the cases p = 1,2,∞, this was true for the whole and semi-axis. However, the general case has since been shown

to be false, as for example demonstrated in 1988 by M. K. Kwong and A. Zettl, where they prove that for many

values of p, the discrete constants are strictly greater than the continuous ones.

Another important special case of the Landau–Kolmogorov inequalities is the Agmon inequality, proven by Agmon

(2010). Viewed as an interpolation inequality between L∞(R) and L2(R), he states the following:

∥ f ∥L∞(R) ≤ ∥ f ∥1/2
L2(R)∥ f ′∥1/2

L2(R).

Thus, throughout this paper we shall call, for a domain Ω, a function f ∈ L2(Ω), a sequence ϕ ∈ �2(Ω), α, β being

Q-valued functions of the integers k, n with k ≤ n and constants C(Ω, k,n), D(Ω, k,n) ∈ R:

∥ f (k)∥L∞(Ω) ≤ C(Ω, k,n) ∥ f ∥α(k,n)L2(Ω) ∥ f (n)∥β(k,n)L2(Ω), (5)

∥Dkϕ∥�∞(Ω) ≤ D(Ω, k,n) ∥ϕ∥α(k,n)
�2(Ω) ∥Dnϕ∥β(k,n)

�2(Ω) . (6)

Agmon–Kolmogorov inequalities, where (6), for Ω ∶= Zd will be the central concern of this paper. Specifically

we only require the case where k = 0 and n = 1, whereas the other inequalities, i.e. those concerned with higher

order, have been discussed in Sahovic (2013). These have a variety of applications in spectral theory for example.

They can be used to obtain the Generalise Sobolev inequality and thus afterwards to obtain a variety of Lieb–

Thirring class inequalities. These in turn have vast applications in the theory of quantum mechanics. Alternatively,

Agmon–Kolmogorov inequalities on higher dimensional discrete spaces are a bit of a novelty in the field discrete

inequalities, as usually only one-dimensional inequalities are studied. The induction method contains intrinsic

ideas translateable to other classes of inequalities.

2. Agmon–Kolmogorov Inequalities Over Zd

We introduce our notations for the d-dimensional inner product space of square summable sequences. For a vector

of integers ζ ∶= (ζ1, . . . , ζd) ∈ Zd, we say {ϕ(ζ)}ζ∈Zd ∈ �2(Zd), if and only if the following norm is finite:

∥ϕ∥�2(Zd) ∶= ( ∑
ζ∈Zd

∣ϕ(ζ)∣p)1/2
.

Then, for ϕ, φ ∈ �2(Zd), we let < ., . >d be the inner product on �2(Zd):

⟨ϕ, φ⟩d ∶= ∑
ζ∈Zd

ϕ(ζ)φ(ζ).
We then let D1, . . . ,Dd be the partial difference operators defined by:

(Diϕ)(ζ) ∶= ϕ(ζ1, . . . , ζi + 1, . . . , ζd) − ϕ(ζ1, . . . , ζd).
The discrete gradient ∇D shall thus take the following form:

∇Dϕ(ζ1, ζ2, . . . , ζd) = (D1ϕ(ζ),D2ϕ(ζ), . . . ,Ddϕ(ζ)).
Thus, combining this definition with that of our norm above, we obtain:

∥∇Dϕ∥2
�2(Zd) = ∥D1ϕ∥2

�2(Zd) + . . . + ∥Ddϕ∥2
�2(Zd).

Further, we require the following notation:
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Definition 2.1 For a sequence ϕ(ζ) ∈ �2(Zd) with ζ ∶= (ζ1, ..., ζd) ∈ Zd, for 0 ≤ k ≤ d we define:

[ϕ]k ∶= ⎛
⎝ ∑
ζ1∈Z
...∑
ζk∈Z

∣ϕ(ζ)∣2⎞
⎠

1/2

.

Remark We identify that [ϕ]0 ∶= ∣ϕ(ζ)∣ and if we apply this operator for k = d, i.e. sum across all coordinates, we

obtain the �2(Zd)-norm: [ϕ]d = ∥ϕ∥�2(Zd).

We are interested in a higher-dimensional version of the discrete Agmon inequality (Sahovic, 2010), which esti-

mates the sup-norm of a sequence φ ∈ �2(Z) as follows:

∥φ∥2
�∞(Z) ≤ ∥φ∥�2(Z)∥Dφ∥�2(Z).

Thus we commence by ‘lifting’ this estimate to encompass more variables:

Lemma 2.2 (Agmon–Cauchy Inequality) For the operator Dk+1, acting on a sequence ϕ(ζ) ∈ �2(Zd), we have:

sup
ζk+1∈Z

[ϕ]k ≤ [Dk+1ϕ]1/2
k+1 [ϕ]1/2

k+1 .

Proof. Using the discrete Agmon inequality on the (k + 1)th coordinate, we find:

∣ϕ(ζ1, . . . , ζd)∣2 ≤ ( ∑
l∈Z

∣Dk+1ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2( ∑
l∈Z

∣ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2
.

Now we sum with respect to the other coordinates:

∑
ζ1∈Z
...∑
ζk∈Z

∣ϕ(ζ1, . . . , ζd)∣2 ≤ ∑
ζ1∈Z
...∑
ζk∈Z

[( ∑
l∈Z

∣Dk+1ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2 ⋅
( ∑

l∈Z
∣ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2] ,

and use the Cauchy–Schwartz inequality on the kth coordinate:

∑
ζ1∈Z
...∑
ζk∈Z

∣ϕ(ζ1, . . . , ζd)∣2 ≤ ∑
ζ1∈Z
... ∑
ζk−1∈Z

[( ∑
ζk∈Z

∑
l∈Z

∣Dk+1ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd, )∣2)1/2 ⋅
( ∑
ζk∈Z

∑
l∈Z

∣ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2].
We repeat this process to finally obtain:

∑
ζ1∈Z
...∑
ζk∈Z

∣ϕ(ζ1, . . . , ζd)∣2 ≤ ( ∑
ζ1∈Z
...∑
ζk∈Z

∑
l∈Z

∣Dk+1ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2 ⋅
( ∑
ζ1∈Z
...∑
ζk∈Z

∑
l∈Z

∣ϕ(ζ1, . . . , ζk, l, ζk+2, . . . , ζd)∣2)1/2
.

◻
We estimate the �2(Zd)-norm of a partial difference operator with the �2(Zd)-norm of the sequence itself:

Lemma 2.3 For a sequence ϕ ∈ �2(Zd) and for i ∈ {1, . . . ,d}, we have:

∥Diϕ∥�2(Zd) ≤ 2∥ϕ∥�2(Zd).

Proof. We show the argument for D1 and note that due to symmetry the other cases follow immediately.

∥D1ϕ∥2
�2(Zd) = ∑

ζ∈Zd

∣ϕ(ζ1 + 1, . . . , ζd) − (ζ1, . . . , ζd)∣2

≤ 2 ( ∑
ζ∈Zd

∣ϕ(ζ1 + 1, . . . , ζd)∣2 + ∑
ζ∈Zd

∣ϕ(ζ1, . . . , ζd)∣2)
= 4 ∑

ζ∈Zd

∣ϕ(ζ1, . . . , ζd)∣2 = 4∥ϕ∥2
�2(Zd).

◻
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This implies that we can obtain an estimate for any mixed difference operator as follows:

∥D1 . . .Dkϕ∥�2(Zd) ≤ 2∥D1 . . .Dl−1Dl+1 . . .Dkϕ∥�2(Zd).

Therefore, by eliminating l difference operators, our inequality will contain the constant 2l.

We arrive at our main result, the Agmon–Kolmogorov inequalities on �2(Zd).

Theorem 2.4 For a sequence ϕ ∈ �2(Zd), and p ∈ {1, . . . ,2d−1}:

∥ϕ∥�∞(Zd) ≤ μp,d∥∇Dϕ∥p/2d

�2(Zd) ∥ϕ∥1−p/2d

�2(Zd) ,

where

μp,d ∶= ( κp,d

dp/2 )1/2d

,

and κp,d is a constant to be determined in the following section.

Proof. We use Lemma 2.2 and Lemma 2.3 repeatedly:

∥ϕ∥�∞(Zd) ≤ [D1ϕ]1/2
1 [ϕ]1/2

1

≤ [D2D1ϕ]1/4
2 [D1ϕ]1/4

2 [D2ϕ]1/4
2 [ϕ]1/4

2⋮
≤ [Dd . . .D1ϕ]1/2d

d . . . . . . [ϕ]1/2d

d

= ∥Dd . . .D1ϕ∥1/2d

�2(Zd) . . . . . . ∥ϕ∥1/2d

�2(Zd)

⇒ ∥ϕ∥2d

�∞(Zd) ≤ ∥Dd . . .D1ϕ∥�2(Zd) . . . . . . ∥ϕ∥�2(Zd).

We have generated an estimate by 2d norms, with exactly 2d−1 norms originating from the term [D1ϕ]1/2
1 . All those

will thus involve the operator D1, or more formally: ∣Ξ1∣ = 2d−1, where we let

Ξ1 ∶= {∥Da1
. . .Dak D1ϕ∥�2(Zd) ∣ ai ≠ a j ∀ i ≠ j ; {a1, . . . ,ak} ⊂ {2, . . . ,d}} .

We note that we could also employ estimates by ∥Diϕ∥�2(Zd) for any i ∈ {1, . . . ,2d}, but our inequality will not

change due to our symmetrising argument. Similarly, we have 2d−1 norms originating from the term [ϕ]1/2
1 , whose

estimates will not involve the operator D1. Hence ∣Ξ2∣ = 2d−1, where we let

Ξ2 ∶= {∥Da1
. . .Dakϕ∥�2(Zd) ∣ ai ≠ a j ∀ i ≠ j ; {a1, . . . ,ak} ⊂ {2, . . . ,d}} .

We will now apply Lemma 2.3 repeatedly, to reduce the order of the operator inside the norms to either 0 or 1. We

recognise that we have to estimate all 1ξ ∈ Ξ1 by 1ξ1 ∶= ∥D1ϕ∥�2(Zd) or alternatively by ∥ϕ∥�2(Zd).

Hence, we choose a p ∈ {0, . . . ,2d−1} to estimate p elements in Ξ1 by ∥D1ϕ∥�2(Zd), leaving 2d−1 − p elements

in Ξ1 to be estimated by ∥ϕ∥�2(Zd). However, for all 2d−1 elements 2ξ ∈ Ξ2, we have to provide an estimate by
2ξ1 ∶= ∥ϕ∥�2(Zd) only. This means we have 2d − p elements in Ξ ∶= Ξ1 ⋃Ξ2 to be estimated by ∥ϕ∥�2(Zd):

∥ϕ∥2d

�∞(Zd) ≤ κp,d∥D1ϕ∥p
�2(Zd) ∥ϕ∥2d−p

�2(Zd),

where κp,d remains a constant of the form 2z with z ∈ Q, which we leave to be identified in the next section. We

thus obtain the following estimate:

∥ϕ∥2d+1/p
�∞(Zd) ≤ κ2/pp,d ∥D1ϕ∥2

�2(Zd) ∥ϕ∥(2d+1−2p)/p
�2(Zd) .

We now exploit the symmetry of the argument:

d ∥ϕ∥2d+1/p
�∞(Zd) ≤ κ

2/p
p,d (∥D1ϕ∥2

�2(Zd) + . . . + ∥Ddϕ∥2
�2(Zd)) ∥ϕ∥(2d+1−2p)/p

�2(Zd)

= κ
2/p
p,d ∥∇Dϕ∥2

�2(Zd) ∥ϕ∥(2d+1−2p)/p
�2(Zd) ,
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and finally rearrange:

∥ϕ∥�∞(Zd) ≤ ( κp,d

dp/2 )1/2d

∥∇Dϕ∥p/2d

�2(Zd) ∥ϕ∥1−p/2d

�2(Zd) .

◻
3. The Constant κp,d

It remains to identify the constant κp,d, we thus give:

Theorem 3.1 We have, for arbitrary dimension d and p ∈ {1, . . . ,2d−1}:

κp,d = 2 d ⋅ 2d−1−p.

We will break the proof down into several steps. The method for finding κp,d will rely largely on the following

observation:

Let τ(ξ) be the order of the operator contained in any given ξ ∈ Ξ. Then we let Ωi ∶= {ξ ∣ τ(ξ) = i}, be the set of all

terms in the estimate whose operator has a given order i. In Ξ1 we have 1 ≤ i ≤ d, and in Ξ2, 0 ≤ i ≤ d − 1.

Lemma 3.2 For the size of Ωi, we have for d ≥ 2:

For Ξ1:

∣Ωi∣ = (d − 1

i − 1
), 1 ≤ i ≤ d,

and Ξ2:

∣Ωi∣ = (d − 1

i
), 0 ≤ i ≤ d − 1.

Proof. We follow by induction and prove the case of Ξ2, noting that the argument for Ξ1 is symmetrically identical.

We have already seen that the formula is correct for d = 2 , and now we assume it is true for d = l, i.e. for

0 ≤ i ≤ l − 1:

∣Ωi∣ = (l − 1

i
),

and thus we have the following list:

Ξ2
2ξ2d−1 . . . . . . 2ξ2

2ξ1 ∣Ω0∣ ∣Ω1∣ ∣Ω2∣ . . . ∣Ωl−1∣
Zl: Dl . . .D2 . . . . . . D2 1 (l−1

0
) (l−1

1
) (l−1

2
) . . . (l−1

l−1
)

Now each term of a given order τ will, by the Agmon–Cauchy inequality (Lemma 2.2), generate a term of order τ
and one of order τ + 1. Thus we have:

Ξ2
2ξ2d . . . . . . 2ξ2

2ξ1 ∣Ω0∣ ∣Ω1∣ ∣Ω2∣ . . . ∣Ωl∣
Zl+1: Dl+1 . . .D2 . . . . . . D2 1 (l−1

0
) (l−1

0
) + (l−1

1
) (l−1

1
) + (l−1

2
) . . . (l−1

l−1
)

Now we apply the standard combinatorial identity aCb + aCb+1 = a+1Cb+1 and consider aC0 = aCa = 1, which

immediately implies:

Ξ2
2ξ2d . . . . . . 2ξ2

2ξ1 ∣Ω0∣ ∣Ω1∣ ∣Ω2∣ ... ∣Ωl+1∣
Zl+1: Dl+1 . . .D2 . . . . . . D2 1 ( l

0
) ( l

1
) ( l

2
) . . . (l

l)
and hence for d = l + 1, we have:

∣Ωi∣ = (l
i
),

completing our inductive step. ◻
As discussed previously, if we consider to estimate a given ξ ∈ Ξ using Lemma 2.3, we will, for example, obtain∥D1 . . .Dkϕ∥�2(Zd) ≤ 2∥D1 . . .Dl−1Dl+1 . . .Dkϕ∥�2(Zd). We can see that we generate a factor of 2 for every partial

difference operator we eliminate, and thus have, for 1ξ ∈ Ξ1 and 2ξ ∈ Ξ2 with order τ(1ξ) and τ(2ξ) respectively:

1ξ ≤ 2τ(
1ξ)−1 ∥D1ϕ∥�2(Zd), and 2ξ ≤ 2τ(

2ξ) ∥ϕ∥�2(Zd).
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We note here that κp,d will not depend on which �2(Zd)-norms in Ξ1 are chosen to be estimated by 2ξ1 ∶= ∥ϕ∥�2(Zd).

The reason for this is transparent when considering that the sum of all the orders ∑2d−1

i=1 τ(1ξi) is a constant and

needs to be reduced to the constant p ⋅ τ(1ξ1) = p, generating a unique κp,d.

Lemma 3.3 The minp κp,d will be attained at p = 2d−1 and takes on the following explicit form:

κ2d−1,d = d−1

∏
i=0

22i(d−1
i ).

Proof. Our minimum constant for Ξ1 in fact occurs if we choose all 1ξ1 ∈ Ξ1 to be estimated by ∥D1ϕ∥�2(Zd), i.e.

choose p = 2d−1, the maximum p possible. Our minimum constant, denoted by ρ1
d, for all terms in Ξ1 will thus be:

ρ1
d = 2d−1

∏
k=1

2τ(
1ξk)−1.

Instead of examining each individual element 1ξ, we consider that all 1ξ of equal order i generate the same constant,

namely 2i−1. Thus we collect all 1ξ of the same order, and obtain:

ρ1
d = d

∏
i=1

2(i−1)∣Ωi∣ = d

∏
i=1

2(i−1)(d−1
i−1
).

Then we need to estimate all 2ξ ∈ Ξ2, and we proceed as for Ξ1. All 2ξ need to be estimated by ∥ϕ∥�2(Zd), each

generating the constant 2i, forming the equivalent pattern as that of Ξ1. We thus obtain, for the minimal constant

ρ2
d:

ρ2
d = d−1

∏
i=0

2i∣Ωi∣ = d−1

∏
i=0

2i(d−1
i ).

We now see that ρ2
d = ρ1

d, and:

κ2d−1,d = ρ2
dρ

1
d = d−1

∏
i=0

22i(d−1
i ).

◻
We are now finally in a position to prove Theorem 3.1:

Proof. (Proof of Theorem 3.1) We are left to analyse the constant’s dependence on our choice of p. First we

note that in addition to the constant generated above, we will have chosen 2d−1 − p terms to be further reduced to

∥ϕ∥�2(Zd), each generating a power of 2. Hence we additionally need to multiply κ2d−1,d by 22d−1−p. Thus our final

constant will be:

κp,d = 22d−1−p ⋅ d−1

∏
i=0

22i(d−1
i ) = 22d−1−p+2∑d−1

i=0 i(d−1
i ).

Then we can simplify this further by considering the binomial formula (1 + X)n = ∑n
k=0 (n

k)Xk. We differentiate

with respect to X and set X = 1:

n ⋅ 2n−1 = n∑
k=0

k (n
k

).
Thus we arrive at:

κp,d = 2d⋅ 2d−1−p.

◻
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