
UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7
Department of Civil and Environmental Engineering
Spring 2013 Professor: S. Govindjee

Object Oriented Programming and Classes in MATLAB1

1 Introduction

Object Oriented Programming (OOP) and Classes are two very important concepts in mod-
ern computer programming. They are often confused with each other but are really two
separate concepts. One can do OOP in any programming language, even in C and Fortran,
but in programming languages such as C++ and Java it is easier and “stricter” due to the
presence of the notion of class. MATLAB just like C++ and Java allows one to write pro-
grams within the OOP paradigm using classes. If you have prior experience with C++ or
Java, first see the appendix at the end of these notes before reading further.

1.1 Terminology and simple examples

First of all, what do we mean by OOP? OOP is really a way of thinking about computer
programs and the data within them. It is a way of thinking which places the data of one’s
problem at the forefront. In its simplest sense it says that when you write a computer
program you should first think about what the objects (data) of the problem will be (in
their most abstract form) and what will be done with them. The program is then designed
at this abstract level with the presumption that methods (functions) will be available to
execute tasks on the objects. How the objects are actually stored or the methods written is
not important at this stage. Importantly, if one can define the objects and the methods to
act on them, then large teams of programmers can easily work together on a single software
project without getting in the way of each other. One of the main reasons for this is that
the only points of interaction are through the creation of objects and the application of
methods upon them. Even if one is not working in a large team environment, OOP is
a good way of thinking as it forces upon the programmer the notion that the important
things in a program are the data objects that are manipulated inside the code. Think data
first, function(method) second. Other benefits include forced modularity of code and ease
of change over time. More succinctly

Object Oriented Programming is the abstraction of ideas and items into data
and the methods (functions) that operate on them.

A class is a template for ideas/items. It is composed of a definition of a data structure and
methods that can operate on the data structure (if created). An object is an actual instance

1See MATLAB’s online guide MATLAB Object-Oriented Programming for further technical details on
OOP in MATLAB.

1



of a class. To use a class one only needs to know the interface to the class (i.e. the methods
of the class).

1.1.1 Example: Rational Numbers

Suppose we are to write an arithmetic system that will deal only with rational numbers (i.e.
the ratios of two integers). This is an ideal situation for creating a class (a template for
rational numbers). The basic data for any rational number would be its numerator and its
denominator. A possible thing we may want to do with rational numbers it to add them
together – this will require a method.

1.1.2 Example: Card Game

Suppose we are to write a computer program that plays a game of cards against a user. In
this situation there are many distinctly different classes of objects that we would probably
like to define. For instance, it would be useful to have a class for a deck of cards. We could
then easily create decks of cards and say shuffle and deal the cards out, if we have defined
the methods shuffle and deal. We would also likely create a class for players and methods
for players to turn over cards in the game etc.

2 Rational Numbers

There are a number of different options for creating classes in MATLAB. To keep things
simple we will only examine one methodology and within that methodology we will concen-
trate only on the most basic options. A class within MATLAB is defined using a file called
classname.m where classname is the name of the class you wish to define. Within this file
the two most basic elements are: (1) a declaration of the data of the class (the properties)
and (2) a constructor for your class. The properties is simply a list of the variables that you
will use to reference the data stored in instances of your class (objects). The constructor is
a method (function) with the same name as your class which contains the rules for storing
the data associated with instances (objects) of the class. It is needed to create objects.

The rational number class is perhaps the simplest so we will use that for this example. We
will name this class ratnum. Thus the class definition file will be called ratnum.m. The most
rudimentary version will look like:

classdef ratnum
% RATNUM −− class for rational numbers

% Properties for the class
properties (Access=protected)

n % Numerator
d % Denomenator

end

2



methods
function r = ratnum(numerator,denomenator)
% Usage: r = ratnum(numerator,denomenator)
% Purpose: Constructor for rational number objects
% Input: numerator −− numerator for rational number
% denomenator −− denomenator for rational number
% Output: r −− rational number object

r.n = numerator;
r.d = denomenator;

end
end

end

The file is delimited by the classdef ratnum/end pair which declares that this file will
provide the class definition for ratnum objects. Next we have the properties block which
is terminated by the end tag. The code in the properties block says that objects of this
class will have two data elements n and d. The attribute (Access=protected) is optional
but we will always employ it as it enforces a stricter object oriented framework on us. The
methods block is terminated with an end tag. It contains a single method for our class,
the constructor ratnum. The constructor has the same name as the class and takes two
arguments, the values of the numerator and the denominator. It then stores them in what
looks like a structure, r, and returns this as its output. MATLAB will interpret this variable
as being of class ratnum.

If one were for instance to type in the command window

>> a=ratnum(1,3)
a =

ratnum with no properties.
Methods

MATLAB would create (construct) a rational number (1/3) and the result would be bound
to the variable a which in the lingo is now a ratnum object (or instance of the ratnum class).
Look in the workspace window and you will see that it is listed as being of class ratnum
or try typing class(a). Since we do not have any methods, beyond the constructor, in
our class there is little that we can do with a. We can not even look at the numerator or
denominator; attempting to do so generates an error.

>> a.n
??? Getting the 'n' property of the 'ratnum' class is not allowed.

In a strict OOP framework one must have a method defined if one wants to do anything
with an object. This is known as the concept of data encapsulation. The internal data of
the object is (encapsulated) protected from other parts of the program. A user of a class
does not need to know the internal storage details.

As a first method beyond the constructor, let us add the disp method to our class definition
so that rational numbers can print in the command window. The only thing the method has

3



to do is print out the rational number. The methods within the class definition have access
to the internal data of instances of the class so this is rather easy to write. A simple version
is as follows:

function disp(r)
% Usage: disp(r)
% Purpose: display a rational number object
% Input: r −− rational number object
% Output: display the rational number

if (r.d ˜= 1)
fprintf('%d/%d\n',r.n,r.d);

else
fprintf('%d\n',r.n);

end
end

This method is placed within the methods block of our class definition file. If we now go
back and create our rational number object, we will see 1/3 printed to the screen2.

>> a=ratnum(1,3)
a =
1/3

By default, when an object is created in MATLAB and MATLAB needs to print it to the
screen, MATLAB calls the disp method in the class definition file for the object. If you wish
to directly print the object you can also call its disp method; e.g. disp(a).

Continuing, let us now add some real functionality to the class. Let us create a method add

which will add two rational numbers together and return the output as a rational number
object. Formally the addition rule is given as

c

d
+

a

b
=

cb + ad

db
(1)

The required method should look like:

function r = add(r1,r2)
% Usage: r = add(r1,r2)
% Purpose: add two rational numbers
% Inputs: r1 −− rational number object
% r2 −− rational number object
% Output: r −− Sum of r1 and r2 as a rational number object

r = ratnum(r1.n*r2.d + r2.n*r1.d,r1.d*r2.d);
end

2Every time you change your class file you should type clear classes at the command prompt otherwise
MATLAB will not be able to use your changes.

4



Note that the output is a rational number which we created by calling the rational number
constructor ratnum. Also note that the method has access to the internal data of the two
rational number objects. As an example, if one typed

>> a = ratnum(1,3);
>> b = ratnum(1,2);
>> c = add(a,b)

then c would be an instance of our class and the screen output would be 5/6.
In class definition we have set up so far, there is no mechanism for looking at the numerator

or the denominator of a rational number object nor is there a way to reset these values once
an object has been instantiated (created). When designing a class one has to decide if these
are useful features that you wish to give users of the class. If they are then they are added to
the methods block of the class definition. Methods which allow you to query property values
are known as getters and the methods that permit you to set property values are known as
setters. For example, if we wanted to permit users to directly get and set the numerator
and denominator of a rational number object, then we would define four separate methods
for these purposes: setN, setD, getN, and getD. The appropriate code, placed within the
methods block for the numerator getter and setter would like:

function n = getN(r)
% Usage: n = getN(r)
% Purpose: Get the numerator of a rational number object
% Input: r −− rational number object
% Output: n −− the value of the numerator

n = r.n;
end

function r = setN(r,numerator)
% Usage: r = setN(r,numerator)
% Purpose: Set the numerator of a rational number object
% Input: r −− rational number object
% numerator −− new numerator value
% Output: r −− reset rational number object

r.n = numerator;
end

Then the usage would then look like:

>> r = ratnum(3,7)
r =
3/7
>> getN(r)
ans =

3
>> r = setN(r,5)

5



r =
5/7

Note that getters are quite common in class definitions. Setters on the other hand should
only be set up after careful consideration – does the user really need direct access to the
internal data of an object?

3 Example: Jabberwocks

The object oriented paradigm is very useful for dealing with non-numeric objects. This very
simple example (adapted from SAMS Java 2.1) is meant to help you see that point. Consider
the swordsman in the poem Jabberwocky by Lewis Carroll. He attacks the jabberwock with
his vorpal blade; Carroll writes:

One, two! One, two! And through and through

The vorpal blade went snicker-snack!

He left it dead, and with its head

He went galumphing back.

In an object oriented framework the swordsman could be an instance of a Knight class. The
Knight class would be the template for any type of knight with appropriate data to describe
knights and methods for things they do. So, for instance, when the swordsman chops the
head off the jabberwock, he could invoke a method to say “Hey! I chopped your head off.
You are dead.” The method could then call another method which would change the state
of the jabberwock from alive to dead.

Just to keep this example simple let us only create the beginnings of a class for jabberwocks.
The data for our generic jabberwock will be its color, sex, whether or not it is hungry, and
whether or not it is dead. For methods, our display method will tell us the state of our
jabberwocks. And we will have one other method to try and feed it. The class definition
with the properties block will look like:

classdef jabberwock
% JABBERWOCK −− Class definition file

properties (Access=protected)
color % string for color
sex % string for sex
hungry % logical for hunger state
alive % logical for metabolic state

end

end % end classdef

6



The data for a jabberwock will have 4 fields as described. The methods block will contain
our constructor, display method, and our feed method. It is placed just after the properties
block.

methods
function j = jabberwock(color,sex,hungry,alive)

% Usage: j = jabberwock(color,sex,hungry,alive)
% Purpose: Constructor for jabberwork objects
%
% Inputs: color −− jabberwock color as a string
% sex −− jabberwock sex as a string
% hungry −− logical variable indicating if the
% jabberwock is hungry
% alive −− logical variable indicating if the
% jabberwock is alive
% Output: j −− jabberwock object

j.color = color;
j.sex = sex;
j.hungry = hungry;
j.alive = alive;

end

function disp(j)
% Usage: disp(j)
% Purpose: Display the state of jabberwork objects
%
% Inputs: j −− jabberwock
% Output: screen output of state

if j.alive
fprintf('This is a %s %s jabberwock which is alive.\n',...

j.sex,j.color);
if j.hungry

fprintf('The jabberwock is hungry.\n');
else

fprintf('The jabberwock is full.\n');
end

else
fprintf('This was a %s %s jabberwock which is now dead.\n',...

j.sex,j.color);
end

end

function j=feed(j)
% Usage: j=feed(j)
% Purpose: Feed a jabberwork
%
% Inputs: j −− jabberwock
% Output: j −− Full jabberwock if alive

7



if j.alive
if j.hungry

fprintf('Yum −− a peasant!\n');
j.hungry = false;

else
fprintf('No, thanks −− already ate.\n');

end
else

fprintf('Are you crazy! This jabberwock is dead!\n');
end

end

end % end methods block

A sample test run looks as follows

>> j=jabberwock('blue','male',true,true);
>> disp(j);
This is a male blue jabberwock which is alive.
The jabberwock is hungry.
>> j=feed(j);
Yum −− a peasant!
>> disp(j);
This is a male blue jabberwock which is alive.
The jabberwock is full.
>> j=feed(j);
No, thanks −− already ate.

% Create a new jabberwock
>> a=jabberwock('red','female',false,false);
>> disp(a);
This was a female red jabberwock which is now dead.
>> a=feed(a);
Are you crazy! This jabberwock is dead!

With the addition of other methods etc. we could build software containing jabberwocks and
treat them abstractly as data objects without having to worry about the implementation
details (as long as we don’t change the interface itself).

4 Overloading

Overloading is the idea that a given method name will do different things depending upon the
class of its input arguments. We have already seen this in action with the disp.m method.
Every time MATLAB tries to display any object it uses the display method defined within
the corresponding class definition; i.e. it first looks up the classname of the object it is trying
to display and then it executes the appropriate method upon the object. This is enormously
useful for a number of reasons the most obvious being that we don’t have to invent different

8



names for methods that essentially do the same thing on different objects (such as display
them).

MATLAB even allows one to overload operators like + and * etc. This is done by creating
methods with special reserved names. For instance if we have two rational numbers, r1
and r2, we can add them using add(r1,r2). But it would be nice to add them by typing
r1 + r2. This is accomplished by using MATLAB’s reserved name, plus, for +. Thus all
we need to do is rename our addition method add to plus. MATLAB will then interpret
statements like r1 + r2 as plus(r1,r2). Other reserved names can be found by typing
help matlab/ops (scroll to the top of the list and you will see names on the left that are
the reserved names corresponding to the operator on the right).3

5 Inheritance

Inheritance is another important concept in OOP. In many situations, one will want to
create a number of classes that have a set of common properties and associated methods.
Inheritance is a way in which you can recognize this commonality and take advantage of
it. Inheritance is generally a very complex subject and here we will only look at it in its
simplest form. In MATLAB if a class (say ‘class a’) inherits from another class (say ‘class b’),
then you can treat instances of ‘class a’ just as though they were instances of ‘class b’. In
particular you can use methods from the class definition of ‘class b’ on objects of ‘class a’.

The essential set up in MATLAB is that in the constructor for ‘class a’ you explicitly
instantiate your object as being of class ‘class b’ and then set up the ‘class a’ data. Note
this is different from having the data for ‘class a’ contain a member of ‘class b’.

To set up inheritance one needs to first set indicate that ‘class a’ will inherit from ‘class b’.
This is done on the classdef line as:

classdef class a < class b

Then in the constructor for ‘class a’, we need the following

function a = class a(init data for a,init data for b)
% Usage: a = class a(init data for a,init data for b)
%
% Purpose: constructor for class a with inheritance from class b
%
% Inputs: init data for a −− data to initialize class a objects
% init data for b −− data to initialize class b objects

a = a@class b(init data for b); % call the superclass constructor
a.data = init data for a; % set the class a data

3This concept should give you the added insight that the arithmetic binary and unary operators are really
just methods in disguise.

9



end

At this stage, if there are any methods for ‘class b’ we can use them with instances of
‘class a’; e.g.

>> a = class a(data,init b);
>> class b method(a);

would be perfectly legal. On the other hand if we did not use inheritance and simply added
an object of ‘class b’ to data structure of ‘class a’ then this would not be legal; i.e. if the
constructor looked like

function a = class a(init data for a,init data for b)

a.b = class b(init data for b);
a.data = init data for a;

end

then to apply ‘class b’ methods onto a.b would require a specific ‘class a’ method that had
access to the internal structure of instances of ‘class a’. Put another way, the functionality
that inheritance provides can substantially simplify coding. There are many more features
of inheritance but we will leave those topics for a second course.

5.1 Inheritance Example

Perhaps the best way to get a basic understanding of inheritance is to look at a simple
example. Suppose we are writing a program that deals with geometric shapes like circles
and rectangles. All of our shapes will have a center position and a color but beyond that
circles and rectangles differ from each other in data and even perhaps methods we would like
to apply to them. It makes sense then to have a shape class with things that are common to
circles and squares and let separate classes for circles and squares deal only with the specific
differences between them. A possible shape class could look like:

classdef shape
properties (Access=protected)

x
y
color

end
methods

function s=shape(x,y,color)
s.x = x;
s.y = y;
s.color = color;

end

10



function disp(s)
fprintf('The shape is centered at (%f,%f) and has color %s\n',...

s.x,s.y,s.color);
end

function color=get color(s)
color = s.color;

end
end

end

This class has a constructor, a display method, and a getter for the color.
Then for our circle class we could inherit from shape as:

classdef circle < shape
properties (Access=protected)

r
end

methods
function c = circle(radius,x,y,color)

c = c@shape(x,y,color); % Special construct for instantiating the
% superclass

c.r = radius;
end

function disp(c)
disp@shape(c); % Call the superclass display first (optional)
fprintf('Radius = %f\n',c.r);

end

function a = area(c)
a = pi*c.rˆ2;

end
end

end

With this set up circle inherits from shape. And for our rectangle class we could have:

classdef rect < shape
properties (Access=protected)

h
w

end

methods
function r = rect(height,width,x,y,color)

r = r@shape(x,y,color); % Special construct for instantiating the
% superclass

11



r.h = height;
r.w = width;

end

function disp(r)
disp@shape(r); % Optional call to the superclass display method
fprintf('Height = %f and Width = %f\n',r.h,r.w);

end

function a = area(r)
a = r.w*r.h;

end
end

end

If we now create instances of rectangles or circles we can utilize and methods for shapes on
them. For example get color(c) would be perfectly legal if c were either an instance of a
rectangle or a circle (or a shape for that matter). For example:

>> c = circle(3,1,1,'blue')
c =
The shape is centered at (1.000000,1.000000) and has color blue
Radius = 3.000000
>> get color(c)
ans =
blue
>> rect=rect(1,2,0,0,'Black')
rect =
The shape is centered at (0.000000,0.000000) and has color Black
Height = 1.000000 and Width = 2.000000
>> get color(rect)
ans =
k

Note that the superclass generates the part of the display text that is common for all shapes
and then the subclass takes care of the part of the display that is unique to the type of shape.
get color is a method that is common to all shapes and since our two classes, circle and
rect, have inherited from shape, they have access to this method without having to directly
implement it in each subclass.

A C++ and Java programmers

Tips for C++ and Java Programmers If you are accustomed to programming in other object-
oriented languages, such as C++ or Java, you will find that the MATLAB programming
language differs from these languages in some important ways:

1. Dot syntax is available in MATLAB. Thus an alternate to method(object) is object.method().

12



2. In MATLAB it is possible to make properties public.

3. In MATLAB there are no implicit parameters to methods. Methods that act on objects
must have them declared in the function header.

4. In MATLAB, method dispatching is not syntax based, as it is in C++ and Java. When
the argument list contains objects of equal precedence, MATLAB uses the left-most
object to select the method to call.

5. To call a superclass method one uses the syntax method@superclass as opposed to
superclass::method (in C++) or superclass.method (in Java).

6. In MATLAB, the destructor method is called delete. For simple classes it is not
needed.

7. In MATLAB, there is no passing of variables by reference. When writing methods
that update an object, you must pass back the updated object and use an assignment
statement. The exception to this rule is the case where your class inherits from the
handle class.

8. In MATLAB, there is no equivalent to C++ templates or Java generics.

13


