
Best Probabilistic Transformers

Björn Wachter1, Lijun Zhang2,1

1 Saarland University, Saarbrücken, Germany
2 Oxford University Computing Laboratory, UK

Abstract. This paper investigates relative precision and optimality of
analyses for concurrent probabilistic systems. Aiming at the problem at
the heart of probabilistic model checking – computing the probability of
reaching a particular set of states – we leverage the theory of abstract in-
terpretation. With a focus on predicate abstraction, we develop the first
abstract-interpretation framework for Markov decision processes which
admits to compute both lower and upper bounds on reachability prob-
abilities. Further, we describe how to compute and approximate such
abstractions using abstraction refinement and give experimental results.

1 Introduction

Markov decision processes (MDPs) play a crucial role as a semantic model in
the analysis of systems with random phenomena like network protocols and ran-
domized algorithms. MDPs feature non-determinism and probabilistic choice.
Typically one is interested in computing (maximal or minimal) reachability prob-
abilities, e.g., the probability of delivering three messages after ten transmission
attempts. For finite MDPs, probabilistic reachability can be reduced to a lin-
ear optimization problem [1]. Recently predicate-abstraction techniques have
evolved [2, 3] that scale to realistic programs which map to very large, even in-
finite MDPs. However, fundamental questions remain open, e.g. for given predi-
cates, what is the most precise abstract program that is still a valid abstraction?

The theory of abstract interpretation [4] has provided answers to such ques-
tions in the non-probabilistic case [5] and has served as a foundation and design
paradigm for a wide range of other program analyses, e.g. [6–8]. In abstract in-
terpretation, program analyses are expressed in terms of non-standard abstract
semantics obtained by replacing the actual domain of computation (also called
concrete domain) by an abstract domain. Concrete and abstract domain are par-
tially ordered sets where ordering describes relative precision of the denotations.

A specification of the most precise analysis is given by the composition
f ♯ = α ◦ f ◦ γ of concretization function γ, the functional f characterizing the
program semantics and abstraction function α, under the condition that func-
tions α and γ form a Galois connection. Being the limit on the best achievable
precision for any valid abstraction, functional f ♯ is called best transformer [9].

These concepts are the starting point of our work. Yet a key element is
missing: a suitable instantiation of abstract interpretation for our setting.

Related Work. While in [10–13] ideas from abstract interpretation have been
applied to probabilistic models, to the best of our knowledge, there is no pre-
ceding framework for MDP abstraction with Galois connections and best trans-
formers. Papers [11–13] target deterministic models and not MDPs.

The pioneering contribution in terms of abstract interpretation for MDPs
is due to Monniaux [10]. His parametric concept of abstract domains allows to
plug in a wealth of base domains from static analysis. However, the resulting
abstract domains contain distinct abstract values with the same denotation [14],
which means that the abstract domain is not partially ordered (the order is not
anti-symmetric). Thus the abstraction precludes Galois connections and is not
suitable to develop best transformers.

Further, the aforementioned abstract-interpretation approaches have yet to
be combined with abstraction refinement. Refinement admits to adjust the ab-
straction to the desired precision, which is particularly important in our quanti-
tative setting. In this respect, abstraction refinement based on predicate abstrac-
tion has recently shown promising results. The abstraction-refinement method
Probabilistic CEGAR [2] computes upper bounds on reachability probabilities
for concurrent probabilistic programs, an infinite-state variation of the lan-
guage of the popular probabilistic model checker PRISM [15]. The software model
checker in [3] employs predicate abstraction and game-based abstraction [16].
Game-based abstraction maps MDPs to stochastic games. The salient and in-
spiring point of this influential work is that game-based abstraction yields both
lower and upper bounds on reachability probabilities, rather than just one bound.

Contribution. Our major theoretical contribution (Sec. 3) is the first abstract-
interpretation framework for MDPs which admits to compute both lower and
upper bounds on reachability probabilities. This provides a solid basis to reason
about the relative precision and optimality of abstract transformers. Further, we
prove equivalence of game-based abstraction with best transformers in our frame-
work. Crucial differences to the abstract-interpretation framework [10, 14] are:
we consider not only upper but also lower bounds, we target predicate abstrac-
tion not classical domains from static analysis, and we express our abstraction
in terms of Galois connections.

Our second contribution (Sec. 4) is the first abstraction-refinement technique
for concurrent probabilistic programs that yields both lower and upper bounds.
Previous analysis techniques for such programs are [17, 2, 18], also based on pred-
icate abstraction. While [2] comes with refinement, it employs an MDP-based
abstraction [19] that gives only effective upper bounds. Whereas [18] comes with-
out refinement and uses game-based abstraction, which yields these bounds but
requires up to exponentially higher construction cost than MDP-based abstrac-
tion and tracking of complex dependencies between commands, which makes
all the difference in practice. The basis of our refinement technique is paral-
lel abstraction, a novel abstraction, computable with the same complexity as
MDP-based abstraction [17, 2]. Parallel abstraction yields effective lower and
upper bounds and combines well with refinement. We have implemented our
ideas in the PASS tool and report on experimental results (Sec. 5).

2

2 Background

Sec. 2.1 first recalls basic notions of abstract interpretation including lattices,
Galois connections and best transformers. We then introduce the lattice of val-
uations, the domain for abstract probabilistic reachability analysis, in which
probabilities can be represented and computed. In Sec. 2.2, we turn to MDPs
and probabilistic reachability.

2.1 Galois connections, Best Transformers and Valuations

The pair (A,≤) is a partially-ordered set, or poset, if A is a set and ≤ ⊆ A×A a
partial order, i.e. a reflexive, antisymmetric and transitive relation. Let (A,≤),
(B,≤), (C,≤) be posets. For two functions f, g : A → B, we write f ≤ g if
f(a) ≤ g(a) for all a ∈ A. We denote the composition of two functions f1 : A→ B
and f2 : B → C by (f2 ◦f1) : A→ C where (f2 ◦f1)(a) = f2(f1(a)) for all a ∈ A.
Function f : A→ B is monotone if for all a, a′ ∈ A, a ≤ a′ =⇒ f(a) ≤ f(a′).

A (complete) lattice is a poset (L,≤) in which each subset M ⊆ L has a
greatest lower bound

d
M and least upper bound

⊔
M w.r.t. ≤. For a mono-

tone function f : L → L over a lattice (L,≤), Tarski’s theorem [20] guarantees
existence of least and greatest fixpoints, lfp≤ f and gfp≤ f respectively. They
are given by: lfp≤(f) =

d
{x ∈ L|f(x) ≤ x} and gfp≤(f) =

⊔
{x ∈ L|f(x) ≥ x}.

In abstract interpretation, the original program semantics, also called con-
crete semantics, is typically defined over a lattice (L,≤), called concrete domain,
and the abstract semantics is defined over a lattice (M,≤), called abstract do-
main. The intuition behind the order ≤ in both lattices is that elements higher
in the order represent less information. Thus an element m ∈M is more precise
than another element m′ ∈M if m ≤ m′, so m′ over-approximates m. For L, the
analog holds. The program semantics is described by a concrete transformer, a
monotone function f : L → L. An abstract transformer is a monotone function
g♯ : M → M . Two monotone functions relate abstract and concrete world: the
abstraction function α : L → M and the concretization function γ : M → L.

The pair (α, γ) is a Galois connection, denoted by (L,≤) −−−→←−−−α

γ
(M,≤), if for all

l ∈ L and m ∈M , we have α(l) ≤ m⇐⇒ l ≤ γ(m).
We call an abstract transformer g♯ : M → M a valid abstraction of f if

(f ◦ γ) ≤ (γ ◦ g♯). For transformer f : L → L, the best transformer [9], is the
composition of functions: f ♯ = α ◦ f ◦ γ. By construction, f ♯ is the most precise
abstract transformer that is a valid abstraction of f , i.e. f ♯ ≤ g♯ for any valid
transformer g♯ : M →M . This follows from properties of the Galois connection.

Lattice of Valuations. A valuation over a set S is a function w : S → [0, 1] that

w1

0.1

0.1

0.0

0.0

0.1

0.1

0.0

0.0

1.0

1.0

0.0

0.0

1.0

1.0

0.0

0.0

w2

1.0

0.2

0.3

0.0

0.5

0.1

0.7

0.8

1.0

1.0

0.4

0.3

1.0

1.0

0.1

0.2

≤

maps elements of S to probabilities. The valu-
ations WS = {w | w : S → [0, 1]} over S form a
lattice (WS ,≤) with order ≤ where w ≤ w′ if
w(s) ≤ w′(s) for all s ∈ S. The figure to the right
shows two valuations w1 and w2 over a set S with
16 elements. Each element is drawn as a circle and the corresponding value is
annotated above the circle. We have w1 ≤ w2, i.e., w2 is an upper bound for
w1, and w1 a lower bound for w2. The lattice (WS ,≥) results by inverting the

3

order in (WS ,≤). We later use lattice (WS ,≥) for abstractions yielding lower
bounds and lattice (WS ,≤) for upper bounds. Two lattices are necessary because
lattice ordering represents precision, and a lower bound is the more precise the
larger it is, while an upper bound is the more precise the smaller it is. To avoid
confusion: symbols

d
and

⊔
always refer to the least elements and greatest el-

ements respectively in (WS ,≤) as given above, and not the ones in (WS ,≥).
We have (

d
V) (s) = infw∈V w(s), and (

⊔
V) (s) = supw∈V w(s) for V ⊆WS . A

valuation transformer is a monotone function f : WS →WS . Due to duality, we
have (gfp≥ f) = (lfp≤ f) and (lfp≥ f) = (gfp≤ f).

2.2 Markov decision processes

A distribution π over S is a function π : S → [0, 1] such that
∑

s∈S π(s) = 1. Let
DistrS be the set of distributions over S. For a distribution π ∈ DistrS , we
denote by Supp(π) = {s ∈ S | π(s) > 0} its support and abbreviate summation
over a subset S′ ⊆ S by π(S′) :=

∑
s∈S′ π(s).

A Markov decision process (MDP) M is a tuple (S, I,A, R) where S is a
set of states, I ⊆ S is a set of initial states, A is a finite action alphabet, and
R : S×A⇀ DistrS the transition function. The transition function R is a partial
function, as indicated by the ⇀ arrow: only certain actions may be enabled in a
state of the MDP or even none. In the latter case, the state is called absorbing. For
s ∈ S, we denote its enabled actions by A(s) = {a | ∃π ∈ DistrS . π = R(s, a)},
and its out-going distributions by Distr(s) = {R(s, a) | a ∈ A(s)}. For a ∈ A(s),
we define π(s,a) := R(s, a) and say that (s, a, π(s,a)) is a transition ofM.

A path is a sequence (s0, a0, π0), (s1, a1, π1), . . . such that s0 ∈ I, (si, ai, πi)
are transitions ofM, and si+1 ∈ Supp(πi) for all i ∈ N. Let Path(M) denote the
set of all paths overM. Similarly finite paths can be defined. For β ∈ Path(M),
let β[i] = si denote the (i + 1)-th state of β.

Markov chains are special cases of MDPs, deterministic MDPs where for ev-
ery state s there is at most one enabled transition |A(s)| ≤ 1. Unlike a Markov
chain, an MDP is not a fully determined stochastic process. In order to ob-
tain a probability measure, the notion of a strategy is needed to resolve non-
determinism. In general, a strategy σ of an MDP M is a function from finite
paths to distributions over actions. We denote the set of strategies of M by
ΣM. For a given state s ∈ S and a strategy σ, let Prσ

s denote the corresponding
probability measure [1] over Path(M).

Probabilistic Reachability. LetM = (S, I,A, R) be an MDP, and let F ⊆ S
be a set of goal states. Let pσ

s (F) := Prσ
s ({β ∈ Path(M) | ∃i ∈ N : β[i] ∈ F})

denote the probability of reaching a goal state in F from state s ∈ S with strategy
σ. For a fixed strategy σ, this defines a valuation pσ(F) ∈WS which maps a state
s to pσ

s (F). In the context of MDPs, one studies minimal p−(F) ∈ WS and max-
imal p+(F) ∈WS reachability probabilities where p−(F) =

d
{pσ(F) | σ ∈ ΣM}

is the infimum and p+(F) =
⊔
{pσ(F) | σ ∈ ΣM} the supremum over all strate-

gies. Below we define two valuation transformers to characterize the minimal
and maximal reachability probabilities.

4

Definition 1 (Valuation Transformers for MDPs). Let F0 ⊆ S be the set of
states that cannot reach states in F . The valuation transformer pre−F : WS →WS

is defined by: pre−F (w)(s) = 1 if s ∈ F , pre−F (w)(s) = 0 if s ∈ F0, and otherwise:

pre−F (w)(s) = min
a∈A(s)

∑

s′∈S

π(s,a)(s
′) · w(s′).

The valuation transformer pre+
F : WS → WS is defined analogously, with the

difference that it maximizes over all enabled actions.

Example 1. We illustrate the transformer pre−F by considering the MDP in Fig-
ure 1. Assume that the goal states are given by the set F = {s2, s3} and that
valuation w assigns probability 1 to s0, s2 and s3 respectively and probabil-
ity 0 to all other states. Inserting the values and solving for state s0, we get

pre−F (w)(s0) = min{w(s0),
w(s1)+w(s2)

2 , w(s2)+w(s3)+w(s4)
3 } = min{1, 1

2 , 2
3} = 1

2 .

For state s4, we have: pre−F (w)(s4) = 1
3w(s0) + 2

3w(s4) = 1
3 .

s0

s1 s2 s3

s4

a

1

b

1
2

1
2

c

1
3 1

3

1
3

c

2
3

1
3

Fig. 1.

Minimal and maximal reachability probabilities
are expressible as least fixpoints of valuation trans-
formers pre−F and pre+

F respectively [21] or more for-
mally p−(F) = lfp≤ pre−F and p+(F) = lfp≤ pre+

F .
This fixpoint characterization together with the back-
ground on abstract interpretation allows us to express
abstractions for probabilistic reachability.

3 Abstraction

We present our novel abstract-interpretation framework for MDP abstraction.
The concrete and abstract domain are given by lattices of valuations. Thereby
lattice order expresses the concept of lower and upper bounds. In Sec. 3.1, we
develop the abstract domain and apply the resulting abstraction framework to
transformers, their fixpoints and particularly probabilistic reachability. Sect. 3.3
reveals a strong connection between the game-theoretical construction of game-
based abstraction and certain best transformers.

3.1 Lower- and Upper-Bound Abstraction

Let S be a set of states. A partition Q of S is a finite set of pairwise disjoint,
nonempty subsets of S such that S =

⋃
B∈Q B. Elements of Q are called blocks.

For a state s ∈ S, we denote by s the unique block B containing s, i.e., s ∈ B.
Abstract valuations are valuations over blocks, elements of WQ.

We give two abstraction functions that, given a valuation over states, yield
a valuation over blocks: lower-bound abstraction αl : WS → WQ returns the
infimum of the values αl(w)(B) = infs∈B w(s) within a block while upper-bound
abstraction αu : WS →WQ returns the supremum αu(w)(B) = sups∈B w(s).

The concretization of an abstract valuation w♯ ∈ WQ is the valuation over
states γ(w♯) that assigns each state the value of its block γ(w♯)(s) = w♯(s). This
defines the concretization function γ : WQ →WS .

5

A lower bound is the more precise the larger it is, while the converse is true
for an upper bound. This notion of precision is reflected by the lattice order: the
order is ≥ if we compare lower bounds, and ≤ for upper bounds.

We obtain two Galois connections corresponding to αl and αu respectively:

Lemma 1 (Galois Connections). For a given partition Q, let αl, αu, γ be
the functions defined above. We have the following two Galois connections:

(a) (WS ,≥) −−−→←−−−
αl

γ
(WQ,≥) (lower-bound abstraction)

(b) (WS ,≤) −−−−→←−−−−
αu

γ
(WQ,≤) (upper-bound abstraction)

Proof. We focus on lower-bound abstraction. Monotonicity of αl and γ follows di-
rectly by definition. It remains to show that for all w ∈WS and w♯ ∈ WQ, it holds
that: w ≥ γ(w♯) ⇔ αl(w) ≥ w♯. First assume w ≥ γ(w♯). For B ∈ Q, we have
αl(w)(B) = infs∈B w(s) ≥ infs∈B γ(w♯)(s) = w♯(B). Now assume αl(w) ≥ w♯.
Then, for all s ∈ S, we have w(s) ≥ αl(w)(s) ≥ w♯(s) = γ(w♯)(s). The proof for
upper-bound abstraction works analogously.

WS WQ

B3

B2B1

0.1

0.1

0.0

0.0

0.1

0.1

0.0

0.0

1.0

1.0

0.0

0.0

1.0

1.0

0.0

0.0

B3

B2B1

w

1.0

0.2

0.3

0.0

0.5

0.1

0.7

0.8

1.0

1.0

0.4

0.3

1.0

1.0

0.1

0.2

B3

B2B1

1.0

1.0

0.8

0.8

1.0

1.0

0.8

0.8

1.0

1.0

0.8

0.8

1.0

1.0

0.8

0.8

≤
≤

≤

B3

B2B1 0.1

0.0

1.0

B3

B2B1 1.0

0.8

1.0

α l

α
u

γ

γ

Fig. 2. Functions αl and αu.

The two Galois connections are il-
lustrated in Figure 2. The big dashed
box on the left represents valuations over
states WS (concrete domain), the one on
the right represents valuations over blocks
WQ (abstract domain). The partition into
blocks B1, B2, B3 is depicted by rectan-
gles surrounding states. Consider the val-
uation w with the thick border. Abstrac-
tion αl(w) provides a lower bound, i.e.
γ(αl(w)) ≤ w. Taking the αu-abstraction
yields an upper bound αu(w), i.e. we get
w ≤ γ(αu(w)).

Remark. We point out crucial differ-
ences to Monniaux’s framework [10]: un-
like in this paper, only upper bounds not
lower bounds are computed, his abstract
domains are in general not partially ordered, and the concrete domain consists
of sets of valuations rather than valuations. Therefore, unlike in our setting, the
concretization function maps an abstract valuation to a set of valuations, as
opposed to a single valuation.

Lower and Upper Bounds of Fixpoints. Aiming for probabilistic reacha-
bility, we consider fixpoints of valuation transformers. If a valuation transformer
is bounded from below and above by two abstract transformers which are valid
abstractions w.r.t. lower-bound and upper-bound abstraction respectively, the
fixpoints of these two abstract transformers enclose the fixpoint of the valuation
transformer, which is formalized in Lemma 2. In the following, we fix Q as the
given partition, and let αl, αu, γ be the functions defined above.

6

Lemma 2 (Bounds from Valid Transformers). Let f : WS → WS. Let

f ♯
1 , f ♯

2 : WQ →WQ be valuation transformers such that f ♯
1 is a valid lower-bound

of f and f ♯
2 a valid upper-bound abstraction of f , i.e., γ ◦ f ♯

1 ≤ f ◦ γ ≤ γ ◦ f ♯
2 .

Then the following inequality holds regarding the fixpoints of these functions:

γ
(
gfp≥(f ♯

1)
)
≤ lfp≤(f) ≤ γ

(
lfp≤(f ♯

2)
)

.

Proof. Let w∗ = lfp≤(f ♯
2) be the least fixpoint of f ♯

2 . It holds that f ♯
2 (w∗) = w∗

and hence (γ ◦ f ♯
2)(w∗) = γ(w∗). By assumption, we have f ◦ γ ≤ γ ◦ f ♯

2 , which

implies (f ◦ γ)(w∗) ≤ (γ ◦ f ♯
2)(w∗) = γ(w∗) and γ(w∗) ∈ {x ∈ WS | f (x) ≤ x}.

Hence lfp≤(f) =
d
{x ∈ WS | f (x) ≤ x} ≤ γ(w∗), as claimed. The other

inequality can be shown in a dual way.

For any concrete valuation transformer f , the fixpoints of the best transformers
w.r.t. lower- and upper-bound abstraction enclose the least fixpoint of f :

Lemma 3 (Fixpoints of Best Transformers). Let f : WS →WS be a given
valuation transformer. Then the following inequalities hold:

γ
(
gfp≥(αl ◦ f ◦ γ)

)
≤ lfp≤(f) ≤ γ

(
lfp≤(αu ◦ f ◦ γ)

)
.

The proof follows immediately by applying Lemma 2 to the best transformers
f ♯
1 = (αl◦f ◦γ) and f ♯

2 = (αu◦f ◦γ). For probabilistic reachability, we consider four

different best transformers: α{l,u} ◦ pre
{−,+}
F ◦ γ where the abstraction function

controls whether we get lower or upper bounds, and the valuation transformer
controls whether maximal or minimal reachability probability is considered. Ex-
ploiting the fact that p−(F) = lfp≤ pre−F and p+(F) = lfp≤ pre+

F , we have the
connection to probabilistic reachability:

Theorem 1 (Bounds for Probabilistic Reachability). LetM = (S, I,A, R)
be an MDP and let F ⊆ S be a set of goal states. Then we have:

γ(gfp≥(αl ◦ pre+
F ◦ γ)) ≤ p+(F) ≤ γ(lfp≤(αu ◦ pre+

F ◦ γ))

γ(gfp≥(αl ◦ pre−F ◦ γ)) ≤ p−(F) ≤ γ(lfp≤(αu ◦ pre−F ◦ γ))

The best transformer (αu◦pre−F ◦γ) for the upper bound of minimal reachabil-
ity contains an alternation between minimization, as in pre−F , and maximization,
as in αu. This suggests a connection to stochastic games where minimization and
maximization are the objectives of two adversarial players. After an interlude on
stochastic games in Sec. 3.2, we make the connection to game-based abstraction.

3.2 Stochastic games

We consider turn-based stochastic games with two players [22]. A stochastic
game is a tuple G = ((V, E), Vinit , (V1, V2, Vp), δ) where (V, E) is a finite directed
graph with edges E ⊆ V × V , Vinit ⊆ V1 is the set of initial vertices, (V1, V2, Vp)
is a partition of the set V , and δ : Vp → DistrV where δ(v)(v′) > 0 implies
that (v, v′) ∈ E. The vertex sets V1, V2 are called player 1 vertices and player 2

7

vertices respectively. For v ∈ V , let E(v) = {w | (v, w) ∈ E} be the successors
of v. A play of the game is a sequence ω = v0v1 . . . such that vi+1 ∈ E(vi) for all
i ∈ N. Let ω[i] = vi denote the (i + 1)-th vertex of ω, and denote the last vertex
by last(ω) = vn if ω is finite.

A player 1 strategy is a function σ1 : V ∗V1 → DistrV such that for any
finite play ω, σ1(ω)(v) > 0 implies that (last(ω), v) ∈ E. Player 2 strategies are
defined analogously. A strategy σi is called pure memoryless if it does not use
randomization and is memoryless: it is a function σi : Vi → V for i = 1, 2. For
any vertex v ∈ Vinit , a fixed pair of strategies corresponds probability measure
Prσ1,σ2

v over infinite plays. Given a vertex v, a reachability objective F ⊆ V1,
and strategies σ1, σ2, pσ1,σ2

v (F) denotes the probability of reaching F starting in
v: pσ1,σ2

v (F) = Prσ1,σ2

v ({ω | ∃i ∈ N : ω[i] ∈ F}). This defines a valuation
pσ1,σ2(F) ∈ WV . Optimal valuations for player 1 and player 2 w.r.t. F are de-
fined by: supσ1

infσ2
pσ1,σ2(F), infσ1

supσ2
pσ1,σ2(F) ∈ WV respectively. Player 1

strategy σ1 is optimal for v ∈ V if infσ2
pσ1,σ2

v (F) = supσ1
infσ2

pσ1,σ2

v (F). The
optimal player 2 strategy can be defined similarly. We also consider the cases
where both players cooperate infσ1,σ2

pσ1,σ2(F) and supσ1,σ2
pσ1,σ2(F). Below we

define four valuation transformers to characterize these optimal valuations:

Definition 2 (Valuation Transformers for Games). Given a reachability
objective F , let F0 ⊆ V1 be the set of vertices that cannot reach F . The valuation
transformer pre+−

F : WV1
→ WV1

is defined by: pre+−
F (d)(v) equals 1 if v ∈ F

and 0 if v ∈ F0, and otherwise,

pre+−
F (d)(v) = max

v2∈E(v)
min

vp∈E(v2)

∑

v′∈E(vp)

δ(vp)(v
′) · d(v′).

The valuation transformers pre−−
F , pre−+

F , pre++
F can be defined analogously by

changing the extrema in the summation accordingly, e.g. pre−+
F minimizes over

E(v) and maximizes over E(v2).

The optimal valuations are least fixpoints of valuation transformers, e.g.
supσ1

infσ2
pσ1,σ2(F) = lfp≤ pre+−

F , and supσ1
supσ2

pσ1,σ2(F) = lfp≤ pre++
F .

3.3 Best Transformers and Game-Based Abstraction

Given a finite partition, game-based abstraction maps an MDP to a stochastic
game1. The blocks of the partition are the player 1 vertices and player 2 vertices
are sets of abstract distributions. The abstraction of a distribution π ∈ DistrS

is the distribution π ∈ DistrQ with π(B) :=
∑

s∈B π(s). The abstraction of a

set of distributions D is the set D = {π | π ∈ D} for D ⊆ DistrS .

1 In full generality, infinite stochastic games may arise through game-based abstrac-
tion. From now on, we assume finiteness. In effect, this excludes MDPs with infinitely
many different transition probabilities, which are not representable in our modeling
language. In subsequent proofs of this section, finiteness of the games also implies
that the abstraction functions αu and αl are applied to valuations for which not only
infima and suprema but minima and maxima exist.

8

Definition 3 (Game-based Abstraction [16]). Let M = (S, I,A, R) be an
MDP, and Q be a partition. The game abstraction ofM w.r.t. Q is the stochastic
game GM,Q = ((V, E), Vinit , (V1, V2, Vp), δ) where the player 1 vertices V1 = Q

are given by the blocks, the player 2 vertices V2 = {Distr(s) | s ∈ S} ⊆ 2DistrQ

are sets of distributions and the vertices Vp = {π | ∃s ∈ S : π ∈ Distr(s)} dis-
tributions. δ : Vp → DistrV is the identity function. The initial vertices are
Vinit = {B ∈ Q | B ∩ I 6= ∅} and the edges E are given by:

E = {(v1, v2) | v1 ∈ V1, ∃s ∈ v1 : v2 = Distr(s)}

∪ {(v2, vp) | v2 ∈ V2, vp ∈ v2} ∪ {(vp, v1) | vp ∈ Vp, vp(v1) > 0} .

Intuitively, a player 1 decision is a concretization step for a given block. The
abstract distributions of a player 2 vertex correspond to the out-going distribu-
tions of a concrete state. The player 2 decision is then like the application of
the concrete transformer ensued by an abstraction step. In fact, the best trans-
formers w.r.t. lower and upper bound abstraction (see Sec. 3.1) are exactly the
valuation transformers of game-based abstraction:

Theorem 2 (Game-based Abstraction and Best Transformer). Let M
be an MDP and F ⊆ S a set of goal states. Further, consider the partition Q of
S such that the goal states F inM are exactly representable: i.e., F =

⋃
B∈F ♯ B

for a suitable F ♯ ⊆ Q. Let pre±±
F ♯ be the valuation transformers in the game

GM,Q as defined in Def. 2. Then it holds that:

pre−−
F ♯ = αl ◦ pre−F ◦ γ , pre+−

F ♯ = αu ◦ pre−F ◦ γ

pre−+
F ♯ = αl ◦ pre+

F ◦ γ , pre++
F ♯ = αu ◦ pre+

F ◦ γ

Proof. We sketch the proof for pre−+
F ♯ = αl ◦ pre+

F ◦ γ, i.e., the claim is that, for

all w♯ ∈WQ and v ∈ V1, pre−+
F (w♯)(v) =

(
(αl ◦ pre+ ◦ γ)(w♯)

)
(v). The claim is

trivially fulfilled if v ∈ F ♯∪F ♯
0 . Otherwise the transformer of the game is defined

as pre−+
F ♯ (w♯)(v) = minv2∈E(v) maxvp∈v2

∑
v′∈V1

δ(vp)(v
′)·w♯(v′). The successors

of vertex v ∈ V1 are given by E(v) = {Distr(s) | s ∈ v}. It is easy to see that
pre−+

F ♯ (w♯)(v) = mins∈v max
π♯∈Distr(s)

∑
v′∈V1

π♯(v′) · w♯(v′). Observe that for

a distribution π and a block v′ ∈ V1, we have by definition π(v′) =
∑

s∈v′ π(s)

and thus
∑

v′∈V1
π(v′) ·w♯(v′) =

∑
s′∈S π(s′) ·w♯(s′). As a final step, we get the

equality
(
(αl ◦ pre+

F ◦ γ)(w♯)
)
(v) = mins∈v maxπ∈Distr(s)

∑
s′∈S π(s′) · w♯(s′),

which proves the claim.

As corollary of Theorem 2, one obtains that the valuation transformers of the
games are a valid abstraction for minimal and maximal reachability. Together
with Theorem 1 this proves that game-based abstraction yields lower and upper
bounds on probabilistic reachability:

γ(inf
σ1,σ2

pσ1,σ2(F ♯)) ≤ p−(F) ≤ γ(sup
σ1

inf
σ2

pσ1,σ2(F ♯)) (1)

γ(inf
σ1

sup
σ2

pσ1,σ2(F ♯)) ≤ p+(F) ≤ γ(sup
σ1,σ2

pσ1,σ2(F ♯)) (2)

9

Theorem 2 establishes that the obtained probability bounds are optimal, i.e. any
valid abstraction cannot yield more precise bounds.

One can thus compute best transformers by game-based abstraction, yet
computational cost is higher than for abstractions that map to MDPs [18]. In the
next section, we introduce abstractions for concurrent programs that alleviate
this problem and still yield effective lower and upper bounds.

4 Abstraction Refinement for Concurrent Programs

We discuss concurrent probabilistic programs in Sec. 4.1. In Sec. 4.2, we present
a novel abstraction tailored to these programs and introduce the correspond-
ing game construction in Sec. 4.3. Together with the refinement algorithm in
Sec. 4.4, we obtain the first abstract-refinement method for infinite-state con-
current probabilistic programs that provides both lower and upper bounds.

4.1 Concurrent Probabilistic Programs.

As in [2], we consider a variation of the popular PRISM language [15] that ad-
ditionally supports integer and real variables. We now give the abstract syntax
and the semantics of concurrent probabilistic programs. We fix a finite set of pro-
gram variables X and a finite set of actions A. We denote the expressions over
the variables V by ExprV and Boolean expressions by BExprV . An assignment
is a function E : X→ ExprX.

module two_chains
m : [0..3]; // control flow

x : int; // counter variable
[a] m=0 -> 1.0: (x’=1000) & (m’=1);

[b] m=0 -> 1.0: (x’=2) & (m’=1);
[c] m=1 & x>0 -> 0.3: (x’=x-1) + 0.7: (m’=3);

[d] m=1 & x<=0 -> 1.0: (m’=2);
endmodule

init

m = 0 & x = 0
endinit

Fig. 3. Example program with variables m and
x and four commands.

A program P = (X, I, C)
consists of an initial condi-
tion I ∈ BExpr X and com-
mands C. A command c con-
sists of a unique action a, a
guard g ∈ BExpr X and assign-
ments Eu1 , ..., Euk

weighted
with probabilities p1, ..., pk

where
∑k

i=1 pi = 1. We de-
note by X′ = E the simultane-
ous update E of variables X.
With the i-th update of c, we associate a unique update label ui ∈ U. Updates
are separated by a “+”: [a] g → p1 : X′=Eu1 + . . . + pk : X′=Euk

. If the guard
is satisfied, the i-th update executes with probability pi. For a command c, we
write ac for its action, gc for its guard and omit subscripts if the command is
clear from context.

A state over variables X is a type-consistent total function from variables in
X to their semantic domains. We denote the set of states by S(X), or S for short,
and a single state by s. For an expression e ∈ ExprX, we denote by JeKs its
valuation in state s. For a Boolean expression e ∈ BExpr X, we have JeKs ∈ {0, 1}
and denote by JeK = {s ∈ S | JeKs = 1} the set of states that fulfill e.

The semantics of a program P = (X, I, C) is the MDP M = (S, I,A, R) with
states S = S(X), initial states I = JIK, actions A = {ac | c ∈ C}, and transitions
induced by the commands. Consider s ∈ S and ac ∈ A. If s ∈ JgcK, we define
R(s, ac) = π such that π fulfills the following dependency where {| . . . |} delimits

10

a multiset: π(s′) =
∑k

i=1 {|pi | ∀x ∈ X : s′(x) = JEui
(x)Ks|}. We use a multiset

since two updates may have the same probability and yield the same state.

4.2 Parallel Abstraction

A concurrent probabilistic program consists of the parallel composition of com-
mands. In parallel abstraction, abstract transformers for the program are ob-
tained by the parallel composition of the abstract transformers of the commands.

We first focus on abstraction for maximal probabilistic reachability. Before
defining the abstract transformers, we reformulate concrete transformer in terms
of transformers pre+

F [a] for the individual actions. Let w ∈WS be a valuation and
s ∈ S a state. Then pre[a]+F (w)(s) equals 1 if s is a goal state, 0 if s cannot reach
a goal state or action a is not enabled on s, and, lastly,

∑
s′∈S π(s,a)(s

′) · w(s′)

otherwise. It is obvious that the transformer pre+
F for maximal reachability of

goal states F is given by:

pre+
F (w)(s) = max

a∈A(s)
pre[a]+F (w)(s) . (3)

We assume that the partition Q is chosen such that the goal states can be
represented precisely, i.e. there exists a set of blocks F ♯ ⊆ Q with F =

⋃
B∈F ♯ B.

Further, we assume that, without loss of generality, a block in a partition contains
either only absorbing or no absorbing states.

For a block B ∈ Q, we denote by A(B) the set {a ∈ A | ∃s ∈ B : a ∈ A(s)}
of actions that are enabled some state in B. By combining abstract transformers
of the commands, we get the abstract transformer for the whole program.

Definition 4 (Maximal Parallel Abstraction). We define the respective ab-
stract transformers for the lower and upper bounds of maximal reachability:

p̃re
l+
F ♯(w♯)(B) := max

a∈A(B)
(αl ◦ (pre[a]+F) ◦ γ)(w♯)(B) ,

p̃reu+
F ♯ (w♯)(B) := max

a∈A(B)
(αu ◦ (pre[a]+F) ◦ γ)(w♯)(B) .

Similar to maximal reachability, we define transformer pre[a]−F : WS →WS

for action a as follows. For a valuation w ∈ WS and state s, pre[a]−F (w)(s)
equals 1 if state s is a goal state or the action is not enabled, 0 if the goal states
are not reachable from s, and

∑
s′∈S π(s,a)(s

′) ·w(s′) otherwise. As for maximal

reachability, the transformer pre−F is given by:

pre−F (w)(s) = min
a∈A(s)

pre[a]−F (w)(s) . (4)

Now we define the abstract transformers for the two bounds in terms of the best
transformers of individual commands.

Definition 5 (Minimal Parallel Abstraction). We define the respective ab-
stract transformers for the lower and upper bounds of minimal reachability:

p̃re
l−
F ♯(w♯)(B) := min

a∈A(B)
(αl ◦ (pre[a]−F) ◦ γ)(w♯)(B) ,

p̃re
u−
F ♯ (w♯)(B) := min

a∈A(B)
(αu ◦ (pre[a]−F) ◦ γ)(w♯)(B) .

11

The following theorem states that the introduced maximal and minimal abstract
transformers are valid abstractions. For p̃re

u+
F ♯ and p̃re

l−
F ♯ one can even show a

stronger result: these transformers are exactly the best transformers αu◦pre+
F ◦γ

and αl ◦ pre−F ◦ γ respectively. In general, this does not hold for the other two
transformers. Overall we have:

Theorem 3 (Validity of Parallel Abstraction).

1. p̃re
u+
F ♯ equals the best transformer αu ◦ pre+

F ◦ γ,

2. p̃re
l+
F ♯ is a valid abstraction of pre+

F ♯ w.r.t. the Galois connection (αl, γ),

i.e., γ ◦ p̃re l+
F ♯ ≤ pre+

F ◦ γ,

3. p̃re
u−
F ♯ is a valid abstraction of pre−

F ♯ w.r.t. the Galois connection (αu, γ),

i.e., pre−
F ◦ γ ≤ γ ◦ p̃re

u−
F ♯ ,

4. p̃re
l−
F ♯ equals the best transformer αl ◦ pre−F ◦ γ.

Proof. Part (1): Let w♯ ∈ WQ, B ∈ Q \ F ♯. By definition, we have the equality
(αu ◦ pre+

F ◦ γ)(w♯)(B) = maxs∈B maxπ∈Distr(s)

∑
s′∈S π(s′) · w♯(s′). Moreover,

we have p̃re
u+
F ♯ (w♯)(B) = maxa∈A(B)(α

u ◦ (pre[a]+F) ◦ γ)(w♯)(B) by Def. 4. This

can be rewritten to: p̃re
u+
F ♯ (w♯)(B) = maxs∈B maxa∈A(s)

∑
s′∈S π(s,a)(s

′) ·w♯(s′),

which is the same as maxs∈B maxπ∈Distr(s)

∑
s′∈S π(s′) · w♯(s′). We are done.

Part (3): we show (pre−F ◦ γ)(w♯)(B) ≤ (γ ◦ p̃reu−
F ♯)(w♯)(B) for all w♯ ∈ WQ

and B ∈ Q. We consider the Galois connection (αu, γ) with order ≤. By Eq. (4),
it holds2: (pre−F ◦ γ)(w♯)(B) = mina∈A(B)(pre[a]−F ◦ γ)(w♯)(B). Since the best

transformer f := αu ◦ (pre[a]−F) ◦ γ is a valid abstraction of pre[a]−F , we have
(pre−F ◦ γ)(w♯)(B) ≤ mina∈A(B)(γ ◦ f)(w♯)(B). To finish the proof we exploit
that γ is a morphism [23, Lemma 4.22] w.r.t.

⊔
:

min
a∈A(B)

(γ ◦ f)(w♯)(B) = γ(min
a∈A(B)

(f)(w♯)(B)) = (γ ◦ p̃re
u−
F ♯)(w♯)(B) .

4.3 Parallel-Abstraction Games

In this section we introduce parallel-abstraction games, the game construction
corresponding to parallel abstraction.

Definition 6. LetM = (S, I,A, R) be an MDP and Q a partition. The parallel-

abstraction game is ĜM,Q = ((V, E), Vinit , (V1, V2, Vp), δ) with V1 = Q ∪ {⋆},
V2 = {(v1, a) | v1 ∈ V1, a ∈ A(v1)}, Vp = {π(s,a) | s ∈ S, a ∈ A(s)} ∪ {v⋆

p},
Vinit = {B ∈ Q | B ∩ I 6= ∅}, δ is the identity function. Let v⋆

p(⋆) = 1. The
edges E are defined by:

E ={(v1, v2) | v1 ∈ V1, v2 = (v1, a) ∈ V2, a ∈ A(v1)}

∪ {(v2, vp) | v2 = (v1, a) ∈ V2, ∃s ∈ v1 : vp = π(s,a)}

∪ {(v2, v
⋆
p), (v⋆

p , ⋆) | v2 = (v1, a) ∈ V2, ∃s ∈ v1 : a /∈ A(s)}

∪ {(vp, v
′) | vp ∈ Vp, vp(v

′) > 0} .

2 Let sB ∈ S such that B = sB, obviously, (pre−F ◦ γ)(w♯)(B) = (pre−F)(γ(w♯))(sB).
Applying Eq. (4), it can be rewritten to mina∈A(B) pre[a]−F (γ(w♯))(B) which is the
same as mina∈A(B)(pre[a]−F ◦ γ)(w♯)(B).

12

A player 1 vertex v1 has a player 2 successor for each a ∈ A(v1). A player 2
vertex (v1, a) represents the abstraction of the a-transitions. Further, the parti-
tion may contain both states on which a particular action a is enabled and states
on which it is not, i.e. the abstraction loses information about enabledness. In
this case, player 2 vertex (v1, a) has distribution v⋆

p as a successor.

Example 2. We consider an MDP with states: S = {s0, . . . , s7}. The state par-
tition is Q = {{s0, s1}, {s2}, {s3}, {s4, s7}, {s5, s6}}. Figure 4 shows the MDP
and the corresponding parallel-abstraction game.

The enabled actions A(B0) in B0 = {s0, s1} are given by A(B0) = {a, b}. In
the corresponding abstract game, blocks are player 1 vertices. For each enabled
action, there is one player 2 vertex. For example, for block B0, there are two
player 2 vertices for action a and b respectively. The successors of the player 2
vertex for a reflect that from B0 there are concrete a-transitions into {s2} and
{s3}. One successor of the player 2 vertex for b represents the b-distribution out
of s0. Vertex ⋆ reflects that b is not enabled at s0.

s0 s1

s2 s3 s4

s5 s6 s7

1 1

2

1 1

0

1 1 0

a a b1

2 1

2

a a c

{s0, s1}

{s2} {s3} {s4, s7}

{s5, s6}

block player 1

Legend:

player 2
distribution

block block

[1
2
, 1]

[1, 1] [1, 1]

[1, 1]

[0, 0]

a
b

1

2
1

2

⋆

a a c

Fig. 4. Illustration of parallel abstraction.

Theorem 4 (Parallel-Abstraction Game and Parallel Abstraction). Let

M, Q and ĜM,Q as defined in Def. 6. Moreover, let pre±±
V ′ be the valuation

transformers in GM,Q w.r.t. objective V ′ as defined in Def. 2. Then we have:

p̃re
l−
F ♯ = pre−−

F ♯∪{⋆}
, p̃re

u−
F ♯ = pre−+

F ♯∪{⋆}
, p̃re

l+
F ♯ = pre+−

F ♯ and p̃re
u+
F ♯ = pre++

F ♯ .

While the proof proceeds in a similar fashion as Thm. 2, the following example
provides some intuition.

Example 3. Figure 4 illustrates the concrete and abstract transformers for min-
imal reachability. In the MDP the minimal reachability probabilities w.r.t. goal
states {s5, s6} are written next to each state. In the game the probability bounds
are annotated at each block as an interval, e.g., [12 , 1] for {s0, s1}. Now the func-
tion of the ⋆-vertex becomes clear. If there was no ⋆-vertex, action b would
contribute probability 1

2 and win against the probability 1 from a, so that for
block {s0, s1} the abstraction would spuriously report 1

2 as an upper bound.

To compute the games for a given set of predicates, we employ SMT-based
enumeration along the lines of [17, 2] with a few additions. The construction also
has the same complexity (number of SMT solver calls). We refer to [2] for details,

13

and focus on background needed to continue our exposition. Let P = (X, I, C) be
a program, and letM be the semantics of P. A predicate ϕ stands for the set of
states satisfying it, i.e., JϕK ⊆ S. A set of predicates P induces a finite partition
of S: two states are in the same block iff they satisfy the same predicates.

Discussion and Comparison. Figure 5 shows a program. Consider predi-
cates s = 0 . . . 2, x < 0, x = 0 and x > 0 and the following blocks in the
partition: B1 = {s = 0, x > 0}, B2 = {s = 1, x < 0}, B3 = {s = 1, x = 0},
B4 = {s = 1, x = 0} and B5 = {s = 2, x > 0}.

module main
s : [0..2]; // control flow
x,y : int; // integer variables

[a] s=0 -> 1.0:(s’=1)&(x’=y);
[b] s=0 & x>10 -> 0.5:(s’=0)+ 0.5:(s’=2);

endmodule

Fig. 5. Example program.

Figure 6 shows MDP-based ab-
straction [2] (6(a)), parallel abstrac-
tion (6(b)) and game-based abstrac-
tion [16] (6(c)). The MDP-based
abstraction contains four distribu-
tions. Command a induces three of
them, since it assigns y to x, and
there are states in B1 where y is smaller, equal or less than zero respectively.
Command b induces one distribution. Parallel abstraction has additionally two
player 2 vertices, one for each command, so one can tell which command induces
which distributions. Again, the ⋆-vertex reflects that command b is not enabled
on all states in B1. Game-based abstraction introduces six player 2 vertices:
these vertices contain abstract distributions from both commands.

B1

B2 B3 B4

B5

a a a

b

(a) MDP-based

B1

B2 B3 B4

B5

a
b ⋆

(b) Parallel

B1

B2
B3 B4

B5

(c) Game-based

Fig. 6. Example of parallel, MDP-based and game-based abstraction.

An advantage of parallel and MDP-based abstraction is that they can be
computed by abstracting commands in isolation. Game-based abstraction, on
the other hand, requires a different approach in presence of concurrency: certain
player 2 vertices result from the combined effect of different commands. As a
result, the abstraction needs to track correlations between different commands,
which can be expensive [18]. Put differently, the number of player 2 vertices is
the sum

∑
v1∈V1

|A(v1)| in parallel abstraction, while, for game-based abstrac-

tion [16], this number is
∑

v1∈V1

∣∣{Distr(s) | s ∈ v1}
∣∣ and, since each player 2

vertex corresponds to a subset of Vp, the worst case lies in the order of 2|Vp|.

4.4 Refinement

We are interested in (minimal or maximal) reachability probabilities for the
initial states of the program. The analysis produces lower and upper bounds
wl and wu respectively for the reachability probabilities w.r.t. to goal states
F . Refinement is invoked whenever the bounds for the initial vertices are too

14

imprecise, i.e. wu(vinit)−wl(vinit) > ε for some initial game vertex vinit ∈ Vinit

where ε is the user-specified precision.
The analysis of the game also yields a game strategy for the lower and upper

bound respectively. We can use existing techniques [2] to check if abstract paths,
ending with a goal block and admissible w.r.t. the strategy, actually correspond
to feasible paths in the program. However, in the given framework, we can focus
feasibility checks on parts of the game where the bounds are not tight.

The idea is to refine blocks v1 ∈ V1 containing states s ∈ v1 that would
achieve more precise bounds if separated from the other states in the block, i.e.,
more formally,

(
(preF ◦ γ)(wl)

)
(s) < wu(v1) or wl(v1) <

(
(preF ◦ γ)(wl)

)
(s)

(where preF is the concrete transformer, i.e. pre−F for minimal and pre+
F for

maximal reachability). For example, consider the program in Figure 3 and its
abstraction using predicates {m = 0, m = 1, m = 2, m = 3, x ≥ 1} in Figure 7(a).
We want to compute the maximal probability to reach {m = 2}. Consider block
B = {m = 1, x ≥ 1}. All states with x < 1 in B (in this case just one state s
with m = 1, x = 1) can go to the block {m = 1, x < 1} via c with probability
0.3. Thus state s fulfills

(
(preF ◦ γ)(wl)

)
(s) = ((preF ◦ γ)(wu)) (s) = 0.3. By

introducing the predicate {x ≥ 2}, we obtain the abstraction in Figure 7(b)
where block B is split into blocks {m = 1, x ≥ 2} and {m = 1, 1 ≤ x < 2} with
more precise probability bounds [0.3, 0.3] and [0, 0.09] respectively.

We put these ideas to work in the following way. First, we select a block to
be refined such that3: (1) lower and upper bound differ wu(v1) − wl(v1) > 0
and, (2) for a player 2 vertex v2 ∈ E(v1), the lower-bound strategy chooses some
v ∈ E(v2) distinct from the choice of the upper-bound strategy v′ ∈ E(v2).
Then we invoke function RefBlock(v1, (v, v′)). If v or v′ equals v∗p, RefBlock

returns the guard of command a. Otherwise, there exists v′1 ∈ V1 such that
v(v′1) 6= v′(v′1) where v and v′ differ in a predicate valuation for some predicate
ϕ. Then RefBlock returns the precondition of ϕ w.r.t. command a. In the
example, we have computed preconditions of predicates {x ≥ 1} and {x ≥ 2}
w.r.t. command c and update x’=x-1 which leads to the refinement steps in
Figure 7(b) and 7(c). This refinement strategy is inspired by [3]: while they
consider sequential programs we consider concurrent programs.

5 Experiments

We have implemented our method in the PASS tool [2], which, until recently,
gave only upper bounds for maximal probabilistic reachability, and, only in
some cases, effective lower bounds from counterexample analysis. The new ver-
sion PASS 2.0 provides both lower and upper bounds for minimal and maximal
probabilistic reachability. Experiments were run on a Pentium 4 with 2.6GHz
and 1GB RAM. We considered models of network protocols, including all mod-
els from [2] and, examples of probabilistic C programs from [3], if they could
be translated to PASS models. We first discuss minimal reachability problems
(here PASS 1.0 is not applicable): PASS 2.0 computed precise minimal reachabil-
ity probabilities for properties of the csma and wlan models from [2]. Further, it

3 This is a relaxation of the criterion that refers to the concrete transformer.

15

m = 0
x < 1

m = 1
x ≥ 1

m = 3
x ≥ 1

m = 1
x < 1

m = 2
x < 1

[0, 0.3]

[0, 0.3]

[0, 0][1, 1]

[1, 1]

a, b

c
0.3

0.7

0.3 0.7

d

(a) Step 1.

m = 0
x < 1

m = 1
x ≥ 2

m = 1
1 ≤ x < 2

m = 3
1 ≤ x < 2

m = 3
x ≥ 2

m = 1
x < 1

m = 2
x < 1

[0, 0.09]

[0, 0.09]

[0.3, 0.3]

[0, 0]

[0, 0]

[1, 1]

[1, 1]

a, b

c

0.3
0.7

0.3

0.7

c

0.3
0.7

d

(b) Step 2: x ≥ 2.

m = 0
x < 1

m = 1
x ≥ 3

m = 1
2 ≤ x < 3

m = 1
1 ≤ x < 2

m = 3
1 ≤ x < 2

m = 3
2 ≤ x < 3

m = 3
x ≥ 3

m = 1
x < 1

m = 2
x < 1

[0.09, 0.09]

[0, 0.027][0.09, 0.09]

[0.3, 0.3]

[0, 0]

[0, 0]

[0, 0]

[1, 1]

[1, 1]

a b

c

0.3
0.7

c

0.3
0.7

c
0.3

0.7

0.3

0.7

d

(c) Step 3: x ≥ 3.

Fig. 7. Illustration of abstraction refinement.

solved the zeroconf and herman case study from [3]. Their tool took 1.97s and
33.5s respectively, on a faster machine, compared to 1.3s and 5s for PASS 2.0. In
the table below, we compare with PASS 1.0 giving running times (in seconds):

wlan1 wlan2 csma1 csma2 brp1 brp2 sw1 sw2

PASS 2.0 43s ✔ 115s ✔ 10s ✔ 5s ✔ 27s ✔ 1s ✔ 18s ✔ 2s ✔

PASS 1.0 72s ✗/✔ 306s ✗/✔ 38s ✗/ ✔ 11s ✗/ ✔ 21s ✔ 3s ✔ 87s 90%/45% 89s ✔

In the table ✔ means success, i.e. the difference between the two established
bounds is less than ε = 10−6. ✗/ ✔ means lower bound 0 and a correct upper
bound. 90%/45% means 90% underestimation of the lower and 45% overestima-
tion of the upper bound. PASS 2.0 succeeds in all cases, while PASS 1.0 success-
fully finds upper bounds, in one case, however, an imprecise one. PASS 2.0 is often
faster. Thanks to lower and upper bounds, it focuses on points of imprecision
and thus finds smaller abstractions.

6 Conclusion

Abstraction is the key to probabilistic model checking of realistic models. This
paper presents the first abstract-interpretation framework for MDPs which ad-
mits to compute both lower and upper bounds on reachability probabilities.
Based on this framework, we present an automatic analysis for concurrent pro-
grams to compute precise lower and upper bounds on reachability probabilities.
As future work, we would like to extend our framework also to probabilistic
safety, rewards and probabilistic equivalence checking [24, 25].

Acknowledgements. This work was supported by the DFG as part of SFB/TR
14 AVACS, by the European Community’s FP7 under grant no 214755, and the
NWO-DFG bilateral project ROCKS. We would like to thank the anonymous
reviewers, Claire Burguière and Ernst Moritz Hahn for their comments.

16

References

1. Bianco, A., de Alfaro, L.: Model Checking of Probabilistic and Nondeterministic
Systems. In: FSTTCS, Springer (1995) 499–513

2. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: CAV. (2008)
162–175

3. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Abstraction Refine-
ment for Probabilistic Software. In: VMCAI. (2009) 182–197

4. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL.
(1977) 238–252

5. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: TACAS. (2001) 268–283

6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The ASTREÉ Analyzer. In: ESOP. (2005) 21–30
7. Alt, M., Ferdinand, C., Martin, F., Wilhelm, R.: Cache Behavior Prediction by

Abstract Interpretation. In: SAS. (1996) 52–66
8. Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic Implementation of the Best Trans-

former. In: VMCAI. (2004) 252–266
9. Cousot, P., Cousot, R.: Systematic Design of Program Transformation Frameworks

by Abstract Interpretation. In: POPL ’02, ACM (2002) 178–190
10. Monniaux, D.: Abstract Interpretation of Programs as Markov Decision Processes.

Sci. Comput. Program. 58 (2005) 179–205
11. Pierro, A.D., Wiklicky, H.: Concurrent Constraint Programming: Towards Proba-

bilistic Abstract Interpretation. In: PPDP. (2000) 127–138
12. Smith, M.J.A.: Probabilistic Abstract Interpretation of Imperative Programs using

Truncated Normal Distributions. ENTCS 220 (2008) 43–59
13. Coletta, A., Gori, R., Levi, F.: Approximating Probabilistic Behaviors of Biological

Systems Using Abstract Interpretation. ENTCS 229 (2009) 165–182
14. Monniaux, D.: Backwards Abstract Interpretation of Probabilistic Programs. In:

ESOP. (2001) 367–382
15. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for

Automatic Verification of Probabilistic Systems. In: TACAS. (2006) 441–444
16. Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based Abstraction for Markov

Decision Processes. In: QEST. (2006) 157–166
17. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic model checking modulo the-

ories. In: QEST. (2007) 129–140
18. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-Based Prob-

abilistic Predicate Abstraction in PRISM. In: QAPL. (2008)
19. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability Analysis

of Probabilistic Systems by Successive Refinements. In: PAPM-PROBMIV. (2001)
39–56

20. Tarski, A.: A Lattice-Theoretical Fixpoint Theorem and Its Applications. In:
Pacific Journal of Mathematics 5:2:. (1955) 285–309

21. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems (1998)
Habilitationsschrift, Universität Mannheim.

22. Condon, A.: The Complexity of Stochastic Games. Inf. Comput. 96 (1992) 203–224
23. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-

Verlag New York, Inc., Secaucus, NJ, USA (1999)
24. Murawski, A.S., Ouaknine, J.: On Probabilistic Program Equivalence and Refine-

ment. In: CONCUR. (2005) 156–170
25. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On Automated Verification

of Probabilistic Programs. In: TACAS. (2008) 173–187

17

