
Augmented Reality Tic-Tac-Toe

Joe Maguire, David Saltzman

Department of Electrical Engineering

jmaguire@stanford.edu, dsaltz@stanford.edu

Abstract: This project implements an augmented

reality version of Tic-Tac-Toe. In this game, the

user draws an X on a paper board. Using a

webcam and digital image processing techniques,

the computer then determines the board state.

Using this information, the computer chooses a

move and displays the move in the appropriate

place on the screen. Our finalized algorithm

successfully completes these steps with high

repeatability.

Introduction

 As mobile processing power increases,

mobile handsets become more able to carry out

standard image processing techniques. This enables

smartphones to carry out image processing tasks

formally prohibitive on a mobile platform.

 One of the tasks that has gained prominence

in recent years on mobile platforms is augmented

reality. Augmented reality seeks to project details

onto images captured by the handset. This ability has

tremendous potential in a wide range of fields from

advertising to gaming. The vast applicability of

augmented reality will surely increase its popularity

as it becomes more feasible on mobile platforms

(Carmigniani).

 Our project sought to delve into the

technical details of augmented reality to develop our

own system using image processing building blocks.

 For the purpose of a demonstration, we

sought to implement a basic game, namely, Tic-Tac-

Toe. We choose a simple game so our main efforts

would focus on the image processing components,

not the graphical components or the AI agent for the

computer player.

 We also opted to implement the system on a

computer rather than on a mobile platform. This

decision was, once again, motivated by our desire to

focus on the image processing not the issues of using

a mobile framework and testing on a mobile

platform. Our decision also does not preclude the

possibility of porting our code to a mobile platform.

This is because we use OpenCV, a software package

with Android support.

Setup

Figure 1

 Our setup, shown in Figure 1 uses a

computer, a webcam, a piece of paper, and a marker.

A tic-tac-toe grid is drawn on the paper, and ticks on

the end of each of the grid line are added to help

track features. The webcam then starts oriented the

same way as the grid, but can be moved and rotated

freely after initialization. The user then draws X’s in

the spaces on the paper, and the computer processes

the image, generates a move, and displays it on the

screen in the appropriate spot on the board.

Algorithm

 Our Algorithm can be broken into three

parts:

1. Acquiring the homography

2. Detecting if the player moved

3. Updating the projected board

mailto:dsaltz@stanford.edu

Part I: Acquire Homography

Figure 2

 Our algorithm first acquires a reference

frame of the board. This is done by simply taking a

photo of the board with a webcam attached to the

computer. If necessary, the built in webcam can be

used.

 After the reference frame is captured, our

program begins to capture live frames of the board.

In Figure 2, the live frame is represented as Current

Frame. As shown by the block diagram, our

algorithm computes SURF keypoints and descriptors

for both the Current Frame and Reference Frame and

then uses those keypoints to calculate a homography

(Bay).

 We originally designed a line homography

algorithm under the direction of Dr. Roland Angst

from the EE department to take advantage of the fact

that the board is formed by four lines. This algorithm

worked under ideal conditions but ultimately proved

too susceptible to noise. Specifically, as the camera’s

orientation changed and as the camera moved away

from the board, our algorithm’s implementation of

Hough-Lines detected extraneous lines that threw the

homography off. This led us to settle on the more

robust but computationally expensive SURF detector

to calculate keypoints for the homography.

 The SURF detector, used to calculate SURF

keypoints as well as descriptors, is a robust scale and

rotation invariant keypoint detector. Its principle

limitation lies in the inherent nature of the Tic-Tac-

Toe board: the board is composed of edges,

something detectors are designed to ignore. However,

boards drawn with markers proved feature rich

enough to be compatible with a SURF

implementation.

 To discard false matches, we process the

matched keypoints with a standard implementation of

RANSAC in OpenCV. RANSAC, RANdom SAmple

Consensus, iteratively computes a model matching

two sets of points only considering the inliers. This is

done with a threshold of 6 pixels to establish whether

rectified points and matched points are inliers or not.

 After calculating the homography, we

compare the homography matrix to the homography

matrix used in the last iteration. If the L2-Norm of

the difference between these two matrices exceeds an

established threshold, the new homography is

rejected and the old homography is used instead. The

threshold is established by sampling a user defined

number of frames. During this time, the webcam is

assumed to be moving in a representative fashion of

during the game. Without this step, the homography

is sometimes prone to changing even when the

camera orientation remains the same or when an

object like a hand blocks the significant portions of

the board.

 The homography is passed on to the later

sections of the algorithm to detect player moves and

update the projected board.

Part II: Detecting if the player moved

Figure 3

 A rectified image is produced by applying

the inverse of the calculated homography to the

original image. A sub-image for each of the nine

sectors of the board is extracted; because the rectified

image has known size and orthogonal lines, this can

be done by taking a fixed range in the rectified

image. For each sub-image, it is then calculated

whether or not an X has been drawn in that sector.

 To detect X’s, first template matching is

performed on the sub-image using OpenCV’s

matchTemplate function. An image created by

superposing an image of an X, one of the X rotated 7

degrees clockwise, and one of the X rotated 7 degrees

counterclockwise (Figure 4) is used as the template.

Of the methods OpenCV’s template matcher can use,

the best for this application is the correlation

coefficient method, which computes the correlation

Figure 4

between the mean-subtracted template and the mean-

subtracted sector image. If the normalized

correlation is above a threshold of 0.4, then it is

decided that it looks like there is an X there.

However, there is some random noise causing sectors

to occasionally spontaneously show X’s, so this noise

is filtered out by requiring X’s to be present in any

sector for three consecutive frames before it is

counted. Whenever an X is detected this way in a

sector that had been empty, it is treated as a new

player move, and the board is passed on to the AI.

Updating the projected board

Figure 5

 At the conclusion of the second part of the

algorithm, the code passes on information regarding

whether a new move was detected and, if so, where.

The final part of the algorithm uses this move

information and a Tic-Tac-Toe game player to

calculate the computer’s move. The general outline is

shown in Figure 5.

 The Tic-Tac-Toe game player is largely

beyond the scope of this class so it will be described

briefly. This player represents the game of Tic-Tac-

Toe as a state containing the current board and the

current role (X or O). It is accompanied by a MinMax

game agent to computer moves.

 A MinMax game agent, where the computer

is defined to be the agent, assumes that the human

player, the opponent, will choose moves that

minimize the score while the computer will choose

moves to maximize the score (this is the ‘min max

assumption’). Since the computer is always the agent

and the human is always the opponent, all scores are

defined as relative to the computer (+100 for

computer win, -100 for human win). The MinMax

game agent starts by generating a tree whose first

nodes are possible computer moves. At the next level

of the tree, the human chooses a move. The tree

terminates when an end state is reached. The values

are percolated up according to the min-max

assumption (that the path taken is one where the

computer picks the maximal reward moves and the

player chooses the minimal reward moves). Since the

game space of Tic-Tac-Toe is small, the optimal

move for the computer, the one with the highest

reward, is always the globally optimal move.1

 Once the game player calculates the

computer’s move it returns the updated piece

locations. A standard circle is drawn at each place

where the computer has moved. Then, the

homography is used to project these circles onto the

current captured webcam frame. The circles and

rectified game board are then drawn over the current

frame which is displayed in real-time to the user.

Results

 The board was consistently detected at rates

of 5-10 fps when the distance between the camera

and the board was less than 3ft. As the board moved

within that distance, the rates dropped to 2-5 fps but

detection remained consistent. Further than 3feet

away, the homography encountered intermittent

errors.

 Our detection of X’s also proved robust.

Any X matching Figure 4 was detected with near

100% precision while the board was within 3 feet of

the camera. At further distances, false positives began

to occur at a rate of 1 per 3 minutes. This occurs

when the homography briefly errs leading to false X

like shapes.

Observations/Issues

 Successfully implementing an augmented

reality system introduced us to problems unforeseen

at the onset of the project. The principle problem

came from using a reference image composed of

edges. This mistake occurred because we designed

our project before covering Keypoint Detection in

1 A more in depth description can be found:
http://arrogant.stanford.edu/ggp/chapters/chapter_06.html.

lecture. The mistake showed us what is now obvious;

relying on certain reference images for augmented

reality presents more difficulty then other reference

images. This explains why many commercial systems

like games or advertisements use known, feature rich

templates for their augmented reality

implementations. The card shown in Figure 6, used

for Nintendo’s augmented reality system exemplifies

this approach.

Figure 6

 Thankfully, many arbitrary references, like

paintings and structures, are also feature rich. So, in

the end, our difficulties were most likely not a

general concern in augmented reality but rather a

consequence of a uniquely poor reference image.

Future Work

 As we worked with and researched more

Image Processing techniques we discovered

opportunities for improvement. One of the most

promising was recent advances in keypoint detection.

Algorithms like FREAK and BRISK offer

performance increases in speed ranging from several

factors to an order of magnitude (Leutenegger and

Alahi). However, neither of these algorithms is

offered in OpenCV’s current python wrapper. Once

they are offered, it would be fascinating to compare

detection times and accuracies with the standard

SURF detector.

 Continuing the idea of augmented reality

playing an ever more important role in mobile

applications, could port our system on to a mobile

platform. An immediately obvious issue is that

certain detectors may or may not be available in the

OpenCV android implementation.

Conclusion

 Our project successfully demonstrated an

interactive augmented reality system. Due to the

generalized approach, it can be easily adapted to

different augmented reality tasks as well as different

platforms like Android. Also, due to the modularity

of our design, we can easily insert a faster detection

algorithm when the python implementation comes

online. This, coupled with a better target image

would make our system viable for real world tasks

like mobile gaming.

Media

Video Link:

http://www.youtube.com/watch?v=whxE7URhJ

AI

Acknowledgements

We owe a tremendous amount to the Course Staff of

EE 368 as well as our advisor, Dr. Roland Angst.

They provided constant guidance and

recommendations. Thank you

http://www.youtube.com/watch?v=whxE7URhJAI
http://www.youtube.com/watch?v=whxE7URhJAI

Appendix

Work breakdown:

Joe: Algorithm Part I (Acquiring Homography) and

AI related aspects (Tic Tac Toe game state and min-

max player)

David: Algorithm Part II (Detecting moves and

sending them to the game agent)

Both: Algorithm Part III (Displaying the board) and

extensive debugging

References

Alahi, A.; Ortiz, R.; Vandergheynst, P. FREAK: Fast

Retina Keypoint. Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference, vol.,

no., pp.510,517, 16-21 June 2012.

infoscience.epfl.ch record files .pdf

Bay Herbert, Tinne Tuytelaars, and Luc Van Gool.

SURF: Speeded Up Robust Features. Computer

Vision – ECCV 2006. pp 404-417.

http://www.vision.ee.ethz.ch/~surf/eccv06.pdf

Carmigniani, Julie, Borko Furht, Marco Anisetti,

Paolo Ceravolo, Ernesto Damiani, Misa Ivkovic.

Augmented reality technologies, systems and

applications. Multimedia Tools and Applications

January 2011, Volume 51, Issue 1, pp 341-377

Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK:

Binary Robust invariant scalable keypoints.

Computer Vision (ICCV), 2011 IEEE International

Conference on , vol., no., pp.2548,2555, 6-13 Nov.

2011.

http://www.asl.ethz.ch/people/lestefan/personal/iccv2

011.pdf

The EE368 Lecture Notes and reference Matlab code

Code Resources:

OpenCV library; http://code.opencv.org.

Numpy library: http://www.numpy.org/

http://code.opencv.org/

