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Abstract: This project implements an augmented 

reality version of Tic-Tac-Toe. In this game, the 

user draws an X on a paper board. Using a 

webcam and digital image processing techniques, 

the computer then determines the board state. 

Using this information, the computer chooses a 

move and displays the move in the appropriate 

place on the screen. Our finalized algorithm 

successfully completes these steps with high 

repeatability. 

Introduction 

 As mobile processing power increases, 

mobile handsets become more able to carry out 

standard image processing techniques. This enables 

smartphones to carry out image processing tasks 

formally prohibitive on a mobile platform.  

 One of the tasks that has gained prominence 

in recent years on mobile platforms is augmented 

reality. Augmented reality seeks to project details 

onto images captured by the handset. This ability has 

tremendous potential in a wide range of fields from 

advertising to gaming. The vast applicability of 

augmented reality will surely increase its popularity 

as it becomes more feasible on mobile platforms 

(Carmigniani). 

 Our project sought to delve into the 

technical details of augmented reality to develop our 

own system using image processing building blocks. 

 For the purpose of a demonstration, we 

sought to implement a basic game, namely, Tic-Tac-

Toe. We choose a simple game so our main efforts 

would focus on the image processing components, 

not the graphical components or the AI agent for the 

computer player.  

 We also opted to implement the system on a 

computer rather than on a mobile platform. This 

decision was, once again, motivated by our desire to 

focus on the image processing not the issues of using 

a mobile framework and testing on a mobile 

platform. Our decision also does not preclude the 

possibility of porting our code to a mobile platform. 

This is because we use OpenCV, a software package 

with Android support.   

Setup 

 

Figure 1 

 Our setup, shown in Figure 1 uses a 

computer, a webcam, a piece of paper, and a marker.  

A tic-tac-toe grid is drawn on the paper, and ticks on 

the end of each of the grid line are added to help 

track features.  The webcam then starts oriented the 

same way as the grid, but can be moved and rotated 

freely after initialization.  The user then draws X’s in 

the spaces on the paper, and the computer processes 

the image, generates a move, and displays it on the 

screen in the appropriate spot on the board. 

Algorithm 

 Our Algorithm can be broken into three 

parts:  

1. Acquiring the homography 

2. Detecting if the player moved 

3. Updating the projected board 
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Part I: Acquire Homography 

 

Figure 2 

 Our algorithm first acquires a reference 

frame of the board. This is done by simply taking a 

photo of the board with a webcam attached to the 

computer. If necessary, the built in webcam can be 

used.  

 After the reference frame is captured, our 

program begins to capture live frames of the board. 

In Figure 2, the live frame is represented as Current 

Frame. As shown by the block diagram, our 

algorithm computes SURF keypoints and descriptors 

for both the Current Frame and Reference Frame and 

then uses those keypoints to calculate a homography 

(Bay).  

 We originally designed a line homography 

algorithm under the direction of Dr. Roland Angst 

from the EE department to take advantage of the fact 

that the board is formed by four lines. This algorithm 

worked under ideal conditions but ultimately proved 

too susceptible to noise. Specifically, as the camera’s 

orientation changed and as the camera moved away 

from the board, our algorithm’s implementation of 

Hough-Lines detected extraneous lines that threw the 

homography off. This led us to settle on the more 

robust but computationally expensive SURF detector 

to calculate keypoints for the homography.  

 The SURF detector, used to calculate SURF 

keypoints as well as descriptors, is a robust scale and 

rotation invariant keypoint detector. Its principle 

limitation lies in the inherent nature of the Tic-Tac-

Toe board: the board is composed of edges, 

something detectors are designed to ignore. However, 

boards drawn with markers proved feature rich 

enough to be compatible with a SURF 

implementation.   

 To discard false matches, we process the 

matched keypoints with a standard implementation of 

RANSAC in OpenCV. RANSAC, RANdom SAmple 

Consensus, iteratively computes a model matching 

two sets of points only considering the inliers. This is 

done with a threshold of 6 pixels to establish whether 

rectified points and matched points are inliers or not.  

 After calculating the homography, we 

compare the homography matrix to the homography 

matrix used in the last iteration. If the L2-Norm of 

the difference between these two matrices exceeds an 

established threshold, the new homography is 

rejected and the old homography is used instead. The 

threshold is established by sampling a user defined 

number of frames. During this time, the webcam is 

assumed to be moving in a representative fashion of 

during the game. Without this step, the homography 

is sometimes prone to changing even when the 

camera orientation remains the same or when an 

object like a hand blocks the significant portions of 

the board.  

 The homography is passed on to the later 

sections of the algorithm to detect player moves and 

update the projected board. 

Part II: Detecting if the player moved 

 

Figure 3 

 A rectified image is produced by applying 

the inverse of the calculated homography to the 

original image.  A sub-image for each of the nine 

sectors of the board is extracted; because the rectified 

image has known size and orthogonal lines, this can 

be done by taking a fixed range in the rectified 

image.  For each sub-image, it is then calculated 

whether or not an X has been drawn in that sector.   

 To detect X’s, first template matching is 

performed on the sub-image using OpenCV’s 

matchTemplate function.  An image created by 

superposing an image of an X, one of the X rotated 7 

degrees clockwise, and one of the X rotated 7 degrees 

counterclockwise (Figure 4) is used as the template.  

Of the methods OpenCV’s template matcher can use, 

the best for this application is the correlation 

coefficient method, which computes the correlation  



 

Figure 4 

between the mean-subtracted template and the mean-

subtracted sector image.  If the normalized 

correlation is above a threshold of 0.4, then it is 

decided that it looks like there is an X there.  

However, there is some random noise causing sectors 

to occasionally spontaneously show X’s, so this noise 

is filtered out by requiring X’s to be present in any 

sector for three consecutive frames before it is 

counted.  Whenever an X is detected this way in a 

sector that had been empty, it is treated as a new 

player move, and the board is passed on to the AI. 

 

Updating the projected board 

 

Figure 5 

 At the conclusion of the second part of the 

algorithm, the code passes on information regarding 

whether a new move was detected and, if so, where. 

The final part of the algorithm uses this move 

information and a Tic-Tac-Toe game player to 

calculate the computer’s move. The general outline is 

shown in Figure 5. 

 The Tic-Tac-Toe game player is largely 

beyond the scope of this class so it will be described 

briefly. This player represents the game of Tic-Tac-

Toe as a state containing the current board and the 

current role (X or O). It is accompanied by a MinMax 

game agent to computer moves.  

 A MinMax game agent, where the computer 

is defined to be the agent, assumes that the human 

player, the opponent, will choose moves that 

minimize the score while the computer will choose 

moves to maximize the score (this is the ‘min max 

assumption’). Since the computer is always the agent 

and the human is always the opponent, all scores are 

defined as relative to the computer (+100 for 

computer win, -100 for human win). The MinMax 

game agent starts by generating a tree whose first 

nodes are possible computer moves. At the next level 

of the tree, the human chooses a move. The tree 

terminates when an end state is reached. The values 

are percolated up according to the min-max 

assumption (that the path taken is one where the 

computer picks the maximal reward moves and the 

player chooses the minimal reward moves). Since the 

game space of Tic-Tac-Toe is small, the optimal 

move for the computer, the one with the highest 

reward, is always the globally optimal move.1  

 Once the game player calculates the 

computer’s move it returns the updated piece 

locations. A standard circle is drawn at each place 

where the computer has moved. Then, the 

homography is used to project these circles onto the 

current captured webcam frame. The circles and 

rectified game board are then drawn over the current 

frame which is displayed in real-time to the user.  

Results 

 The board was consistently detected at rates 

of 5-10 fps when the distance between the camera 

and the board was less than 3ft. As the board moved 

within that distance, the rates dropped to 2-5 fps but 

detection remained consistent. Further than 3feet 

away, the homography encountered intermittent 

errors. 

 Our detection of X’s also proved robust. 

Any X matching Figure 4 was detected with near 

100% precision while the board was within 3 feet of 

the camera. At further distances, false positives began 

to occur at a rate of 1 per 3 minutes. This occurs 

when the homography briefly errs leading to false X 

like shapes.  

Observations/Issues 

 Successfully implementing an augmented 

reality system introduced us to problems unforeseen 

at the onset of the project. The principle problem 

came from using a reference image composed of 

edges. This mistake occurred because we designed 

our project before covering Keypoint Detection in 

                                                             
1 A more in depth description can be found: 
http://arrogant.stanford.edu/ggp/chapters/chapter_06.html.   



lecture. The mistake showed us what is now obvious; 

relying on certain reference images for augmented 

reality presents more difficulty then other reference 

images. This explains why many commercial systems 

like games or advertisements use known, feature rich 

templates for their augmented reality 

implementations. The card shown in Figure 6, used 

for Nintendo’s augmented reality system exemplifies 

this approach. 

 

Figure 6 

 Thankfully, many arbitrary references, like 

paintings and structures, are also feature rich. So, in 

the end, our difficulties were most likely not a 

general concern in augmented reality but rather a 

consequence of a uniquely poor reference image. 

Future Work 

 As we worked with and researched more 

Image Processing techniques we discovered 

opportunities for improvement. One of the most 

promising was recent advances in keypoint detection. 

Algorithms like FREAK and BRISK offer 

performance increases in speed ranging from several 

factors to an order of magnitude (Leutenegger and 

Alahi). However, neither of these algorithms is 

offered in OpenCV’s current python wrapper. Once 

they are offered, it would be fascinating to compare 

detection times and accuracies with the standard 

SURF detector.  

 Continuing the idea of augmented reality 

playing an ever more important role in mobile 

applications, could port our system on to a mobile 

platform. An immediately obvious issue is that 

certain detectors may or may not be available in the 

OpenCV android implementation.  

Conclusion 

 Our project successfully demonstrated an 

interactive augmented reality system. Due to the 

generalized approach, it can be easily adapted to 

different augmented reality tasks as well as different 

platforms like Android. Also, due to the modularity 

of our design, we can easily insert a faster detection 

algorithm when the python implementation comes 

online. This, coupled with a better target image 

would make our system viable for real world tasks 

like mobile gaming.  

Media 

 

 

Video Link: 

http://www.youtube.com/watch?v=whxE7URhJ

AI 
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Appendix 

Work breakdown: 

Joe: Algorithm Part I (Acquiring Homography) and 

AI related aspects (Tic Tac Toe game state and min-

max player) 

David: Algorithm Part II (Detecting moves and 

sending them to the game agent) 

Both: Algorithm Part III (Displaying the board) and 

extensive debugging 
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