USING SIMPLEX GRADIENTS OF NONSMOOTH FUNCTIONS IN
DIRECT SEARCH METHODS
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Abstract. It has been shown recently that the efficiency of direct search methods that use
opportunistic polling in positive spanning directions can be improved significantly by reordering the
poll directions according to descent indicators built from simplex gradients.

The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of
nonsmooth functions in the context of direct search methods like the Generalized Pattern Search
(GPS) and the Mesh Adaptive Direct Search (MADS), for which there exists a convergence analysis
in the nonsmooth setting. Our analysis does not require continuous differentiability and can be
seen as an extension of the accuracy properties of simplex gradients known for smooth functions.
Secondly, we test the use of simplex gradients when pattern search is applied to nonsmooth functions,
confirming the merit of the poll ordering strategy for such problems.
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1. Introduction. Pattern search methods, and more generally, direct search
methods, are directional methods that do not use derivatives. Thus, they can be ap-
plied to nonsmooth functions. The main goal of this paper is to analyze the properties
of simplex gradients when direct search methods are applied to a nonsmooth function
f:R™ — R. We are particularly interested in two classes of direct search methods
of the directional type, for which convergence has been analyzed in the nonsmooth
setting, namely generalized pattern search (GPS) and mesh adaptive direct search
(MADS) (see Audet and Dennis [I, 2, B]). Other classes of direct search methods
have been developed and analyzed, and we refer the reader to the surveys in [T, 20].

Simplex gradients are basically the first order coefficients of polynomial interpo-
lation or regression models, which, in turn, are used in derivative-free trust region
methods. However, simplex gradients can also serve as directions for search or orien-
tation, as suggested by Mifflin [I9]. Bortz and Kelley [] used simplex gradients as
search directions in their implicit filtering method. In the context of the Nelder-Mead
simplex-based direct search algorithm, Kelley [I3] used the simplex gradient norm
in a sufficient decrease type condition to detect stagnation, and the simplex gradient
signs to orient the simplex restarts. More recently, Custédio and Vicente [8] suggested
several procedures to improve the efficiency of pattern search methods using simplex
derivatives. In particular, they showed that when opportunistic polling is employed,
i.e., polling is terminated at an iteration as soon as a better point is found, then
ordering the poll directions according to a negative simplex gradient can lead to a
significant reduction in the overall number of function evaluations.
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Our paper focuses mainly on the unconstrained case. However, the application
of our analysis to the constrained case is straightforward for MADS or for the lin-
early constrained modification of GPS in the sense that it only requires the existence
of refining subsequences and corresponding refining directions. These can be also
guaranteed in the nonlinearly constrained case for GPS with either the augmented
Lagrangian or filter approach.

The material of this paper is organized as follows. In Section B we revise the basic
smooth case properties of simplex gradients. The properties of simplex gradients of
nonsmooth functions are stated and proved in Section Bl for a general application
of direct search methods, using the concepts of refining subsequence and refining
direction. The use of simplex gradients in direct search methods based on positive
spanning sets is discussed in Section Bl We confirm in Section | that, in particular, it
is possible for both GPS and MADS to identify sample sets as specified in Section Bl
We report numerical results in Section [ for a set of nonsmooth problems, confirming
that ordering the poll directions according to a negative simplex gradient leads to
significant reductions in the overall number of function evaluations, as it was observed
in [§] for smooth problems.

2. Simplex gradients. Consider a function f : R® — R and a finite set of
sampling points. When the sample set is poised for linear interpolation or regres-
sion, simplex gradients are defined as the gradients of the corresponding models.
Depending on the number of points available, simplex gradients can be computed in
determined or underdetermined forms (corresponding to linear interpolation models)
or in overdetermined forms (corresponding to linear regression models).

In the determined case, let us assume that we have a sample set with n + 1
affinely independent points {y°, y',...,y"}. Set S = [y! —4° -y —y°] and § =
[FY) — FW°) - f(y™) — f(¥°)]T. The simplex gradient V,f(y") computed at y° is
calculated as V,f(y°) = S~ T6.

When the number g+1 of points is not necessarily equal to n+1, simplex gradients
can be also regarded as ‘solutions’ of the system

(2.1) STV () = 4,

where § = [y' —y° - y? —yO and 0 = [f(y") — f(y°) -~ f(y?) — f(¥")]T. For
instance, when only ¢ +1 < n+ 1 affinely independent points are available, a simplex
gradient can be calculated as the minimum norm solution of the system (ZII).

Affine independence is not possible when ¢ > n. In general, we say that a sample
set is poised for a simplex gradient calculation (or for linear interpolation or regression)
when S is full rank, i.e., when rank(S) = min{n, q}. Thus, if we have a poised set
with ¢ + 1 > n + 1 points, one can compute a simplex gradient as the least squares
solution of the system (I).

We can express the simplex gradient as V,f(y°) = VXU T§/A in any of the
cases, where ULV T is the reduced singular value decomposition (SVD) of ST /A and
A = max;<;<4 ||y’ —y°||. Division by A is important to scale the points to an unitary
ball centered at y°.

For smooth functions, it is easy to derive bounds for the error between the simplex
gradient and the true function gradient. The following result summarizes all the cases
considered above (for proofs see [6] and [I4]). The accuracy of these bounds is mea-
sured in terms of A. It is assumed that the gradient of f is Lipschitz continuous on
a domain containing the smallest enclosing ball B(y%; A) = {y € R" : ||y —¢°|| < A}
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of the sample set, centered at 7/°.

THEOREM 2.1. Let {y° 4%, ..., y?} be a poised sample set for a simplex gradient
calculation in R™. Assume that V[ is Lipschitz continuous in an open domain )
containing B(y°; A) with constant vvs > 0. Then, the error of the simplex gradient
at y°, as an approzimation to V f(y°), satisfies

N 17y —
VTV = Vor 6Ol < (2 BL1E71) A,
whereV:Iz'qunandV:Vifq<n.

In order to control the quality of the simplex gradient, it is therefore crucial to
monitor the quality of the geometry of the sample set considered, in other words,
the size of |X7!||. Conn, Scheinberg, and Vicente in [7, 6] introduced the so-called
notion of A-poisedness to measure the quality of sample sets, as well as algorithms
to build or maintain A—poised sets. The definition of A-poisedness is omitted. For
the purposes of this paper, we say that a poised set {y°,y*,...,y%} is A-poised, for a
given positive constant A > 0, if |7 < A. A sequence of sample sets is A—poised
if all the individual sample sets are.

3. Simplex gradients, refining subsequences, and nonsmooth functions.
Let us start by recalling the definition of a refining subsequence, introduced first by
Audet and Dennis in [I] in the context of GPS. This definition can be extended to
any direct search algorithm that, at each iteration k, samples a poll set or a frame of
the form {zy + ard : d € Dy}, where Dy, is a positive spanning set and «y > 0 is the
mesh size or step size parameter.

A subsequence {xy }rex of the iterates generated by a direct search method is said
to be a refining subsequence if two conditions are satisfied: (i) zj is an unsuccessful
iterate, meaning that f(zx) < f(zx + ard), for all d € Dy; (ii) {ax}rex converges
to zero. A point xy satisfying condition (i) is called a mesh local optimizer (in GPS)
or a minimal frame center (in MADS). The analysis of direct search methods like
GPS or MADS assumes that the sequence of iterates generated by the algorithms
lie in compact sets. Hence, we can assume without loss of generality that a refining
subsequence converges to a limit point.

Note that in the presence of constraints or when the function value cannot be
calculated one can have f(zy + ard) = +oo for some d € Dy. We must therefore
assume that the poll points used in the simplex gradient calculations are such that
f(zr + ard) < +00. To build appropriate simplex gradients at refining subsequences,
we will also use the fact that Dy is a positive spanning set. However, we point out
that the fact that the frame center is minimal (f(zy) < f(zx + ard), for all d € Dy) is
not needed in the analysis. Of importance to our analysis are the facts that a refining
subsequence {zy }rex converges to z,. and that o, — 0 for k € K.

Of relevance to us are also refining directions associated with refining subse-
quences. Refining directions are limits of the form dj/||dx| for subsequences of K.
Refining directions are trivially guaranteed to exist in GPS [ 2], or in MADS in the
unconstrained case. In the presence of nonlinear constraints, refining directions have
been shown to exist in MADS under an appropriate constraint qualification [3]. In our
paper, we will assume for simplification and without loss of generality that dy /| dx||
converges for every refining subsequence considered.
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Finally we will also use the fact that ay||dg|| — 0 for k € K, which can be trivially
guaranteed for GPS (since here Dy, is contained in a positive spanning set D fixed for
all k; see [IL [2]) and also for MADS under further appropriate requirements on the
frames (see [3, Definition 2.2]).

The global convergence results for pattern and direct search methods are obtained
by analyzing the behavior of the generalized derivatives of f at the limit points of
refining subsequences. Thus, it is natural to pay particular attention to simplex
gradients calculated at iterates of refining subsequences. As we will see later, since
these iterates are unsuccessful and positive bases have special geometrical properties,
it is possible to calculate A—poised sample sets in a number of different ways, some of
which have already been introduced by Custédio and Vicente [8]. For the time being,
all we need is to assume that, given a refining subsequence, it is possible to identify
a subset Zj, of the poll set, described as

I = {:Uk—l—ozkd: dEEk} - {ack—i—ozkd: dGDk},
such that
Y., = {:L'k}UZk

is A—poised for k € K. Let Zj, denote the subset of the index set {1,...,|Dg|} which
defines the poll points in Zj (or the poll directions in Fj). The simplex gradient is
calculated in an overdetermined form when |Z;| > n + 1, and in a determined or
underdetermined form when |Zj| < n.

First, we show that the subsequence of refining simplex gradients has a limit
point. Let

Ay, = max{||z —zx| : z € Z} = apmax{|d||: d] € By},

st(xk) = VkE,;lU,jék/Ak, and S,:/Ak = UkszkT,

where Sj; is the matrix whose columns are (zj + akdi) — X = akdi and Jj, is the
vector whose components are f(xy + akdi) — f(xy), for all di € E}. For the result we
need to assume that the number | Z;| of elements used for the overdetermined simplex
gradients remains uniformly bounded. If all Dy are positive bases, since these have a
maximum number of 2n elements, we trivially get | 25| < 2n. In general we need to
assume, reasonably, that the number |Dj| of elements of the positive spanning sets
D, is uniformly bounded.

LEMMA 3.1. Let {xk}rex be a refining subsequence converging to x. such that
{Yi}rex is A—poised. Let f be Lipschitz continuous near x.. Then, the simplex gra-
dient subsequence {Vf(xr)}rex has at least one limit point.

Proof. Let € be a neighborhood of x, where f is Lipschitz continuous, with
Lipschitz constant ;. Since the sequence {xj}rex converges to x., the iterates xy
are in 2 for k sufficiently large. Thus, for all ¢ € Z;, and k sufficiently large,

(),

|/ (zx + andy) = flaw)] Vsl <
apmax{||d,|| : ], € Ex} — max{||di]| : d} € Ex}
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From these inequalities, we get

_ Ok _ _
IVsf(zp)ll = ‘szklUle_k < IZMVI2k e < 156V Dkl s

Thus, since |X; ]| < A for all k € K, we conclude that {Vf(z))}rex is bounded,
from which the statement of the theorem follows trivially. O

The next step is to study, in the nonsmooth context, the properties of a limit point
identified in Lemma Bl for subsequences of simplex gradients constructed at refining
subsequences. For this purpose, we will make use of Clarke’s nonsmooth analysis [5].
Next we summarize the results we need for locally Lipschitz functions.

Let f be Lipschitz continuous near x.. The Clarke generalized directional deriva-
tive of f computed at z, in the direction v is the limit

fly+tv) - fly)

f(xe;v) = limsup ;

Y — Tx

t10

Since f is Lipschitz continuous near z., this limit is well defined and so is the gener-
alized subdifferential (or subgradient)

Of (z,) = {seR": fo(z.;v) >v's, YveR"}.
Moreover,
(3.1) fo(ze;v) = max{v's: s € df(z.)}.

The Clarke generalized subdifferential is a nonempty convex cone and, as set-valued
mapping, is closed and locally bounded (see [3]). The mean value theorem can be
formulated for locally Lipschitz functions using the Clarke generalized subdifferential.
In fact, if x and y are points in R™ and if f is Lipschitz continuous on an open set
containing the line segment [z, y], then there exists a point z in (z,y) such that

(3.2) fy) = f(x) = V() (y - ),
for some V f(z) € 0f(z).

A function is strictly differentiable at x, if and only if is Lipschitz continuous
near x, and there exists a vector V f(z,) such that

“ilo

In this case, the Clarke generalized subdifferential reduces to a singleton df(x.) =

{Vf(za)}-

3.1. The Lipschitz continuous case. The first case we consider is when | 2| <
n, in other words, when simplex gradients are determined or underdetermined. This
case is not of great interest since underdetermined simplex gradients do not capture
the appropriate geometrical properties of positive spanning sets. In the limit case
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|Zk| = 1, we are dealing with approximations to one-sided directional derivatives.

THEOREM 3.2. Let {x}}rex be a refining subsequence converging to x. for which

d
lim LI and lim  oglldk]] = 0.
k — 400 ||dk|| k — +oo
kek kek

Moreover, assume that {Yi trex is A—poised, |Z,| < n for all k € K, and dy, € Ey, is
a direction used in the computation of Vs f(xy) for all k € K.

Let f be Lipschitz continuous near x.. Then, {Vf(xr)}rex has a limit point
Vof(zk) — Vsfe, k€ LCK, such that

fo(zasv) > Voflo.
Proof. The proof is omitted since it is basically the proof of the next theorem,

which is in same way more general. In fact, @3) below reduces to & = S} Vs f(zx)
and the proof of Theorem applies here trivially. O

Let us consider now the more interesting case where | Z;| > n+ 1 (overdetermined
simplex gradients). From the definition of simplex gradient, we have

(3.3) 0k = Sy Vs f(ar) + (I =S¢ (SkSy ) ™" Sk)dk,
where Ry = (I — S, (Sk.S;])~1Sk) is a projector onto the null space of Sy. For conve-
nience, we will denote the rows of Ry by (Ti)T, 1 € Z. In this subsection we analyze

the case where f is Lipschitz continuous near x..

THEOREM 3.3. Let {x} }rex be a refining subsequence converging to x. for which

dy,
3.4 li = d li di|| = 0.
( ) k—1>n-i1-oo ||dk|| an k—1>r£,1-oo ak” k”
kek kekK

Moreover, assume that {Yy}rex is A—poised, |Z;| > n+1 for all k € K, and dj, € Ej,
is a direction used in the computation of Vsf(xx) for all k € K.

Let f be Lipschitz continuous near .. Then, {Vsf(xk)}rex has a limit point
Vsf(xg) = Vsfe, k€ L CK, such that

. i T Ok
(3.5) fo(xa;v) > V~f;rv—|— limsup (r}* <7),
’ k — oo i) | d |l
keLl

where i is the index in Zy, for which d = di’“ € Eg.

Proof. From Lemma Bl there exists a subsequence £ C K such that Vg f(xy) —
Vsf« for k € L. Now, we express the i,-th row in B3) as

flay + ardr) — (k)
o

= Vof(zr) di + 1 (i) " (6r).-
ok
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From the basic properties of the generalized derivatives of locally Lipschitz functions
(see, for instance ([BI)), one can easily see that

. dy, . < dy, >
“(x4;v) = f° | z4;  lim = lim Ny, —— .
Flaso) =1 U AT I S ST
keK
Since ag||di|| — 0 for k € K,
f(@p + agl|di||[720) — f(ak
O S A T I (0
k — 4oo | d |l
ke
= limsup Fla + ok di) = f(zk)
k — 400 || di |
kekK
) Vs f(xr) dy T Ok
= limsup {7—1—(7"“‘)
k — +o0 (||l * oug || di|
kekK
> V.flv+ limsup ()7 (L)
- SJ %
k — +oo * oug || di |
keLl

and the proof is concluded. O

3.2. The strictly differentiable case. To better understand Theorem B3 and
the role of the limsup term in 3), let us focus now on the case where Zj, is constant
for all k£ € K and f is strictly differentiable at x.. As an example, let us look at the
case of coordinate search, where Dy, = [I,, —I,,] for all k (and I,, = [e1 - - - e, ] stands
for the identity matrix of size n). Let us consider the calculation of overdetermined
simplex gradients using all the poll points (£ = 2n). It is easy to see that

_ I, I,
Ry = Iy, — S (SkS)) 1Sk0.5[1 I ]

Thus, what we get in this case from Theorem are the following 2n inequalities
f(xeses) > Vofd ei + 0.5 [f (zes i) + f(2e; —ei)], i=1,....n,
e —e) > Vof (=) + 0.5 [f (masei) + [z —e)], i=1,...,n.
Since f is strictly differentiable at z., we also get f'(z.;e;) + f'(z«;—e;) = 0 and,
thus, the extra terms in the above inequalities (which come from the lim sup term in

@B3)) vanish. The following corollary summarizes a consequence of Theorem in
the strictly differentiable case.

COROLLARY 3.4. Let the assumptions of Theorem[Z3 hold. Assume further that
the function f is strictly differentiable at x., Zj is constant for all k € K, and the
normalized form of Ey, given by Ey/|dk|| converges to V,, in KC. Then, for the refining
direction v € V,, given by (54),

faiv) = (fl@sv) = Vi@)Tv) = Veflv.
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Proof. First, we point out that

Ry = I— (Ex/|ldel)" ((Ek/Hdk||)(Ek/||dkH)TY1 (Ex/ldkll),

and, as a result, Ry — R, = I — V.7 (V,V,7)71V, in K. The result stated in the
corollary can then be obtained by replacing the last two inequalities of the proof of
Theorem B3 by equalities. Note that the lim sup term in 3) is, in fact, always zero:

(I*%T(VvVUT)ilvv)) f/(x*EVv) = (I*V;;T(VvVvT)ilvv)) Vq;va(x*) = 07

where f'(x.;V,) is the vector formed by the directional derivatives of f at x, along
the directions in V,,. O

Note that V,, depends on v since the normalization of the columns in E}, is done
with respect to ||dg||, which, in turn, is associated with the refining direction v. Sup-
pose now that Corollary B4 is applicable to a set of linearly independent refining
directions v € V for which V,, = V for all v. In this case, as a result of Corollary B4,
applied for all v € V', we would conclude that Vf. = V f(z.).

Our next theorem focuses exclusively on the case where f is strictly differentiable
at the limit point z, of a refining subsequence. The result of this theorem is only true
for determined or overdetermined simplex gradients (| 2| > n). However, it is true
for any cardinal |Z;| = |Ex| > n and it does not require any assumption on limits of
normalized directions of Ej.

THEOREM 3.5. Let {xy reic be a refining subsequence converging to x,. such that
{Yi}rex is A—poised and |Z| > n for all k € K. Let f be strictly differentiable at x..
Then, there exists a subsequence of indices L C IC such that

lim  Vef(e) = V().
k — +oo
keLl

Proof. Since f is strictly differentiable at z., then it is Lipschitz continuous
near z, and we can apply Lemma Bl Let £ C K be the index set for which the
corresponding subsequence of simplex gradients converges.

From the mean value theorem (B2 for locally Lipschitz functions, we have, for
all 1 € Zy, and k € L sufficiently large, that

f(@p +oardy) — f(zr) = aV(z) di,

where 2} is a point in the line segment (zy,x) + aids) and Vf(z}) € df(z}). Now,
because Jf is locally bounded, the sequence {V f(z%)}kec is bounded. But, since df
is a closed set-valued mapping and 2z}, — . for k € £, any limit point of {V f(2})} ke
is necessarily in f(z.). Thus, Vf(z) — Vf(z,) for k € L.

Now we write, for all i € Z,

Flan+ awdy) = flzr) = arVf(z.) di +ax[V(z) = V()] di.

Let 7, denote the vector of dimension |Z| and components [V f(z1) — V f(x.)] " di.
Then,

6 = Sy Vf(w.) + arfe
8



and
Vof(xr) = (SkS) )7 1Sk = Vf(2s) + ap(SkSy ) 1Sk

Moreover, note that

(3.6) ak(SkS;)_ISkﬂc = z_]; [(Sk/Ak)(Sk/Ak)T} - (Sk/Ak)fk'

Now, let 7) denote the vector of dimension |Z;| and components ||V f(z}) —
Vf(z.)|. One can easily prove that

7kl < max{||d]]| - & € B}l
Thus, from this bound, ([E0l), and the A—poisedness of {Yj}rek,

1
max{|[d]] = d] € Ex}

[Jar (SkSy )~ S| < 1= el < A7

The proof is thus concluded from the fact that 7, — 0 for k € £. O

The result of Theorem B cannot possibly be true for simplex gradients computed
with less than n + 1 points (|Z25| < n). Even in the smooth case such result would
not be valid as one could infer from Theorem Il where V/ # I when ¢ < n. From
the proof of Theorem B we have

IVf(xe) = Vsf(zi)| < A|7ll, 7 — 0 (for k € L),

which is a nonsmooth counterpart of Theorem 11

4. Applications in direct search methods. A point z, at which f is locally
Lipschitz is (Clarke) stationary if f°(x.;d) > 0, for all d in R™. If the function f
is strictly differentiable at z, then, for ensuring the stationarity of z., it suffices to
show that f°(z.;d) > 0,Vd € D, where D is a positive spanning set for R™. In this
context, the material of Section Bl suggests a new stopping criterion for an algorithm
that polls a positive basis at each iteration. In fact, if at an unsuccessful iteration

Vof(rp) " (ard) > —€to1, Vd € Ey,

for a given tolerance €;,; > 0, then it is probably safe to stop the algorithm. We
should have |Zj| > n+ 1. A natural choice is Fy = Dj. Our numerical experience
has shown, however, that the use of this stopping criterion has an effect similar to the
use of a stopping criterion solely based on the size of ay.

The simplex gradient can also be used to reorder the poll directions before sam-
pling the poll points. This strategy was suggested by Custédio and Vicente [§], in the
context of generalized pattern search, but it can be applied to any algorithm that polls
using a positive spanning set. In fact, we can define a descent indicator by considering
—Vsf(zr) and order the poll vectors according to increasing magnitudes of the angles
between this descent indicator and the poll directions. Based on a test set of smooth
problems, and in the context of coordinate search, it has been observed that ordering
the poll directions using simplex gradients can reduce the average number of function
evaluations more than 50% [§]. Numerical results for the application of this strategy
to nonsmooth problems will be reported in Section Bl
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In the remaining of this section we are mainly interested in studying poisedness
and A-—poisedness of poll sets. The A—poisedness of the sequences of poll sets will be
then analyzed in more detail in Section Hl for the context of particular algorithmic
settings.

Positive bases for R™ must have between n 4+ 1 and 2n vectors (see [d]). Positive
bases with n+1 (2n) elements are called minimal (maximal). The most used positive
bases in practice probably are the ones of the form [B —B] or [B — Y. | b;], where
B is a nonsingular matrix in R"*" (see [I7]).

The question that arises is how to compute overdetermined simplex gradients
from poll points defined by positive spanning sets, in other words how to identify
poised poll sets. One possible approach is to use all the poll directions, in other
words, all the vectors in each positive spanning set used for polling. It is easy to
see that the corresponding overdetermined simplex gradients are well-defined in this
circumstances (see Proposition [Ml). Furthermore, this proposition also tells us that
if cosine measures of positive spanning sets are bounded away from zero then the
corresponding poll sets are A—poised. It is known [I5] that the cosine measure

v'd
k(D) = min max ———
veih 20 46D Tollld]
of a positive basis or positive spanning set D is always positive.
PROPOSITION 1. Let D be a positive spanning set for R™. Let ||d|| > dmin > 0
for alld e D. Then D is full rank and

1

> < —m

where DT =UXVT.

Proof. Since ||d|| > dmin, ¥d € D, we have

Td
k(D) = min maxv—
Ilvll=1 deD ||d||
1
< min max [v'd| = —— min |D" v
min llvll=1 deD Amin vl=1
T

min || D

vUll.
" dimin llvll=1 |

The Courant-Fischer inequalities applied to singular values (see, for example, [I2])
allow us to conclude that

1 1
k(D) < min [|[DTv)| = ——————.
(D) < dmin lIvli=1 1Dl Amin || 27|

5. Two algorithmic contexts. This section is devoted to the validation of the
conditions needed for the theorems stated in Section B in the context of two different
direct search methods. These results where established for generalized pattern search
(GPS) by Audet and Dennis [I], 2], and for mesh adaptive direct search (MADS) by
Audet and Dennis [].
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5.1. Generalized pattern search. GPS allows the use of different positive
spanning sets Dy, at each iteration, but all Dy must be chosen from a positive spanning
set D. In the linearly constrained case, the set D must take into account the geometry
of the feasible set, see [Il, Definition 3.13]. For the GPS-filter method which handles
nonlinear constraints this provision is not strictly necessary, but the authors explicitely
take into account the geometry of linear constraints in the set D, see [2, Definition
4.1].

As a result, the number of distinct positive spanning sets Dy that is possible
to consider is finite and, thus, it is also finite the number of different direction sets
Ex C Dy used in the computation of simplex gradients. As a result, all refining
subsequences {Y} } ek of poised poll sets are A—poised, for some A > 0 only dependent
on D. The computation of poised poll sets Yy, for overdetermined simplex gradients,
can adopt, when possible, the choice Ey = Dx.

The existence of a convergent refining subsequence for a sequence of iterates
generated by GPS is proved in [T, Theorem 3.6] (see also [2, Lemma 5.8] for the GPS-
filter method). From the finiteness of D, we trivially guarantee ay||dg|| — 0 and the
existence of refining directions.

5.2. Mesh adaptive direct search. The poll set or frame in MADS is of the
form {z + A}'d : d € Dy}, where A" > 0 represents a mesh size parameter and Dy,
is a positive spanning set not necessarily extracted from a single positive spanning
set D. One can have, in MADS, an infinite number of distinct positive spanning sets
Dy, but each d in D; must be a nonnegative integer combination of directions in
a fixed positive basis D. MADS considers also a poll size parameter AY > 0, but
we omit that part of the description of the algorithm since it plays no role in our
discussion. In the context of our paper we have aj, = A7

The existence of a convergent refining subsequence for a sequence of iterates
generated by MADS is proved in [3]. From the relationship between A}* and A7,
it is known that ag||dg|| — O for all refining subsequences. Refining directions are
guaranteed to exist trivially in the unconstrained case and proved to exist in the
constraint case under appropriate conditions.

Audet and Dennis [3, Proposition 4.2] suggested a practical implementation of
MADS, called LTMADS, that generates a dense set of poll directions in R" with
probability one, satisfying all MADS requirements. The positive spanning sets Dy in
LTMADS are of the form [ By, —By] or [By — > 1, (br)i].

Let us start by looking at the maximal case [ By —By]. If we are interested in
overdetermined simplex gradients one can set Fy = Dy = [Br — By]. In this case,
Sk = Oék[Bk — Bk] and A = o max{||(bk)1|| : (bk)z S Bk}

Now let us look at the minimal case [ By, — Y .- (bx): ]. The use of overdetermined
simplex gradients is also straightforward. We can set E, = Dy, = [Bj, — > 1, (bg): ].
In this case, Sk = ax[Br — > i (bk)i] and A = oy max{|| — Z?Zl(bk)jﬂ, (b4l -
(bk)z S Bk}

From the fact that the smallest singular value of a matrix does not decrease
when rows or columns are added, we can infer, for both cases, that the corresponding
sequences of sample points {Y}; }rex are A—poised if the inverse of the matrix ay By /A
is uniformly bounded in K. Let us see that that is the case for the maximal case. The
definition of Ay is slightly different in the minimal case, but the proof is similar.

The matrix By in LTMADS results from row and column permutations of a lower
triangular matrix Ly, where each diagonal element is given by +1/,/as, and the lower
diagonal elements are integers in the open interval (71 /o, 1/ \/a_k) Thus, since
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the 2-norm of a matrix is invariant under row and column permutations and from the
property of singular values mentioned above,

(5.1) IS < (e Br/A0) M = ll(awLe/Ae) 7.

One can see that ay Ly is a lower triangular matrix with diagonal elements +,/aj, and
lower diagonal elements in the interval (—,/ag, /). So, the norms of the columns
of ap Ly, are in [/ay, \/nay) and one can observe that aj Ly /Ay is a lower triangular
matrix with diagonal elements in (1/y/n, 1] in absolute value.

The 1-norm of the inverse of a nonsingular lower triangular matrix L of dimen-
sion n can be bounded by

_ +1 n—1
A
fa
where 01 = max;s; [€i;]|/|¢ii| and 2 = min, [£;;| ([T6]; see also [I1]). Thus, we obtain
(with 81 =1 and (B2 = 1/y/n):
(5.2) lawLi/Ak) 7 < Vall(awLe/Ax) "My < 0277

Finally, from ([l and (2), we conclude that {Y }rex is A—poised with A = n27~ 1.

6. Numerical experiments. We collected a set of nonsmooth functions from
the nonsmooth optimization literature. As far as we could verify all the functions are
continuous. Several types of nondifferentiability are represented. The list of problems
is given in Table

| problem | source | dimension |

activefaces 0] 20
elattar IR 6
EVD61 1K) 6

filter 1K 9
goffin 8] 50
HS78 8] 5
L1HILB 1K 50
MXHILB IE)] 50
osborne2 1K 11
PBC1 8] 5
polak?2 8] 10
shor 8] 5
wongl IR 7
wong2 1K 10

TABLE 6.1

Test set of nonsmooth functions.

In Table we report the results of two (generalized) pattern search methods on
this test set. The basic version corresponds to a simple implementation of coordi-
nate search with opportunistic pooling, where the positive basis used for polling is [ I
—1I]. No search step is considered. The mesh size parameter is halved in unsuccessful
iterations and kept constant in successful iterations. The other version order differs
from the basic one only in the fact that the polling vectors are ordered according to
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increasing angles with a descent indicator (the negative simplex gradient). All previ-
ously sample points are candidates for the simplex gradient calculations (store-all
mode in [§]). Before polling one attempts to build a simplex gradient from a set of
A-poised points (A was set to 100) with a number of points as large as possible but
between (n + 1)/2 and 2n + 1.

fevals fvalue

problem fbest basic | order basic [ order
activefaces | 0.00e+00 913 713 2.30e+00 2.30e+00
elattar 5.60e-01 1635 569 6.66e+-00 6.91e-01
EVD61 3.49e-02 538 335 3.16e-01 9.07e-02
filter 6.19e-03 370 333 9.50e-03 9.50e-03
goffin 0.00e4-00 22526 17038 0.00e4-00 0.00e4-00
HS78 -2.92e+4-00 329 212 -1.52e+-00 2.07e-04

L1HILB 0.00e+00 | 3473240 7660 2.33e+-00 2.20e-01
MXHILB 0.00e+00 26824 3164 1.24e+00 | 1.24e+00

osborne2 4.80e-02 727 761 2.80e-01 1.01e-01

PBC1 2.23e-02 287 264 4.39e-01 4.34e-01

polak2 5.46e+01 2179 1739 5.46e+01 5.46e+01

shor 2.26e+01 215 257 2.43e+01 2.34e+01

wongl 6.81e+02 343 366 6.85e+02 | 6.85e+02

wong2 2.43e+01 819 763 3.97e+01 2.58e+01
TABLE 6.2

Ordering poll vectors using simplex gradients on a set of nonsmooth problems. fbest is the best
function value reported in the source reference, fevals is the number of functions evaluations taken,
and fvalue is the final function value computed.

The results show clearly that the ordering strategy based on simplex gradients for
nonsmooth functions leads to better performance. The average reduction in function
evaluations was around 27%. In some cases the reduction is significant and when an
increase occurs it is relatively small. The average reduction of function evaluations
reported in [§] for similar simplex derivatives based strategies was around 50% for
continuously differentiable problems. The application of direct search methods to
nonsmooth functions is however less well understood in practice and the sources for
different numerical behavior are greater. In this paper we analyze some properties of
simplex gradients which tend to support the improvement observed in the numerical
results.

REFERENCES

[1] C. AUDET AND J. E. DENNIS JR., Analysis of generalized pattern searches, SIAM J. Optim., 13
(2003), pp. 889-903.

2] , A pattern search filter method for nonlinear programming without derivatives, STAM
J. Optim., 14 (2004), pp. 980-1010.
(3] , Mesh adaptive direct search algorithms for constrained optimization, STAM J. Optim.,

17 (2006), pp. 188-217.

[4] D. M. Borrz AND C. T. KELLEY, The simplezx gradient and noisy optimization problems, in
Computational Methods in Optimal Design and Control, Progress in Systems and Control
Theory, edited by J. T. Borggaard, J. Burns, E. Cliff, and S. Schreck, vol. 24, Birkh&user,
Boston, 1998, pp. 77-90.

[5] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
Reissued by SIAM, Philadelphia, 1990.

[6] A. R. ConN, K. SCHEINBERG, AND L. N. VICENTE, Geometry of sample sets in derivative
free optimization. Part II: polynomial regression and underdetermined interpolation, Tech.
Report 05-15, Departamento de Matematica, Universidade de Coimbra, Portugal, 2005.

13



17
]
10
[11]
[12]
13

[14]
(15]

[16]

(17]

(18]

(19]

20]

, Geometry of interpolation sets in derivative free optimization, Math. Program., (2006,
to appear).

A. L. Custépio AND L. N. VICENTE, Using sampling and simplex derivatives in pattern search
methods, Tech. Report 04-35, Departamento de Matemética, Universidade de Coimbra,
Portugal, 2004. Revised November 2005, June 2006.

C. Davis, Theory of positive linear dependence, Amer. J. Math., 76 (1954), pp. 733-746.

M. HAARALA, Large-scale nonsmooth optimization, PhD thesis, University of Jyvaskyla, Fin-
land, 2004.

N. HigHAaM, A survey of condition number estimation for triangular matrices, STAM Rev., 29
(1987), pp. 575-596.

R. A. HorN AND C. R. JOHNSON, Topics in Matriz Analysis, Cambridge University Press,
Cambridge, 1999.

C. T. KELLEY, Detection and remediation of stagnation in the Nelder-Mead algorithm using a
sufficient decrease condition, STAM J. Optim., 10 (1999), pp. 43-55.

, Iterative Methods for Optimization, STAM, Philadelphia, 1999.

T. G. KoLpa, R. M. LEwis, AND V. TORCZON, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385-482.

F. LEMEIRE, Bounds for condition numbers of triangular and trapezoid matrices, BIT, 15
(1975), pp. 58—64.

R. M. LEwis AND V. TORCZON, Rank ordering and positive bases in pattern search algorithms,
Tech. Report 96-71, Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, 1996.

L. LukSAN AND J. VLCEK, Test problems for nonsmooth unconstrained and lineraly constrained
optimization, Tech. Report 798, Institute of Computer Science, Academy of Sciences of the
Czech Republic, 2000.

R. MIFFLIN, A superlinearly convergent algorithm for minimization without evaluating deriva-
tives, Math. Program., 9 (1975), pp. 100-117.

M. J. D. POwWELL, Direct search algorithms for optimization calculations, Acta Numer., 7
(1998), pp. 287-336.

14



	Introduction
	Simplex gradients
	Simplex gradients, refining subsequences, and nonsmooth functions
	The Lipschitz continuous case
	The strictly differentiable case

	Applications in direct search methods
	Two algorithmic contexts
	Generalized pattern search
	Mesh adaptive direct search

	Numerical experiments

