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Foreword

Graph theory is one of the branches of modern mathematics having experienced a most impressive
development in recent years. In the beginning, Graph Theory was only a collection of recreational
or challenging problems like Euler tours or the four coloring of a map, with no clear connection
among them, or among techniques used to attach them. The aim was to get a “yes” or “no” answer
to simple existence questions. Under the impulse of Game Theory, Management Sciences, and
Transportation Network Theory, the main concern shifted to the maximum size of entities attached
to a graph. For instance, instead of establishing the existence of a 1-factor, as did Petersen and
also König (whose famous theorem on bipartite graphs was discovered 20 years earlier by Steinitz
in his dissertation in Breslau), the main problem was now to study the maximum number of
edges in a matching, even if not a 1-factor or “perfect matching”. In this book, Scheinerman and
Ullman present the next step of this evolution: Fractional Graph Theory. Fractional matchings,
for instance, belong to this new facet of an old subject, a facet full of elegant results.

By developing the fractional idea, the purpose of the authors is multiple: first, to enlarge the
scope of applications in Scheduling, in Operations Research, or in various kinds of assignment
problems; second, to simplify. The fractional version of a theorem is frequently easier to prove than
the classical one, and a bound for a “fractional” coefficient of the graph is also a bound for the
classical coefficient (or suggests a conjecture). A striking example is the simple and famous theorem
of Vizing about the edge-chromatic number of a graph; no similar result is known for the edge-
chromatic number of a hypergraph, but the reader will find in this book an analogous statement for
the “fractional” edge-chromatic number which is a theorem. The conjecture of Vizing and Behzad
about the total chromatic number becomes in its fractional version an elegant theorem.

This book will draw the attention of the combinatorialists to a wealth of new problems and
conjectures. The presentation is made accessible to students, who could find a clear exposition
of the background material and a stimulating collection of exercises. And, above all, the pleasure
afforded by these pages will contribute to making Combinatorics more appealing to many.

Claude Berge
Paris, France
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Preface

Graphs model a wide variety of natural phenomena, and it is the study of these phenomena that
gives rise to many of the questions asked by pure graph theorists. For example, one motivation
for the study of the chromatic number in graph theory is the well-known connection to scheduling
problems. Suppose that an assortment of committees needs to be scheduled, each for a total of one
hour. Certain pairs of committees, because they have a member in common, cannot meet at the
same time. What is the length of the shortest time interval in which all the committees can be
scheduled?

Let G be the graph whose vertices are these committees, with an edge between two committees
if they cannot meet at the same time. The standard answer to the scheduling question is that the
length of the shortest time interval is the chromatic number of G. As an illustration, suppose that
there are 5 committees, with scheduling conflicts given by the graph in Figure A. Since G can be

1

2
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Figure A: The graph C5, colored with three colors.

colored with 3 colors, the scheduling can be done in 3 hours, as is illustrated in Figure B.
It is a widely held misconception that, since the chromatic number of G is 3, the schedule in

Figure B cannot be improved. In fact, the 5 committees can be scheduled in two-and-a-half hours,
as is illustrated in Figure C.

All that is required is a willingness to allow one committee to meet for half an hour, to interrupt
their meeting for a time, and later to reconvene for the remaining half hour. All that is required
is a willingness to break one whole hour into fractions of an hour—to break a discrete unit into
fractional parts. The minimum length of time needed to schedule committees when interruptions
are permitted is not the chromatic number of G but the less well-known fractional chromatic number
of G.

This example illustrates the theme of this book, which is to uncover the rational side of graph
theory: How can integer-valued graph theory concepts be modified so they take on nonintegral
values? This “fractionalization” bug has infected other parts of mathematics. Perhaps the best-
known example is the fractionalization of the factorial function to give the gamma function. Fractal
geometry recognizes objects whose dimension is not a whole number [126]. And analysts consider
fractional derivatives [132]. Some even think about fractional partial derivatives!

We are not the first to coin the term fractional graph theory; indeed, this is not the first book

viii
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Figure B: A schedule for the five committees.
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Figure C: An improved schedule for the five committees.

on this subject. In the course of writing this book we found that Claude Berge wrote a short
monograph [16] on this very subject. Berge’s Fractional Graph Theory is based on his lectures
delivered at the Indian Statistical Institute twenty years ago. Berge includes a treatment of the
fractional matching number and the fractional edge chromatic number.1 Two decades have seen
a great deal of development in the field of fractional graph theory and the time is ripe for a new
overview.

Rationalization

We have two principal methods to convert graph concepts from integer to fractional. The first
is to formulate the concepts as integer programs and then to consider the linear programming
relaxation (see §A.3). The second is to make use of the subadditivity lemma (Lemma A.4.1 on
page 137). It is very pleasing that these two approaches typically yield the same results. Nearly
every integer-valued invariant encountered in a first course in graph theory gives rise to a fractional
analogue.

Most of the fractional definitions in this book can be obtained from their integer-valued coun-
terparts by replacing the notion of a set with the more generous notion of a “fuzzy” set [190]. While
membership in a set is governed by a {0, 1}-valued indicator function, membership in a fuzzy set is
governed by a [0, 1]-valued indicator function. It is possible to devise fractional analogues to nearly

1More recently, Berge devotes a chapter of his monograph Hypergraphs: Combinatorics of Finite Sets [19] to
fractional transversals of hypergraphs, which includes an exploration of fractional matchings of graphs.



x Preface

any integer-valued graph-theoretic concept by phrasing the integer-valued definition in the right
way and then inserting the word “fuzzy” in front of the word “set” in the appropriate place. Al-
though this lends a unifying spirit to the book, we choose to avoid this language in favor of spelling
out the definitions of fractional invariants directly in terms of [0, 1]-valued labelings or functions.
Nonetheless, the word “fractional” is meant to suggest the continuous unit interval [0, 1] in place
of the “discrete unit interval” {0, 1}. Further, “fractional” underscores the fact that the resulting
real numbers are almost always rational values in [0, 1].

Goals

The focus of this book is not on the theory of mathematical programming, although this theory
is used and certain polytopes of interest to the programming theorist do make appearances here.
Neither is the focus on algorithms and complexity, although these issues are discussed in places.
Rather, the main goal is to prove theorems that are analogous to the main theorems of basic graph
theory. For example, one might ask if there is a fractional analogue of the four-color theorem. One
might hope to prove a fractional three-and-a-half-color result saying that the fractional chromatic
number of any planar graph is no more than 7/2 (in fact, this is obviously false) or one might
hope to prove a fractional four-and-a-half-color result via an argument that does not rely on the
four-color theorem itself (no such proof is known). The focus is on comparing and contrasting
a fractional graph invariant to its integer-valued cousin and on discerning to what degree basic
properties and theorems of the integer-valued invariant are retained by the fractional analogue.

Our goal has been to collect in one place the results about fractional graph invariants that one
can find scattered throughout the literature and to give a unified treatment of these results. We
have highlighted the theorems that seem to us to be attractive, without trying to be encyclopedic.
There are open questions and unexplored areas here to attract the active researcher. At the same
time, this book could be used as a text for a topics course in graph theory. Exercises are included
in every chapter, and the text is meant to be approachable for graduate students in graph theory
or combinatorial optimization.

Chapter Overview

In Chapter 1 we develop a general fractional theory of hypergraphs to which we regularly refer
in the subsequent chapters. In Chapters 2, 3, and 4 we study the fractional analogues of the
matching number, the chromatic number, and the edge chromatic number. In Chapter 5 we study
fractional arboricity via matroids. In Chapter 6 we discuss an equivalence relation on graphs that
weakens isomorphism and is called fractional isomorphism. In Chapter 7 we touch on a number of
other fractional notions. Finally, the Appendix contains background material on notation, graphs,
hypergraphs, linear programming, and the subadditivity lemma.

Each chapter features exercises and a Notes section that provides references for and further
information on the material presented.
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Finally

It is possible to go to a graph theory conference and to ask oneself, at the end of every talk,
What is the fractional analogue? What is the right definition? Does the fractional version of the
theorem still hold? If so, is there an easier proof and can a stronger conclusion be obtained? If
the theorem fails, can one get a proof in the fractional world assuming a stronger hypothesis? We
can personally attest that this can be an entertaining pastime. If, after reading this book, you
too catch the fractional bug and begin to ask these questions at conferences, then we will consider
ourselves a success. Enjoy!

—ES, Baltimore
—DU, Washington, D.C.

Exercise

1. Let f : R→ R by f(x) = x. The half derivative of f is 2
√
x/π. Why?
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General Theory: Hypergraphs

Our purpose is to reveal the rational side of graph theory: We seek to convert integer-based
definitions and invariants into their fractional analogues. When we do this, we want to be sure that
we have formulated the “right” definitions—conversions from integer to real that are, in some sense,
natural. Here are two ways we might judge if an integer-to-real conversion process is natural: First,
when two seemingly disparate conversions yield the same concept, then we feel confident that the
fractionalized concept is important (and not tied to how we made the conversion). Second, when the
same conversion process works for a variety of concepts (e.g., we convert from matching number and
chromatic number to their fractional analogues by the same methods), then we feel we have arrived
at a reasonable way to do the integer-to-real transformation. Happily, we can often satisfy both of
these tests for “naturalness”. If a variety of attractive theorems arise from the new definition, then
we can be certain that we are on the right track.

This chapter develops two general methods for fractionalizing graph invariants: linear relaxation
of integer programs and applications of the subadditivity lemma.1 We present both methods and
prove that they yield the same results.

1.1 Hypergraph covering and packing

A hypergraph H is a pair (S,X ), where S is a finite set and X is a family of subsets of S. The set
S is called the ground set or the vertex set of the hypergraph, and so we sometimes write V (H) for
S. The elements of X are called hyperedges or sometimes just edges.

A covering (alternatively, an edge covering) of H is a collection of hyperedges X1,X2, . . . ,Xj

so that S ⊆ X1 ∪ · · · ∪Xj . The least j for which this is possible (the smallest size of a covering) is
called the covering number (or the edge covering number) of H and is denoted k(H).

An element s ∈ S is called exposed if it is in no hyperedges. If H has an exposed vertex, then no
covering of H exists and k(H) = ∞. Hypergraphs are sometimes known as set systems, although
in that case one often forbids exposed vertices.

The covering problem can be formulated as an integer program (IP). To each set Xi ∈ X
associate a 0,1-variable xi. The vector x is an indicator of the sets we have selected for the cover.
Let M be the vertex-hyperedge incidence matrix of H, i.e., the 0,1-matrix whose rows are indexed
by S, whose columns are indexed by X , and whose i, j-entry is 1 exactly when si ∈ Xj . The
condition that the indicator vector x corresponds to a covering is simply Mx ≥ 1 (that is, every
coordinate of Mx is at least 1). Thus k(H) is the value of the integer program “minimize 1tx
subject to Mx ≥ 1” where 1 represents a vector of all ones. Further, the variables in this and
subsequent linear programs are tacitly assumed to be nonnegative.

1These central ideas (linear programming and subadditivity), as well as other basic material, are discussed in
Appendix A. The reader is encouraged to peruse that material before proceeding.

1



2 Chapter 1. General Theory: Hypergraphs

The covering problem has a natural dual. Let H = (S,X ) be a hypergraph as before. A packing
(a vertex packing) in H is a subset Y ⊆ S with the property that no two elements of Y are together
in the same member of X . The packing number p(H) is defined to be the largest size of a packing.
The packing number of a graph is its independence number α.

Note that ∅ is a packing, so p(H) is well defined.
There is a corresponding IP formulation. Let yi be a 0,1-indicator variable that is 1 just when

si ∈ Y . The condition that Y is a packing is simply M ty ≤ 1 where M is, as above, the vertex-
hyperedge incidence matrix of H. Thus p(H) is the value of the integer program “maximize 1ty
subject to M ty ≤ 1.” This is the dual IP to the covering problem and we have therefore proved
the following result.

Proposition 1.1.1 For a hypergraph H, we have p(H) ≤ k(H). �

Many graph theory concepts can be seen as hypergraph covering or packing problems. For
instance, the chromatic number χ(G) is simply k(H) where the hypergraph H = (S,X ) has S =
V (G) and X is the set of all independent subsets of V (G). Similarly, the matching number μ(G) is
p(H) where H = (S,X ) has S = E(G) and X contains those sets of edges of G incident on a fixed
vertex.

1.2 Fractional covering and packing

There are two ways for us to define the fractional covering and packing numbers of a hypergraph
H. The first is straightforward. Since k(H) and p(H) are values of integer programs, we define the
fractional covering number and fractional packing number of H, denoted k∗(H) and p∗(H) respec-
tively, to be the values of the dual linear programs “minimize 1tx s.t. Mx ≥ 1” and “maximize
1ty s.t. M ty ≤ 1”. By duality (Theorem A.3.1 on page 135) we have k∗(H) = p∗(H).

(Note that if H has an exposed vertex then the covering LP is infeasible and the packing LP is
unbounded; let us adopt the natural convention that, in this case, we set both k∗ and p∗ equal to
∞.)

We will not use the ∗ notation much more. There is a second way to define the fractional
covering and packing numbers of H that is not a priori the same as k∗ and p∗; the ∗ notation is
temporary until we show they are the same as kf and pf defined below.

We begin by defining t-fold coverings and the t-fold covering number of H. Let H = (S,X ) be
a hypergraph and let t be a positive integer. A t-fold covering of H is a multiset {X1,X2, . . . ,Xj}
(where each Xi ∈ X ) with the property that each s ∈ S is in at least t of the Xi’s. The smallest
cardinality (least j) of such a multiset is called the t-fold covering number of H and is denoted
kt(H). Observe that k1(H) = k(H).

Notice that kt is subadditive in its subscript, that is,

ks+t(H) ≤ ks(H) + kt(H)

since we can form a (perhaps not smallest) (s+ t)-fold covering of H by combining a smallest s-fold
covering and a smallest t-fold covering. By the lemma of Fekete (Lemma A.4.1 on page 137) we
may therefore define the fractional covering number of H to be

kf (H) = lim
t→∞

kt(H)
t

= inf
t

kt(H)
t

.

Yes, we have called both k∗ and kf the fractional covering numbers—the punch line, of course, is
that these two definitions yield the same result. However, it is clear that k∗(H) must be a rational



1.2 Fractional covering and packing 3

number since it is the value of a linear program with integer coefficients; it is not clear that kf

is necessarily rational—all we know so far is that the limit kt(H)/t exists. We also know that
kt(H) ≤ tk1(H) = tk(H) and therefore kf (H) ≤ k(H).

In a similar way, we define a t-fold packing of H = (S,X ) to be a multiset Y (defined over the
vertex set S) with the property that for every X ∈ X we have

∑
s∈X

m(s) ≤ t

where m is the multiplicity of s ∈ S in Y . The t-fold packing number of H, denoted pt(H), is the
smallest cardinality of a t-fold packing. Observe that p1(H) = p(H).

Notice that pt is superadditive in its subscript, i.e.,

ps+t(H) ≥ ps(H) + pt(H).

This holds because we can form a (not necessarily largest) (s+t)-fold packing by combining optimal
s- and t-fold packings. Using an analogue of the subadditivity lemma (exercise 1 on page 138), we
define the fractional packing number of H to be

pf (H) = lim
t→∞

pt(H)
t

.

Note that since pt(H) ≥ tp1(H) = tp(H) we have that pf (H) ≥ p(H).

Theorem 1.2.1 The two notions of fractional covering and the two notions of fractional packing
are all the same, i.e., for any hypergraph H we have

k∗(H) = kf (H) = p∗(H) = pf (H).

Proof. If H has an exposed vertex, then all four invariants are infinite. So we restrict to the case
that H has no exposed vertices.

We know that kf = pf by LP duality. We show the equality k∗ = kf ; the proof that p∗ = pf is
similar and is relegated to exercise 1 on page 12.

First we prove that k∗ ≤ kf . Let a be a positive integer. Let {X1, . . . ,Xj} be a smallest a-fold
covering of H and let xi be the number of times Xi appears in this covering. Then Mx ≥ a, and
therefore M(x/a) ≥ 1. Thus x/a is a feasible vector for the covering problem, hence k∗(H) ≤
1t(x/a) = ka(H)/a. Since this holds for all positive integers a, we have k∗(H) ≤ kf (H).

Next we prove that k∗ ≥ kf . Let x be a vector that yields the value of the LP “minimize
1t · x s.t. Mx ≥ 1”. We may assume that x is rational (since the data in the LP are all integers).
Let n be the least common multiple of all the denominators appearing in the vector x; thus the
entries in nx are all integers. Further, we have Mnx ≥ n. We can form an n-fold cover of H by
choosing hyperedge Xi with multiplicity nxi. The size of this n-fold cover is

∑
i nxi = 1t ·nx. Thus,

nk∗(H) = 1t · nx ≥ kn(H). Furthermore, for any positive integer a, we also have (an)k∗(H) ≥
kan(H). Since k∗(H) ≥ kan(H)/(an) for all a, we have k∗(H) ≥ kf (H). �
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1.3 Some consequences

Since the fractional covering/packing number of H is the value of a linear program with integer
coefficients, we have the following.

Corollary 1.3.1 If H has no exposed vertices, then kf (H) is a rational number. �

Not only is kf (H) rational, but we can choose the optimal weights xi of the Xi to be rational
numbers as well. Let N be a common multiple of the denominators of the xi’s and consider kN (H).
One checks that we can form an N -fold covering of H if we choose Xi with multiplicity Nxi;
moreover, this is best possible since (

∑
Nxi)/N =

∑
xi = kf (H).

Corollary 1.3.2 If H has no exposed vertices, then there exists a positive integer s for which
kf (H) = ks(H)/s. �

Thus we know not only that lim kt(H)/t = inf kt(H)/t (Lemma A.4.1 on page 137) but also
that both equal min kt(H)/t and this minimum is achieved for infinitely many values of t. We use
this fact next to obtain a strengthening of the subadditivity of ks(H).

Proposition 1.3.3 If H is any hypergraph, then there exist positive integers s and N such that,
for all t ≥ N , ks(H) + kt(H) = ks+t(H).

Proof. Let s be as in the previous corollary so that kf (H) = ks(H)/s. Then, for any n ≥ 1,

kf (H) ≤ kns(H)/(ns) ≤ ks(H)/s = kf (H),

where the second inequality follows from the subadditivity of ks. Hence kns(H) = nks(H). Now
fix j with 0 ≤ j < s and for any positive integer n let an = kns+j(H) − kns(H). Clearly an is a
nonnegative integer. Also,

an+1 = k(n+1)s+j(H)− k(n+1)s(H)

= k(n+1)s+j(H)− (n+ 1)ks(H)

≤ kns+j(H) + ks(H)− (n+ 1)ks(H)

= kns+j(H)− nks(H)

= an,

where again the inequality follows from subadditivity. A nonincreasing sequence of positive integers
is eventually constant; we thus have an integer Mj such that, if m,n ≥Mj, then am = an.

Let M = max{M0,M1, . . . ,Ms−1}. Then, whenever m,n ≥M , we have

kms+j(H)− kms(H) = kns+j(H)− kns(H)

for all j with 1 ≤ j < s. In particular, with m = n+ 1, we have

k(n+1)s+j(H) = kns+j(H) + ks(H)

for 1 ≤ j < s. Now let N = Ms. If t ≥ N , then put n = �t/s� and put j = t− sn. Then t = sn+ j
with n ≥M and 0 ≤ j < s, so

ks+t(H) = k(n+1)s+j(H) = kns+j(H) + ks(H) = kt(H) + ks(H).

This completes the proof. �
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In fact, the proof shows that any subadditive sequence a1, a2, . . . of nonnegative integers for
which inf{an/n} equals as/s satisfies the same conclusion: as+t = as + at for sufficiently large
t. This implies that the sequence of differences dn = an+1 − an is eventually periodic, since
dt+s = at+s+1 − at+s = at+1 + as − at − as = dt for sufficiently large t.

In the presence of sufficient symmetry, there is a simple formula for kf (H). An automorphism
of a hypergraph H is a bijection π : V (H)→ V (H) with the property that X is a hyperedge of H
iff π(X) is a hyperedge as well. The set of all automorphisms of a hypergraph forms a group under
the operation of composition; this group is called the automorphism group of the hypergraph. A
hypergraph H is called vertex-transitive provided for every pair of vertices u, v ∈ V (H) there exists
an automorphism of H with π(u) = v.

Proposition 1.3.4 Let H = (S,X ) be a vertex-transitive hypergraph and let e = max{|X| : X ∈
X}. Then kf (H) = |S|/e.

Proof. If we assign each vertex of H weight 1/e, then we have a feasible fractional packing. Thus
kf (H) = pf (H) ≥ |S|/e. Note that no larger uniform weighting of the vertices is feasible.

Let Γ denote the automorphism group of H. Let w:S → [0, 1] be an optimal fractional packing
of H and let π ∈ Γ. Then w ◦ π also is an optimal fractional packing of H. Since any convex
combination of optimal fractional packings is also an optimal fractional packing,

w∗(v) :=
1
|Γ|

∑
π∈Γ

w[π(v)]

is an optimal fractional packing which, because H is vertex-transitive, assigns the same weight to
every vertex of H. Thus w∗(v) = 1/e and the result follows. �

1.4 A game-theoretic approach

Consider the following game, which we call the hypergraph incidence game, played on a hypergraph
H = (S,X ). There are two players both of whom know H. In private, the vertex player chooses an
element s of S. Also in private, the hyperedge player chooses an X in X . The players then reveal
their choices. If s ∈ X then the vertex player pays the hyperedge player $1; otherwise there is no
payoff. Assuming both players play optimally, what is the expected payoff to the hyperedge player?
This is a classic, zero-sum matrix game whose matrix is M , the vertex-hyperedge incidence matrix.
The optimal strategy for the players is typically a mixed strategy wherein the vertex player chooses
an element si ∈ S with probability yi and the hyperedge player chooses Xj ∈ X with probability
xj. The value of such a game is defined to be the expected payoff assuming both players adopt
their optimal strategies.

Theorem 1.4.1 For a hypergraph H the value of the hypergraph incidence game played on H is
1/kf (H).

Proof. First note that if there is an element s ∈ S that is in no X ∈ X (an exposed vertex) then
by playing s the vertex player can always avoid paying the hyperedge player; the value is 0 = 1/∞
as claimed. We therefore restrict ourselves to hypergraphs with no exposed vertices.

From game theory, we know that the value of this game v∗ is the largest number v so that
Mx ≥ v for any probability vector x. Likewise, v∗ is the smallest number v so that M ty ≤ v for
all probability vectors y. Our claim is that v∗ = 1/kf (H) = 1/pf (H).
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Let v∗ be the value of the game and let probability vector x∗ be an optimal mixed strategy for
the hyperedge player. We therefore have that Mx∗ ≥ v∗. Letting x = x∗/v∗, we note that Mx ≥ 1
so x is a feasible covering and therefore kf (H) ≤ 1tx = 1tx∗/v∗ = 1/v∗ (since x∗ is a probability
vector).

Now let probability vector y∗ be an optimal mixed strategy for the vertex player. Then M ty∗ ≤
v∗ and therefore y = y∗/v∗ is a feasible packing. We therefore have pf (H) ≥ 1ty = 1ty∗/v∗ = 1/v∗.
Since kf = pf , the result follows. �

1.5 Duality and duality

The matching and covering problems are dual in the sense of linear/integer programming. If
H = (S,X ) is a hypergraph and M is its vertex-hyperedge incidence matrix, then the problems of
computing k(H) and p(H) are dual integer programs:

k(H) = min1tx s.t. Mx ≥ 1, and

p(H) = max 1ty s.t. M ty ≤ 1.

The problems of computing kf (H) and pf (H) are the dual linear programs obtained from these IPs
by relaxing the condition that the variables be integers.

For example, let G be a graph and let H = (V,X ) where V = V (G) and X is the set of all
independent subsets of V (G). Now k(H) is the minimum number of independent sets that contain
all vertices, i.e., χ(G). Similarly, p(H) is the maximum number of vertices, no two of which are
together in an independent set, i.e., the maximum number ω(G) of pairwise adjacent vertices. This
is the sense in which the graph problems of computing the chromatic number and the size of the
largest clique are dual.

Let us introduce a second notion of duality: hypergraph duality. LetH = (S,X ) be a hypergraph
and write

S = {s1, . . . , sn} and X = {X1, . . . ,Xm}.
Then M (the vertex-hyperedge incidence matrix) is n × m with Mij = 1 if and only if si ∈ Xj .
We define the dual hypergraph of H, denoted H∗, to be the hypergraph with vertex set X and
hyperedge set S with

X = {x1, . . . , xm} and S = {S1, . . . , Sn}

and we put xj ∈ Si exactly when si ∈ Xj (in H). In matrix language, the vertex-hyperedge
incidence matrices of H and H∗ are transposes of one another.

We now consider the covering and packing problems in H∗. A covering of H∗ is the smallest
number of Si’s that include all the xj’s. From the perspective of H, we seek the minimum number
of elements si that intersect all the Xj ’s. A subset of S that is incident with all hyperedges is called
a transversal of H and the smallest size of a transversal of H is called the transversal number of H
and is denoted τ(H). Thus,

τ(H) = k(H∗).

Next, consider p(H∗). The packing number of the dual of H is the largest number of xi’s with
no two in a common Sj. In terms of H, we seek the maximum number of hyperedges Xi that are
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Covering number, k
min # hyperedges to contain vertices

min 1tx s.t. Mx ≥ 1

Packing number, p
max # vertices, no two in a hyperedge

max 1tx s.t. Mtx ≤ 1

Transversal number, τ
min # vertices to touch hyperedges

min 1tx s.t. Mtx ≥ 1

Matching number, μ
max # pairwise disjoint hyperedges

max 1tx s.t. Mx ≤ 1

Mathematical programming duality

H
yp

er
gr

ap
h 

du
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ity

Figure 1.1. The dualities between the covering, packing, transversal, and matching numbers of a hypergraph.

pairwise disjoint. A matching in H is a collection of hyperedges that are pairwise disjoint. The
matching number of H, denoted μ(H), is the maximum size of a matching. Thus,

μ(H) = p(H∗).

The relations between the four invariants are summarized in Figure 1.1.
Revisiting our example from before, if G = (V,E) is a graph and H is the hypergraph whose

vertex set S is V (G) and whose hyperedges are the independent subsets of V , then the transversal
number τ(H) is the size of the smallest set of vertices that intersects every independent subset of V .
Since any singleton vertex is independent, this is just ν(G) = |V (G)|. The matching number is the
maximum number of pairwise disjoint independent sets. Again, since singletons are independent,
we have μ(H) = ν(G).

A less trivial example is afforded by taking H = G. In this case τ(H) is the smallest size of a
subset of vertices that intersects every edge.2 The matching number μ(G) is the maximum number
of pairwise disjoint edges, i.e., the maximum size of a matching in G.

Finally, we can consider the pair of fractional invariants τf and μf of a hypergraph: the fractional
transversal number and the fractional matching number. They are simply

τf (H) = kf (H∗) and μf (H) = pf (H∗)

and therefore we have, by either sort of duality, τf = μf .

1.6 Asymptotic covering and packing

(This section may be safely skipped during a first reading of this book. This material is used again
only in §3.5.)

The fractional covering number is one way to assign to a hypergraph a real number closely
related to the covering number. Here is another way: Define the product H×K of two hypergraphs
H = (S,X ) and K = (T,Y) to be the hypergraph whose vertex set is S × T and whose hyperedges
are all sets of the form X×Y where X ∈ X and Y ∈ Y. See Figure 1.2 on the next page. Write Hn

2Some authors call τ (G) the covering number of G. We believe it is more natural to call this the transversal
number of G and (for us) the covering number k(G) is the minimum number of edges that contain all the vertices.
These two notions are different. Consider the example G = K1,n. In this case, τ (G) = 1 (the non-leaf intersects all
edges) but k(G) = n (we must use all edges to touch all the leaves).
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Figure 1.2. An example of hypergraph product. The 20-vertex hypergraph is the product of the 4-vertex
hypergraph (left) and the 5-vertex hypergraph (top). The vertex set of the product is the Cartesian product
of the vertex sets of the factors. Hyperedges in the product are the Cartesian products of hyperedges of the
factors.

to be the nth power of H with respect to this product. We define the asymptotic covering number
to be

k∞(H) = inf
n

n

√
k(Hn).

If A ⊆ X and B ⊆ Y are coverings of H and K respectively, then clearly the sets of the forms
A×B, where A ∈ A and B ∈ B, form a covering of H×K. Hence k(H×K) ≤ k(H)k(K). Thus if
we define g(n) to be log k(Hn), we see that g(m + n) ≤ g(m) + g(n). An appeal to Lemma A.4.1
on page 137 then tells us that the infimum in the definition of k∞ is also a limit.

The dual invariant to the asymptotic covering number is naturally the asymptotic packing
number, denoted p∞(H) and defined as supn

n
√
p(Hn). If A ⊆ S is a packing of H and B ⊆ T is a

packing of K, then A× B is a packing of H ×K. Using exercise 1 on page 138 and the argument
in the preceding paragraph, one sees that the supremum in this definition is also a limit.

We begin with the following result, which shows that the fractional covering number respects
hypergraph products.

Theorem 1.6.1 If H and K are any hypergraphs, then

kf (H×K) = kf (H)kf (K) = pf (H)pf (K) = pf (H×K).

Proof. As above, write H = (S,X ) and K = (T,Y). If A is a smallest s-fold covering of H and
B is a smallest t-fold covering of K, then the family of sets of the form A × B where A ∈ A and
B ∈ B is an st-fold covering of H×K. Thus

kst(H×K)
st

≤ ks(H)
s
· kt(K)

t
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and it follows that kf (H×K) ≤ kf (H)kf (K).
Similarly, if A ⊆ S is a largest s-fold packing of H and B ⊆ T is a largest t-fold packing of K,

then the set A×B is an st-fold packing of H×K. It follows that pf (H×K) ≥ pf (H)pf (K). Three
applications of the duality theorem (via Theorem 1.2.1 on page 3) yield

kf (H×K) ≤ kf (H)kf (K) = pf (H)pf (K) ≤ pf (H×K) = kf (H×K),

and we are done. �

There is a curious lack of symmetry between the two asymptotic invariants. It may come as
a surprise that the asymptotic covering number of a hypergraph is always equal to the fractional
covering number of the hypergraph. Perhaps a greater surprise is that the same is not true of the
asymptotic packing number. This is discussed in §3.5.
Theorem 1.6.2 If H is any hypergraph, then k∞(H) = kf (H).

We provide two proofs: the first uses a random covering, and the second uses a greedy covering.
We begin with a lemma.

Lemma 1.6.3 If H and K are any hypergraphs, then k(H×K) ≥ kf (H)k(K).

Proof. Suppose that H = (S,X ) and K = (T,Y). It is enough to show that there is a k(K)-fold
covering of H of cardinality k(H ×K). Let n = k(H×K). Consider a covering

{X1 × Y1,X2 × Y2, . . . ,Xn × Yn}
of H×K. We claim that the multiset {X1,X2, . . . ,Xn} is the desired covering. Clearly it has the
right cardinality. To see that it is a k(K)-fold covering, we must show that every s ∈ S is in Xi for
at least k(K) of the indices i.

Fix s ∈ S. Let I ⊆ [n] be the set of indices i such that s ∈ Xi. We want to show that |I| ≥ k(K).
Consider the multiset M = {Yi}i∈I . For every t ∈ T , we have (s, t) ∈ Xi×Yi for some i ∈ I. Hence
t ∈ Yi. This shows that M is a covering of K and so I has cardinality at least k(K). �

Proof (of Theorem 1.6.2). Suppose that H = (S,X ). We first show that kf (H) ≤ k∞(H).
Substituting Hn for K in Lemma 1.6.3 yields kf (H) ≤ k(Hn+1)/k(Hn). Since this is true for all n
(including n = 0, if one understands H0 to be the hypergraph with one vertex and one nonempty
hyperedge),

kf (H) ≤ inf
n≥0

k(Hn+1)
k(Hn)

≤ lim
n→∞

n

√
k(H1)
k(H0)

· k(H
2)

k(H1)
· · · k(H

n)
k(Hn−1)

= lim
n→∞

n

√
k(Hn)
k(H0)

= k∞(H).

For the opposite inequality, suppose kf (H) = kt(H)/t and suppose K is a t-fold covering of H.
Fix ε > 0. Pick a multiset M of hyperedges of Hn of cardinality

L =
⌈(

kt(H)
t

(1 + ε)
)n⌉
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at random, each choice made independently and uniformly among the hyperedges of the form

E = X1 ×X2 × · · · ×Xn

where each Xi ∈ K. We show that for large enough n the probability that M = {E1, E2, . . . , EL}
is a covering of Hn is positive, and, in fact, arbitrarily close to unity.

Let s = (s1, s2, . . . , sn) be an arbitrary element of the vertex set of Hn. A random hyperedge
E = X1×X2× · · · ×Xn contains s if and only if si ∈ Xi for all 1 ≤ i ≤ n. For each i, this happens
with probability at least t/kt(H) = 1/kf (H). Hence s ∈ E with probability at least (1/kf (H))n.
Hence the probability that s is not in any of the hyperedges in M is less than

[
1−

(
1

kf (H)

)n]L

≤
[
1−

(
1

kf (H)

)n](kf (H)(1+ε))n

=

[
1−

(
1

kf (H)

)n](kf (H))n(1+ε)n

.

Since limx→0 (1− x)1/x = 1
e <

1
2 , the above probability is less than

(
1
2

)(1+ε)n

for sufficiently large n. Since the cardinality of the vertex set of Hn is |S|n, the probability that M
is not a covering of Hn is less than

|S|n
2(1+ε)n

.

The denominator grows superexponentially with n, but the numerator grows (merely) exponentially
with n, so we can choose n so that this fraction is less than 1. For such an n, the probability that
M is a covering of Hn is positive, hence at least one such M exists. �

The following alternative proof of Theorem 1.6.2 produces a covering of Hn using a greedy
approach. The proof is quite short once we establish the following lemma.

Lemma 1.6.4 If H is any hypergraph and m is the maximum cardinality of a hyperedge in H, then
k(H) ≤ (1 + logm)kf (H).

Proof. Produce a covering of H in the following straightforward way. First pick a hyperedge X1 of
maximal cardinality m. Inductively, pick Xi to be a hyperedge that contains the most elements of
the vertex set not yet covered by X1,X2, . . . ,Xi−1. Continue picking hyperedges in this way until
every element of the vertex set is in some Xi, and then stop.

The algorithm prescribes that |Xi − ∪i−1
j=1Xj | is a nonincreasing function of i. Let ak denote

the number of indices i such that |Xi − ∪i−1
j=1Xj | = k. Let a =

∑m
k=1 ak. We show that a ≤

(1 + logm)kf (H). Since we have produced a covering of cardinality a, the optimal covering can be
no larger, and the result follows.

In fact, we show that a ≤
(
1 + 1

2 + 1
3 + · · · + 1

m

)
kf (H). To see this, for 1 ≤ j ≤ m let Hj be

the hypergraph whose ground set S is obtained from H by deleting all vertices covered by the first
am + am−1 + · · ·+ aj+1 hyperedges from the algorithm, and whose edge set is obtained from H by
intersecting every hyperedge with the set S. (Take Hm to be H.) The hypergraph Hj has no edges
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of cardinality greater than j, so no j-fold packing of Hj has fewer elements than the number of
elements of the vertex set of Hj, which is a1 + 2a2 + · · ·+ jaj . Hence, for 1 ≤ j ≤ m,

pj(H) ≥ pj(Hj) ≥ a1 + 2a2 + · · ·+ jaj .

Now kf (H) = pf (H) ≥ (pj(H)/j) for every j. It follows that, for 1 ≤ j ≤ m,

jkf (H) ≥ a1 + 2a2 + · · ·+ jaj . (∗)

For 1 ≤ j < m, divide equation (∗) by j(j + 1) and for j = m, divide inequality (∗) by m to obtain

1
2
kf (H) ≥ 1

2
a1

1
3
kf (H) ≥ 1

2 · 3a1 +
2

2 · 3a2

1
4
kf (H) ≥ 1

3 · 4a1 +
2

3 · 4a2 +
3

3 · 4a3

...

1
m
kf (H) ≥ 1

(m− 1)m
a1 +

2
(m− 1)m

a2 + · · ·+ m− 1
(m− 1)m

am−1

kf (H) ≥ 1
m
a1 +

2
m
a2 + · · ·+ m− 1

m
am−1 +

m

m
am.

Adding these inequalities yields
(

1
2

+
1
3

+
1
4

+ · · ·+ 1
m

+ 1
)
kf (H) ≥ a1 + a2 + a3 + · · ·+ am. (∗∗)

The left-hand side of inequality (∗∗) is less than (1 + logm)kf (H) and the right-hand side of (∗∗)
is no less than k(H), since we have produced a covering of H of cardinality a1 + a2 + a3 + · · ·+ am.
The result follows. �

Proof (of Theorem 1.6.2). We obtain the inequality kf (H) ≤ k∞(H) in the same way as the first
proof of Theorem 1.6.2.

For the opposite inequality, apply Lemma 1.6.4 to the hypergraph Hn to obtain

k(Hn) ≤ (1 + log(mn))kf (Hn).

By Theorem 1.6.1, kf (Hn) = (kf (H))n, and so

k(Hn) ≤ (1 + log(mn)) (kf (H))n = (1 + n logm) (kf (H))n .

Taking nth roots yields
n

√
k(Hn) ≤ n

√
1 + n logmkf (H),

and letting n approach infinity gives the desired inequality. �
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Although the definition suggests otherwise, this theorem and Corollary 1.3.1 imply that k∞ is
always rational.

In contrast to k∞, the invariant p∞ need not equal pf = kf and in fact need not be rational.
As an example, let H be the 2-uniform hypergraph (i.e., graph) C5. Then p(H) = 2, k(H) = 3,
and pf (H) = kf (H) = k∞(H) = 5/2. The asymptotic packing number p∞(H), however, turns
out to equal what is called the Shannon capacity of C5, which Lovasz [123] proved is equal to

√
5.

(See §3.5.)

1.7 Exercises

1. Prove that p∗(H) = pf (H). (This completes the proof of Theorem 1.2.1 on page 3.)

2. Find several graph invariants that can be expressed as either a hypergraph covering or a
hypergraph packing problem.

Find some graph invariants that cannot be so expressed.

3. Let H = (S,X ) be a hypergraph. The automorphism group of H induces a partition of S
into subsets called orbits: two vertices u, v are together in an orbit if and only if there is an
automorphism π so that π(u) = v.

Prove that in an optimal fractional packing of H we may assume that all vertices in a given
orbit are assigned the same weight.

This is a generalization of Proposition 1.3.4 on page 5.

4. State and prove a result akin to Proposition 1.3.4 on page 5 but instead of assuming the
hypergraph is vertex-transitive, assume that it is edge-transitive.

5. Let n, r be positive integers and let H be the complete, r-uniform hypergraph, i.e., the vertex
set of H is an arbitrary n-set and the hyperedges of H are all

(n
r

)
size r subsets of the vertices.

Compute k(H), p(H), μ(H), τ(H), kf (H), and μf (H).

6. A finite projective plane is a hypergraph H with the following properties:

• For each pair of distinct vertices u and v, there is exactly one hyperedge that contains
both u and v.

• The intersection of any pair of distinct hyperedges contains exactly one vertex.

• There exist four vertices, no three of which are contained in a single hyperedge.

The vertices of H are called points and the hyperedges of H are called lines of the projective
plane.

If H is a finite projective plane, then there exists a positive integer n, called the order of the
projective plane, with the following properties:

• H contains exactly n2 + n+ 1 points and n2 + n+ 1 lines.

• Every line of H contains exactly n+ 1 points.

• Every point of H is contained in exactly n+ 1 lines.

If H is a finite projective plane of order n, find k(H), p(H), τ(H), μ(H), kf (H), and τf (H).
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7. Let H = (S,X ) be a hypergraph. Define the partitioning number k̂(H) to be the smallest
size of a partition of S into parts chosen from X . This is analogous to the covering number
except that the parts must be pairwise disjoint.

Give a definition for the fractional partitioning number k̂f (H) of H.

Prove that if H is a simplicial complex, then k(H) = k̂(H) and kf (H) = k̂f (H).

(A simplicial complex is a hypergraph in which every subset of an edge is also an edge. See
§A.2 on page 134.)

8. In the fractional covering problem for a hypergraph, we assign weights to each hyperedge so
that the sum of the weights of the hyperedges containing any particular vertex is at least one.

Prove that in an optimal fractional covering of a simplicial complex we may assume (without
loss of optimality) that the sum of the weights of the hyperedges containing a given vertex is
exactly one, i.e.,

k(H) = min1tx s.t. Mx = 1.

1.8 Notes

For a general introduction to hypergraphs, see Berge [15] or [19]. For the general approach to
fractional invariants of hypergraphs see Berge’s Fractional Graph Theory [16] or Chapter 3 of
Hypergraphs [19], as well as the survey article by Füredi [70]. See also Laskar, Majumdar, Domke,
and Fricke’s paper [111]. For information on the extension of the ideas in this chapter to infinite
hypergraphs, see the work of Aharoni and Ziv, [1], [2].

The game theoretic approach to hypergraph covering and packing can be found in Fisher [63].
See also Brightwell and Scheinerman [30]. For background reading on linear programming and
games, see the book by Gale, Kuhn, and Tucker [73].

The first appearance of a theorem like Proposition 1.3.3 seems to be in a paper of Stahl [171].
The first proof of Theorem 1.6.2 on page 9 can be traced back to an idea that appears, in a

rather different context, in a paper of McEliece and Posner [129]. See also the paper by Berge
and Simonovits [20]. The second proof is due to Lovász [121]. Propp, Pemantle, and Ullman [144]
extend Theorem 1.6.2 to a more general class of integer programming problems.

Lemma 1.6.4 on page 10 is due to Lovász [121] and Stein [175].
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Fractional Matching

2.1 Introduction

A matching in a graph is a set of edges no two of which are adjacent. The matching number μ(G)
is the size of a largest matching. A fractional matching is a function f that assigns to each edge of
a graph a number in [0, 1] so that, for each vertex v, we have

∑
f(e) ≤ 1 where the sum is taken

over all edges incident to v. If f(e) ∈ {0, 1} for every edge e, then f is just a matching, or more
precisely, the indicator function of a matching. The fractional matching number μf (G) of a graph
G is the supremum of

∑
e∈E(G) f(e) over all fractional matchings f .

These definitions coincide with the definitions of μ(G) and μf (G) from Chapter 1, where a graph
G is interpreted as a 2-uniform hypergraph. Alternatively, one can understand μ(G) as the packing
number of a certain hypergraph. Given a graph G, construct a hypergraph H whose ground set is
E(G) and with a hyperedge ev for each vertex v ∈ V (G) consisting of all edges in E(G) incident to
v. This is nothing more than the hypergraph dual of the 2-uniform hypergraph G. It is easy to see
that μ(G) = p(H), the packing number of H. The fractional analogue of μ(G) is naturally defined
to be μf (G) = pf (H).

Dual to the notion of matching is the notion of a transversal of a graph. A transversal of a
graph G is a set S of vertices such that every edge is incident to some vertex in S. The following
classical result of König-Egerváry (see [50], [109]) says that the duality gap for matching vanishes
when the graph is bipartite.

Theorem 2.1.1 If G is bipartite, then there is a transversal of G of cardinality μ(G). �

It is clear that μf (G) ≥ μ(G) for all graphs G. As an example, μ(C5) = 2, while the function
that assigns the number 1/2 to every edge of C5 shows that μf (C5) ≥ 5/2. In fact, μf (C5) = 5/2,
as the following basic lemma guarantees.

Lemma 2.1.2 μf (G) ≤ 1
2ν(G).

Proof. For any vertex v and fractional matching f , we have
∑

e�v f(e) ≤ 1. Summing these
inequalities over all vertices v yields ∑

e∈E(G)

2f(e) ≤ ν(G)

and the result follows. �

The example of C5 also shows that μf (G) can exceed μ(G), although this does not happen for
bipartite graphs.

Theorem 2.1.3 If G is bipartite, then μf (G) = μ(G).

We offer two proofs, one combinatorial and one using the unimodularity theorem (Theorem A.3.3
on page 136).

14
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Proof. In a bipartite graph, Theorem 2.1.1 provides us a transversal K ⊆ V (G) whose cardinality
is the same as that of a maximum matching. If f is any fractional matching of G, then∑

e∈E(G)

f(e) ≤
∑
v∈K

∑
e�v

f(e) ≤
∑
v∈K

1 = |K|.

Hence μf (G) ≤ |K| = μ(G). However μ(G) ≤ μf (G) always, so we have equality here. �

Our second proof uses the total unimodularity (see page 136) of the vertex-edge incidence matrix
M(G) of G.

Lemma 2.1.4 A graph G is bipartite if and only if M(G) is totally unimodular.

Proof. If G contains an odd cycle, then select the submatrix of M(G) whose rows and columns
are indexed by the vertices and edges in the odd cycle. Since this submatrix has determinant ±2,
M(G) is not totally unimodular.

To prove the converse, suppose that G is bipartite and pick any m-by-m submatrix B of M .
If any column of B is zero, then certainly det(B) = 0. If any column of B has a unique 1 in it,
then the determinant of B is (plus or minus) the determinant of the smaller square submatrix of
M obtained by removing the unique 1 and its row and column, and we proceed by induction on m.
If every column of B has two 1’s in it, then the vertices and edges identified by B form a 2-factor,
a union of cycles, which according to our hypothesis must all be of even length. If in fact more
than one cycle is identified by B, decompose B into smaller square submatrices representing the
cycles, and proceed by induction. Finally, if B represents a single cycle, switch rows and columns
of B until the i, j element is 1 just when i = j or i = j + 1 or i = 1, j = m. (One way to do this
is to first switch rows so that every row has a 1 immediately under another 1 from the row above,
and then to switch columns.) This matrix has determinant 0, since the sum of the even columns
is equal to the sum of the odd columns, which identifies a linear dependence among the columns.
Hence in all cases the determinant of B is 0, 1, or −1, and M is totally unimodular. �

Proof (of Theorem 2.1.3). The fractional matching number is the value of the linear relaxation of
the integer program that computes the matching number. The matrix of coefficients of this program
is the incidence matrix M(G) of G. Since this matrix is totally unimodular by Lemma 2.1.4, an
appeal to Theorem A.3.3 on page 136 gives the result. �

The upper bound ν/2 of Lemma 2.1.2 on the facing page is attained for the cycle Cn, showing
that μf can take the value n/2 for any n ≥ 2. It turns out that these are the only values that μf

can take. (This is in stark contrast with the behavior of the fractional chromatic number or the
fractional domination number, whose values can be any rational number greater than or equal to
2; see Proposition 3.2.2 on page 32 and Theorem 7.4.1 on page 117.)

Theorem 2.1.5 For any graph G, 2μf (G) is an integer. Moreover, there is a fractional matching
f for which ∑

e∈E(G)

f(e) = μf (G)

such that f(e) ∈ {0, 1/2, 1} for every edge e.

Proof. Among all the fractional matchings f for which
∑

e∈E(G) f(e) = μf (G), choose one with
the greatest number of edges e with f(e) = 0. Let H be the subgraph of G induced on the set of
edges with f(e) > 0. What does H look like?
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Figure 2.1. The nonzero values of the function g.

First, we show that H can have no even cycles. Suppose that C were such a cycle, and suppose
that mine∈C f(e) = m and that this minimum is achieved at edge e0. Define g : E(G)→ {0, 1,−1}
to be the function that assigns 1 and −1 alternately to the edges of C with g(e0) = −1 and that
assigns 0 to all other edges of G. Then f +mg would be an optimal fractional matching of G with
at least one more edge, namely e0, assigned a value of 0, contradicting the definition of f .

Second, we show that if H has a pendant edge, then that edge is an entire component of H. For
if e = vw is an edge with d(v) = 1 and d(w) > 1 and if f(e) < 1, then increasing the value of f(e)
to 1 and decreasing the value of f to zero on all other edges incident to w produces a fractional
matching of G that attains the supremum and that has more edges assigned the value 0. This
contradicts the definition of f .

Third, we show that if H has an odd cycle C, that cycle must be an entire component of
H. Suppose that C were such a cycle. Suppose that some vertex v ∈ C has dH(v) ≥ 3. Start
at v, take a non-C edge, and trace a longest path in H. Since this path can never return to C
(this would create an even cycle) or reach a vertex of degree 1 (there are no pendant edges), this
path ends at a vertex where any further step revisits the path, forming another cycle. Thus H
contains a graph K with 2 (necessarily odd) cycles connected by a path (possibly of length 0). Let
g : E(H) → {−1,−1/2, 0, 1/2, 1} be the function that assigns 0 to edges not in K, ±1 alternately
to the path connecting the two cycles of K, and ±1/2 alternately around the cycles of K so that∑

e�v g(e) = 0. An illustration of g on K appears in Figure 2.1. Note that
∑

e∈E(H) g(e) = 0.
Let m be the real number of smallest absolute value such that f +mg takes the value 0 on one

of the edges of K. Then f +mg is a fractional matching with more edges assigned the number 0
than has f , contradicting the definition of f .

Hence, H consists only of components that are isomorphic to K2 or odd cycles. The value of
f(e) is easily seen to be 1 if e is an isolated edge and 1/2 if e is in an odd cycle. Hence f takes
only the values 0, 1, and 1/2. �

A fractional transversal of a graph G is a function g : V (G) → [0, 1] satisfying
∑

v∈e g(v) ≥ 1
for every e ∈ E(G). The fractional transversal number is the infimum of

∑
v∈V (G) g(v) taken over

all fractional transversals g of G. By duality, the fractional transversal number of a graph G is
nothing more than the fractional matching number μf (G) of G.

Theorem 2.1.6 For any graph G, there is a fractional transversal g for which∑
v∈V (G)

g(v) = μf (G)
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such that g(v) ∈ {0, 1/2, 1} for every vertex v.

Proof. Suppose that V (G) = {v1, v2, . . . , vn}. Define B(G) to be the bipartite graph whose vertex
set is V (B(G)) = {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn} with an edge xiyj ∈ E(B(G)) if and only if
vivj ∈ E(G). Another way of describing B(G) is to say that it is the bipartite graph whose bipartite
adjacency matrix is the adjacency matrix of G.

Given any fractional matching f : E(G) → {0, 1/2, 1}, orient all the edges e of G for which
f(e) = 1/2 so that no two directed edges have the same head or tail. This is easy to arrange,
because the graph induced on the edges with f(e) = 1/2 has maximum degree 2; simply orient
the cycles cyclically and orient the paths linearly. Now define a matching of B(G) by selecting
(1) edge xiyj in case f(vivj) = 1/2 and the edge vivj is oriented from vi to vj, and (2) both edges
xiyj and xjyi in case f(vivj) = 1. The cardinality of this matching is equal to 2

∑
e∈E(G) f(e).

Conversely, given any matching of B(G), define a fractional matching f : E(G) → {0, 1/2, 1} by
setting f(vivj) = 1 if both xiyj and xjyi are in the matching, 1/2 if only one is, and 0 if neither are.
Owing to this correspondence, the fractional matching number of G is half the matching number
of B(G).

Given an optimal fractional matching of G, we construct a maximum matching of B(G) of
cardinality 2

∑
e∈E(G) f(e). By Theorem 2.1.1, there is a transversal of B(G) of the same cardinality.

From this transversal, construct a fractional transversal g : V (G) → {0, 1/2, 1} of G by setting
g(vi) = 1 if both xi and yi are in the transversal, 1/2 if only one is, and 0 otherwise. The sum∑

v∈V (G) g(v) is clearly half the cardinality of the transversal of B(G), namely,
∑

e∈E(G) f(e), which
is equal to μf (G). Hence g is an optimal fractional transversal. �

2.2 Results on maximum fractional matchings

Fractional Tutte’s theorem

A fractional perfect matching is a fractional matching f with
∑
f(e) = ν(G)/2, that is, a fractional

matching achieving the upper bound in Lemma
2.1.2 on page 14. When a fractional perfect matching takes only the values 0 and 1, it is a
perfect matching. In this section we present necessary and sufficient conditions for a graph to have
a fractional perfect matching. The result is a lovely analogue of Tutte’s [180] theorem on perfect
matchings (see Theorem 2.2.3 below).

We begin with some simple propositions.

Proposition 2.2.1 Suppose that f is a fractional matching. Then f is a fractional perfect match-
ing if and only if

∑
e�v f(e) = 1 for every v ∈ V .

Proof. If the condition is satisfied at every vertex, then

2
∑
e∈E

f(e) =
∑
v∈V

∑
e�v

f(e) = ν(G),

and we have a fractional perfect matching. Were there strict inequality in
∑

e�v f(e) ≤ 1 for some
v ∈ V , then there would be strict inequality when they are summed, and we would not have a
fractional perfect matching. �

Proposition 2.2.2 The following are equivalent for a graph G.

(1) G has a fractional perfect matching.
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(2) There is a partition {V1, V2, . . . , Vn} of the vertex set V (G) such that, for each i, the graph
G[Vi] is either K2 or Hamiltonian.

(3) There is a partition {V1, V2, . . . , Vn} of the vertex set V (G) such that, for each i, the graph
G[Vi] is either K2 or a Hamiltonian graph on an odd number of vertices.

Proof. (1) =⇒ (2): If G has a fractional perfect matching, then by Theorem 2.1.5 on page 15 it has
a fractional perfect matching f that is restricted to the values 0, 1/2, and 1. Create the partition
by putting two vertices in the same block if they are connected by an edge e with f(e) = 1 or if
they are connected by a path P all of whose edges e have f(e) = 1/2. The graphs induced on these
blocks are all either isomorphic to K2 or else have a spanning cycle.

(2) =⇒ (3): If any block Vi of the partition induces a Hamiltonian graph on an even number of
vertices, that block may be refined into blocks of size 2 each of which induces a K2.

(3) =⇒ (1): If a block of the partition induces a K2, let f(e) = 1 where e is the included edge. If
a block of the partition induces a Hamiltonian graph on an odd number of vertices, let f(e) = 1/2
for every edge e in the Hamilton cycle. Let f(e) be 0 for all other edges e. The function f is clearly
a fractional perfect matching. �

Let us write o(G) to stand for the number of components of G with an odd number of vertices
and i(G) to stand for the number of isolated vertices of G. The main theorem on perfect matchings
is the following, due to Tutte [180].

Theorem 2.2.3 A graph G has a perfect matching if and only if o(G − S) ≤ |S| for every set
S ⊆ V (G). �

The analogous theorem for fractional perfect matchings is the following result.

Theorem 2.2.4 A graph G has a fractional perfect matching if and only if i(G − S) ≤ |S| for
every set S ⊆ V (G).

Proof. First assume that G has a fractional perfect matching f and, for some S ⊆ V (G), the
number of isolated vertices in G − S is greater than |S|. Let I be this set of isolated vertices and
consider the graph H = G[S ∪ I]. See Figure 2.2 on the facing page. Then f restricted to H is a
fractional matching of H with ∑

e∈E(H)

f(e) ≥ |I| > 1
2
ν(H),

which contradicts Lemma 2.1.2 on page 14.

To prove the converse, assume that G has no fractional perfect matching. Then G must have
a fractional transversal g : V (G) → [0, 1] for which

∑
v∈V (G) g(v) < ν/2. By Theorem 2.1.6 on

page 16, this fractional transversal may be assumed to take only the values 0, 1/2, and 1. Let

S = {v ∈ V (G) : g(v) = 1},
I = {v ∈ V (G) : g(v) = 0}, and

C = V (G)− S − I.

Note that, because g is a fractional transversal, no edge in G joins a vertex in I to another vertex
in I, nor a vertex in I to a vertex in C. Hence the vertices in I are isolated vertices in G− S. So
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S

I

H

Figure 2.2. A graph G that has no fractional perfect matching. Note that |S| = 3 and i(G − S) = 4.
Subgraph H is G[S ∪ I].

i(G− S) ≥ |I|. But

|I| = ν(G)− |S| − |C|
= ν(G)− 2|S| − |C|+ |S|

=

⎛
⎝ν(G)− 2

∑
v∈V (G)

g(v)

⎞
⎠ + |S| > |S|.

Hence i(G − S) > |S| and the condition is violated. �

A perfect matching is also called a 1-factor of a graph. It might seem sensible to find a gener-
alization of Theorem 2.2.4 that provides a condition for the existence of a fractional k-factor. The
only reasonable candidate for a definition of a fractional k-factor, however, is that it is k times a
fractional 1-factor. Hence the necessary and sufficient condition for the existence of a fractional
perfect matching is also a necessary and sufficient condition for the existence of a fractional k-factor.

Fractional Berge’s theorem

The extent to which the condition in Tutte’s theorem fails determines the matching number of the
graph, in the sense of the following result due to Berge [14].

Theorem 2.2.5 For any graph G,

μ(G) =
1
2

(
ν(G)−max

{
o(G− S)− |S|

})
,

where the maximum is taken over all S ⊆ V (G). �

The analogous result works also for the fractional matching number.
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Theorem 2.2.6 For any graph G,

μf (G) =
1
2

(
ν(G)−max

{
i(G− S)− |S|

})
,

where the maximum is taken over all S ⊆ V (G).

Proof. Suppose that the maximum is m, achieved at S. The case m = 0 is Theorem 2.2.3, so we
may assume m ≥ 1.

We first show that μf (G) ≤ 1
2 (ν(G)−m). Let C ⊆ V (G) be the set of vertices that are neither

in S nor isolated in G− S. If f is any fractional matching of G, then

∑
e∈E(G)

f(e) ≤
∑
v∈S

∑
e�v

f(e) +
1
2

∑
v∈C

∑
e�v

f(e),

since no edge connects an isolated vertex in G−S to another isolated vertex in G−S or to a vertex
in C. But then

∑
e∈E(G)

f(e) ≤ |S|+ 1
2
|C| = 1

2

[
i(G − S) + |S|+ |C| − (i(G − S)− |S|)

]

=
1
2
(ν(G) −m).

To obtain the opposite inequality, let H be the join1 of G and Km. We show that H has a
fractional perfect matching. Choose T ⊆ V (H). If some vertex in the Km portion is not in T , then
either i(H − T ) = 0 and so |T | ≥ i(H − T ), or else H − T is just a single vertex in Km in which
case i(H −T ) = 1 ≤ |T |. If T contains all the vertices of the Km portion, let T ′ = T ∩V (G). Then
i(H − T ) = i(G− T ′), and so

|T | − i(H − T ) = m+ |T ′| − i(G − T ′) ≥ 0.

In all cases, i(H−T ) ≤ |T |, so by Theorem 2.2.4 on page 18, H has a fractional perfect matching f .
The restriction of f to E(G) is then a fractional matching on G with∑

e∈E(G)

f(e) =
∑

e∈E(H)

f(e) −
∑

e∈E(H)−E(G)

f(e)

=
ν(H)

2
−m =

ν(G) +m

2
−m =

ν(G)−m
2

as required. �

Fractional Gallai’s theorem

Gallai’s theorem relates the covering number k of a graph to its matching number μ.

Theorem 2.2.7 Let G be a graph without isolated vertices. Then k(G) + μ(G) = ν(G). �

This result remains true in the fractional case.
1The join of graphs G and H , denoted G ∨ H , is formed by taking copies of G and H on disjoint sets of vertices

and adding edges between every vertex of G and every vertex of H .
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Theorem 2.2.8 Let G be a graph without isolated vertices. Then kf (G) + μf (G) = ν(G).

Proof. By duality, it is enough to show that pf (G) + τf (G) = ν(G). Choose f, g : V (G) → [0, 1]
with g(v) = 1− f(v). For any pair of vertices (but especially for uv ∈ E(G)) we have

f(u) + f(v) ≥ 1 ⇐⇒ g(u) + g(v) ≤ 1.

If follows that f is a fractional transversal if and only if g is a fractional packing. If f is a minimum
fractional transversal, then g is a feasible fractional packing and so

τf (G) + pf (G) ≥
∑
v

f(v) +
∑
v

g(v) = ν(G).

Similarly, if g is a maximum fractional packing, then f is a feasible fractional transversal and so

τf (G) + pf (G) ≤
∑
v

f(v) +
∑
v

g(v) = ν(G). �

2.3 Fractionally Hamiltonian graphs

A Hamiltonian cycle in a graph is a cycle that contains every vertex, i.e., a spanning cycle. Graphs
that have Hamiltonian cycles are called Hamiltonian.

Here is an alternative definition: Let G be a graph on n vertices. For a nonempty, proper
subset S ⊂ V , write [S, S] for the set of all edges with exactly one end in S. A set of this form
is called an edge cut of G and is a set of edges whose removal disconnects G. Note that, if G is
disconnected, then the null set is an edge cut of G, obtained by selecting S to be one component
of G. A Hamiltonian cycle in G is a subset F ⊆ E(G) for which (1) |F | = n and (2) every edge cut
of G contains at least two edges of F .

This definition has a natural fractional analogue. Consider the indicator function of the Hamil-
ton cycle, and then relax! A graph G is called fractionally Hamiltonian if there is a function
f : E(G)→ [0, 1] such that the following two conditions hold:∑

e∈E(G)

f(e) = ν(G)

and for all ∅ ⊂ S ⊂ V (G) ∑
e∈[S,S]

f(e) ≥ 2.

We call such a function f a fractional Hamiltonian cycle. Note that connectedness is a necessary
condition for fractional Hamiltonicity.

For example, Petersen’s graph (see Figure 3.1 on page 31) is fractionally Hamiltonian (let
f(e) = 2

3 for all edges e), but is not Hamiltonian; see also exercise 10 on page 28.
It is helpful to consider an LP-based definition of fractional Hamiltonicity. Let G be a graph.

We consider f(e) to be the “weight” of edge e, which we also denote we. Consider the LP:

min
∑

e∈E(G) we

subject to
∑

e∈[S,S]we ≥ 2 ∀S, ∅ ⊂ S ⊂ V (G)

we ≥ 0, ∀e ∈ E(G)

This linear program is called the fractional Hamiltonian LP.

Proposition 2.3.1 Let G be a graph on at least 3 vertices. Then G is fractionally Hamiltonian if
and only if the value of the fractional Hamiltonian LP is exactly ν(G).

Proof. Exercise 7 on page 27. �
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Note that every edge cut in a fractional Hamiltonian cycle must have weight at least 2, but
certain natural cuts must have weight exactly two.

Proposition 2.3.2 Let f be a fractional Hamiltonian cycle for a graph G and let v be any vertex
of G. Then ∑

e�v

f(e) = 2.

Proof. Let v be any vertex and let S = {v}. Then∑
e�v

f(e) =
∑

e∈[S,S]

f(e) ≥ 2.

To conclude, we compute

2ν(G) ≤
∑

v∈V (G)

∑
e�v

f(e) = 2
∑

e∈E(G)

f(e) = 2ν(G)

and the result follows. �

If G has an even number of vertices and a Hamiltonian cycle, then clearly G has a perfect
matching: simply take half the Hamiltonian cycle, i.e., every other edge. Likewise, we have the
following simple result.

Theorem 2.3.3 If G is fractionally Hamiltonian, then G has a fractional perfect matching.

Proof. If f is a fractional Hamiltonian cycle, then, by Proposition 2.3.2, 1
2f is a fractional perfect

matching. �

We say that G is tough provided that c(G−S) ≥ |S| for every S ⊆ V (G), where c(G) stands for
the number of connected components in G. (Compare the definition of toughness to the conditions
in Theorems 2.2.3 and 2.2.4.) Perhaps the best-known necessary condition for a graph to be
Hamiltonian is that the graph must be tough. This fact can be strengthened to the following.

Theorem 2.3.4 Let G be a graph with ν(G) ≥ 3 that is fractionally Hamiltonian. Then G is
tough.

Proof. Suppose, for the sake of contradiction, that G is not tough. Let S = {u1, . . . , us} be a set
of vertices so that c(G − S) > s = |S|. Let the components of G− S be H1,H2, . . . ,Hc.

Consider the dual to the fractional Hamiltonian LP:

max
∑

2yF s.t.
∑
F�e

yF ≤ 1 for all e ∈ E(G), and y ≥ 0.

The variables yF are indexed by the edge cuts of G. To show that G is not fractionally Hamiltonian,
it is enough to present a feasible solution to the dual LP with objective value greater than ν(G).

Let Fi = [V (Hi), V (G) − V (Hi)] and set yFi = 1
2 . For each vertex u ∈ V (G) − S let Fu =

[{u}, V (G)− {u}] and put yFu = 1
2 . All other edge cuts are assigned weight 0.

First we check that this weighting is feasible for the dual LP. Let e be any edge of G.

• If e has both ends in S, then
∑

F�e yF = 0.

• If e has exactly one end in S, then
∑

F�e yF = 1
2 + 1

2 = 1.
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• If e has no ends in S, then e has both ends in a component Hi, and
∑

F�e yF = 1
2 + 1

2 = 1.

Therefore the weighting yF is feasible.
Second we compute the value of the objective function

∑
F 2yF . We have

∑
F

2yF =
c∑

i=1

2yFi +
∑

u∈V (G)−S

2yFu

= c+ 2
[
1
2
(ν(G)− s)

]

= ν(G) + c− s
> ν(G)

and therefore G is not fractionally Hamiltonian. �

It is known that being tough is not a sufficient condition for a graph to be Hamiltonian; Pe-
tersen’s graph is tough but not Hamiltonian. However, Petersen’s graph is fractionally Hamiltonian,
so one might ask, Is being tough sufficient for fractional Hamiltonicity? The answer is no. Indeed,
we can say a bit more.

The toughness of a graph G is defined to be

σ(G) = min
{ |S|
c(G − S)

: S ⊆ V (G), c(G− S) > 1
}
.

A graph is called t-tough provided σ(G) ≥ t. A graph is tough if and only if it is 1-tough.

Proposition 2.3.5 Let t < 3
2 . There is a graph G with σ(G) ≥ t that is not fractionally Hamilto-

nian.

Proof. Let n be a positive integer. Let G be a graph with V (G) = A ∪B ∪C where A, B, and C
are disjoint with |A| = 2n+ 1, |B| = 2n+ 1, and |C| = n. Thus ν(G) = 5n+ 2. Both A and C are
cliques in G, while B is an independent set. The only other edges in G are a matching between A
and B, and a complete bipartite graph between B and C. See Figure 2.3 on the next page (where
n = 2). One checks (exercise 11 on page 28) that the toughness of G is (3n + 1)/(2n + 1) (let
S = A ∪C in the definition), which can be made arbitrarily close to 3

2 .
To show that G is not fractionally Hamiltonian we work with the dual to the fractional Hamil-

tonian LP. We assume that the vertices in A,B,C are labeled so that A = {a1, . . . , a2n+1},
B = {b1, . . . , b2n+1}, and C = {c1, . . . , cn} and that ai is adjacent to bi for 1 ≤ i ≤ 2n + 1.
We define a weighting yF of the edge cutsets F of G as follows:

• If F = [{ai}, V (G)− {ai}], then yF = 1
4 .

• If F = [{bi}, V (G) − {bi}], then yF = 3
4 .

• If F = [{ai, bi}, V (G)− {ai, bi}], then yF = 1
4 .

• For all other edge cuts, yF = 0.

One now checks, patiently, that for every edge e ∈ E(G) that
∑

F�e yF ≤ 1. (There are four cases
depending on whether the endpoints of e are (1) both in A, (2) both in C, (3) in A and B, or (4) in
B and C.) We leave this verification to the reader.
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A B

C

Figure 2.3. A tough graph that is not fractionally Hamiltonian.

The value of the objective function is

∑
F

2yF =
2
4
|A|+ 6

4
|B|+ 2

4
|A|

=
2(2n + 1) + 6(2n + 1) + 2(2n + 1)

4

= 5n+
5
2
> 5n+ 2 = ν(G).

Therefore G is not fractionally Hamiltonian. �

It is conjectured that if a graph’s toughness is sufficiently high, then it must be Hamiltonian;
indeed, it is believed that σ(G) ≥ 2 is enough. It therefore seems safe to make the analogous
conjecture.

Conjecture 2.3.6 If σ(G) ≥ 2, then G is fractionally Hamiltonian. �

The middle levels problem: a fractional solution

The middle levels problem is a notorious problem in the study of Hamiltonian graphs. It concerns
the following family of graphs. Let n, a, b be integers with 0 ≤ a < b ≤ n. Let G(n; a, b) denote
the bipartite graph whose vertices are all the a-element and b-element subsets of an n-set, say
[n] = {1, 2, . . . , n}. The a-sets are called the bottom vertices and the b-sets are called the top
vertices. A bottom vertex A and a top vertex B are adjacent exactly when A ⊂ B.

The middle levels problem is as follows. For a positive integer k, is the graph G(2k+1; k, k+1)
Hamiltonian? The middle levels problem is so-named because it deals with the central levels of the
Boolean algebra 2[2k+1]. More generally, the following is believed.

Conjecture 2.3.7 Let k and n be integers with 0 < k < n/2. Then the graph G(n; k, n − k) is
Hamiltonian.

We prove the fractional analogue.
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Theorem 2.3.8 Let k and n be integers with 0 < k < n/2. Then the graph G(n; k, n − k) is
fractionally Hamiltonian.

Proof. Note that G(n; k, n−k) is a regular bipartite graph in which every vertex has degree
(n−k

k

)
.

Let w = 2/
(n−k

k

)
and assign weight w to every vertex. The sum of the weights of the edges is

w
(n
k

)(n−k
k

)
= 2

(n
k

)
= ν(G(n; k, n − k)). To see that this weighting is a fractional Hamiltonian cycle

we just need to show that there are at least
(n−k

k

)
edges in every edge cut.

We prove this below (Proposition 2.3.11 on the next page) and this completes the proof. �

Note that G(n; k, n − k) is edge-transitive. It follows that G(n; k, n − k) is fractionally Hamil-
tonian if and only if it has a fractional Hamiltonian cycle in which every edge has the same weight.
This, in turn, is equivalent to showing that the edge connectivity κ′ of G(n; k, n − k) equals its
minimum degree. It follows that κ′ = δ for G(n; k, n− k) is a necessary condition for G(n; k, n− k)
to be Hamiltonian.

In the remainder of this section we analyze the edge connectivity of G(n; k, n − k).

Proposition 2.3.9 Let 0 ≤ a < b ≤ n be integers. Then every pair of distinct bottom vertices of
G(n; a, b) is joined by

(n−a
b−a

)
edge-disjoint paths.

Proof. Let f(n; a, b) denote the maximum number of edge-disjoint paths between pairs of distinct
bottom vertices. Since bottom vertices have degree

(n−a
b−a

)
, we have f(n; a, b) ≤ (n−a

b−a

)
and we work

to show that equality holds.
The proof is by induction on n and a. The basis cases n = 1 and/or a = 0 are easy to check.
Let X �= Y be bottom vertices. We claim that we can restrict to the case where X and

Y are disjoint, for suppose X and Y have nonempty intersection, say n ∈ X ∩ Y . There are
f(n−1; a−1, b−1) edge-disjoint paths joining X−{n} to Y −{n} in G(n−1; a−1, b−1). By the
induction hypothesis f(n− 1; a − 1, b− 1) =

((n−1)−(a−1)
(b−1)−(a−1)

)
=

(n−a
b−a

)
. If we insert element n into the

vertices (sets) on those paths we create
(n−a

b−a

)
edge-disjoint paths from X to Y in G(n; a, b). Thus

we may assume that X and Y are disjoint. This implies that n ≥ 2a.

We claim that we can further restrict to the case that X∪Y = [n], for suppose that X∪Y �= [n].
Without loss of generality, n /∈ X ∪ Y .

In case b > a+ 1, there are f(n− 1; a, b) edge-disjoint X-Y paths that avoid element n. There
are also f(n− 1; a, b − 1) edge-disjoint X-Y paths all of whose top sets use element n. Thus

f(n; a, b) ≥ f(n− 1; a, b) + f(n− 1; a, b − 1)

=

(
n− 1− a
b− a

)
+

(
n− 1− a
b− a− 1

)
=

(
n− a
b− a

)

as required.
In case b = a+1, there are f(n−1; a, a+1) =

((n−1)−a
1

)
= n−a−1 edge-disjoint paths that avoid

element n. We can create one additional path that begins X → X ∪{n} and ends Y ∪{n} → Y all
of whose internal vertices contain the element n. This gives a total of n − a ≥ a+ 1 edge-disjoint
X-Y paths as required.

Thus we may assume X ∪ Y = [n] and X ∩ Y = ∅. This means that n = 2a ≥ b > a and we
work to construct

(n−a
b−a

)
=

( a
b−a

)
edge-disjoint X-Y paths.

Write X = {x1, . . . , xa} and Y = {y1, . . . , ya}. For a subset J ⊂ [a] we define X[J ] to be the set
of elements in X with subscripts in J , i.e., X[J ] = {xj : j ∈ J}. Define Y [J ] analogously. Choose
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J ⊂ [a] with |J | = b− a; there are
( a
b−a

)
choices for this set. We now construct a path from X to

Y that begins X → X ∪ Y [J ] and ends X[J ] ∪ Y → Y . The top vertices on this path satisfy the
following conditions:

• They contain X[J ] ∪ Y [J ].

• For any index k /∈ J , they contain exactly one of xk or yk.

It is easy to find such paths; here is an explicit, if inefficient, construction. Let T be a top vertex
on this path, which contains xk, but not yk. From T delete xk and any b − a − 1 other elements
to reach a bottom vertex; next add to this bottom vertex yk and the b − a − 1 other elements
previously deleted. We repeat these steps until we have transformed X ∪ Y [J ] into X[J ] ∪ Y .

It is immediate that if J �= J ′, the corresponding paths are edge-disjoint because the top vertices
on the J-path are disjoint from the top vertices on the J ′-path.

Thus f(n; a, b) = f(2a; a, b) ≥ ( a
b−a

)
as required. �

Proposition 2.3.10 Let 0 ≤ a < b ≤ n be integers. Then every pair of distinct top vertices of
G(n; a, b) is joined by

(b
a

)
edge-disjoint paths.

Proof. The mapping X �→ [n]−X is an isomorphism from the graph G(n; a, b) to G(n;n−b, n−a)
that exchanges top and bottom vertices in the two graphs. The maximum number of edge-disjoint
paths between top vertices of G(n; a, b) equals the maximum number of edge-disjoint paths between
bottoms in G(n;n− b, n− a). By Proposition 2.3.9, this is precisely

( n−(n−b)
(n−a)−(n−b)

)
=

( b
b−a

)
=

(b
a

)
. �

Proposition 2.3.11 Let n and k be integers with 0 ≤ k < n/2. Then the edge connectivity of
G(n; k, n − k) is

(n−k
k

)
.

Proof. Let S be a nonempty, proper subset of V = V (G(n; k, n − k)). We must show that the
number of edges between S and V − S is at least

(n−k
k

)
. If S and V − S both contain a bottom

vertex, or if they both contain a bottom vertex, then by Propositions 2.3.9 and 2.3.10 we have at
least

(n−k
k

)
edges in [S, V − S]. Otherwise, the set of top vertices is entirely contained in (say) S

and the set of bottom vertices is entirely contained in V − S, and since the graph is
(n−k

k

)
-regular,

there are at least that many edges between S and V − S. �

2.4 Computational complexity

The fractional matching number of a graph can be computed in polynomial time. Indeed, the
constraint matrix in the fractional matching number problem has size |V | × |E| and therefore
polynomial-time LP solutions for this problem exist (see the discussion on page 136 of §A.3). A
more efficient approach, however, is to find the matching number of B(G) using a standard bipartite
matching algorithm. See also Bourjolly and Pulleyblank [29] for an efficient algorithm.

Fractional Hamiltonicity can also be tested in polynomial time. Here are two methods. First,
we can formulate fractional Hamiltonicity as a multicommodity flow problem. There are two types
of variables in this formulation: capacities and flows. To begin, arbitrarily assign a direction to
every edge. To each edge e we assign a “capacity” variable ce in the interval [0, 1]. For every pair
of vertices (u, v) and to every edge e we assign a flow fu,v,e. One should imagine that there are
n(n− 1) different commodities flowing through the graph and fu,v,e represents the amount of flow
of commodity (u, v) on edge e. The flow must satisfy −ce ≤ fu,v,e ≤ ce. At every vertex other
than u or v the net flow of commodity (u, v) must be zero (flow in must equal flow out). The
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objective is to minimize the sum of the capacities
∑
ce subject to the additional constraint that

the net flow of each commodity must be at least 2. One can show (exercise 12 on the following
page) that the value of this multicommodity flow problem is ν(G) if and only if G is fractionally
Hamiltonian. We have introduced a number of new variables and many constraints, but note that
the number of variables and constraints is polynomial in ν(G) + ε(G). Thus the value of this LP
and the determination of G being fractionally Hamiltonian can be found in polynomial time.

The fractional Hamiltonicity problem admits another polynomial-time solution, again using
linear programming. This time we formulate the problem in the natural way. We assign a weight
to each edge of G. We seek to minimize the sum of these weights subject to the constraints that
the sum of the weights across any edge cut is at least 2. Now there are exponentially many cuts
so this LP formulation is not polynomial in the size of G. However, the separation problem can be
efficiently solved for this problem: Given a weight vector w we can, in polynomial time, identify an
edge cut of minimum weight. This detects any edge cut with total weight less than 2. If this cut
has total weight at least 2, then we know w is feasible. Otherwise, we know w is infeasible and we
have identified a violated constraint. Therefore (see the discussion on page 137) we can find the
value of the fractional Hamiltonian LP in polynomial time (polynomial in the size of G).

Since there exist polynomial-time algorithms to recognize fractionally Hamiltonian graphs, it
would seem that there should be a “nice” theorem laying out necessary and sufficient conditions
for fractional Hamiltonicity. Finding (and proving!) such a result is an open problem.

2.5 Exercises

1. Petersen’s theorem [146] states that every 2-edge-connected 3-regular graph has a perfect
matching. Prove this in the fractional case. Indeed, it is easy to prove that any r-regular
graph has a fractional perfect matching.

2. Tutte’s theorem (2.2.3) characterizes those graphs that have perfect matchings. Characterize
those graphs that are “matching perfect”, i.e., graphs G such that μ(H) = μf (H) for all
induced subgraphs H of G.

3. Use the previous two exercises to prove Hall’s marriage theorem: Every r-regular bipartite
graph has a perfect matching.

4. It is known that if G is connected and has an even number of edges then L(G), the line graph
of G, has a perfect matching. Prove the easier result that asserts that every such line graph
has a fractional perfect matching.

5. A graph is called semi-bipartite if any two vertex disjoint odd cycles are joined by an edge.
Prove that a regular, connected, semi-bipartite graph has a matching with at most one un-
saturated vertex.

6. Let M be a matrix. The term rank of M is the maximum number of nonzero entries of M
no two of which are in the same row or column of M .

Let G be a graph. Prove that the term rank of A(G) is 2μf (G).

7. Prove Proposition 2.3.1 on page 21. Why do we need the condition ν(G) ≥ 3?

Note: The principal difference between the two definitions of fractionally Hamiltonian is
whether or not we allow edge weights to exceed one.



28 Chapter 2. Fractional Matching

8. Prove or disprove: Every fractionally Hamiltonian graph has a fractional Hamiltonian cycle
with edge weights in {0, 1/2, 1}.

9. Define a t-fold Hamiltonian cycle to be a closed walk in a graph that visits every vertex
exactly t times (we do not double count the first/last vertex on the walk). A Hamiltonian
cycle is just a 1-fold Hamiltonian cycle. An alternative definition for fractional Hamiltonicity
might be: A graph is fractionally Hamiltonian provided there is a positive integer t for which
it has a t-fold Hamiltonian cycle.

To what extent is this definition equivalent to the one presented in §2.3? Is the alternative
notion implied by the one in §2.3? Does the alternative notion imply the one in §2.3?

10. Let G be Petersen’s graph with one edge deleted. Show that G is fractionally Hamiltonian.
What happens if we delete two edges from Petersen’s graph?

11. Prove that σ(G) = (3n+1)/(2n+1) for the graph in the proof of Proposition 2.3.5 on page 23.

12. Let G be a graph and consider the multicommodity flow problem (see the discussion on page
27) on G. Prove that G is fractionally Hamiltonian if and only if the value of the flow problem
is ν(G).

13. An Eulerian tour is a walk in a graph that traverses every edge exactly once. Develop a
sensible definition for a graph to have a fractional Eulerian tour.

For your definition, prove or disprove: A graph has a fractional Eulerian tour if and only if
it has an Eulerian tour.

14. In formulating fractional Hamiltonicity as a multicommodity flow problem, we have a com-
modity for every pair of vertices. Show that this is excessive and that one needs to consider
only n− 1 commodities (flowing between a selected vertex and every other vertex).

2.6 Notes

The material on fractional perfect matchings is based on the work of Balas, Balinski, Bourjolly,
Lovász, Plummer, Pulleyblank, and Uhry. See [8], [9], [28], [29], [124], [147], [148], and [181].

In [37], Chung et al. show that all denominators are possible for the fractional transversal number
of a hypergraph of rank 3. They go on to explore, for each integer r > 2, the set of rational numbers
that can be the fractional transversal number of a rank r hypergraph. A complete characterization
of these sets remains open.

The fractional Gallai theorem (Theorem 2.2.8) was first noticed by Grinstead and Slater; see
[79], [166].

Aharoni and Ziv [1], [2] have studied matchings and fractional matchings in infinite graphs and
hypergraphs. In particular, they show that Theorems 2.1.5 and 2.1.6 hold for infinite graphs as
well.

The construction in the proof of Proposition 2.3.5 is based on an example due to Leslie Hall.
The 2-tough conjecture is due to Chvátal [39]. See also Enomoto, Jackson, Katerinis, and Saito
[51].

The middle levels problem has been attributed to various researchers. See, for example De-
jter [42]. Unable to find Hamiltonian cycles in the middle levels graph, some researchers try to find
long cycles; see the work of Savage [157], and Savage and Winkler [158]. An alternative approach
is to consider levels that are widely separated. Hurlbert [97] shows that if n is large enough (on the
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order of k2) then the graph G(n; k, n−k) is Hamiltonian. See also Duffus, Sands, and Woodrow [47]
as well as Kierstead and Trotter [106].

Exercise 5 on page 27 is based on Fulkerson, Hoffman, and McAndrew’s paper [69]. See also
Berge [16], page 27.
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Fractional Coloring

3.1 Definitions

The most celebrated invariant in all of graph theory is the chromatic number. Recall that an n-
coloring of a graph G is an assignment of one of n colors to each vertex so that adjacent vertices
receive different colors. The chromatic number of G, denoted χ(G), is the least n for which G has
an n-coloring.

The fractional chromatic number is defined as follows. A b-fold coloring of a graph G assigns
to each vertex of G a set of b colors so that adjacent vertices receive disjoint sets of colors. We say
that G is a: b-colorable if it has a b-fold coloring in which the colors are drawn from a palette of a
colors. We sometimes refer to such a coloring as an a: b-coloring. The least a for which G has a
b-fold coloring is the b-fold chromatic number of G, denoted χb(G). Note that χ1(G) = χ(G).

Since χa+b(G) ≤ χa(G) + χb(G), we define the fractional chromatic number to be

χf (G) = lim
b→∞

χb(G)
b

= inf
b

χb(G)
b

.

(See §A.4 on page 137.)

We can also use the methods of Chapter 1 to describe the fractional chromatic number. Asso-
ciate with a graph G its vertex-independent set hypergraph H defined as follows. The vertices of H
are just the vertices of G, while the hyperedges of H are the independent sets of G. Then k(H) is
the minimum number of independent sets of vertices needed to cover V (G). Since a subset of an
independent set is again independent, this is equivalent to the minimum number of independent
sets needed to partition V (G), i.e., the chromatic number. (See also exercise 7 on page 13.) Thus
k(H) = χ(G). Furthermore, the b-fold chromatic number of G is just the b-fold covering number
of H and so χf (G) = kf (H).

We know from Corollary 1.3.1 on page 4 that χf (G) is a rational number and from Corol-
lary 1.3.2 that there is a b so that χf (G) = χb(G)/b. If G has no edges, then χf (G) = 1. Otherwise,
χf (G) ≥ 2.

Proposition 3.1.1 For any graph G, χf (G) ≥ ν(G)/α(G). Furthermore, if G is vertex-transitive,
then equality holds.

Proof. Immediate from Proposition 1.3.4 on page 5. �

What is the dual notion? There is a natural interpretation of pf (H) (where H is the vertex-
independent set incidence hypergraph of G). Note that p(H) is the maximum number of vertices
no two of which are together in an independent set. Stated another way, p(H) is the maximum size

30
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Figure 3.1. The Petersen graph K5:2.

of a clique, so p(H) = ω(G). Thus pf (H) is the fractional clique number of G, denoted ωf (G). By
duality, χf (G) = ωf (G).

The fractional clique number can also be defined as follows. For a graph G and positive integers
a, b, we call a multiset of vertices K an a: b-clique if |K| = a and if for every independent set of
vertices S the number of vertices of K ∩ (aS) (counting multiplicities) is at most b. The b-fold
clique number of G, denoted ωb(G), is the largest a such that G has an a: b-clique, and then

ωf (G) = lim
b→∞

ωb(G)
b

= sup
b

ωb(G)
b

.

A graph G is called perfect if χ(H) = ω(H) for all induced subgraphs of H. Perfection becomes
trivial in fractional graph theory: for all graphs G, χf (H) = ωf (H) for all induced subgraphs H of
G! See also exercise 9 on page 54.

Proposition 3.1.2 χf (C2m+1) = 2 + (1/m)

Proof. Since cycles are vertex-transitive and α(C2m+1) = m, the result follows from Proposi-
tion 3.1.1 on the facing page. �

3.2 Homomorphisms and the Kneser graphs

Given positive integers a and b, define a graph Ka:b as follows: the vertices are the b-element subsets
of a fixed a-element set. There is an edge between two of these vertices if they are disjoint sets.
The graphs Ka:b are known as the Kneser graphs and they play a central role in the theory of the
fractional chromatic number. As an illustration, K5:2 is pictured in Figure 3.1.

We restrict attention to the case where a ≥ 2b, since otherwise Ka:b has no edges. Note that
Ka:1 = Ka, the complete graph on a vertices. The graph Ka:2 is just L(Ka), the complement of
the line graph of the complete graph on a vertices.

Suppose that G and H are graphs. A homomorphism φ : G → H is a mapping from V (G) to
V (H) such that φ(v)φ(w) ∈ E(H) whenever vw ∈ E(G).

There is a simple connection between graph coloring and graph homomorphisms, namely, a
graph G is n-colorable if and only if there is a homomorphism φ:G→ Kn.

This easily generalizes to a: b-colorings and motivates our study of Kneser graphs.
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Figure 3.2. The graph G16,5 from Proposition 3.2.2. Note that α(G16,5) = 5 (black vertices) and ω(G16,5) =
�16/5� = 3 (thick edges). See also exercise 1 on page 54.

Proposition 3.2.1 A graph G has an a: b-coloring if and only if there is a graph homomorphism
φ : G→ Ka:b. �

We know that χf can take only rational values and that χf (G) = 0, χf (G) = 1, or χf (G) ≥ 2
(see exercises 2 and 3 on page 54). In fact, all such values are actually achieved.

Proposition 3.2.2 Let a and b be positive integers with a ≥ 2b. Let Ga,b be the graph with vertex
set V (G) = {0, 1, . . . , a − 1}. The neighbors of vertex v are {v + b, v + b + 1, . . . , v + a − b} with
addition modulo a.

Then χf (Ga,b) = a/b and χb(Ga,b) = a.

Think of the vertices of Ga,b as equally spaced points around a circle, with an edge between two
vertices if they are not too near each other; see Figure 3.2.

Proof. Note that Ga,b has a vertices and is vertex-transitive. The maximum independent set of
Ga,b are all those of the form {i + 1, i + 2, . . . , i + b}, so α(Ga,b) = b (exercise 1 on page 54). By
Proposition 3.1.1 on page 30, χf (Ga,b) = a/b. This implies χb(G) ≥ a so it remains to exhibit
an a: b-coloring of Ga,b. Let the colors be {0, 1, . . . , a − 1} and assign to vertex v the color set
{v, v + 1, . . . , v + b− 1} with addition modulo a. It is easy to check that if vw ∈ E(Ga,b) then the
color sets assigned to v and w are disjoint. �

Another graph whose fractional chromatic number is a/b is the Kneser graph Ka:b. There is a
close connection between this fact and the following well-known theorem [55] of extremal set theory,
which has a simple phrasing in terms of the independence number of the Kneser graphs.
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Theorem 3.2.3 (Erdős-Ko-Rado) If a and b are positive integers with a > 2b, then

α(Ka:b) =

(
a− 1
b− 1

)
.

We prove this theorem below and, in fact, show that it is equivalent to the following proposition.

Proposition 3.2.4 χf (Ka:b) = a/b.

We provide two proofs, both very short. The first proof uses the Erdős-Ko-Rado theorem 3.2.3.
The second uses composition of graph homomorphisms and is independent of Theorem 3.2.3. We
may thus use Proposition 3.2.4 to prove the Erdős-Ko-Rado theorem without circularity.

Proof 1. The Kneser graph Ka:b has
(a
b

)
vertices and is vertex-transitive. By Theorem 3.2.3,

α(Ka:b) =
(a−1
b−1

)
. Hence, by Proposition 3.1.1

χf (Ka:b) =

(
a

b

)/(
a− 1
b− 1

)
= a/b. �

Proof 2. Let Ga,b be the graph of Proposition 3.2.2 on the facing page. That result tells us that
there is a homomorphism φ : Ga,b → Ka:b. Suppose that Ka:b has a c: d-coloring; in other words,
suppose that there is a homomorphism ψ : Ka:b → Kc:d. Then ψ ◦ φ would be a homomorphism
from Ga,b to Kc:d, so Ga,b would have a c: d-coloring. Hence c

d ≥ χf (Ga,b) = a
b . We conclude that

the natural a: b-coloring of Ka:b (i.e., the identity coloring) is optimal. �

As promised, we now use Proposition 3.2.4 to give a proof of the Erdős-Ko-Rado theorem.

Proof (of Theorem 3.2.3). Let S ⊆ V (Ka:b) be the set of vertices that (considered as sets) contain
the number a. There are exactly

(a−1
b−1

)
elements in S, one for every subset of [a− 1] of size b− 1.

It is clear that S is an independent set, since all elements of S contain a and so no two can be
disjoint. Hence α(Ka:b) ≥

(a−1
b−1

)
.

To see that one can do no better than the set S, suppose that there is an independent set
T of vertices in Ka:b of cardinality c. Let the full symmetric group on [a] act on T , permuting
the elements of [a], to obtain a! independent sets (counting multiplicities) of cardinality c. By
symmetry, every vertex of Ka:b is in the same number t of these independent sets π(T ). If we count
in two ways the number of pairs (v, π) with v ∈ π(T ) we have a! · c =

(a
b

) · t. Thus, assigning one
color to each of these independent sets gives a t-fold coloring of Ka:b using a! colors. By Proposition
3.2.4,

a!
t

=
(a
b

)
c
≥ χf (Ka:b) =

a

b
.

Simplifying this expression yields |T | = c ≤ (a−1
b−1

)
= |S|. Hence S is maximal and the theorem is

proved. �

The fact that homomorphisms can be composed with one another is used again profitably in
the following proposition.

Proposition 3.2.5 If Ka:b has a c: d-coloring, then every graph that has an a: b-coloring also has
a c: d-coloring.

Proof. Suppose that Ka:b has a c: d-coloring. Then there is a homomorphism φ : Ka:b → Kc:d.
Suppose also that G has an a: b-coloring. Then there is a homomorphism ψ : G→ Ka:b. But then
φ ◦ ψ is a homomorphism from G to Kc:d, and the conclusion follows. �
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It would be nice to be able to characterize those integers a, b, c, d that make the following
assertion true: Whenever a graph G has an a: b-coloring, it must have a c: d-coloring. Because of
Proposition 3.2.5, the assertion is true exactly when Ka:b has a c: d-coloring. This occurs exactly
when χd(Ka:b) ≥ c. Unfortunately, the values of χd(Ka:b) are not known for all a, b, d. Even the
case d = 1 is difficult, Kneser having offered a conjecture in 1955 [108] that was not proved until
1977 by Lovász [122].

Theorem 3.2.6 χ(Ka:b) = a− 2b+ 2. �

Lovász’s proof is deep and we omit it. A short proof by Bárány appears in [10].
The following result of Stahl [171] allows us to extend Theorem 3.2.6.

Lemma 3.2.7 Given c > 2d > 0, there is a homomorphism mapping Kc:d to K(c−2):(d−1).

Proof. Let S = {s1, s2, . . . , sd} be a vertex of Kc:d with s1 < s2 < · · · < sd. We define φ(S) as
follows. First, remove sd from S. If the resulting d − 1 element set has all its entries less than
c− 1, we call that set φ(S). Otherwise, suppose that sd−1 = c− 1 and suppose that k is the largest
integer such that sd−k = c− k. Then subtract 1 from sd−j for each j with 1 ≤ j ≤ k to give φ(S).

Clearly φ(S) is a (d − 1)-element subset of [c − 2]. The reader is left to verify (exercise 6 on
page 54) that φ is a homomorphism. �

Theorem 3.2.8 If 1 ≤ m ≤ b, then χm(Ka:b) = a− 2b+ 2m.

Proof. First note that the result holds when m = 1 by Theorem 3.2.6 and when m = b by
Proposition 3.2.2. Define a sequence s2, s3, . . . , sb by sd = χd(Ka:b) − χd−1(Ka:b). We now show
that sd ≥ 2 for every d with 2 ≤ d ≤ b. To see this, suppose that χd(Ka:b) = c. Then there is a
homomorphism ψ : Ka:b → Kc:d. Compose ψ with the homomorphism φ : Kc:d → K(c−2):(d−1) given
by Lemma 3.2.7 to obtain a homomorphism from Ka:b to K(c−2):(d−1), whose existence guarantees
that χd−1(Ka:b) ≤ c− 2. This simplifies to sd ≥ 2.

The sum of sd over all d telescopes and yields

b∑
d=2

sd = χb(Ka:b)− χ(Ka:b) = a− (a− 2b+ 2) = 2(b− 1).

Were even one of the numbers sd greater than 2 for some d with 2 ≤ d ≤ b, this sum would be
greater than

∑b
d=2 2 = 2(b − 1), and we would obtain a contradiction. Hence sd = 2 for every d

with 2 ≤ d ≤ b and the result follows. �

Stahl has conjectured that the formula given in the statement of Theorem 3.2.8 holds for all
values of m.

3.3 The duality gap

While a linear program and its dual must have the same value, the same is not true for integer
programs. Somewhere in this gap lies the common value of the linear relaxations of an IP and
its dual. As an example, consider the fact that the clique number and the chromatic number of a
graph need not be the same. Somewhere between these two numbers lies the fractional chromatic
number. In this section, we explore examples that illustrate the various possibilities for the relative
positions of these quantities.

When χ(G) = ω(G), as is the case for perfect graphs, then obviously χf (G) = χ(G). When
χ(G) > ω(G), many possibilities arise.
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Figure 3.3. A graph with [ω, χ] = [3, 4] and with χf = 4.

Example 3.3.1 Choose integers n ≥ 2 and b ≥ 2. Let G be Knb:b. Then ω(G) = χf (G) = n, but
χ(G) = (n− 2)b+ 2 by Theorem 3.2.6. This is an instance where the fractional chromatic number
is at the left endpoint of the interval [ω(G), χ(G)]. By choosing n large, one obtains an example
where the gap between ω(G) and χ(G) is as large as one pleases. Indeed, for n = 3 this gives
examples in which χf is bounded but χ is arbitrarily large.

Example 3.3.2 Let G be the graph pictured in Figure 3.3.
Note that ω(G) = 3, but that α(G) = 2, so χf (G) ≥ 8/2 = 4. It is just as easy to see

that χ(G) = 4 and so we have an example where χf (G) is at the right endpoint of the interval
[ω(G), χ(G)]. Moreover, if we let H = G[Kn], the lexicographic product1 of G and Kn, then
ω(H) = 3n, χf (H) = χ(H) = 4n. Hence we get such an example with a gap between ω(G) and
χ(G) as large as we want.

One of the well-known ways of producing examples of graphs G with a large gap between ω(G)
and χ(G) is by iterating the following graph function—an idea due to Mycielski [136]. Given a
graph G, define the graph Y (G) as follows: V (Y (G)) = (V (G) × {1, 2}) ∪ {z} and with an edge
between two vertices of Y (G) if and only if

(1) one of them is z and the other is (v, 2) for some v ∈ V (G), or

(2) one of them is (v, 1) and the other is (w, 1) where vw ∈ E(G), or

(3) one of them is (v, 1) and the other is (w, 2) where vw ∈ E(G).

Figure 3.4 on the next page shows Y (C5), also known as the Grötzsch graph.
This function Y preserves the clique number of a graph but increases the chromatic number.

Mycielski [136] proved the following.

Theorem 3.3.3 If G is a graph with at least one edge, then ω(Y (G)) = ω(G) and χ(Y (G)) =
χ(G) + 1. �

1The lexicographic product of graphs G and H , denoted G[H ], is defined to have vertex set V (G)×V (H) with an
edge (v1, w1)(v2, w2) if and only if v1v2 ∈ E(G) or both v1 = v2 and w1w2 ∈ E(H). Informally, we substitute a copy
of H for each vertex of G. If vw ∈ E(G), then every vertex in v’s copy of H is adjacent to every vertex in w’s copy.
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Figure 3.4. The Grötzsch graph Y (C5). Its fractional chromatic number is 5
2 + 2

5 = 29
10 .

It turns out that there is a simple but surprising formula relating χf (Y (G)) to χf (G).

Theorem 3.3.4 If G is any graph, then

χf (Y (G)) = χf (G) +
1

χf (G)
.

Proof. Suppose that G has an a: b-coloring and that χf (G) = a
b . To show that χf (Y (G)) ≤

χf (G)+1/χf (G), it is enough to find an (a2+b2): (ab)-coloring of Y (G). For the sake of definiteness,
we use the numbers in {1, 2, . . . , a} to stand for the colors on G and we write C(v) for the set of
colors assigned to v.

The vertices of Y (G) are assigned sets of colors drawn from a palette of a2 “ordered pair” colors
and b2 “new” colors. The former are all ordered pairs of the form (i, j) with 1 ≤ i, j ≤ a and the
latter are simply another b2 additional colors, the set of which we denote N .

These a2 + b2 colors are assigned to vertices of Y (G) as follows:

• C ′(v, 1) = {(i, j) : i ∈ C(v), 1 ≤ j ≤ a},

• C ′(v, 2) = {(i, j) : i ∈ C(v), b < j ≤ a} ∪N , and

• C ′(z) = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b}.

Note that this assigns exactly ab colors to each vertex, using a2 ordered pair colors and b2 new
colors, a total of a2 + b2 colors. Since adjacent vertices of Y (G) are assigned disjoint sets of colors
by this scheme, we have our (a2 + b2): (ab)-coloring of Y (G) and we have our upper bound.

To prove the opposite inequality, we consider fractional cliques. Suppose that g : V (G)→ [0, 1]
is a fractional clique on G such that

∑
v∈V (G) g(v) = χf (G). We must manufacture a fractional

clique h on H such that ∑
v∈V (Y (G))

h(v) =
a2 + b2

ab
.

Here is an h that works: Let h(v, 1) = a−b
a g(v), let h(v, 2) = b

ag(v), and let h(z) = b
a . We now

show that this is a fractional clique.
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Let I be an independent set of vertices in H. If z ∈ I, then clearly I contains no vertices of the
form (v, 2), so ∑

x∈I

h(x) = h(z) +
∑

(v,1)∈I

h(v, 1) =
b

a
+
a− b
a

∑
(v,1)∈I

g(v).

The sum in this last expression is no more than 1, since g is a fractional clique on G. Hence

∑
x∈I

h(x) ≤ b

a
+
a− b
a

= 1.

If z �∈ I, then I = [J ×{1}]∪ [K ×{2}], where J ⊆ V (G) is independent and K ⊆ V (G) has no
vertices adjacent to any vertices in J . We then compute∑

x∈I

h(x) =
∑
v∈J

h(v, 1) +
∑
v∈K

h(v, 2) (3.1)

=
∑
v∈J

a− b
a

g(v) +
∑
v∈K

b

a
g(v) (3.2)

=
a− b
a

∑
v∈J

g(v) +
b

a

∑
v∈J∩K

g(v) +
b

a

∑
v∈K−J

g(v) (3.3)

≤
∑
v∈J

g(v) +
b

a

∑
v∈K−J

g(v) (3.4)

Let H = G[K − J ]. Suppose that H has a c: d-coloring and that χf (H) = c/d. Since H is a
subgraph of G,

c

d
= χf (H) ≤ χf (G) =

a

b
. (3.5)

If C1, C2, . . . , Cc be the color classes of this coloring, then the sets of the form J∪Ci are independent
sets of vertices of G. Hence ∑

v∈J∪Ci

g(v) ≤ 1

for 1 ≤ i ≤ c. Summing this inequality over all i yields

c
∑
v∈J

g(v) + d
∑

v∈K−J

g(v) ≤ c.

Dividing through by c gives ∑
v∈J

g(v) +
d

c

∑
v∈K−J

g(v) ≤ 1,

which together with (3.1) through (3.4) and (3.5) yields∑
x∈I

h(x) ≤ 1.

Hence h is a fractional clique and so χf (G) is at least as large as
∑

x∈V (H)

h(x) =
∑

v∈V (G)

h(v, 1) +
∑

v∈V (G)

h(v, 2) + h(z)
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=
a− b
a

∑
v∈V (G)

g(v) +
b

a

∑
v∈V (G)

g(v) +
b

a

=
∑

v∈V (G)

g(v) +
b

a

=
a

b
+
b

a
= χf (G) + (1/χf (G)).

This gives the reverse inequality and the theorem is proved. �

Theorem 3.3.4 tells us that the fractional chromatic number of the Grötzsch graph of Fig-
ure 3.4 is χf (C5) + 1/χf (C5) = (5/2) + (2/5) = 29/10, which is near the center of the interval
[ω(Y (G)), χ(Y (G))] = [2, 4]. If Gn is defined inductively by G1 = K2 and Gn = Y (Gn−1) for n > 1,
then ω(Gn) = 2 and χ(Gn) = n+1 for all n, while χf (Gn) grows without bound and is asymptotic
to
√

2n. (See exercise 11 on page 54.)
The graph Gn also provides an example of a graph for which χf (G) = χk(G)/k for no small k.

In fact, ν(Gn) = 3 ·2n−1−1, while χf (G) is a fraction whose denominator, when written in smallest
terms, is greater than 22n−2

. Hence this denominator is greater than 2ν(G)/6. (See exercise 12 on
page 54.) This shows that there is no bound on this denominator that is a polynomial function of
the number of vertices of G. This is an obstacle to finding a good algorithm for the computation
of χf . (See Theorem 3.9.2 on page 53.)

3.4 Graph products

Given two graphs G and H, there are many natural ways to define a product graph on the vertex
set V (G) × V (H). In this section, we first focus on the disjunctive product of G and H, which we
denote G ∗H and define as follows: V (G ∗H) = V (G)× V (H) and (v1, w1)(v2, w2) ∈ E(G ∗H) if
and only if v1v2 ∈ E(G) or w1w2 ∈ E(H). The next proposition explains the special importance of
this product.

Proposition 3.4.1 Given a graph G, we write H(G) for the hypergraph whose vertex set S is V (G)
and whose hyperedges are the maximal independent sets of G. Given any two graphs G1 and G2,

H(G1 ∗G2) = H(G1)×H(G2).

Proof. The vertex sets of the hypergraphs on the two sides of the equation are both V (G1)×V (G2).
We must show that they have the same hyperedges. A hyperedge in H(G1 ∗ G2) is a maximal
independent set in G1 ∗ G2. A hyperedge in H(G1) × H(G2) is a product S1 × S2 of a maximal
independent set S1 from G1 and a maximal independent set S2 from G2. We show that these are
the same thing.

Let T be a maximal independent subset of G1 ∗G2. For i = 1, 2, let Si be the projection of T
onto Gi; in other words,

S1 = {v1 ∈ V (G1) : v1v2 ∈ T for some v2 ∈ V (G2)}
and similarly for S2. Clearly Si is independent in Gi. Moreover Si must be maximal independent in
Gi, since T is maximal independent in the product graph. Also S1× S2 is independent in G1 ∗G2.
But since T ⊆ S1 × S2 is maximal independent by assumption, we must have T = S1 × S2, and we
are done. �
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This result has the following corollaries.

Corollary 3.4.2 If G1 and G2 are any two graphs, then χf (G1 ∗G2) = χf (G1)χf (G2).

Proof. We use Theorem 1.6.1 on page 8 and compute:

χf (G1 ∗G2) = kf (H(G1 ∗G2))

= kf (H(G1)×H(G2))

= kf (H(G1))kf (H(G2)) = χf (G1)χf (G2). �

Corollary 3.4.3 Let G be a graph. For a positive integer n, write Gn for the nth power of G using
the disjunctive product. Then

χf (G) = lim
n→∞

n

√
χ(Gn) = inf

n

n

√
χ(Gn).

Proof. Immediate from Theorem 1.6.2 on page 9. �

Borrowing in a similar way from the theory of hypergraph coverings, we obtain the following
result.

Proposition 3.4.4 If G and H are any two graphs, then

χf (G)χ(H) ≤ χ(G ∗H) ≤ χ(G)χ(H).

Proof. The first inequality follows from Lemma 1.6.3 on page 9. The second follows from the
simple observation that colorings on G and H give rise to a product coloring on G ∗ H. (An
alternative argument is to apply the inequality k(H × K) ≤ k(H)k(K), which was presented on
page 8.) �

There is a result analogous to Corollary 3.4.2 for the lexicographic product (for the definition,
see the footnote on page 35).

Corollary 3.4.5 If G1 and G2 are any two graphs, then χf (G1[G2]) = χf (G1)χf (G2).

Proof. Since G1[G2] is a subgraph of G1 ∗G2, it is clear that χf (G1[G2]) ≤ χf (G1 ∗G2), which is
equal to χf (G1)χf (G2) by Corollary 3.4.2. For the opposite inequality, suppose, for i = 1, 2, that
Si is an ai: bi-clique on Gi with ai/bi as large as possible. We claim that the multiset S = S1 × S2

is an a1a2 : b1b2-clique on G1[G2]. Clearly |S| = a1a2.
It remains to show that no independent set of vertices intersects S in more than b1b2 points.

What are the independent sets in G1[G2]? They are simply the sets I such that J = {v : (v,w) ∈ I
for some w} is independent in G1 and, for each v ∈ V (G1), Lv = {w : (v,w) ∈ I} is independent in
G2. Hence

|S ∩ I| =
∣∣∣∣∣(S1 × S2) ∩

( ⋃
v∈J

{v} × Lv

)∣∣∣∣∣

=

∣∣∣∣∣
⋃
v∈J

(S1 ∩ {v}) × (S2 ∩ Lv)

∣∣∣∣∣
≤ |S1 ∩ J | · b2

≤ b1b2,
as was to be shown. �
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Although the lexicographic product is not commutative, Corollary 3.4.5 shows that the graphs
G1[G2] and G2[G1] have the same fractional chromatic number.

A communication complexity story

Alice and Bob have a graph G that they know well. Alice knows the name of a vertex v in G and
Bob knows the name of an edge e. Alice does not know e and Bob does not know v, but they do
know that v is an endpoint of e.

Alice and Bob teach at a school with 250 students. Each day at recess exactly 200 of these
students form two teams of size exactly 100 to play a game of Capture the Flag.2 Bob is on duty
for the first half of the recess, so he knows the students on each team. However, he goes to have his
lunch before recess is over. Alice is the gym teacher and later that day she learns which team won.
In other words, Bob knows an edge of the Kneser graph K250:100 and Alice knows an endpoint of
that edge.

What is the shortest possible message (minimum number of bits) that Alice should send to Bob
to tell him v? Certainly Alice may take the simple approach of communicating to Bob the name
(number) of her vertex; this transmission requires �lg |V (G)|� bits. But is there a more efficient
way?

Later that evening, Alice calls Bob to tell him which team won, but wants to get off the phone
with him as quickly as possible.

The answer is that �lg χ(G)� bits are necessary and sufficient. Alice and Bob can precolor the
graph using as few colors as possible. Then, when Alice wants to inform Bob which vertex she
knows, she need only tell him the color of her vertex; this is sufficient information for Bob (who
knows an edge containing v) to deduce which vertex Alice knows. On the other hand, if fewer bits
are communicated, then a pair of adjacent vertices must have the same label and if Bob should
hold that edge, he will be unable to deduce which vertex Alice holds.

By Theorem 3.2.6 on page 34, χ(K250:100) = 250−200+2 = 52 so 6 bits of information suffice.

Now suppose that Alice knows a list of vertices v1, v2, . . . , vn and Bob knows a list of edges
e1, e2, . . . , en with vi ∈ ei. If Alice wishes to communicate her entire list of vertices to Bob she can
do so in n separate messages, for a total of n�lgχ(G)� bits.

Let Gn denote the nth power of G using the disjunctive product. The list (v1, v2, . . . , vn) of
vertices held by Alice is a single vertex of Gn. The endpoints of the n edges held by Bob correspond
to the 2n possible vertices ofGn that Alice might hold. Note, however, if (v1, . . . , vn) and (v′1, . . . , v′n)
are two different vertices that Alice might hold, then in some coordinate we have vi ∼ v′i in G.
Therefore, the 2n vertices that Alice might hold form a clique of Gn. For Alice to send Bob her
list of vertices, it suffices for them to precolor Gn and then for Alice to send the color of her vertex
(list). By Corollary 3.4.3, χ(Gn) ≈ χf (G)n. Thus the number of bits to send the vertex list drops
from n lgχ(G) bits (using n messages) to n lgχf (G) bits (under this new protocol).

To greatly reduce her phone time with Bob, Alice calls Bob at the end of the school year to report
all the results. Instead of using 6 bits per game result, she can speed up to lgχf (K250:100) = lg 5

2 ≈
1.32 bits per game or an overall savings of over 75% in phone time with Bob!

2In Capture the Flag large teams are desirable, but if the teams are too large the situation is completely unman-
ageable. Let us imagine that one hundred players per team is ideal.
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3.5 The asymptotic chromatic and clique numbers

Given any graph G, we may define the asymptotic chromatic number of G to be χ∞(G) =
inf n

√
χ(Gn), where the power of G is with respect to the disjunctive product (page 38) and

the infimum is taken over all natural numbers n. By Corollary 3.4.3 on page 39 we know that
χ∞(G) = χf (G) for all graphs G and that the infimum in the definition of χ∞ is in fact a limit.

Example 3.5.1 Let G = C5. It is no easy matter to compute χ(Gn) even for small values of n.
For n = 1, it is clearly 3. To calculate χ(G2), we appeal to Proposition 3.4.4 with H = G to obtain
15
2 ≤ χ(G2) ≤ 9. In fact, it is not hard to find a coloring of G2 with 8 colors, and so χ(G2) = 8.
A similar analysis for n = 3 yields 20 ≤ χ(G3) ≤ 24, while ad hoc methods provide a coloring of
G3 with 21 colors. Hence the sequence { n

√
χ(Gn)} begins 3,

√
8, 3
√

20 or 3
√

21, · · ·. There is no hint
from these data that this sequence converges to χf (G) = 5/2.

Proposition 3.5.2 A graph G has the property that χ(G∗H) = χ(G)χ(H) for all graphs H if and
only if χ(G) = χf (G).

Proof. If G has the property, then putting H = Gn leads to the conclusion that χ(Gn) = χ(G)n

for all n. Hence n
√
χ(Gn) = χ(G) for all n, and so χf (G) = χ∞(G) = χ(G). Conversely, if

χ(G) = χf (G), then Proposition 3.4.4 implies that χ(G)χ(H) is both an upper and a lower bound
for χ(G ∗H). �

The situation with the dual invariant is not so simple. Define the asymptotic clique number of
a graph G to be sup n

√
ω(Gn). This equals the asymptotic packing number of the corresponding

hypergraph, that is, p∞(H(G)). The complementary invariant Θ(G) = ω∞(G) has been studied
by several authors (e.g., Lovász [123], Shannon [165]) and is known as the Shannon capacity of G.
Given the parallelism between dual invariants, one might expect that ω∞ would behave like χ∞
and, in particular, that ω∞(G) would equal ωf (G) for all G. In fact, this is not the case even for
C5, as Lovász discovered in 1979 [123].

Theorem 3.5.3 The asymptotic clique number of C5 is
√

5.

Proof. If we label the vertices of C5 in cyclic order v1, v2, v3, v4, v5, then a clique in C2
5 is given by

(v1, v1), (v2, v3), (v3, v5), (v4, v2), (v5, v4). Hence ω(C2
5 ) ≥ 5 (in fact, there is equality here), and so

ω∞(C5) = sup n

√
ω(Cn

5 ) ≥
√
ω(C2

5 ) =
√

5.
To obtain the opposite inequality, we introduce a graph invariant η(G) and show that ω∞(G) ≤

η(G) for all G and that η(C5) ≤
√

5. An orthonormal representation of a graph G is a mapping
that associates to every v ∈ V (G) a unit vector v in some Euclidean space so that v and w are
orthogonal whenever vw ∈ E(G). We define η(G) to be the

inf

{
max

v∈V (G)
(c · v)−2

}

where the infimum is taken over all orthonormal representations of G and all unit vectors c. By
compactness, it is clear that this infimum is actually achieved.

Our first observation about η is that η(G∗H) ≤ η(G)η(H). To see this, suppose that the infimum
in the definition of η(G) is achieved at the orthonormal representation v ∈ V (G) �→ v and the unit
vector c and the infimum in the definition of η(H) is achieved at w ∈ V (H) �→ w and d. Then form
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the tensor product of the two representations by considering the map (v,w) ∈ V (G ∗H) �→ v⊗w,
where v ⊗w is the tensor product3 of v and w. Also form the tensor product of c and d. Then

η(G ∗H) ≤ max
(v,w)∈V (G∗H)

((c⊗ d) · (v ⊗w))−2

= max
v∈V (G)
w∈V (H)

∑
i,j

(cidjviwj)−2

= max
v∈V (G)
w∈V (H)

∑
i

(civi)−2
∑
j

(djwj)−2

= max
v∈V (G)
w∈V (H)

(c · v)−2(d ·w)−2

= η(G)η(H).

The importance of η is that it is at once submultiplicative and an upper bound for ω. To show
that ω(G) ≤ η(G) for any G, suppose that S ⊆ V (G) is a clique of vertices of size ω(G). Then for
the orthonormal representation of G that achieves the infimum in the definition of η(G), we must
have

ω(G) =
ω(G)
|c|2 ≤

ω(G)∑
v∈S(c · v)2

≤ 1
min(c · v)2

= max(c · v)−2 = η(G).

Since ω(Gn) ≤ η(Gn) ≤ η(G)n, taking nth roots and limits yields the fact that ω∞(G) ≤ η(G)
for any graph G. All that remains is to compute η(G) for the graph G = C5. Let c be the unit
vector in R3 that corresponds with the north pole [0, 0, 1]t and let v1,v3,v5,v2,v4 (in that order)
be vectors whose heads are arranged on the upper unit hemisphere in R3 equally spaced around a
latitude line, the latitude chosen so that the angle between vi and vi+1 is exactly π/2. (See Figure
3.5.) Since this is an orthonormal representation of C5, we have that η(C5) ≤ (c · v1)−2.

We are left with a problem in 3-dimensional geometry: calculate c · v1. The spherical law of
cosines asserts that for any triangle on a sphere, with sides that sweep out angles x, y, z from the
center of the unit sphere and with angle Z opposite the side with central angle z,

cos z = cos x cos y + sinx sin y cosZ.

Applying this to the triangle formed by v1, v2, and c on the unit sphere, we substitute 4π/5 for
Z, π/2 for z, and c · v1 for both cos x and cos y. This yields

0 = (c · v1)2 +
(
1− (c · v1)2

)
cos(4π/5).

Since cos(4π/5) = −(1 +
√

5)/4, we may solve for (c · v1)2 obtaining

(c · v1)2 =
(1 +

√
5)/4

1 + (1 +
√

5)/4
=

1√
5
.

Hence (c · v1)−2 =
√

5.
In summary, ω∞(C5) ≤ η(C5) =

√
5, and the theorem is proved. �

Thus, in the chain

ω(G) ≤ ω∞(G) ≤ ωf (G) = χf (G) = χ∞(G) ≤ χ(G),

all the inequalities can be strict.
3The tensor product of two vectors (v1, . . . , vm) and (w1, . . . , wn) is the vector in Rmn whose entries are indexed

by ordered pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n and whose (i, j)th entry is simply viwj .
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Figure 3.5. An umbrella of vectors.

3.6 The fractional chromatic number of the plane

In this section, we depart from the world of finite graphs to consider one infinite graph, the unit
distance graph in the plane. This is the graph whose vertex set is the (uncountably infinite) set
of points in the plane R2, with an edge between two points if and only if the points are exactly
distance one from each other in the usual Euclidean metric. It is descriptive to abuse language and
notation and call this graph “the plane” and denote it by R2. A unit graph is any subgraph of R2.

Much has been written about the chromatic number of R2 (see, e.g., Soifer [169]), a long-
standing open problem attributed to Edward Nelson. The problem may be rephrased without the
language of graph theory as follows: What is the smallest number of colors needed to color the
plane if no two points of the same color may be exactly one unit apart? It can certainly be done
with 7 colors owing to the coloring exhibited in Figure 3.6, while 3 colors is not enough even to
color the 7 points which form the vertices of the unit graph in Figure 3.7, known as the spindle.

These examples show that 4 ≤ χ(R2) ≤ 7. What is the exact value? Despite the popularization
of this question over the last 40 years, no further work has improved these bounds.

In this section, we consider the fractional chromatic number of the plane, and show that 3.555 ≤
χf (R2) ≤ 4.36.

Theorem 3.6.1 χf (R2) ≤ 4.36.
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Figure 3.6. A 7-coloring of the plane.

Figure 3.7. A unit graph with chromatic number 4.
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1

Figure 3.8. A set in the plane avoiding unit distance.

Proof. The key here is to find a set in the plane with density as large as possible while avoiding
pairs of points at unit distance. The densest independent set in R2 that is known is the set S
which we now describe: Let A be the open convex set pictured in Figure 3.8. The set A may be
obtained from an open disk of diameter one by removing 6 small circular segments, each of the
same size and equally spaced around the circle, in such a way that the perimeter of A is exactly 50%
circular arcs and 50% segments. (The angle θ swept out by each circular arc of A is the solution of
θ = 2 sin

(
π
6 − θ

2

)
.) Now frame A in a hexagon whose sides are parallel to the segments of A and

whose boundary is exactly 1/2 unit from A. Then form S by tiling R2 with these hexagons, letting
S be the union of the translates of A that appear in this tiling. This is pictured in Figure 3.9 on
the next page.

The density of S in the plane may be computed numerically, and turns out to be d = 0.229365
to six decimal places. (See exercise 15 on page 54.)

To complete the proof, we illustrate why the set S of density d yields an upper bound for
χf (R2) of 1/d. For the sake of definiteness, coordinatize the plane by assuming that neighboring
components of S are centered at (0, 0) and (s, 0). (This defines s and determines the center of all
the components of S.) Fix a positive integer n and, for 0 ≤ i, j < n, let

Si,j = S + (si/n)(1, 0) + (sj/n)(1/2,
√

3/2),

a translate of S. Color the plane with n2 colors, with one color class for each of the sets Si,j.
How many colors does this assign to an arbitrary point (x, y) in the plane? We have

(x, y) ∈ Si,j ⇐⇒ (x, y)− (si/n)(1, 0) − (sj/n)(1/2,
√

3/2) ∈ S.
Let Hi,j be the hexagon of width s/n centered at

(si/n)(1, 0) + (sj/n)(1/2,
√

3/2)
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1

Figure 3.9. A periodic set in the plane avoiding unit distance.

with two sides parallel to the y-axis. Such hexagons tile the plane and have area (
√

3/2)(s/n)2.
Moreover, the number of ordered pairs (i, j) satisfying (x, y) ∈ Si,j is at least the number of
hexagons Hi,j that lie entirely within S − (x, y). Let An be the set of points p in the plane such
that the disk centered at p of radius 1/n lies entirely within A. Considerations of area show that
the number of pairs (i, j) with (x, y) ∈ Si,j is at least as large as the area of An divided by the area
(
√

3/2)(s/n)2 of a hexagon Hi,j. Thus, this coloring assigns at least 2n2 Area(An)/(
√

3s2) colors to
each point. Now the density of S is given by Area(A)/((

√
3/2)s2) and Area(An) clearly approaches

Area(A) as n gets large. Hence, when n is large, this gives a coloring with n2 colors and with each
point in the plane assigned nearly n2d colors. Hence the fractional chromatic number of the plane
is at most n2/(n2d) = 1/d.

Since we have an independent set of density 0.229365, we obtain an upper bound for χf (R2) of
1/0.229365 = 4.35987 to six decimal places. �

To obtain lower bounds for χf (R2), one looks for finite unit graphs with as large a fractional
chromatic number as possible. It is easy to show that the fractional chromatic number of the
spindle of Figure 3.7 on page 44 is 7/2 and so χf (R2) ≥ 7/2. In the following theorem, the lower
bound of 7/2 is slightly improved.

Theorem 3.6.2 χf (R2) ≥ 32/9.

Proof. We describe a subgraphG of R2 with 57 vertices and 198 edges that has fractional chromatic
number equal to 32/9. Since a subgraph of R2 can only have smaller fractional chromatic number
than does R2, this gives the desired result. In fact, to obtain the theorem it is sufficient to prove
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Figure 3.10. The core of G.

only that χf (G) ≥ 32/9. To do this, it is sufficient to provide a 96: 27-clique for G. This is what
we do below.

Although the graph G can be precisely described by giving the coordinates of the 57 vertices,
the most readily absorbed description of G is through pictures. We choose the latter approach so
that we can provide a readable, self-contained proof that χf (G) ≥ 32/9. We build G in stages.
First give G the 12 vertices and 24 edges pictured in Figure 3.10.

To this core we add 45 vertices, 3 vertices in each of 15 gadgets that we call spindles. A spindle
is the graph with 7 vertices and 11 edges pictured in Figure 3.7 on page 44. Note that four of
the vertices in Figure 3.7 are drawn slightly larger than the other three. These vertices are to
be identified with vertices from the core as follows. Take five copies of the spindle as drawn in
Figure 3.7. Without rotating them, translate them over to the core until the four larger vertices
of the spindle lie over four vertices of the core. There are just five ways to do this. The three
smaller vertices in each of the five spindles describe 15 vertices to be added to G along with 30
new edges in the spindles and 21 new edges formed between new vertices in adjacent spindles. We
have added 15 vertices and 51 edges to the core. Now rotate the core 120◦ and do the same thing,
adding another 15 vertices and 51 edges. Then rotate 120◦ once again and do the same thing a
third and last time. The resulting graph G has 12+3 ·15 = 57 vertices. There are exactly 198 pairs
of these vertices that are one unit apart, arising from the 24 edges in the core, the 51 × 3 = 153
edges described above in the process of adding spindles, and 21 other pairs of vertices that wind
up exactly one unit apart in the construction. The resulting graph on 57 vertices and 198 edges is
pictured in Figure 3.11.

To complete the proof, we define a 96: 27-clique on G. This multiset consists of all the non-core
vertices of G, each taken with multiplicity 1, and all the core vertices of G, taken with multiplicity
according to the labels in Figure 3.12 on page 49.

The cardinality of this multiset is 3 · 7 + 3 · 4 + 6 · 3 + 45 · 1 = 96.
Refer to the multiplicity of a vertex in this multiset as its weight and let the weight of any

set of vertices be the sum of the weights of the elements. We must show that no independent
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Figure 3.11. A unit graph with fractional chromatic number 32/9.

set of vertices in G has weight greater than 27. To this end, note that no independent set has
more than one vertex from the three new vertices in any one spindle. Therefore, no independent
set in G can pick up more than 15 spindle vertices. Thus we have something to prove only for
independent sets that intersect the core in vertices with total weight at least 13. But there are
only a few independent sets of core vertices that weigh that much. One consists of four vertices of
weight 7, 4, 3, and 3, respectively. But then only 10 of the 15 spindles can contribute more vertices,
leaving a total weight of 7 + 4 + 3 + 3 + 10 = 27. Another has two vertices of weight 4 and two of
weight 3. But then only 13 of the 15 spindles can contribute more vertices, leaving a total weight
of 4 + 4 + 3 + 3 + 13 = 27. The last possibility consists of a vertex of weight 7 and two of weight
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Figure 3.12. The 27-clique of G restricted to the core.

3. No matter how these are chosen, only 14 spindle vertices can be added, leaving a total weight
of 7 + 3 + 3 + 14 = 27.

The fractional chromatic number of G is thus at least 96/27 = 32/9. This is enough to give the
theorem. �

It can be shown that χf (G) does in fact equal 32/9, so a different graph would be needed to
improve the lower bound given here. However, the best lower bound might not be achieved by this
method because the supremum of the fractional chromatic numbers of the finite subgraphs of R2

might not equal χf (R2); see exercises 23 and 24.

3.7 The Erdős-Faber-Lovász conjecture

In this section we prove the fractional analogue of a result whose integer version remains a notorious
open problem.

In 1972, Erdős, Faber, and Lovász posed the following conjecture.

Conjecture 3.7.1 If a graph G is the union of n cliques of size n no two of which share more
than one vertex, then χ(G) = n. �

Erdős at first offered $50 for the proof of this innocent assertion, but later raised the amount to
$500, when it became clear that the conjecture is deep. It remains open despite wide popularization
for more than two decades. Here we prove the fractional version, due to Kahn and Seymour [105].
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Theorem 3.7.2 If a graph G is the union of n cliques of size n no two of which share more than
one vertex, then χf (G) = n.

The proof depends on the following lemma, first mentioned by Motzkin [134].

Lemma 3.7.3 If H is a bipartite graph with nonempty parts X and Y such that no vertex in X
is adjacent to every vertex in Y , then there are nonadjacent vertices x ∈ X and y ∈ Y satisfying
|X|d(x) ≥ |Y |d(y).

Proof. If any vertex y ∈ Y is adjacent to every vertex in X, then we may throw y away and apply
an induction hypothesis to obtain

|X| (d(x)− 1) ≥ (|Y | − 1) d(y).

The result follows by adding to this inequality the obvious inequality |X| ≥ d(y).
If no vertex in Y is adjacent to every vertex in X, then

∑
x∈X,y∈Y :
xy/∈E(H)

|X|d(x) − |Y |d(y)
(|X| − d(y)) (|Y | − d(x)) =

∑
x∈X,y∈Y :
xy/∈E(H)

|Y |
|Y | − d(x) −

|X|
|X| − d(y)

=
∑
x∈X

|Y | −
∑
y∈Y

|X| = 0.

It follows that the summand in the first expression must be nonnegative for some xy /∈ E(H). �

In fact, what we use below is a fractional version of Motzkin’s lemma.

Lemma 3.7.4 Suppose that H is a bipartite graph with nonempty parts X and Y such that no
vertex in X is adjacent to every vertex in Y . If f : Y → [0,∞), then there are nonadjacent vertices
x0 ∈ X and y0 ∈ Y satisfying

|X|
∑
y∈Y :

x0y∈E(H)

f(y) ≥ d(y0)
∑
y∈Y

f(y).

Proof. If f = 1, this is just a restatement of Lemma 3.7.3. If f is integral, it follows from Lemma
3.7.3 by replacing every y ∈ Y with f(y) copies of itself. If f is rational, it follows by replacing f
by cf , where c is a common denominator of the fractional values of f . Finally, for general f , we
obtain the result by rational approximation. �

Proof (of Theorem 3.7.2). Since G has cliques of size n, we know χf (G) is at least n. We show
here that it is at most n as well. Let g : V (G) → [0, 1] be a fractional clique of maximum weight,
so that χf (G) =

∑
v∈V (G) g(v). Let G′ be the subgraph of G induced on vertices v with g(v) > 0.

(Note that g is a fractional clique of G′ as well.) Let I be the collection of independent sets of
vertices in G′ and let f : I → [0, 1] be a fractional coloring of G′ of minimum weight. Then

χf (G) ≥ χf (G′) =
∑
I∈I

f(I) ≥
∑

v∈V (G′)
g(v) = χf (G),

so equality holds.
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By the complementary slackness property (Theorem A.3.2 on page 135), we may assume, for
every vertex v ∈ V (G′), that

∑
I�v f(I) = 1. By the same reasoning, for every I ∈ I with f(I) > 0

we may assume that
∑

v∈I g(v) = 1, which implies that every such I is a maximal independent set
in G′. Let I ′ = {I ∈ I : f(I) > 0}.

Let C be the n-set of n-cliques as described in the hypothesis of the Theorem. Let C′ be the
restriction of C to V (G′). If any clique C ∈ C′ intersects every independent set I ∈ I ′, then we
have

χf (G) =
∑
I∈I ′

f(I) =
∑
v∈C

∑
I�v

f(I) =
∑
v∈C

1 ≤ n,

which is what we want to prove. (The inequality follows from the fact that ω(G) = n; see exercise 17
on page 55.)

Thus we may assume that no such clique C exists. Build a bipartite graphH with V (H) = C′∪I ′

and with an edge between clique C and independent set I if and only if C∩ I �= ∅. By Lemma 3.7.4
on the facing page, there is a clique C0 and an independent set I0 such that f(I0) > 0, C0 ∩ I0 = ∅,
and

|{C ∈ C′ : C ∩ I0 �= ∅}|
∑
I∈I ′

f(I) ≤ |C′|
∑

I∈I ′:
I∩C0 �=∅

f(I) (3.6)

≤ n
∑

I∈I ′:
I∩C0 �=∅

f(I). (3.7)

But ∑
I∈I ′:

I∩C0 �=∅

f(I) =
∑

v∈C0

∑
I�v

f(I) (3.8)

=
∑

v∈C0

1 (3.9)

= |C0| (3.10)

≤ |{C ∈ C′ : C ∩ C0 �= ∅, C �= C0} (3.11)

≤ |{C ∈ C′ : C ∩ I0 �= ∅}|. (3.12)

The inequality in line (3.11) is derived from the maximality of I0: Every v in C0 lies in (at least)
one other C ∈ C′, for otherwise I0 ∪ {v} would be a larger independent set. The inequality at line
(3.12) holds since any clique C ∈ C′ that intersects C0 must intersect I0 (otherwise I0 ∪ (C ∩ C0)
would be a larger independent set of vertices). Inequalities (3.8)–(3.12) together with (3.6) and
(3.7) give

χf (G) =
∑
I∈I

f(I) ≤ n. �

3.8 List coloring

Recall that a graph is a-colorable provided we can assign a color to each vertex, from a palette
of a colors, so that adjacent vertices receive different colors. A list coloring of a graph is quite
similar, only now each vertex may have its own private palette of colors. In other words, the list of
acceptable colors for one vertex might be different from that of another.
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More formally, let a be a positive integer. An a-palette for G is a mapping that assigns to
each vertex v a set P (v) of cardinality a. Given P , we say G is P -choosable provided we can
properly color the graph G such that each vertex v is colored C(v) where C(v) ∈ P (v). A graph
is a-choosable provided it is P -choosable for every a-palette P . Finally, the list chromatic number
of G is the least a such that G is a-choosable and is denoted χ�(G). The list chromatic number is
also known as the choice number.

Clearly if a graphG is a-choosable it must be a-colorable. Thus χ�(G) ≥ χ(G) and the inequality
can be strict. For example, let G = K3,3 with bipartition {x1, x2, x3} ∪ {y1, y2, y3}. We claim that
K3,3 is not 2-choosable by setting P (xi) = P (yi) = {1, 2, 3} − {i}. Exercise 22 on page 55 asks the
reader to check that K3,3 is not P -choosable.

The fractional list chromatic number is analogous to the fractional chromatic number. In an
a: b-coloring of a graph, we assign a set of b colors to each vertex, with adjacent vertices receiving
disjoint color sets; the colors are selected from a master palette of a colors. Likewise, we say a
graph G is a: b-choosable if for every a-palette P of G we can assign to each vertex v of G a b-set
of colors C(v) ⊆ P (v) so that v ∼ w =⇒ C(v) ∩C(w) = ∅. The b-fold list chromatic number of G,
denoted χ�

b(G), is the least a so that G is a: b-choosable. It is easy to see that χ�
b is subadditive in

its subscript, so we define the fractional list chromatic number of G to be

χ�
f (G) = lim

b→∞
χ�

b(G)
b

= inf
b

χ�
b(G)
b

.

Note that if a graph is a: b-choosable then it must be a: b-colorable. Thus

χf (G) = lim
b→∞

χb

b
≤ lim

b→∞
χ�

b

b
= χ�

f (G). (∗)

However, in the fractional case there can be no gap!

Theorem 3.8.1 The fractional chromatic number of a graph equals its fractional list chromatic
number, i.e., χf (G) = χ�

f (G) for all graphs G.

Proof. In light of (∗) it is enough to show that χf (G) ≥ χ�
f (G). Let a, b be positive integers so

that χf (G) = a
b and G is a: b-colorable. Let ε > 0 be an arbitrary rational number. Let n = ν(G).

Let m be a positive integer so that

A = (1 + ε)am and B = bm

are integers. We claim that if m is large enough then G is A:B-choosable. Let P be an A-palette
of G and let X be the union of all the P (v)’s, i.e.,

X =
⋃

v∈V (G)

P (v).

We create a random partition of X into a-parts

X = X1 ∪X2 ∪ · · · ∪Xa

placing a color c ∈ X into Xi with probability 1/a, i.e., uniformly. The expected size of P (v) ∩Xi

is 1
a |P (v)| = (1 + ε)m. Thus if m is sufficiently large we have (using well-known results for sums of

independent Bernouli random variables, e.g., Chernoff bounds) that

Pr
{
|P (v) ∩Xi| < m

}
<

1
na
.
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It follows that, with positive probability, there is a partition of X so that |P (v) ∩Xi| ≥ m for all i
and all v. Let Pi(v) be an m-set contained in P (v) ∩Xi.

Now consider the a: b-coloring of G and let c(v) ⊆ {1, 2, . . . , a} be the b-set of colors assigned
to vertex v. Let

C(v) =
⋃

i∈c(v)

Pi(v).

Since the Xi are pairwise disjoint and c is a proper b-fold coloring we have that C is a proper B-fold
coloring. Thus

χ�
f (G) ≤ χ�

B(G)
B

≤ A

B
= (1 + ε)

a

b
= (1 + ε)χf (G).

As ε was arbitrary, the result follows. �

3.9 Computational complexity

The decision problem of determining whether a graph is k-colorable is NP-complete for any fixed k ≥
3 [75],[76]. On the other hand, there is a simple, linear-time algorithm for checking 2-colorability.
Where does checking a: b-colorability fit in?

The following theorem of Hell and Nešeťril [86] answers this question.

Theorem 3.9.1 If H is a fixed graph that is not bipartite, then the problem of determining whether
there is a homomorphism from a given graph G to H is NP-complete. �

When a > 2b, the Kneser graph Ka:b is not bipartite. Putting Ka:b in place of H in this theorem
shows that checking a: b-colorability is NP-complete.

This does not immediately imply that determining whether a graph has fractional chromatic
number less than or equal to r ∈ Q is NP-complete. There is no guarantee, after all, that in order
to compute whether a graph has fractional chromatic number equal to 5/2, say, one must check
whether it is 5: 2-colorable. In fact, one way to compute the fractional chromatic number of a graph
is to compute the value of the associated linear program. It is true that the problem of computing
the value of an LP can be solved in polynomial time (via the ellipsoid algorithm) but this does
not imply that computing χf can be done in polynomial time. The problem is that the associated
LP potentially has exponentially many (in the number of vertices) variables, one for each maximal
independent set in the graph.

In fact, the fractional chromatic number cannot be computed in polynomial time4, as was first
observed by Grötschel, Lovász, and Schrijver [81].

Theorem 3.9.2 For every real number r > 2, the problem of determining whether a graph G has
χf (G) ≤ r is NP-complete. �

Ironically, this negative result follows from the positive result that the ellipsoid algorithm for
solving linear programs does run in polynomial time. It turns out that the ellipsoid algorithm gives
a polynomial transformation between the fractional coloring problem and the problem of computing
the independence number of a graph. The latter invariant is known to be NP-hard to compute.

4Unless P = NP.
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3.10 Exercises

1. Show that the clique number is dual to the chromatic number by showing that the dual to
the integer program that computes χ(G) computes ω(G).

2. Show that χ(G) = 2 if and only if χf (G) = 2.

3. Show that there is no graph G with 0 < χf (G) < 1 or 1 < χf (G) < 2.

4. Show, without recourse to the fact that χ∞(G) = χf (G), that χ(G) = 2 if and only if
χ∞(G) = 2.

5. Let Ga,b be the graph defined in Proposition 3.2.2 on page 32. Prove that α(Ga,b) = b and
ω(Ga,b) = �a/b�.

6. Show that the mapping φ described in the proof of Lemma 3.2.7 on page 34 is indeed a graph
homomorphism, i.e., prove that if S ∩ T = ∅, then φ(S) ∩ φ(T ) = ∅.

7. Prove the easy half of Theorem 3.2.6 on page 34 by showing that a−2b+2 is an upper bound
for χ(Ka:b).

8. The star chromatic number χ∗(G) of a graph G is the infimum of all fractions a/b such that
there is a coloring f : V (G) → [a] satisfying b ≤ |f(u)− f(v)| ≤ a − b for every uv ∈ E(G).
Prove that χf (G) ≤ χ∗(G) for every graph G.

9. Prove that a graph G is perfect if and only if ω(H) = ωf (H) for all induced subgraphs H of
G.

10. For any graph χ(G)χ(G) ≥ ν(G). Prove the fractional analogue χf (G)χf (G) ≥ ν(G). Note
that the fractional version is a stronger result than its integer original.

11. Show that the fractional chromatic number of the graph Y n(K2) (see page 35) is asymptotic
to
√

2n.

12. Let a, b be positive integers. Prove that if a and b are relatively prime, then so are a2 + b2

and ab.

Conclude that the denominator of χf (Y n(K2)) is greater than 22n−2
.

13. Show that χf (G+H) = max{χf (G), χf (H)} and that χf (G ∨H) = χf (G) + χf (H).

(For the definition of the join (∨) of two graphs, see page 20.)

14. In this problem we generalize the notion of chromatic polynomial. Let G be a graph and let
a, b be positive integers. Define χ(G; a, b) to be the number of a: b-colorings of G.

(a) Find χ(Kn; a, b).

(b) Find χ(T ; a, b) for a tree T on n vertices.

(c) For any graph G and fixed b, prove that χ(G; a, b) is a polynomial in a.

15. Imagine forming a periodic, independent set in the plane via the construction in the proof
of 3.6.1 on page 43 but without the specification that the perimeter of the set A is composed
equally of circular and straight parts. There is a one-parameter family of such independent
sets, ranging from periodically placed hexagons at one extreme to periodically placed disks
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at the other. Show that the density of the resulting independent set is maximized when the
perimeter of A is composed in equal amounts of circular and straight parts. (This is a calculus
exercise.) Show that the density of set S appearing in Figure 3.9 on page 46 is approximately
0.229365. (This is a computational exercise.)

16. Show that the Erdős-Faber-Lovász conjecture follows from Vizing’s theorem (Theorem 4.1.1
on page 57) in the special case that no three cliques have a common vertex.

Conjecture a hypergraph version of Vizing’s theorem that is strong enough to imply the
Erdős-Faber-Lovász conjecture in the general case.

Prove a fractional version of your hypergraph conjecture along the lines of the proof of The-
orem 3.7.2 on page 50.

17. Let G be a graph that satisfies the hypothesis of Theorem 3.7.2 on page 50. Prove that
ω(G) = n.

18. Show that a graph can have exponentially many maximal independent sets by constructing a
sequence of graphsGn such that, for some constant c > 1, the number of maximal independent
sets in Gn is greater than cν(Gn) for all n.

19. Let Q2 be the subgraph of the unit distance graph R2 induced on the set of points both of
whose coordinates are rational. Show that Q2 is bipartite.

20. In a fractional coloring of a graph, the sum of the weights of the independent sets containing
a given vertex is at least one. Show that there is no loss of generality in assuming that the
sum of the weights of the independent sets containing any given vertex is exactly one.

In other words, prove that if t ≥ χf (G), then there is a fractional coloring with total weight
t so that for every vertex v, the sum of the weights of the independent sets containing v is
exactly 1.

[Hint: ∅ is independent.]

21. The chromatic number of a graph can be expressed as an integer program in the following
curious way: Suppose that V (G) = {v1, v2, . . . vn} and imagine a palette of n colors (which
is plenty to color a graph with n vertices!). For 1 ≤ j ≤ n, let aj be the indicator function
that is 1 if color j is used and 0 otherwise. For each i and j with 1 ≤ i, j ≤ n, let bi,j be the
indicator function that is 1 if vertex vi has color j and 0 otherwise. The coloring problem
may be expressed as the minimum value of a1 + a2 + · · ·+ an subject to the constraints that∑n

j=1 bi,j ≥ 1 for every i (every vertex needs a color), bi,j ≤ aj for every i and j (you can’t
paint a vertex with an unused color), and bi,k + bj,k ≤ 1 for every i, j, k with vivj ∈ E(G) (the
coloring must be proper). One might try to define a new type of fractional chromatic number
of G to be the value of the real relaxation of this integer program. What is wrong with this
definition?

22. Prove that χ�(K3,3) = 3.

23. Let G be an infinite graph and let k be a positive integer. Then G is k-colorable if and only
if all finite induced subgraphs of G are k-colorable. This result, which requires the Axiom of
Choice when G is uncountable, is due to Erdős and de Bruijn [53].

Note that the b-fold chromatic number of an infinite graph can be defined in exactly the same
manner as for finite graphs. One naturally defines χf (G) for infinite G to be limχb(G)/b.
Show that there is no analogue of the Erdős-de Bruijn result for fractional chromatic number.
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Hint: Let G be the infinite graph formed by taking the disjoint union of the Kneser graphs
K3a:a for a = 1, 2, 3, · · ·.

24. Let Gn be the graph formed from Kn by replacing each edge of Kn with a length 3 path.
Thus Gn has n+ 2

(n
2

)
= n2 vertices. Prove the following:

(a) For fixed b and n sufficiently large, χb(Gn) = 3b.

(b) limn→∞ χf (Gn) = 1 +
√

2.

(c) Conclude that χf (G∞) = 3 but for any finite subgraphH ofG∞ we have χf (H) < 1+
√

2.

25. Let G be an infinite graph. Prove that χ(G) =∞ if and only if χf (G) =∞.

3.11 Notes

The fractional analogue of the four-color theorem is the assertion that the maximum value of χf (G)
over all planar graphs G is 4. That this maximum is no more than 4 follows from the four-color
theorem itself, while the example of K4 shows that it is no less than 4. Given that the proof of the
four-color theorem is so difficult, one might ask whether it is possible to prove an interesting upper
bound for this maximum without appeal to the four-color theorem. Certainly χf (G) ≤ 5 for any
planar G, because χ(G) ≤ 5, a result whose proof is elementary. But what about a simple proof of,
say, χf (G) ≤ 9/2 for all planar G? The only result in this direction is in a 1973 paper of Hilton,
Rado, and Scott [89] that predates the proof of the four-color theorem; they prove χf (G) < 5 for
any planar graph G, although they are not able to find any constant c < 5 with χf (G) < c for all
planar graphs G. This may be the first appearance in print of the invariant χf .

Girth and fractional chromatic number can be large simultaneously. Erdős
[52] was the first to prove that girth and chromatic number can be simultaneously large. In fact,
his argument shows that girth and n/α can be made simultaneously large. It follows from Proposi-
tion 3.1.1 on page 30 that girth and fractional chromatic number can also be made simultaneously
large.

The communications complexity story is based on a paper by Alon and Orlitsky [4].
Corollary 3.4.3 on page 39 can be traced to the work of McEliece and Posner [129]. See also

the paper by Berge and Simonovits [20]. For an alternative proof go to Hell and Roberts [87].
Theorem 3.3.4 is due to Larsen, Propp, and Ullman [114].
The graph in Figure 3.11 on page 48 was discovered by D. Fisher and D. Ullman. By considering

larger graphs built in the same fashion as this one, it seems plausible that one can show that
χf (R2) ≥ 4. The set illustrated in Figure 3.9 on page 46 was discovered by Croft [40] in 1967 and
then rediscovered in 1993 by Hochberg and O’Donnell [92].

The material in Section 3.7 on page 49 is due to Kahn and Seymour [105].
The notion of list chromatic number is due to Vizing [185] and independently to Erdős, Rubin,

and Taylor [56]. Noga Alon has written a nice survey article [3]. Theorem 3.8.1 on page 52 is due
to Alon, Tusa, and Voigt [5].

Exercise 23 on fractional chromatic number of infinite graphs is based on a paper by Leader [115].
Leader asks if there is an infinite graph G for which∞ > χf (G) > supH χf (H) where the supremum
is over finite induced subgraphs of G, and exercise 24 answers that question. The example there is
due to Levin [118, 119].
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Fractional Edge Coloring

4.1 Introduction

The edge chromatic number

The edge chromatic number of a graph G, denoted χ′(G), is the smallest size of a partition of E(G)
into matchings of G. Since any subset of a matching is again a matching, we can formulate the
edge chromatic number as the covering number of the hypergraph H whose vertices are the edges
of G and whose hyperedges are the matchings of G.

Perhaps the most important result on the edge chromatic number is the following celebrated
theorem of Vizing [183] relating the edge chromatic number to the maximum degree Δ.

Theorem 4.1.1 (Vizing) For any graph G, Δ(G) ≤ χ′(G) ≤ Δ(G) + 1. �

Thus it is easy to narrow down the value of χ′(G) to one of two possible values, but it turns
out that it is NP-hard to determine which of Δ(G) or Δ(G) + 1 is the exact value. We call graphs
for which χ′(G) = Δ(G) class one and all other graphs class two. All bipartite graphs are class one
(exercise 1 on page 70), while any regular graph on an odd number of vertices is class two.

The fractional edge chromatic number

The fractional edge chromatic number, χ′
f (G), can be defined in the following equivalent ways:

• χ′
f (G) = kf (H), where H is the edge-matching hypergraph described above.

• χ′
f (G) = χf [L(G)], where L(G) is the line graph of G.

• Let χ′
t(G) be the smallest size of a t-fold edge coloring of G, i.e., a coloring where we assign

sets of t colors to each edge so that no color is present twice at any vertex. (Equivalently,
χ′

t(G) = χ′(t ·G) where t ·G is the multigraph formed from G by replacing every edge with t
parallel edges.)

Then χ′
f (G) = limt→∞ χ′

t(G)/t.

• A fractional edge coloring is an assignment of a nonnegative weight wM to each matching M
of G so that for every edge e we have ∑

M�e

wM ≥ 1.

Then χ′
f (G) is the minimum value of

∑
M wM (where the sum is over all matchings M and

the minimum is over all fractional edge colorings w).

57
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Dually, χ′
f (G) is the maximum sum of weights on edges in which no matching has total weight

exceeding 1.

The notions of edge chromatic number and fractional edge chromatic number easily extend
to multigraphs. However, if the multigraph has a loop, then no edge coloring or fractional edge
coloring is possible. Thus we restrict our attention to loopless multigraphs.

4.2 An exact formula

Since no two edges incident at a vertex can be the same color in a proper edge coloring of a graph,
we see that

χ′(G) ≥ Δ(G).

(This is the easy portion of Vizing’s theorem 4.1.1 on the preceding page.)
Here is another lower bound: Since each color class is a matching, it can contain at most

�ν(G)/2� edges. Thus,

χ′(G) ≥
⌈

ε(G)
�ν(G)/2�

⌉
.

Furthermore, we can replace G in the right-hand side of this inequality by any subgraph H of G
since each color class uses at most �ν(H)/2� of the ε(H) edges in H. Thus,

χ′(G) ≥ max
H

⌈
ε(H)
�ν(H)/2�

⌉
(∗)

where the maximum is over all subgraphs H of G that have at least two vertices.
In searching for a subgraph H that achieves the maximum in (∗), we can clearly restrict H to

be an induced subgraph of G. Also, we claim that we may assume that H has an odd number of
vertices. To see why, suppose that the maximum in (∗) is achieved for a graph H with an even
number of vertices. Let v be a vertex of minimum degree in H. Since

δ(H) ≤ 2ε(H)
ν(H)

,

we obtain
ε(H)− δ(H)
1
2(ν(H)− 2)

≥ 2ε(H)
ν(H)

,

which leads to
ε(H − v)
�ν(H − v)/2� ≥

ε(H)
�ν(H)/2� .

Thus we can restrict the scope of the maximization in (∗) to induced subgraphs H for which ν(H)
is odd and at least 3.

We define

Λ(G) = max
H

2ε(H)
ν(H)− 1

where the maximization is over all induced subgraphs H of G with ν(H) ≥ 3 and ν(H) odd. In
case G has fewer than three vertices, put Λ(G) = 0. Thus

χ′(G) ≥ max {Δ(G), �Λ(G)�} . (∗∗)
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Now (∗∗) is true not only for graphs G, but for loopless multigraphs as well. Furthermore, it is
easy to check that

Δ(t ·G) = tΔ(G) and Λ(t ·G) = tΛ(G)

and therefore
χ′

t(G)
t

=
χ′(t ·G)

t
≥ max {Δ(G),Λ(G)}

hence
χ′

f (G) ≥ max{Δ(G),Λ(G)}.
The lovely surprise is that this lower bound on χ′

f gives the exact value.

Theorem 4.2.1 For any loopless multigraph G,

χ′
f (G) = max{Δ(G),Λ(G)}.

4.3 The matching polytope

The key to proving Theorem 4.2.1 is a careful description of the matching polytope. Let G be a
loopless multigraph. To a subset F of E(G) we may associate a vector iF in {0, 1}ε(G), called the
incidence vector of F , whose entry in position e is a 1 just when e ∈ F .

The matching polytope of G, denoted M(G), is the convex hull of the incidence vectors of all
the matchings of G. In symbols,

M(G) =
〈
{iM : M is a matching of G}

〉
where 〈·〉 denotes convex hull. Note that since ∅ is a matching, 0 ∈ M. Also, any single edge
of G forms a matching so the ε standard basis vectors are in M. Thus M contains the simplex
determined by these ε+ 1 vectors and therefore has nonempty interior.

Because the matching polytope is defined as the convex hull of 0,1-vectors, the extreme points
of M are exactly the incidence vectors of matchings. (That is, no incidence vector of a matching
can be written as a convex combination of the others. See exercise 4 on page 70.)

We have described the matching polytope by naming its extreme points. A polytope can also
be described as the intersection of a family of halfspaces. To present this alternative representation,
we need some more notation.

Let S be a subset of the vertex set of a graph G. Write ∂S to stand for those edges that have
exactly one end in S. For a vertex v, we write ∂v for ∂{v}. We write G[S] for the subgraph of G
induced on S, and we write E[S] in place of E(G[S]), i.e., the set of edges with both ends in S.

Theorem 4.3.1 Let M be the matching polytope of a loopless multigraph G. Then a vector x is
in M if and only if it satisfies all of the following:

(i) x ≥ 0,

(ii) x · i∂v ≤ 1 for all v ∈ V (G), and

(iii) x · iE[S] ≤ �|S|/2� for all S ⊆ V (G).

Proof. Let M be the matching polytope of G and let P be the polyhedron defined by the inequal-
ities (i), (ii), and (iii). Our claim is that M = P.

It is easy to check that M ⊆ P. It is enough to check that for any matching M we have iM ∈ P.
Obviously, iM ≥ 0. For any vertex v, at most one edge of M is incident with v, so iM · i∂v ≤ 1.
Finally, let S be any subset of V . Any matching M can intersect E[S] in at most �|S|/2� edges so,
iM · iE[S] ≤ �|S|/2�. Since the extreme points of M satisfy (i), (ii), and (iii), it follows that M ⊆ P.
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Proving P ⊆ M is more complicated. Suppose P �⊆ M. Let z ∈ P −M, i.e., z satisfies (i),
(ii), and (iii), but is not a convex combination of incidence vectors iM of matchings. Let Π be
a hyperplane that separates z from M. We may take Π to be a facet hyperplane of M, i.e., a
hyperplane that contains a maximal face (facet) of M. Thus Π is defined by the equation a ·x = b.
The halfspace H defined by a · x ≤ b contains M but not z.

Note that since M has nonempty interior, each facet of M has at least ε extreme points iM .
We refer to the incidence vectors iM that lie on Π as Π-extremal.

Suppose Π′ is another hyperplane that contains all the Π-extremal incidence vectors. Then,
since Π is a facet hyperplane, we must have Π = Π′. Moreover, if all the Π-extremal incidence
vectors satisfy some linear equation, then that linear equation must define Π and be the same as
(up to nonzero multiple) the equation a · x = b.

Case I: Some entry in a is negative.
Suppose that e ∈ E(G) has ae < 0. Let iM be a Π-extremal incidence vector. We claim that

e /∈M . Suppose e ∈M . Then

iM−e · a = iM · a− ae = b− ae > b,

implying that iM−e /∈ M, a contradiction. Thus every Π-extremal incidence vector satisfies the
equation iM · i{e} = 0. Therefore Π is defined by the equation xe = 0. So H, which contains M, is
given by the inequality xe ≥ 0, but, since z is on the other side of Π, we have ze < 0, contradicting
(i).

Thus we may assume a ≥ 0.

Case II: Some vertex v is saturated by every matching M for which iM is Π-extremal.
Let iM be Π-extremal. Since v is M -saturated, iM · i∂v = 1. Since every Π-extremal incidence

vector satisfies the equation x·i∂v = 1, this must be the equation for Π and H must be the halfspace
defined by x · i∂v ≤ 1. Since z is on the other side of Π, we have z · i∂v > 1, a contradiction to (ii).

One case remains.

Case III: For every vertex v, there is a Π-extremal incidence vector iM so that v is not M -saturated.
Let H be the subgraph of G given by those edges e for which ae > 0. Let S be the vertex set

of one component of H.
Claim A: Some S is not a singleton. If every S were a single vertex, this would imply that a = 0,
a contradiction since a · x = b is the equation of a hyperplane.

Thus we may choose S containing at least two vertices.
Claim B: For every Π-extremal iM , at most one vertex in S is M -unsaturated. Suppose, for sake
of contradiction, that two vertices, u and v, are not saturated by M . Since u and v lie in the same
component of H, we know there is a path in H joining them.

We choose a matching M and u, v ∈ S so that iM is Π-extremal, u and v are M -unsaturated,
and with the distance dH(u, v) as small as possible.

Note that the edge uv (if it exists in G) is not in H (i.e., auv = 0). For if auv > 0 we would
have

iM+uv · a = iM · a + auv > b,

a contradiction. Thus dH(u, v) ≥ 2.
Let P be any shortest path in H from u to v, and let w be the vertex on P immediately after

u.
By our choice of u and v, we know that w is M -saturated. Also, there is another matching M ′

for which w is M ′-unsaturated and iM ′ is Π-extremal. Starting from w, create a maximal path
whose edges are alternately in M and M ′; call this path Q.
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We claim that
iM∩Q · a = iM ′∩Q · a. (∗)

To see this, note that if these quantities were different, then the incidence vectors of the matchings

(M −Q) ∪ (M ′ ∩Q) and (M ′ −Q) ∪ (M ∩Q)

would be on opposite sides of Π, a contradiction.
Finally, let M ′′ = (M − Q) ∪ (M ′ ∩ Q). By (∗) we have iM ′′ · a = b and therefore iM ′′ is

Π-extremal. However, u and w are M ′′ unsaturated and dH(u,w) = 1 < d(u, v), a contradiction
to the choice of u, v, and M . This proves Claim B.
Claim C: For every Π-extremal iM , we have |M ∩ E[S]| = �|S|/2�. Note that Claim B says that
M fails to saturate at most 1 vertex in S. When |S| is odd, this means that M saturates all but
one vertex of S, and when |S| is even, M must saturate all of S.

The question that remains is: Does every edge of M that saturates a vertex of S lie in E[S]?
We claim the answer is yes. For suppose some edge of e ∈ M has one end, say v, in S and one
end not in S. Then, by definition of S, we know ae = 0. Then iM−e is again Π-extremal, and
therefore M − e misses at most one vertex of S. If |S| is odd, this is impossible. If |S| is even,
there is another edge f in M ∩ ∂S that saturates another vertex w ∈ S. But then iM−e−f is still
Π-extremal (because ae = af = 0) and M−e−f fails to saturate two vertices of S, a contradiction.
This proves Claim C.

We have shown that iM · iE[S] = �|S|/2� for every Π-extremal iM and every set S ⊆ V (G). Thus
the equation for Π must be x · iE[S] = �|S|/2�. We therefore have z · iE[S] > �|S|/2�, contradicting
(iii) and proving the theorem. �

4.4 Proof and consequences

We now apply Theorem 4.3.1 on page 59 to prove Theorem 4.2.1 on page 59 that

χ′
f (G) = max {Δ(G),Λ(G)}

where
Λ(G) = max

H

2ε(H)
ν(H)− 1

where the maximization is over all induced subgraphs H with ν(H) ≥ 3 and odd.

Proof (of Theorem 4.2.1). We know that χ′
f (G) ≥ Δ(G) and χ′

f (G) ≥ Λ(G).
The fractional edge chromatic number of G can be expressed as a linear program:

min
∑
M

wM s.t.
∑
M

wM iM ≥ 1

where the sum is over all matchings M of G, wM is a nonnegative weight for the matching M , and
1 is a vector of all 1’s. Suppose that an optimal weighting assigns wM to matching M .

We may assume that
∑

M wM iM = 1. To see this, let e be an edge that receives total weight
exceeding 1. Let M be any matching that contains e and has wM > 0. By decreasing wM and
increasing wM−e by the same amount, we can reduce the excess weight on e with no loss of optimality
or feasibility. In this way, we may assume our optimal weighting satisfies

∑
M wM iM = 1. (See also

exercise 8 on page 13 and exercise 20 on page 55.)
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Let w∗ =
∑

M wM = χ′
f (G). Then we may write

∑
M

wM

w∗ iM =
1
w∗1.

Thus, (1/w∗)1 ∈M, the matching polytope of G. We now apply Theorem 4.3.1 on page 59. We
know that w∗ is the smallest number so that (1/w∗)1 satisfies (i), (ii), and (iii). Now (ii) requires
that (1/w∗)1 · i∂v ≤ 1 for any v ∈ V (G), which is equivalent to saying that d(v) ≤ w∗ for all v, i.e.,
Δ(G) ≤ w∗. And (iii) requires that (1/w∗)1 · iE[S] ≤ �|S|/2� for all S ⊆ V . This is tantamount to
requiring that

w∗ ≥ max
S

|E[S]|
�|S|/2�

where the maximum is over all S ⊆ V with |S| > 1. But we observed earlier that this maximum
is simply Λ(G). Thus the conditions of Theorem 4.3.1 tell us that w∗ must simply be the larger of
Δ(G) and Λ(G). This completes the proof. �

Let us consider the fractional edge chromatic number of a simple graph. We know, by Theo-
rem 4.1.1 (Vizing) and the fact that χ′

f (G) ≤ χ′(G), that Δ(G) ≤ χ′
f (G) ≤ Δ(G) + 1. We can use

Theorem 4.2.1 to deduce the same result.

Corollary 4.4.1 (Fractional Vizing) Let G be a graph. Then

Δ(G) ≤ χ′
f (G) ≤ Δ(G) + 1.

Proof. The lower bound is trivial. For the upper bound, by Theorem 4.2.1 it is enough to show
that Λ(G) ≤ Δ(G) + 1. Let H be an induced subgraph of G on ν(H) ≥ 3 vertices with ν(H) odd
for which Λ(G) = 2ε(H)/(ν(H) − 1). Now, since G is simple, Δ(H) ≤ ν(H)− 1. Thus

2ε(H) ≤ Δ(H)ν(H) ≤ Δ(H)ν(H)−Δ(H) + (ν(H)− 1).

Dividing by ν(H)− 1 we have

Λ(G) =
2ε(H)
ν(H)− 1

≤ Δ(H) + 1 ≤ Δ(G) + 1. �

Now it is reasonable to ask: Which graphs have χ′
f (G) = Δ(G) and which have χ′

f (G) =
Δ(G) + 1? We answer the first for regular graphs and the second for connected graphs.

We say that a graph G is an r-graph provided G is r-regular and for any subset X ⊆ V (G) with
|X| odd we have |∂X| ≥ r.

Corollary 4.4.2 Let G be an r-regular graph. Then χ′
f (G) = r if and only if G is an r-graph.

Proof. Let G be r-regular and let H be an induced subgraph of G with V (H) = X and with |X|
odd. Clearly, if |X| = 1 we have |∂X| = r since G is r-regular. So we may consider |X| ≥ 3. Since

ε(H) =
r|X| − |∂X|

2

we have
2ε(H)

ν(H)− 1
≤ r ⇐⇒ |∂X| ≥ r

and the result follows. �
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Corollary 4.4.3 Let G be a connected simple graph. Then χ′
f (G) = Δ(G) + 1 if and only if

G = K2n+1 (with integer n ≥ 1).

Proof. It is easy to check that Λ(K2n+1) = 2n + 1 = Δ(K2n+1) + 1, so if G = K2n+1 we have
χ′

f (G) = Δ(G) + 1.
Suppose G is not a complete graph. Let H be any induced subgraph of G with ν(H) ≥ 3 and

ν(H) odd. We claim that 2ε(H)/(ν(H) − 1) < Δ(G) + 1.
Now 2ε(H) ≤ ν(H)Δ(H) = [ν(H)− 1]Δ(H) + Δ(H) so,

2ε(H)
ν(H)− 1

≤ Δ(H) +
Δ(H)

ν(H)− 1
≤ Δ(H) + 1 ≤ Δ(G) + 1.

Now if H is not regular or if Δ(H) < ν(H)−1 or if Δ(H) < Δ(G), then one of the above inequalities
is strict and so

2ε(H)
ν(H)− 1

< Δ(G) + 1.

This implies that Λ(G) < Δ(G) + 1 and, by Theorem 4.2.1 on page 59, χ′
f (G) < Δ(G) + 1.

The only case that remains is when H satisfies (1) H is regular, (2) Δ(H) = ν(H) − 1, and
(3) Δ(H) = Δ(G). Conditions (1) and (2) imply that H is a complete graph. But since G is
connected but not complete, if follows that there is some vertex in G that is not in H, but adjacent
to a vertex w of H. But then Δ(G) ≥ d(w) > Δ(H), a contradiction to condition (3).

Thus, if χ′
f (G) = Δ(G) + 1, G must be complete. We know that G �= K1 (since χ′

f (K1) = 0 <
Δ(K1) + 1). Further, Δ(K2n) ≤ χ′

f (K2n) ≤ χ′(K2n) = 2n− 1 = Δ(K2n) so it follows that G must
be a complete graph on an odd number (at least 3) of vertices. �

4.5 Computational complexity

The computation of the chromatic number and edge chromatic number are NP-hard [117]. As
noted in the previous chapter, it is also NP-hard to compute the fractional chromatic number of
a graph. Thus, at first glance, one might expect that the fractional edge chromatic number is
just as intractable. However, Theorem 4.2.1 on page 59 expressed the fractional edge chromatic
number (a minimization problem) in terms of Δ(G) and Λ(G) (which are maximization problems).
A consequence of this minimax theorem is that the problem “Given a graph G and integers a, b > 0,
decide if χ′

f (G) ≤ a/b” is in NP and co-NP. This suggests that a polynomial-time solution ought
to exist, and indeed one does.

Consider the dual of the LP formulation of the fractional edge chromatic number. The variables
are indexed by the edges of the graph and the constraints are indexed by its matchings. A given
graph may have exponentially many matchings, so the LP formulation might not be of polynomial
size. However, given a weighting of the edges (as a candidate dual solution), one can find a violated
constraint (or verify feasibility) in polynomial time by solving a maximum weighted matching
problem. Thus (see the discussion on page 137) the value of this LP can be determined in time
polynomial in the size of the graph. Therefore one can compute in polynomial time the fractional
edge chromatic number of a graph.

4.6 Fractional total chromatic number

Given any graph G, the total graph T (G) is the graph whose vertex set is V (G) ∪ E(G) and with
an edge between two elements if they are adjacent vertices of G, adjacent edges of G, or a vertex
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and an incident edge of G. The total chromatic number χ′′(G) of a graph G is just the chromatic
number of its total graph. In other words, χ′′(G) is the smallest number of colors needed to color all
the vertices and edges of G in such a way that no two adjacent or incident objects are colored the
same. We call a subset S ⊆ V ∪E totally independent provided no two elements of S are adjacent
or incident.

It is easy to see that χ′′(G) ≥ Δ(G) + 1, since a vertex of highest degree and its incident edges
must all receive different colors. For an upper bound, we can use disjoint palettes for coloring
the vertices and the edges and by using the theorems of Brooks [31] and Vizing [183], to obtain
χ′′(G) ≤ 2Δ + 1 for all graphs G. In fact, this upper bound can be substantially improved. In
the 1960s, both Behzad [12, 13] and Vizing conjectured that the upper bound can be improved to
Δ + 2, a result that would be optimal, considering the case of K2n.

Conjecture 4.6.1 (Total Coloring) For any graph G, χ′′(G) ≤ Δ(G) + 2.

The current best upper bound for χ′′(G) is due to Hind, Molloy, and Reed [85], who prove that
Δ +O(log8 Δ) colors suffice. In this same paper, Molloy and Reed announce a proof that this can
be improved to Δ + c for some large constant c.

The fractional total chromatic number χ′′
f (G) is the fractional chromatic number of the total

graph T (G). The main result of this section, due to Kilakos and Reed [107], is to prove the total
coloring conjecture in the fractional case.

Theorem 4.6.2 If G is any graph, then χ′′
f (G) ≤ Δ(G) + 2.

We begin by proving a slightly weaker version of Theorem 4.6.2. The basic ideas used in the
proof of the weak version carry over to the proof of the full version.

Proposition 4.6.3 If G is any graph, then χ′′
f (G) ≤ Δ + 3.

Proof. Throughout this proof Δ refers to the maximum degree of G, i.e., Δ = Δ(G). (When
we want to speak of the maximum degree of some subgraph H of G, we will always write Δ(H)
without suppressing the argument.) Color the vertices of G with Δ + 3 colors. For each i with
1 ≤ i ≤ Δ + 3, let Vi be the set of vertices colored i. For each such i, apply Vizing’s theorem
(Theorem 4.1.1 on page 57) to the graph G− Vi to obtain an edge coloring of G− Vi using Δ + 1
colors. For each such i and each j with 1 ≤ j ≤ Δ+1, let Mi,j be the set of edges in G−Vi colored
j. Note that Ti,j = Vi ∪Mi,j is a totally independent set.

Assign weight wi,j = 1/(Δ + 1) to each Ti,j . (The same weight is assigned to all of these sets.)
To see that these weights create a fractional total coloring of G, note that, if v is any vertex in G,
then ∑

i,j:v∈Ti,j

wi,j =
Δ+1∑
j=1

∑
i:v∈Vi

1
Δ + 1

= 1,

since there is exactly one i for which v ∈ Vi. Also, if e is any edge in G whose ends are colored a
and b, then ∑

i,j:e∈Ti,j

wi,j =
∑

i�=a,b

∑
j:e∈Mi,j

1
Δ + 1

= 1,

since for each i �= a, b there is exactly one j for which e ∈Mi,j.
The total weight of this fractional total coloring is

Δ+3∑
i=1

Δ+1∑
j=1

wi,j = Δ + 3

and so χ′′
f (G) ≤ Δ + 3. �
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We are ready to extend the ideas in the above proof to prove Theorem 4.6.2. The essential idea
is to replace the appeal to χ′(H) ≤ Δ(H)+1 (Vizing’s theorem) with an appeal to χ′

f (H) ≤ Δ(H).
Unfortunately, this inequality is not true in general; the correct result is given by Theorem 4.2.1
on page 59. A more detailed analysis is needed to circumvent this obstacle.

The basic approach imitates the proof of Proposition 4.6.3. We color the vertices of G with
Δ + 2 colors; the ith color class is denoted Vi. We then try to fractionally color the edges of G− Vi

with Δ colors and complete the proof in a manner similar to the above.
What might go wrong? The problem is that G−Vi might not be fractionally Δ-edge colorable.

However, Theorem 4.2.1 tells us that

χ′
f (G− Vi) = max {Δ(G− Vi),Λ(G − Vi)} .

Since Δ is certainly no smaller than Δ(G−Vi), the only way G−Vi can fail to be Δ-edge colorable
is if Λ(G − Vi) > Δ. Let H be an induced subgraph of G. We call H an overfull subgraph of G
provided ν(H) is odd and

Λ(H) =
2ε(H)

ν(H)− 1
> Δ.

Note that if H is a subgraph of G for which χ′
f (H) > Δ, then, by Theorem 4.2.1, H must contain

an overfull subgraph of G. In the absence of overfull subgraphs of G, the proof proceeds without
difficulty. Let us call an overfull subgraph H of G minimal overfull provided H is overfull in G,
but no proper induced subgraph of H is overfull in G.

When H is an induced subgraph of G we write ∂H for ∂V (H), i.e., the set of edges of G with
exactly one end in V (H).

Lemma 4.6.4 If G is a graph of maximum degree Δ with overfull subgraph H, then the following
hold:

(1) |∂H| < Δ,

(2) ν(H) ≥ Δ + 1, and

(3) H contains a vertex w all of whose neighbors are in H.

Moreover,

(4) any two minimal overfull subgraphs are vertex disjoint, and

(5) if K is an induced subgraph of G that does not contain (as an induced subgraph) a minimal
overfull subgraph of G, then χ′

f (K) ≤ Δ.

Proof. For (1), count the set

X = {(v, e) : v ∈ V (H), e ∈ E(G), v ∈ e}
in two ways. On the one hand, |X| ≤ ν(H)Δ. On the other hand,

|X| = 2ε(H) + |∂H| > (ν(H)− 1)Δ + |∂H|
and (1) easily follows.

For (2), note that the number of edges in H is at most
(ν(H)

2

)
. But then

2ε(H)
ν(H)− 1

≤ ν(H) ≤ Δ,
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so if ν(H) ≤ Δ, then H is not overfull.
Conclusion (3) follows easily from (1) and (2).
For (4), let H,K be overfull subgraphs of G. Let ε(A,B) denote the number of edges with one

end in A and one end in B. Without loss of generality, we may assume

ε(H ∩K,H −K) ≤ ε(H ∩K,K −H).

It follows that

ε(H ∩K) + ε(H ∩K,H −K)

≤ ν(H ∩K)Δ− ε(H ∩K,G− (H ∩K))
2

+

+ ε(H ∩K,H −K)

≤ ν(H ∩K)Δ
2

− ε(H ∩K,K −H)
2

− ε(H ∩K,H −K)
2

+

+ ε(H ∩K,H −K)

≤ ν(H ∩K)Δ
2

.

Thus,

ε(H −K) = ε(H)− ε(H ∩K,H −K)− ε(H ∩K)

>
(ν(H)− 1)Δ

2
− ν(H ∩K)Δ

2

=
(ν(H −K)− 1)Δ

2
.

Therefore H −K is (or contains, if ν(H −K) is even) an overfull subgraph of G.
Thus, if H and K are distinct minimal overfull subgraphs, they must have empty intersection.
Finally, for (5), note that if χ′

f (K) > Δ, then, by Theorem 4.2.1, Λ(K) > Δ. Therefore K
contains an overfull subgraph of G, and so K must contain a minimal overfull subgraph of G. �

In the proof of Theorem 4.6.2 we color V (G) with Δ + 2 colors, but not in an entirely arbitrary
manner. Our aim is to ensure that every overfull subgraph of G has at least one vertex from
every color class. Were we to be successful in this aim, then G − Vi would be fractionally Δ-edge
colorable (where Vi is color class i) and the proof would proceed smoothly. However, Lemma 4.6.4
only assures us that minimal overfull subgraphs have at least Δ + 1 vertices, and clearly it is not
possible to color the vertices of these with all Δ + 2 colors. Further, it is not obvious that we can
color the other minimal overfull subgraphs properly and use all Δ + 2 colors. The next lemma is
a partial solution to this problem. We define a minimal overfull subgraph H of G to be small if
ν(H) = Δ(G) + 1.

Lemma 4.6.5 Let G be a graph with maximum degree Δ. There exists a proper vertex coloring of
G using Δ + 2 colors, with classes V1, V2, . . . , VΔ+2, that satisfies the following properties:
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(1) If H is a small minimal overfull subgraph, then V (H) ∩ Vi �= ∅ for all i = 1, 2, . . . ,Δ + 1.

(2) Otherwise, if H is a minimal overfull subgraph with at least Δ+2 vertices, then V (H)∩Vi �= ∅
for all i = 1, 2, . . . ,Δ + 2.

Proof. We perform a “careful” greedy coloring of G with Δ + 2
colors as follows. Let H1,H2, . . . be the minimal overfull subgraphs of G. These subgraphs are
pairwise disjoint by Lemma 4.6.4 (4). Having colored H1, . . . ,Hj−1 in the manner described, color
Hj as follows. Sort the vertices in Hj in decreasing order of their degree to non-Hj neighbors, i.e.,
in decreasing order of |∂Hj ∩ ∂v| for all v ∈ V (Hj). From the palette {1, 2, . . . ,Δ + 2} assign to
vertices (in the order described) the first proper (legal) color not already used in Hj. Since no
vertex has degree greater than Δ, there are more than enough colors to color Hj properly. Since
Hj has at least Δ+1 vertices, but at most Δ− 1 edges to V (G)−V (Hj) (see Lemma 4.6.4 (1) and
(2)), we know we can color Hj properly using all Δ + 2 colors, unless Hj is small minimal overfull,
in which case we have used colors 1 through Δ + 1.

Finally, color all vertices not in a minimal overfull subgraph greedily. Again, since there are
Δ + 2 colors available, this gives a proper coloring of the entire graph G. �

Proof (of Theorem 4.6.2). We continue to write Δ for Δ(G).
Color V (G) with Δ + 2 colors as described in Lemma 4.6.5, i.e., so that every minimal overfull

subgraph intersects all Δ+2 color classes Vi except for the small minimal overfull subgraphs, which
intersect all color classes except VΔ+2.

Let H1,H2, . . . ,Hr be the small minimal overfull subgraphs of G. By part (3) of Lemma 4.6.4
there is in each Hk a vertex wk so that all neighbors of wk are contained in Hk. (Indeed, there are at
least two such choices; let wk be any such vertex.) Set W = {w1, w2, . . . , wr} and set Wi = W ∩Vi,
i.e., Wi is the set of W vertices that have color i.

For 1 ≤ i ≤ Δ + 1, let Gi be the multigraph formed from G − (Vi −Wi) by doubling every
edge except those incident with vertices in Wi. In other words, starting from G, delete all vertices
of color i except those in Wi. Then replace every edge by a double edge except for edges incident
with vertices in Wi.

Similarly, let GΔ+2 be the multigraph formed from G−VΔ+2 by doubling every edge of G except
for those incident with W (regardless of the color).

The key step is the following:

Claim. For 1 ≤ i ≤ Δ + 2, we have χ′
f (Gi) ≤ 2Δ.

To prove the claim, we appeal to Theorem 4.2.1 on page 59. Since the maximum degree of
Gi is (at most) 2Δ, we must show that Λ(Gi) ≤ 2Δ. Suppose, for sake of contradiction, that Gi

contains a subgraph Li which is overfull (with respect to Gi). Without loss of generality, assume
Li is minimal overfull in Gi.

Since Gi is a (mostly) doubled version of an induced subgraph of G, any overfull subgraph of
Gi will also be overfull in G. To see this, let L be the subgraph of G induced on V (Li). Then

2Δ <
2ε(Li)
ν(Li)− 1

≤ 4ε(L)
ν(L)− 1

so L is overfull in G.
Therefore, the only overfull subgraphs of G that might “survive” in Gi are some of the small

minimal subgraphs Hk. Thus V (Li) = V (Hk) for some k. Now we compute

2ε(Li)
ν(Li)− 1

≤ 2[2
(Δ

2

)
+ Δ]

Δ
= 2Δ.
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Thus Li is not overfull with respect to Gi and therefore χ′
f (Gi) ≤ 2Δ, proving the claim.

Now, for each i, let fi be an optimal fractional edge coloring of Gi, i.e., fi assigns a weight to
each matching of Gi so that∑

M :e∈M

fi(M) ≥ 1 and
∑
M

fi(M) ≤ 2Δ.

The first sum holds for every e ∈ E(Gi) and is over all matchings containing e. The second sum
is over all matchings in Gi. However, using exercise 20 on page 55, we may assume that equality
holds in both sums, i.e., the total weight of the matchings containing a given edge is exactly 1 and
the total weight of all matchings is exactly 2Δ.

Each fi is a fractional edge coloring of Gi, a multigraph derived from G. A matching M of Gi

can be considered to be a matching of G as well. Formally, if M is a matching of Gi, let π(M) be
the projection of M into G in which e ∈ π(M) if and only if e or its double is in M . We can extend
fi to be defined on matchings of G by fi(M) =

∑
fi(N) where the sum is over all matchings N of

Gi for which π(N) = M .
Let Mi denote the set of all matchings we can form by projecting a matching of Gi to G. Note

that if e is an edge of G that is not incident to any vertex in Vi ∪W (so e is doubled in Gi), then∑
M :e∈M∈Mi

fi(M) = 2

while if e is incident with a vertex of Wi (so e is not doubled in Gi), then∑
M :e∈M∈Mi

fi(M) = 1.

Thus if w is a vertex in Wi, we have that∑
M :M∈Mi
∂w∩M �=∅

fi(M) ≤ d(w) ≤ Δ

and ∑
M :M∈MΔ+2

∂w∩M �=∅

fΔ+2(M) ≤ d(w) ≤ Δ,

hence ∑
M :M∈Mi
∂w∩M=∅

fi(M) ≥ Δ and
∑

M :M∈MΔ+2

∂w∩M=∅

fΔ+2(M) ≥ Δ. (∗)

We are ready to present the fractional total coloring of G. For each i with 1 ≤ i ≤ Δ + 2 and
for each matching M ∈Mi let

Ti,M =
{
M ∪ (Vi − {w : w ∈Wi, ∂w ∩M �= ∅}) for 1 ≤ i ≤ Δ + 1
M ∪ VΔ+2 ∪ {w : w ∈W, ∂w ∩M = ∅} for i = Δ + 2.

Roughly speaking, we form Ti,M by including with matching M all vertices of color i we possibly
can. Clearly, every Ti,M is a totally independent set.

Next, we assign to Ti,M the weight

w(Ti,M ) =
fi(M)
2Δ

.

We claim that these weights give a total fractional coloring of G with total weight Δ + 2. To
this end we show the following:
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(1) the sum of the weights of all Ti,M is exactly Δ + 2;

(2) for every vertex, the sum of the weights of the Ti,M containing that vertex is (at least) one;
and

(3) for every edge, the sum of the weights of the Ti,M containing that edge is (at least) one.

We take each of these tasks in turn.

For (1), the sum of the weights of all totally independent sets is

∑
T

w(T ) =
Δ+2∑
i=1

∑
M∈Mi

fi(M)
2Δ

=
Δ+2∑
i=1

1 = Δ + 2.

For (2), we first consider a vertex v not in W . Note that v ∈ Vj for some 1 ≤ j ≤ Δ + 2 and
the only totally independent sets that contain v and to which we have assigned any weight are of
the form Tj,M . Thus

∑
T�v

w(T ) =
∑

M∈Mj

w(Tj,M ) =
∑

M∈Mj

fj(M)
2Δ

=
2Δ
2Δ

= 1

as required.
Next, let w ∈ W . We know that w ∈ Vj for some 1 ≤ j ≤ Δ + 1. The total stable sets that

contain w are of two types: those of the form Tj,M and those of the form TΔ+2,M . In both cases,
we only consider those matchings M for which ∂w ∩M = ∅. We apply (∗) to compute:

∑
T�w

w(T ) =
∑

M :M∈Mj

∂w∩M=∅

fj(M)
2Δ

+
∑

M :M∈MΔ+2

∂w∩M=∅

fΔ+2(M)
2Δ

≥ Δ
2Δ

+
Δ
2Δ

= 1.

For (3), first consider an edge e with e /∈ ∂W . Suppose the ends of e are in Va and Vb. Then
we have ∑

T�e

w(T ) =
Δ+2∑
j=1

j �=a,b

∑
M∈Mj

fj(M)
2Δ

=
Δ+2∑
j=1

j �=a,b

2
2Δ

= 1.

If on the other hand e is an edge incident with a vertex of W , it has one end in W ∩Va and the
other end in Vb. We compute

∑
T�e

w(T ) =
Δ+2∑
j=1
j �=b

∑
M :e∈M∈Mj

fj(M)
2Δ

=
Δ+1∑
j=1

j �=a,b

∑
M :e∈M∈Mj

fj(M)
2Δ

+
∑

M :e∈M∈Ma

fa(M)
2Δ

+

+
∑

M :e∈M∈MΔ+2

fΔ+2(M)
2Δ

=
2(Δ − 1)

2Δ
+

1
2Δ

+
1

2Δ
= 1.

This completes the proof. �
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Figure 4.1. A graph G with χ′(G) = 4 but χ′
f (G) = 3.

4.7 Exercises

1. Prove that all bipartite graphs are class one.

2. Here are two candidate definitions for “edge coloring perfect”:

• A graph G is edge coloring perfect provided χ′(H) = Δ(H) for all induced subgraphs H
of G.

• A graph G is edge coloring perfect provided χ′(H) = χ′
f (H) for all induced subgraphs

H of G.

Prove these definitions are equivalent and characterize this family of graphs.

3. Consider the following alternative approach to fractional edge coloring. Let k be a posi-
tive integer. Call a graph G k-edge fractionally colorable if there exist fractional matchings
f1, f2, . . . , fk of G so that for every e ∈ E(G) we have

∑
j fj(e) ≥ 1. Let χ̃′(G) be the least k

for which G is k-edge fractionally colorable. Note that χ̃′ is an integer.

Why is χ̃′ uninteresting?

Hint: Prove a simple result about the value of χ̃′.

4. Prove that the incidence vector of a matching cannot be written as the convex combination
of incidence vectors of other matchings. Conclude that the extreme points of the matching
polytope are exactly all the incidence vectors of the matchings.

5. Consider the graph G in Figure 4.1. Show that χ′(G) = 4 but χ′
f (G) = 3.
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6. Let G be a connected graph other than K2n+1 (for integer n ≥ 1). Prove that

χ′
f (G) ≤

{
Δ + Δ−1

Δ+1 if Δ is odd, and
Δ + Δ

Δ+2 if Δ is even

where Δ = Δ(G).

7. By Tait’s theorem, the four-color theorem is equivalent to the statement that all 3-regular,
2-edge-connected planar graphs have χ′ = 3. Prove that every 3-regular, 2-edge connected
graph is a 3-graph. (See page 62 for the definition of a 3-graph.) Conclude that all such
graphs have χ′

f = 3. This gives a fractional analogue of the four-color theorem — though
perhaps not the analogue one might have hoped for — whose proof does not depend on the
four-color theorem itself.

4.8 Notes

Our exposition of fractional edge chromatic number is based on work by Edmonds, Lovász, Plum-
mer, Seymour, and Stahl. The material on the total chromatic number is based on the work of
Kilakos and Reed. See [48], [107], [124], [161], and [172].

The inequalities in Edmond’s Theorem 4.3.1 on page 59 are somewhat redundant; all facet-
defining inequalities are listed, but not all those listed are facet-defining. See Edmonds [48]. The
proof we present is a simplified version of the one in Lovász and Plummer [124]; we save some effort
by not attempting to sort out which of the inequalities are facet-defining.

Seymour [161] gives a non-polyhedral approach to proving Theorem 4.2.1 on page 59 by studying
r-graphs (see Corollary 4.4.2 on page 62).

Corollary 4.4.3 and exercise 6 are due to Stahl [171].
The graph in Figure 4.1 (see exercise 5) is due to Isaacs [100].
The Kneser graphs show that the chromatic number and fractional chromatic number of a given

graph can be quite different. However, for a graph G we have Δ(G) ≤ χ′
f (G) ≤ χ′(G) ≤ Δ(G) + 1,

so the ordinary and fractional edge chromatic numbers of a graph are both close to its maximum
degree. The situation is not so clear for multigraphs. Consider the multigraph formed from K3 by
replacing each edge with t parallel edges. In this case Δ = 2t but χ′ = χ′

f = 3t. Thus the gap
between maximum degree and [fractional] edge chromatic number can be large. The best that can
be said is that χ′(G) ≤ 3

2Δ(G); this is a result of Shannon [164].
Instead, let us consider the gap between χ′(G) and Λ(G) for a multigraph G. The following

conjecture was proposed by Andersen [6], Goldberg [77], and Seymour [162].

Conjecture 4.8.1 Let G be a multigraph with χ′(G) > Δ(G) + 1. Then χ′(G) = �Λ(G)�.
If correct, this conjecture would imply that χ′

f is between χ′ and χ′+1. Thus it seems reasonable
to suppose that χ′ and χ′

f should always be close. Indeed, Kahn [103] proves just that.

Theorem 4.8.2 For every ε > 0 there exists an N > 0 so that for every multigraph G with
χ′

f (G) > N we have χ′(G) ≤ (1 + ε)χ′
f (G). �

Stated succinctly, Kahn’s result says that the edge chromatic number is asymptotic to the
fractional edge chromatic number. In a subsequent paper, Kahn [104] shows that not only are
the ordinary and fractional edge chromatic numbers asymptotic to one another, but they are also
asymptotic to the list edge chromatic number. Of course, the fractional list edge chromatic number
is the same as the ordinary fractional edge chromatic number by Theorem 3.8.1 on page 52.
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Fractional Arboricity and Matroid Methods

The material in this chapter is motivated by two notions of the density of a graph. The arboricity
and the maximum average degree of a graph G measure the concentration of edges in the “thickest”
part of the graph.

5.1 Arboricity and maximum average degree

Suppose we wish to decompose the edges of a graph G into acyclic subsets, i.e., if G = (V,E) we
want to find E1, E2, . . . , Ek ⊆ E so that (1) each of the subgraphs (V,Ei) is acyclic and (2) E =
E1 ∪ E2 ∪ · · · ∪ Ek. The smallest size of such a decomposition is called the arboricity (or edge-
arboricity) of G and is denoted Υ(G). If G is connected, the arboricity is also the minimum
number of spanning trees of G that include all edges of G.

One can think of arboricity as being a variant of the edge chromatic number. We are asked
to paint the edges of G with as few colors as possible. In the case of edge chromatic number, we
do not want to have two edges of the same color incident with a common vertex. In the case of
arboricity, we do not want to have a monochromatic cycle.

There is an obvious lower bound on Υ(G). Since G has ε(G) edges and each spanning acyclic
subgraph has at most ν(G) − 1 edges we have Υ(G) ≥ ε(G)/(ν(G) − 1). Moreover, since Υ is an
integer, we have Υ(G) ≥

⌈
ε(G)

ν(G)−1

⌉
.

This bound is not very accurate if the graph is highly “unbalanced”; for example, consider the
graph G consisting of a K9 with a very long tail attached—say 100 additional vertices. We have
ν(G) = 109, ε(G) = 136, and therefore Υ(G) ≥

⌈
136
108

⌉
= 2. The actual value of Υ(G) is larger since

we clearly cannot cover the edges of K9 with two trees; indeed, the arboricity of a graph is at least
as large as the arboricity of any of its subgraphs. Thus we have

Υ(G) ≥ max
⌈

ε(H)
ν(H)− 1

⌉

where the maximum is over all subgraphs of H with at least 2 vertices. Indeed, this improved lower
bound gives the correct value.

Theorem 5.1.1

Υ(G) = max
⌈

ε(H)
ν(H)− 1

⌉

where the maximum is over all subgraphs of H with at least 2 vertices.

The proof of this theorem of Nash-Williams [137, 138] is presented in §5.4 below.

72
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Notice that the arboricity of a graph can be expressed as a hypergraph covering problem. Given
a graph G = (V,E) we define a hypergraph H = (E,X ) where X is the set of all acyclic subsets of
edges of G. Then Υ(G) = k(H).

The fractional arboricity of G, denoted Υf (G), is simply kf (H). In other words, to compute
Υf (G) we assign weights to the various acyclic subsets of edges so that every edge is contained in
sets of total weight at least 1 and we seek to minimize the total of all the weights.

The arboricity of G gives us some information about the “density” of G; graphs with higher
arboricity are more tightly “packed” with edges. Another measure of the density of a graph is its
average degree: let

d̄(G) =
∑
d(v)

ν(G)
=

2ε(G)
ν(G)

.

Average degree gives us an overall measure of a graph’s density, but does not indicate the
density in the densest portion of the graph. Reconsider the graph G consisting of a K9 with a
long tail. The average degree in such a graph is fairly low: d̄(G) = 2 × 136/109 ≈ 2.5. However,
the dense part of this graph—the K9—has average degree 8. The value 8, in this case, is a better
measure of the densest portion of the graph.

We define the maximum average degree of G, denoted mad(G), to be the maximum of d̄(H)
over all subgraphs H of G.

The invariant mad(G) arises naturally in the theory of random graphs; see, for example, [23,
141].

At first glance, mad(G) does not seem to fit the paradigm of our other fractional graph-theoretic
invariants. However, in §5.5, we see mad(G) in the same light as Υf (G).

5.2 Matroid theoretic tools

The way to understand arboricity and maximum average degree is through matroid theory.

Basic definitions

A matroid is a pair M = (S,I) where S is a finite set and I is a subset of 2S that satisfies the
following three conditions:

• (nontriviality) ∅ ∈ I,

• (heredity) if X ∈ I and Y ⊆ X, then Y ∈ I, and

• (augmentation) if X,Y ∈ I and |X| > |Y |, then there is an x ∈ X − Y so that Y ∪ {x} ∈ I.

The set S is called the ground set of the matroid and the sets in I are called the independent sets
of M. Note that the term independent is motivated by the concept of linear independence and is
not related to graph-theoretic independence (what some graph theorists also call stability).

The following two basic examples provide the motivation for this abstraction.

Example 5.2.1 Columns of a matrix. Let A be a matrix and let S be the set of its columns. We
put a collection I of columns of A in I exactly when those columns are linearly independent. The
resulting pair M(A) = (S,I) is a matroid. See exercise 3 on page 90.
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Example 5.2.2 Acyclic sets in a graph. Let G = (V,E) be a graph. The cycle matroid of G,
denoted M(G), has ground set E and a subset I ⊆ E is independent in M provided (V, I) has no
cycles. Proving that M(G) forms a matroid is relegated to exercise 4 on page 90. A matroid is
called graphic if it is (isomorphic to) the cycle matroid of a graph.

Bases

The maximal independent sets of M are called the bases of M and the set of all bases of M is
denoted by B (or B(M)). If G is a connected graph, then the bases ofM(G) are exactly the (edge
sets of) spanning trees of G. If A is a matrix, the bases of M(A) are those subsets of columns of
A that form bases, in the sense of linear algebra, of the column space of A.

Theorem 5.2.3 The set of bases B of a matroid M satisfies the following:

• B �= ∅,
• if X,Y ∈ B, then |X| = |Y |, and

• if X,Y ∈ B and x ∈ X, then there is a y ∈ Y , so that (X − {x}) ∪ {y} ∈ B.
Moreover, if B is any collection of subsets of some set S and B satisfies the above properties, then
B forms the set of bases of a matroid on S.

Note: The fact that any two spanning trees of a graph have the same number of edges, and the
fact that any two bases of a vector space have the same cardinality, are instances of this theorem.

Proof. Since I �= ∅, we know that there are maximal independent sets, hence B �= ∅.
Suppose X,Y ∈ B with |X| > |Y |. Since X and Y are independent, there is an x ∈ X − Y so

that Y ∪ {x} ∈ I, contradicting the maximality of Y . Thus any two bases have the same size.
To show the third property, we note that X − {x} ∈ I and has one less element than Y , so

there is a y ∈ Y − (X − {x}) so that X ′ = (X − {x}) ∪ {y} is independent. Were X ′ not a basis,
it would be contained in a strictly larger basis X ′′, but then |X ′′| > |X ′| = |X|, which contradicts
the second property.

Now suppose B satisfies the three stated properties. Define

I = {X ⊆ S : X ⊆ B for some B ∈ B}.

Note that since B �= ∅, there is some B ∈ B and since ∅ ⊆ B, we have ∅ ∈ I.
Clearly if X ⊆ Y and Y ∈ I, then X ∈ I.
Finally, we show that I has the augmentation property. Suppose X,Y ∈ I and |X| < |Y |.

Choose A,B ∈ B so that X ⊆ A and Y ⊆ B. We know that A and B have the same cardinality,
which we call r. We may also assume that we have chosen A and B so that |A ∩ B| is as large as
possible.

Write

X = {x1, x2, . . . , xj},
A = {x1, x2, . . . , xj , a1, a2, . . . , ar−j},
Y = {y1, y2, . . . , yj, . . . , yj+k}, and

B = {y1, y2, . . . , yj, . . . , yj+k, b1, . . . , br−j−k}.
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If some ai ∈ Y then X ∪{ai} ∈ I and we’re done. So we consider the case that no ai ∈ Y . Without
loss of generality, we may also assume a1 /∈ B (since there are more a’s than b’s). Consider A−{a1}.
By hypothesis, we know there is a z ∈ B so that A′ = (A− {a1}) ∪ {z} ∈ B. Since all members of
B have the same cardinality, we know that z /∈ A and therefore z /∈ X. If we are lucky, z ∈ Y (and
thus z ∈ Y −X) so then X ∪ {z} ⊆ A′ so X ∪ {z} ∈ I and we’re done.

Otherwise (z /∈ Y ), we can replace A by A′ and observe that A′ and B have more elements in
common than do A and B. This contradicts the maximality of |A ∩B|. �

Rank

We have seen that any two bases of a matroid have the same cardinality. Just as the maximum
number of linearly independent columns in a matrix is called the rank of the matrix, so too do we
define the rank of a matroid M, denoted ρ(M), to be the maximum size of an independent set in
M.

We can extend the notion of rank further. Let X be any subset of the ground set of a matroid
M. One readily checks that any two maximal independent subsets of X are necessarily of the
same size. We therefore define the rank of X, denoted ρ(X), to be the maximum cardinality of an
independent subset of X.

When A is a matrix and X is a subset of its columns, then the rank of X in the matroidM(A)
is exactly the rank (in the usual linear algebra sense) of the matrix composed of those columns.

The rank function for a graphic matroid can be described as follows. Let G = (V,E) be a
graph and let M(G) be its cycle matroid. Let F ⊆ E. The rank ρ(F ) is the maximum size of an
acyclic subset of F . If the graph (V, F ) has c components (including isolated vertices, if any), then
ρ(F ) = ν(G)− c.

Properties of the rank function of a general matroid are collected in the following result.

Theorem 5.2.4 Let M = (S,I) be a matroid and let ρ be its rank function. Then:

• ρ(∅) = 0,

• if X ⊆ Y ⊆ S, then ρ(X) ≤ ρ(Y ),

• if X ⊆ S, then 0 ≤ ρ(X) ≤ |X|,

• if X ⊆ S and y ∈ S, then ρ(X) ≤ ρ(X ∪ {y}) ≤ ρ(X) + 1,

• if X ⊆ S and x, y ∈ S satisfy ρ(X ∪ {x}) = ρ(X ∪ {y}) = ρ(X), then ρ(X ∪ {x, y}) = ρ(X),
and

• if X,Y ⊆ S, then ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

Proof. The verification of most of these properties is routine; here we just prove the last property,
which is known as the submodular inequality.

Pick X,Y ⊆ S. Let I be a maximal independent subset of X ∩ Y . Using the augmentation
property, we can construct a J ⊇ I that is maximal independent in X ∪ Y . Furthermore, let
K = J − Y and L = J −X. See Figure 5.1. Note that K ∪ I is an independent subset of X and
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X Y
K

J

I L

Figure 5.1. Understanding why the rank function of a matroid satisfies the submodular inequality.

L ∪ I is an independent subset of Y . Thus we may compute

ρ(X) + ρ(Y ) ≥ |K ∪ I|+ |L ∪ I|
= 2|I| + |K|+ |L|
= |I|+ |J |
= ρ(X ∩ Y ) + ρ(X ∪ Y ). �

Circuits

Let M = (S,I) be a matroid. The subsets of S not in I are called dependent. The minimal
dependent subsets of M are called the circuits of M. IfM is the cycle matroid of a graph G, the
circuits of M correspond exactly to the (edges sets of) cycles in G. The set of circuits of M is
denoted C (or C(M)).

If a singleton {x} is dependent, it forms a circuit called a loop of the matroid. Note that a
loop of a multigraph G corresponds exactly to a loop of M(G). If A is a matrix, a loop of M(A)
corresponds to a column of all zeros.

If neither x nor y is a loop but {x, y} is dependent (and therefore a circuit), then the elements
x and y are called parallel. Edges x, y ∈ E(G) are parallel edges (i.e., have the same endpoints)
if and only they are parallel elements of M(G). Nonzero columns x, y of a matrix A are parallel
elements of M(A) just when each is a scalar multiple of the other.

Theorem 5.2.5 If M is a matroid and C is the set of circuits of M then the following conditions
hold.

• If X,Y ∈ C and X ⊆ Y , then X = Y , and

• if X,Y ∈ C, X �= Y , and a ∈ X ∩ Y , then there exists a Z ∈ C with Z ⊆ (X ∪ Y )− {a}.

Proof. The first property is trivial. For the second, suppose X,Y are distinct circuits with
a ∈ X ∩ Y . Then X ∩ Y is independent, and so

ρ(X) = |X| − 1,

ρ(Y ) = |Y | − 1, and

ρ(X ∩ Y ) = |X ∩ Y |.
The submodularity inequality then gives

ρ(X ∪ Y ) ≤ ρ(X) + ρ(Y )− ρ(X ∩ Y )
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= |X| − 1 + |Y | − 1− |X ∩ Y |
= |X ∪ Y | − 2.

But then
ρ((X ∪ Y )− {a}) ≤ ρ(X ∪ Y ) < |(X ∪ Y )− {a}|.

Thus X ∪ Y − {a} is dependent, and so contains a circuit. �

We know that if we add an edge between two vertices of a tree we create a unique cycle. A
similar result holds for matroids.

Theorem 5.2.6 LetM = (S,I) be a matroid, let I be independent, and let x ∈ S−I. If I∪{x} /∈
I, then there is a unique C ∈ C with C ⊆ I ∪ {x}.

Proof. Since I ∪ {x} is dependent, it contains a minimal dependent subset C ∈ C. To show
uniqueness, suppose C1, C2 ∈ C and C1, C2 ⊆ I ∪ {x}, but C1 �= C2. Note that x ∈ C1 ∩ C2

(otherwise one of C1 or C2 would be contained in I, contradicting the independence of I) and
therefore, by Theorem 5.2.5 on the facing page, there is a C ∈ C with C ⊆ (C1 ∪ C2)− {x} ⊆ I, a
contradiction. �

5.3 Matroid partitioning

Let us now revisit the arboricity of a graph in the language of matroid theory. Given a graph
G = (V,E), we wish to partition1 E into the smallest number of sets E1, E2, . . . , Ek so that each
of the graphs (V,Ei) is acyclic. In matroid language, we seek to partition S, the ground set of
M = (S,I), into S1, S2, . . . , Sk so that each Si ∈ I.

Since a matroidM = (S,I) is a hypergraph, it makes sense to speak of the covering number of
a matroid and to write k(M(G)). Note that Υ(G) = k(M(G)).

It is perhaps useful to use the language of “coloring” to discuss matroid partitioning. We seek
to color the elements of the ground set S so that each color class (the set of elements of a given
color) is independent. Indeed, we call a coloring of the elements proper in just this case.

Our goal is to find formulas and efficient (polynomial-time) algorithms for computing k and kf

of a matroid M. For convenience we present the formulas here:

k(M) = max
Y ⊆S

⌈ |Y |
ρ(Y )

⌉
and kf (M) = max

Y ⊆S

( |Y |
ρ(Y )

)
.

(See Corollary 5.3.3 on page 81 and Theorem 5.4.1 on page 83.)

We begin by developing an algorithm, known as the Matroid Partitioning Algorithm, that com-
putes whether or not a given matroid M can be partitioned into a given number k of independent
sets. In this algorithm, we begin with all the elements of the ground set S uncolored. As the
algorithm progresses, colors are assigned to elements of S and, at various times, the color assigned
to an element can change. We first prove a lemma assuring ourselves that the recoloring step of
the algorithm maintains the independence of the color classes. We then formulate the complete
algorithm (on page 80) by iterating the lemma. We conclude with proofs of the formulas for k(M)
and kf (M).

1We may either partition or cover E by acyclic subsets of edges—there is no difference since a subset of an acyclic
set of edges is also acyclic. See exercise 7 on page 13.
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Suppose Si (with 1 ≤ i ≤ k) represents the set of elements that are currently color i and let
x be any element. We can (re)assign color i to x (and still have a proper coloring) exactly when
Si ∪ {x} ∈ I. It is useful to have a notation for this. Let us write

x← 〈i〉 to mean x /∈ Si and Si ∪ {x} ∈ I,
which we read as “x may get color i”.

At times, the algorithm transfers a color from one element to another. Let x and y be elements
in S with y colored and x either uncolored or colored differently from y. Let us write

x← y to mean y ∈ Si, x /∈ Si, and (Si − y) ∪ {x} ∈ I for some i.

We read this as “y may relinquish its color to x” or, more tersely, “x may get y’s color”.
Thus, given a partial proper coloring S1, . . . , Sk ofM, the ← relation defines a digraph on the

set S ∪ {〈1〉, 〈2〉, . . . , 〈k〉}.
The central idea in the Matroid Partitioning Algorithm is the following.

Lemma 5.3.1 Suppose M = (S,I) is a matroid and S1, S2, . . . , Sk forms a partial proper coloring
of M. Suppose there is a directed path of the form

x0 ← x1 ← x2 ← · · · ← xn ← 〈a〉
that is minimal in the sense that xi ←� xj for j > i + 1 and xi ←� 〈a〉 for 0 ≤ i < n. Furthermore
suppose we recolor the elements of S as follows: The new color of xi is the old color of xi+1 (for
0 ≤ i < n) and the new color of xn is a. Then the recoloring described results in a proper partial
coloring of M.

The notation xi ← xi+1 means that xi can acquire a new color from xi+1. The assertion here
is that it is permissible to make all these changes simultaneously. Because the ← relation changes
globally every time the partial coloring is amended, the lemma is not trivial.

Proof. We proceed by induction on n, the length of the path.
The basis case, n = 0, is trivial.
For n ≥ 1, suppose

x0 ← x1 ← x2 ← · · · ← xn ← 〈a〉
is a minimal path as described in the statement of the lemma and suppose the lemma has been
proved for all smaller values of n. Suppose the current color of xn is b.

Recolor the matroid so that xn now has color a. That is, let S′
1, S

′
2, . . . , S

′
k be the new partial

coloring with

S′
i = Si (i �= a, b)

S′
a = Sa ∪ {xn}
S′

b = Sb − {xn}
We know that all S′

i’s are independent because xn ← 〈a〉 was true for the old coloring.
We claim that in this new partial coloring

x0 ← x1 ← x2 ← · · · ← xn−1 ← 〈b〉
is a valid minimal path. Note that once we have verified this claim, this proof is complete by
induction.

To this end, we need to verify four claims.
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1. In the new coloring xn−1 ← 〈b〉.
This is correct because in the old coloring we had xn−1 ← xn and xn ∈ Sb. This means that
Sb − {xn} ∪ {xn−1} is independent. Since xn is not in S′

b, we may recolor xn−1 to color b as
required.

2. In the new coloring xi ← xi+1 for all 0 ≤ i < n− 1.

If xi+1 is any color other than a, then we clearly have xi ← xi+1 in the new coloring because
xi ← xi+1 was true in the old coloring. Thus we may assume the color of xi+1 is a.

To show xi ← xi+1 (in the new coloring) we must show that the set S′′
a = S′

a−{xi+1}∪{xi} =
Sa − {xi+1} ∪ {xi, xn} is independent.

Suppose S′′
a were dependent. Since S′′

a is the union of an independent set (S′
a−{xi+1}) and a

single element (xi), by Theorem 5.2.6, S′′
a contains a unique cycle C. Note that xi ∈ C. Also,

xn ∈ C since S′′
a is the union of the independent set Sa−{xi+1} ∪ {xi} (independent because

xi ← xi+1 in the old partial coloring) and the single element xn.

Now xi ←� 〈a〉 (by minimality) so Sa ∪ {xi} is dependent and contains a unique circuit C ′.
Since xi ← xi+1 in the old coloring, C ′ must contain both xi and xi+1. Since xn ∈ Sb, we know
that xn /∈ C ′. Thus C and C ′ are distinct circuits both containing xi. By Theorem 5.2.5,
there is a circuit C ′′ ⊆ (C ∪ C ′)− {xi}.
Summarizing, we have

C ⊆ S′′
a = Sa ∪ {xi, xn} − {xi+1},

C ′ ⊆ Sa ∪ {xi}, and

C ′′ ⊆ (C ∪ C ′)− {xi} ⊆ Sa ∪ {xn} ∈ I,

which gives a contradiction.

3. In the new coloring xi ←� 〈b〉 (for i < n− 1).

If xi ← 〈b〉 were true in the new coloring, then xi ← xn would have been true in the old
coloring—a contradiction to minimality.

4. In the new coloring xi ←� xj (for 0 ≤ i < j + 1 ≤ n).
Suppose that, in the new coloring, we had xi ← xj with 0 ≤ i < j + 1 ≤ n. If the color of
xj is not b (say it’s c), then we have S′

c ∪ {xi} − {xj} ⊇ Sc ∪ {xi} − {xj} /∈ I (with strict
containment only if c = a), and therefore S′

c ∪ {xi} − {xj} is dependent, a contradiction. We
may therefore restrict to the case that xj has color b.

Since xi ← xj in the new coloring, the set I = S′
b−{xj}∪{xi} is independent. Since xi ←� xj

in the old coloring, the set D = Sb − {xj} ∪ {xi} is dependent. Now D = I ∪ {xn} so D
contains a unique circuit C. Notice that C necessarily contains xn and xi.

Now xi ←� xn in the old coloring, so Sb−{xn}∪{xi} must be dependent and contain a circuit
C ′. Note that C ′ must contain xi but not xn, and therefore C ′ �= C and both contain xi.
Thus there is a circuit C ′′ ⊆ C ∪ C ′ − {xi}. However C ∪C ′ − {xi} ⊆ Sb, a contradiction.

This completes the proof. �
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Lemma 5.3.1 gives us a method for extending a partial coloring of a matroid. Given a partial
coloring S1, . . . , Sk ofM, we construct the← digraph on S∪{〈1〉, . . . , 〈k〉} and search for a minimal
directed path to an unlabeled element of S from one of 〈1〉, 〈2〉, . . . , or 〈k〉.

If this is successful at each stage, we ultimately construct a partition ofM into k independent
sets. However, at some point we might not be able to find such a path. In such a case, we would
like to know that no partition of M into k independent sets is possible.

There is a simple test we can apply to see if M is not partitionable into k independent sets.
Recall that ρ(M), the rank ofM, is the maximum size of an independent set. IfM had a partition
S = S1 ∪ S2 ∪ · · · ∪ Sk we would have |S| ≤ kρ(M).

More generally, if Y ⊆ S, then Y = (S1∩Y )∪(S2∩Y )∪· · ·∪(Sk∩Y ) and therefore |Y | ≤ kρ(Y ).
Thus if there is a Y ⊆ S for which |Y | > kρ(Y ) there can be no partition ofM into k independent
sets.

Theorem 5.3.2 Let M = (S,I) be a matroid and let k be a positive integer. Then M has a
partition into k independent sets if and only if |Y | ≤ kρ(Y ) for all Y ⊆ S.

The proof of this theorem is closely tied to the following algorithm.

Matroid Partitioning Algorithm

Input: A matroid M = (S,I) and a positive integer k.
Output: Either a partition S = S1 ∪ · · · ∪ Sk with each Si ∈ I or a Y ⊆ S with |Y | > kρ(Y ).

1. Let S1, S2, . . . , Sk all equal ∅.
2. If S = S1 ∪ S2 ∪ · · · ∪ Sk, output this partition and stop.

3. Otherwise (there are uncolored vertices), form the ← directed graph based on the partial
coloring S1, . . . , Sk.

4. If there is dipath to an uncolored vertex xi from a color class 〈a〉, recolor along a minimal
such dipath, and go to step 2.

5. Otherwise (there is no such path), let Y be the set of all vertices that can reach to uncolored
vertices in the ← digraph (i.e., y ∈ Y if there is a u ∈ S (with u uncolored) and a dipath2

u← · · · ← y). Output the set Y .

Proof (of Theorem 5.3.2 and the correctness of the Matroid Partitioning Algorithm).
It is enough to prove that if the algorithm reaches step 5, then |Y | > kρ(Y ). Let U denote the

(nonempty) set of elements uncolored in the algorithm and let V = Y −U (perhaps V = ∅). Since
U �= ∅, |Y | > |V |.

We claim that ρ(Y ) = |Y ∩ Si| for each i. Since Y ∩ Si ∈ I we know that ρ(Y ) ≥ |Y ∩ Si|.
Suppose ρ(Y ) > |Y ∩Si|. This implies there is an x ∈ Y −Si with (Y ∩Si)∪{x} ∈ I. If Si∪{x} ∈ I
then we would have x← 〈i〉, contradicting the fact that the algorithm passed step 4. Thus Si∪{x}
contains a unique circuit C. Now C is not contained in Y (since (Y ∩ Si) ∪ {x} is independent) so

2We allow dipaths of length zero. In other words, Y contains all uncolored vertices.
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there is an element z ∈ C−Y and, since z �= x, we have z ∈ Si−Y . Therefore, (Si−{z})∪{x} ∈ I,
so x← z. However, this is a contradiction because x ∈ Y but z /∈ Y .

Finally, we compute:

kρ(Y ) =
k∑

i=1

ρ(Y )

=
k∑

i=1

|Y ∩ Si|

=

∣∣∣∣∣
k⋃

i=1

Y ∩ Si

∣∣∣∣∣
= |V | < |Y |

as required. �

If M has no loops (every singleton subset is independent), then there is a least k so that
S = S1 ∪ · · · ∪ Sk with each Si ∈ I; indeed, this is just the covering number k(M) ofM.

Corollary 5.3.3 If M = (S,I) is a matroid, then

k(M) = max
Y ⊆S

⌈ |Y |
ρ(Y )

⌉
.

Proof. Immediate from Theorem 5.3.2. �

A few words are in order about the worst-case run time of the Matroid Partitioning Algorithm.
The “price” of a matroid-theoretic algorithm is often assessed by the number of times we “ask” the
matroid if a given set is independent.

Suppose the ground set of a matroid M has n elements. We run through steps 2, 3, and 4 at
most n times (we add one element to the partial coloring on each pass). To create the digraph in
step 3, we check every pair of elements x, y to see if x← y. Each x← y and x← 〈a〉 determination
can be made by determining if a certain set is independent. We also compare each element x to
each color class 〈a〉 to check if x← 〈a〉. These determinations take O(n2) tests of independence.

Thus, overall, we make O(n3) independence queries in the worst case.
To determine k(M) we can run the Matroid Partitioning Algorithm for k = 1, 2, 3, . . . until we

succeed in finding a partition. Even if this is done naively, we perform O(n4) independence queries.
Thus k(M) can be computed in polynomial time.

5.4 Arboricity again

Let G be a graph. Recall that Υ(G) is the smallest size of a partition of E(G) into acyclic subsets.
In other words, Υ(G) = k(M(G)). The Matroid Partitioning Algorithm gives us a method to
compute k(M(G)) with a number of queries of independence that is a polynomial in the size of
the matroid. Since we can check if a subset of E(G) is acyclic in polynomial time, the overall time
complexity of Υ is polynomial.

We may use Theorem 5.3.2 on the facing page to obtain a proof of Nash-Williams’s Theo-
rem 5.1.1 on page 72.
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Proof (of Theorem 5.1.1). Let G = (V,E) be a graph. We want to show

Υ(G) = max
H

⌈
ε(H)

ν(H)− 1

⌉
(∗)

where the maximum is over all subgraphs H (with at least 2 vertices). We claim that we may
restrict our attention to connected H. Suppose the maximum on the right-hand side of (∗) is
achieved for a graph H with more than one component. If one of those components is an isolated
vertex v, then ν(H − v) < ν(H), but ε(H − v) = ε(H), a contradiction. Thus each component of
H has at least two vertices. If the components of H are H1,H2, . . . ,Hc, then we have

ε(H)
ν(H)− 1

=
∑

i ε(Hi)
(
∑

i ν(Hi))− 1

≤
∑

i ε(Hi)∑
i (ν(Hi)− 1)

≤ max
i

{
ε(Hi)

ν(Hi)− 1

}
.

(See exercise 10 on page 91.)
Now by Corollary 5.3.3 on the preceding page we know that

Υ(G) = max
Y ⊆E(G)

⌈ |Y |
ρ(Y )

⌉
.

We claim that the maximum here is achieved at a set Y ⊆ E(G) such that (V, Y ), the subgraph
of G induced on the set Y , has just one nontrivial3 component. To see this, suppose Y can be
partitioned into Y = Y1 ∪Y2∪ · · · ∪Yc where each (V, Yi) is a nontrivial component of (V, Y ). Then

|Y |
ρ(Y )

=
|Y1|+ · · · + |Yc|

ρ(Y1) + · · · + ρ(Yc)

≤ max
i

{ |Yi|
ρ(Yi)

}
.

(Again, see exercise 10.) If H = (V, Y ) has a single, nontrivial component on h vertices, then
ρ(V, Y ) = h− 1. Thus we have

Υ(G) = max
H

⌈
ε(H)

ν(H)− 1

⌉
,

where the maximum is over all connected subgraphs H of G with at least 2 vertices. �

We now turn to a discussion of the fractional arboricity of G. We define Υf (G) to be kf (M(G)),
the fractional covering number of the cycle matroid of G. Equivalently, we write Υt(G) to denote
the t-fold arboricity of G: the minimum number of acyclic subsets of edges that include all edges
of G at least t times. Alternatively, Υt(G) = Υ(t ·G) where t ·G is the multigraph formed from G
by replacing each edge of G with t parallel edges. Finally, Υf (G) = limt→∞ Υt(G)/t.

In a similar vein, the t-fold covering number kt(M) of a matroid M is the size of a smallest
collection of independent sets ofM that includes every element ofM at least t times. Alternatively,
let t · M denote the matroid formed by replacing each element of the ground set S with t parallel
elements. (We leave it to the reader to make this precise; see exercise 11 on page 91.) Then
kt(M) = k(t ·M) and kf (M) = lim kt(M)/t = lim k(t · M)/t.

The following result is an analogue of Corollary 5.3.3 on the preceding page.
3A trivial component is an isolated vertex.



5.4 Arboricity again 83

Theorem 5.4.1 Let M be a matroid. Then

kf (M) = max
X⊆S

|X|
ρ(X)

.

Proof. We know that kt(M) = k(t · M) so by Corollary 5.3.3 on page 81 we have

kt(M) = max
Y ⊆t·S

⌈ |Y |
ρ(Y )

⌉

where t · S is the ground (multi)set of t · M. Consider a Y ⊆ t · S that achieves the maximum.
Notice that if y ∈ Y then all elements of t · S parallel to y are also in Y ; otherwise we could add
them to Y without increasing Y ’s rank. Thus we may restrict the scope of the maximization to
those Y of the form t ·X where X ⊆ S. We have

kt(M) = max
X⊆S

⌈
t|X|
ρ(X)

⌉
= max

X⊆S

{
t|X|
ρ(X)

}
+O(1) = tmax

X⊆S

{ |X|
ρ(X)

}
+O(1)

and therefore
kt(M)
t

= max
X⊆S

{ |X|
ρ(X)

}
+O(1/t)

so as t→∞ we finally have

kf (M) = max
X⊆S

{ |X|
ρ(X)

}
. �

We know (see Corollary 1.3.2 on page 4) that there is a finite positive integer t for which
kf (M) = kt(M)/t. We claim that there is such a t with t ≤ ρ(M) ≤ |S|.
Corollary 5.4.2 Let M be a matroid. There exists a positive integer t with t ≤ ρ(M) so that
kf (M) = kt(M)/t.

Proof. We know that kf (M) = maxY |Y |/ρ(Y ). Let Y be a subset of S that achieves this
maximum and let t = ρ(Y ). It follows that

kt(M) = max
X

⌈
t|X|
ρ(X)

⌉

and this maximum is certainly achieved by Y , so, since we chose t = ρ(Y ), we also have

kt(M) =
⌈
t|Y |
ρ(Y )

⌉
= |Y | = t|Y |

ρ(Y )

and therefore
kt(M)
t

=
|Y |
ρ(Y )

= kf (M). �

It follows that there is a polynomial-time algorithm to compute kf (M): we simply compute
k(t ·M)/t for 1 ≤ t ≤ ρ(M) and take the smallest answer.

Let us apply what we have learned about kf (M) to give an analogue of Theorem 5.1.1 on
page 72 for fractional arboricity.

Corollary 5.4.3 Let G be a graph. Then

Υf (G) = max
H

{
ε(H)

ν(H)− 1

}

where the maximum is over all subgraphs H of G with at least 2 vertices. �

Thus the fractional arboricity of a graph can never be much less than its arboricity.
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5.5 Maximum average degree again

Recall that mad(G) denotes the maximum average degree of G, i.e., mad(G) = maxH d̄(H) where
d̄(H) = 2ε(H)/ν(H) and the maximization is over all subgraphs H of G.

Our goal is to show that mad(G) is actually an instance of the fractional covering problem for
a matroid that is quite similar toM(G).

First note that if G is a tree then mad(G) = d̄(G) = 2(1 − 1
n) where n = ν(G). If G is not

connected, one checks (e.g., using exercise 10 on page 91) that mad(G) equals the maximum average
degree of one of its components. Thus in the sequel we assume that G is connected, but not a tree.

The first step is to define a new matroid on such graphs. Let G = (V,E) be a connected graph
that is not a tree. Let us call a subset Y of the edges nearly acyclic if (V, Y ) has at most one cycle.
Let M1(G) be the pair (E,I1) where I1 consists of all nearly acyclic subsets of edges. We claim
that this forms a matroid. (In exercise 13 on page 91 this matroid is seen to be a special case of
the elongation of a matroid.) The proof uses the following simple lemma.

Lemma 5.5.1 Let G be a connected graph. Then G has exactly one cycle if and only if ν(G) =
ε(G).

Proof. Exercise 12 on page 91. �

Theorem 5.5.2 Let G = (V,E) be a connected graph. Then M1(G) is a matroid.

Proof. If G is a tree then M(G) =M1(G) and the result is trivial, so we may assume that G is
not a tree.

Let the set of maximal members of I1 be denoted B1. In other words, B ∈ B1 just when (V,B)
is a spanning, connected, unicyclic subgraph of G. We use Theorem 5.2.3 on page 74 to show that
M1 =M1(G) is a matroid.

Note first that since ∅ ∈ I1 we have that B1 �= ∅.
Next, by Lemma 5.5.1, note that any two members of B1 have the same size ν(G).
Finally, choose B,B′ ∈ B1 and x ∈ B. We must prove there is a y ∈ B′ so thatB−{x}∪{y} ∈ B1.

If x ∈ B′ this is trivial, so we may suppose x /∈ B′.
Now (V,B) has a unique cycle C. Either x ∈ C or x /∈ C.
If x ∈ C, then T = (V,B − {x}) is a spanning tree of G. Now |B′| = |B| and B′ �= B, so we

select y to be any member of B′−B. Observe that T +y is therefore a spanning unicyclic subgraph
of G, i.e., B − {x} ∪ {y} ∈ B1 as required.

Otherwise x /∈ C and so (V,B − {x}) consists of two connected components: one containing C
and one that is acyclic. Now let T ′ be a spanning tree of (V,B′) (we form T ′ by deleting any edge
in the unique cycle of (V,B′)). There must be some edge y ∈ B′ that links the two components of
(V,B−{x}). Thus (V,B−{x}∪{y}) is a spanning unicyclic subgraph of G, i.e., B−{x}∪{y} ∈ B1

as required. �

Now that we have verified that M1(G) is a matroid, we can use Theorem 5.3.2 on page 80
to show that finding mad(G) is (essentially) an instance of the fractional covering problem for a
matroid.

Theorem 5.5.3 Let G be a connected graph that is not a tree. Then mad(G) = 2kf (M1(G)).

Proof. Let G = (V,E) be as in the theorem. Let H be a subgraph of G for which d̄(H) = mad(G).
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Now consider an optimal fractional covering of M1(G), i.e., we have J1, J2, . . . , Jk ∈ I1 and
weights w1, w2, . . . , wk ∈ [0, 1] so that for any edge e of G we have∑

i:e∈Ji

wi ≥ 1.

Since the fractional covering is optimal,
∑
wi = kf (M1(G)).

Now we calculate:

ε(H) ≤
∑

e∈E(H)

∑
i:e∈Ji

wi

= w1|J1 ∩ E(H)|+ · · · + wk|Jk ∩ E(H)|
≤ w1ν(H) + · · · + wkν(H)

= kf (M1(G))ν(H)

and therefore
mad(G) = d̄(H) =

2ε(H)
ν(H)

≤ 2kf (M1(G)).

We now prove the opposite inequality. By Corollary 5.3.3 on page 81

kf (M1(G)) = max
Y ⊆E

|Y |
ρ1(Y )

(∗)

where ρ1 is the rank function forM1(G). As in the proof of Theorem 5.1.1, it is enough to consider
in (∗) just those Y so that (V, Y ) has only one nontrivial connected component.

We know, by hypothesis, that G has at least one cycle. If C is the set of edges in that cycle,
note that |C|/ρ1(C) = 1. If T is an acyclic set of edges, then |T |/ρ1(T ) = 1, so in computing (∗)
we may further restrict our attention to those Y for which (V, Y ) has one nontrivial component
that is not a tree; let H be the nontrivial component associated with an optimal Y . Note that
ρ1(Y ) = ν(H), so we have

kf (M1(G)) =
|Y |
ρ1(Y )

=
ε(H)
ν(H)

=
1
2
d̄(H) ≤ 1

2
mad(G)

and we are done. �

Thus the Matroid Partitioning Algorithm can be used to compute, in polynomial time, the
maximum average degree of a graph. Note that a “greedy” heuristic to compute mad(G) does not
work (exercise 2 on page 90).

5.6 Duality, duality, duality, and edge toughness

We have expended considerable effort studying the covering number of a matroidM. However, as
we discussed in §1.5, there are three other related invariants closely allied to the covering number:
the packing number, the transversal number, and the matching number. We consider each of these
in turn.

We show that of the four invariants from Chapter 1 (covering, packing, transversal, and match-
ing) only k(M) is interesting.

We then introduce yet another notion of duality—matroid duality—and we consider the covering
and fractional covering number of this dual. Finally, we show how the fractional covering number
of the (matroid) dual ofM(G) is closely connected to the edge toughness of G.
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Hypergraph duality and mathematical programming duality

We have examined k and kf of a matroid in extensive detail. Here we consider p, τ , and μ of a
matroid (and their fractional counterparts) and find little of interest.

Let us begin with p(M), the packing number of a matroid. Here we seek the maximum number
of elements of S no two of which are together in an independent set. Let P be a maximal subset
of S with no two elements of P forming an independent set. Certainly all loops of M are in P .
Further, if x, y ∈ P are not loops, then we must have x and y parallel. We therefore have the
following.

Theorem 5.6.1 Let M be a matroid. Let � denote the number of loops in M and let m denote
the maximum number of pairwise parallel elements of M. Then p(M) = �+m. �

We know that p(M) ≤ k(M), but Theorem 5.6.1 does not give an interesting lower bound for
k(M). If M has a loop, then k(M) = ∞. If M is loopless, then k(M) is finite but certainly we
have k(M) ≥ m, the maximum number of pairwise parallel elements, since parallel elements must
have different colors.

Next consider the transversal number of M = (S,I), the minimum number of elements of the
ground set S that intersect every member of I. Since ∅ ∈ I, no transversal can exist, and therefore
τ(M) is undefined (or ∞).

Finally, consider the matching number of M. We want to compute the maximum number of
pairwise disjoint independent sets of M. It is clear that the best we can do is to take all the
singleton sets in I (the non-loops) and ∅.

(See exercise 17 on page 91 for another approach to matching and packing.)

Theorem 5.6.2 Let M = (S,I) be a matroid. Let n = |S| and suppose M has � loops. Then
μ(M) = n− �+ 1. �

Now the fractional packing and fractional covering numbers of a matroid are the same, and
these are covered by Theorem 5.4.1 on page 83. The common value of the fractional transversal
and fractional matching number is ∞.

Matroid duality

In addition to mathematical programming duality and hypergraph duality, matroids admit yet
another form of duality. Let M = (S,I) be a matroid and let B be the bases of M. The dual
of the matroid M, denoted4 M̃ = (S, Ĩ), has the same ground set as S and a subset X of S is
independent in M̃ (i.e., is in Ĩ) if and only if X ⊆ S − B for some B ∈ B. Indeed, it is easier to
describe M̃ in terms of its bases: The bases of M̃ are the complements (relative to S) of the bases
ofM. In symbols: B ∈ B ⇐⇒ S −B ∈ B̃. We call x ∈ S a coloop ofM if {x} is a dependent set
in M̃. In other words, a coloop of a matroid is an element contained in every basis.

The first order of business is to verify that M̃ is a matroid.

Theorem 5.6.3 If M is a matroid, then so is its dual, M̃.

4The customary notation for a matroid dual is M∗. We use the ∗ superscript to denote hypergraph duality, so we
adopt this unconventional notation.
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Proof. We check that B̃ satisfies the conditions of Theorem 5.2.3 on page 74. It is immediate that
B̃ is nonempty and any two members of B have the same cardinality.

Suppose B̃1, B̃2 ∈ B̃ (so that their complements B1, B2 are bases of M) and let x ∈ B̃1. We
seek a y ∈ B̃2 so that B̃1 ∪ {y} − {x} ∈ B̃. If x ∈ B̃2 we may take y = x, so suppose x /∈ B̃2. We
now know that x ∈ B2 − B1. Now B1 ∪ {x} must be dependent, and contain a unique circuit C.
Note that C is not entirely contained in B2, so there must be a y ∈ C −B2. Since y /∈ B2, we have
y ∈ B̃2. Finally B1 ∪ {x} − {y} must be independent (since we have removed y from the unique
cycle C of B1 ∪ {x}) and therefore a basis (since it is of full rank). Therefore its complement,
S − (B1 ∪ {x} − {y}) = B̃1 ∪ {y} − {x} is in B̃ as desired. �

Let G = (V,E) be a graph. The dual of the cycle matroid M(G) is denoted M̃(G) and is
called the cocycle matroid of G. Let us describe the independent sets of M̃(G). Call a subset F
of E disconnecting if G−F has more components than G. Let K be a maximal, nondisconnecting
set of edges of G, and consider the graph H = (V,E −K). Notice that H has the same number
of components as G (since K is nondisconnecting), but every edge of H is a cut edge (since K
is maximal). Thus H is a maximal spanning forest of G, i.e., E − K is a basis of M. We have
shown that if K is maximal, nondisconnecting, then K is a basis of M̃. One easily checks that the
converse is true as well. Thus the independent sets of edges of M̃(G) are the subsets of the maximal,
nondisconnecting subsets of edges of G. A less convoluted way of saying this is the following.

Proposition 5.6.4 Let G = (V,E) be a graph and let M̃(G) be its cocycle matroid. A set of edges
F ⊆ E is independent in M̃ if and only if F is nondisconnecting in G. �

It follows that the circuits of M̃(G) are the minimal disconnecting sets of edges of G; these are
known as bonds or cocycles of G. A single edge of G is a loop of M̃(G) if and only if it is a cut edge.
A pair of edges of G are parallel in M̃(G) if and only if they are not cut edges, but together they
form a disconnecting set. Observe that in case G is planar, then a loop of G corresponds to a cut
edge of G’s planar dual, and a pair of edges forming a minimal disconnecting set in G corresponds
to a pair of parallel edges in the dual. This is more than a curious observation. When G = (V,E)
is a planar graph, then M̃(G) has a particularly nice description.

Theorem 5.6.5 Let G be a planar graph (embedded in the plane) and let G̃ be its dual. Then
M̃(G) =M(G̃). �

The equal sign in the conclusion makes sense since we can identify the edge set of an embedded
planar graph with that of its dual. The proof of Theorem 5.6.5 is relegated to exercise 14 on
page 91. A corollary of this result is that if G is connected and planar, then the complement of a
spanning tree in G corresponds to a spanning tree in the dual of G.

Dual rank

Let M = (S,I) be a matroid and let M̃ be its dual. Denote by ρ and ρ̃ the rank functions
of these matroids. Since bases of M and M̃ are complements of one another, we clearly have
ρ(M) + ρ̃(M̃) = |S|. The formula for ρ̃(X) for any X ⊆ S is presented next.

Theorem 5.6.6 Let M = (S,I) be a matroid and let M̃ be its dual. Denote by ρ, ρ̃ the rank
functions of M,M̃ respectively. Then for any X ⊆ S we have

ρ̃(X) = |X| − ρ(S) + ρ(S −X).
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X S–X

I JB

Figure 5.2. Deriving the formula for ρ̃.

Proof. Let X ⊆ S and let I ⊆ X be a maximal member of Ĩ contained in X. Let J ⊆ S −X be
a maximal member of I contained in the complement of X. Thus ρ̃(X) = |I| and ρ(S −X) = |J |.

Since I ∈ Ĩ, there exists a basis B0 ∈ B for which I ⊆ S − B0, or equivalently, B0 ⊆ S − I.
Observe, also, that J ⊆ S − I. Applying augmentation, we can add elements of J to B0 until we
build a basis B ∈ B for which J ⊆ B ⊆ S − I. See Figure 5.2. Consider the shaded regions
in the figure. By the maximality of I, the shaded portion of X must be empty. Likewise, by the
maximality of J , the shaded portion of S −X is also empty. We may now calculate:

ρ̃(X) = |I|
= |X| − |X − I|
= |X| − |B ∩X|
= |X| − (|B| − |J |)
= |X| − ρ(S) + ρ(S −X). �

Covering number of the dual of a matroid

IfM = (S,I) is a matroid and M̃ = (S, Ĩ) is its dual, then k(M̃) is the minimum size of a covering
of S by members of Ĩ. Without loss of generality, we may assume the members of the cover are in
B̃. Thus we have

k(M̃) ≤ k ⇐⇒ S = B̃1 ∪ · · · ∪ B̃k with B̃i ∈ B̃.
Taking complements with respect to S we can rewrite this as

k(M̃) ≤ k ⇐⇒ ∅ = B1 ∩ · · · ∩Bk with Bi ∈ B.

Thus we have the following.

Theorem 5.6.7 Let M be a matroid. Then k(M̃) is the smallest number of bases of M whose
intersection is empty. In case M =M(G) for a connected graph G, then k(M̃) is the minimum
number of spanning trees of G whose intersection is empty. �

We can fractionalize this result. We weight the bases of M = (S,I) so that the total weight of
bases not containing each x ∈ S is at least 1. The minimum total weight is kf (M̃). When G is a
graph, there is a nice connection between kf (M̃(G)) and the edge toughness of G.
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Edge toughness

Let G be a graph with at least one edge. The edge toughness of G is an invariant that measures
how resilient the graph is against edge deletion. Formally, the edge toughness of G, denoted σ′(G),
is defined to be

σ′(G) = min
F

|F |
c(G− F )− c(G)

where the minimization is over all disconnecting subsets of edges of G. For example, if G is a
connected graph with edge toughness σ′, then we must delete at least �σ′j� edges to break G into
j + 1 components. This invariant is also known as the strength of the graph.

Now the denominator c(G−F )−c(G) is computable from the cycle matroid of G. If F ⊆ E(G),
then ρ(F ) = n− c(V, F ) where n = |V (G)| and c(V, F ) is, of course, the number of components of
the graph (V, F ). Thus

c(G− F )− c(G) = [n − c(G)] − [n− c(G − F )] = ρ(E) − ρ(E − F ).

Thus, letting X = E − F , we can rewrite the definition of edge toughness as

σ′(G) = min
X

|E −X|
ρ(E)− ρ(X)

where the minimization is over all subsets of edges X for which (V,X) has more components than
G.

Notice that this new definition easily extends to matroids. IfM = (S,I) is a matroid, define

σ′(M) = min
X

|S −X|
ρ(S)− ρ(X)

where the minimization is over all X ⊆ S for which ρ(X) < ρ(S).

Note that if G has at least one edge, then σ′(G) = 1 if and only if G has a cut edge (exercise 15
on page 91). In a similar vein, Υ(G) =∞ if and only if G has a loop.

More generally, for a matroid M (with rank at least 1) we have σ′(M) = 1 if and only if M
has a coloop (exercise 16), and Υ(M) =∞ if and only if M has a loop.

IfM has neither loops nor coloops, then there is a nice connection between σ′(M) and kf (M̃).

Theorem 5.6.8 Let M be a matroid and suppose both M and M̃ are loopless. Then

1
σ′(M)

+
1

kf (M̃)
= 1.

Proof. Rewrite Theorem 5.6.6 on page 87 as ρ(X) = |X|− ρ̃(S)+ ρ̃(S−X) and use it to compute:

1− 1
σ′(M)

= 1−max
(
ρ(S)− ρ(X)
|S −X|

)

= min
(

1− ρ(S)− ρ(X)
|S −X|

)

= min
(

1− [|S| − ρ̃(S)]− [|X| − ρ̃(S) + ρ̃(S −X)]
|S −X|

)

= min
(

1− |S| − |X| − ρ̃(S −X)
|S −X|

)
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= min
(
ρ̃(S −X)
|S −X|

)

=
1

kf (M̃)
. �

We can rewrite Theorem 5.6.8 in graph terms.

Corollary 5.6.9 Let G be a graph. The edge toughness of G is given by

σ′(G) =
kf (M̃(G))

kf (M̃(G)) − 1
.

If G is planar with planar dual G̃, then

σ′(G) =
Υf (G̃)

Υf (G̃)− 1
. �

In particular, the Matroid Partitioning Algorithm gives us a polynomial-time algorithm for
computing the edge toughness of a graph.

5.7 Exercises

1. Prove that the arboricity of a planar graph is at most 3 and that this bound is the best
possible.

2. Prove that mad(G) cannot be computed in a greedy fashion. Specifically, find a graph G for
which the following algorithm fails.

Input: a graph G.

Output: (allegedly) mad(G).

(a) Let X ← ∅.
(b) Let X ← X ∪ {d̄(G)}.
(c) Let v be a vertex of minimum degree in G.

(d) Let G← G− v.
(e) If G is not empty, go to step (b).

(f) Output the largest element of X.

3. Prove that for any matrix A, M(A) is indeed a matroid.

4. Prove that for any graph G, M(G) is indeed a matroid.

5. Create a good definition of isomorphic matroids.

6. Prove or disprove: For all graphs G, M(G) is isomorphic to M(A(G)) where A(G) is the
adjacency matrix of G.

7. Prove or disprove: For every graph G, there is a matrix A so that M(G) is isomorphic to
M(A).
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8. Let Un,k denote the pair (S,I) where S is an n-set and I is the set of all subsets of S with
at most k elements.

Prove that Un,k is a matroid. We call Un,k a uniform matroid.

Compute k(Un,k) and kf (Un,k).

9. Prove that there is no graph G for whichM(G) ∼= U4,2. (The preceding exercise defines Un,k.)

10. Prove that if ai, bi > 0 (for i = 1, . . . , c) then

a1 + · · ·+ ac

b1 + · · ·+ bc
≤ max

i

{
ai

bi

}
.

(We use this fact in the proof of Theorem 5.1.1.)

11. Write a careful definition for t · M: the matroid formed from M by replacing each element
of the ground set ofM with t parallel elements.

12. Prove Lemma 5.5.1 on page 84: Let G be a connected graph. Then G has exactly one cycle if
and only if ν(G) = ε(G).

13. Let M = (S,I) be a matroid with rank function ρ. Let t be a positive integer. Define

It = {X ⊆ S : ρ(I) ≥ |I| − t},
i.e., all sets that can be formed from independent sets by the addition of at most t additional
elements.

Prove that Mt = (S,It) is a matroid, called an elongation of M.

Observe that this is a generalization of Theorem 5.5.2 on page 84 since if M =M(G), then
M1 =M1(G).

14. Prove Theorem 5.6.5 on page 87: Let G be a planar graph (embedded in the plane) and let G̃
be its dual. Then M̃(G) =M(G̃).

15. Let G be a graph with at least one edge. Prove that σ′(G) ≥ 1 and that σ′(G) = 1 if and
only if G has a cut edge.

16. (Generalizing the previous problem.) Let M be a matroid of rank at least 1. Prove that
σ′(M) ≥ 1 and σ′(M) = 1 if and only if M has a coloop.

17. Let M = (S,I) be a matroid. Define a hypergraph H = (S,I − {∅}), i.e., delete ∅ as a
member of I. Note that k(M) = k(H). State and prove simple formulas for μ(H), p(H), and
τ(H).

5.8 Notes

Matroids were invented by Hassler Whitney [189] in the 1930s. For background reading on matroids,
see the monographs by Recski [152] or Welsh [186].

The results on arboricity (e.g., Theorem 5.1.1 on page 72) are due to Nash-Williams [137, 138].
See also Edmonds [49].

The Matroid Partitioning Algorithm is due to Edmonds [49], but he treats a more general
situation. Given several matroids on the same ground set, e.g., Mi = (S,Ii) for 1 ≤ i ≤ k,
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Edmonds seeks a partition S = I1 ∪ I2 ∪ · · · ∪ Ik where each Ii ∈ Ii. We only needed the case in
which all k matroids are the same.

The material on fractional arboricity is based on the work of Payan [143] and Catlin, Grossman,
Hobbs, and Lai [33, 34]. See the latter papers for a treatment of edge toughness.

Random graph theorists (and others) are concerned with graphs G whose densest portion is
G itself. In particular, a graph G is called balanced provided mad(G) = d̄(G). Maximum average
degree and balanced graphs arise in the theory of evolution of graphs. Let G be a fixed graph and
let n be a very large positive integer. Form a graph by gradually adding edges at random between
n fixed vertices. As the density of the evolving random graph increases we eventually reach a stage
where it is very likely that the random graph contains G as a subgraph. The point at which this
happens depends only on mad(G). See Bollobás [23] or Palmer [141]. For more information on
balanced graphs, see the papers by Lai and Lai [112] or Ruciński and Vince [155].
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Fractional Isomorphism

6.1 Relaxing isomorphism

What does it mean for two graphs to be “the same”? The fundamental equivalence relation defined
between graphs is that of isomorphism: graphs G and H are isomorphic, denoted G ∼= H, provided
there is a bijection φ : V (G)→ V (H) so that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). In other
words, graphs G and H are isomorphic if they differ only in the names of their vertices.

In many branches of mathematics, it is useful to relax the notion of sameness. For example,
in geometry, equality of figures is relaxed to congruence (isometry), which is further relaxed to
similarity, or ultimately to the topological notion of homeomorphic.

We seek to relax the notion of graph isomorphism. To do so, let us recast graph isomorphism as
an integer feasibility problem. Let G and H be graphs with adjacency matrices A and B. Graphs
G and H are isomorphic if and only if there is a permutation matrix1 P so that A = PBP−1. In
other words, we can form the adjacency matrix A by applying the same permutation to both the
rows and columns of B; this amounts to relabeling the vertices of H to make G.

Now the relation A = PBP−1 can be rewritten as AP = PB. The requirement that P is a
permutation matrix can be restated as (1) P · 1 = 1, (2) P t · 1 = 1, and (3) the entries of P are in
{0, 1}. (Here and in the sequel, 1 stands for a vector of all 1’s.)

Thus, isomorphism of graphs G and H (with adjacency matrices A and B) is equivalent to the
feasibility of the following system of linear equations (think of A and B as given and the Pij ’s as
the unknowns):

AP = PB,

P · 1 = 1,

P t · 1 = 1, and

all Pij ∈ {0, 1}.
Our theme has been to replace integer programs by linear programs, thus it is natural in this

setting to drop the requirement that P be a 0,1-matrix and simply require the entries in P to be
nonnegative. A matrix S whose entries are nonnegative, and whose rows and columns all sum to 1
[i.e., S · 1 = 1 and St · 1 = 1] is called a doubly stochastic matrix.

We say that graphs G and H are fractionally isomorphic, and we write G ∼=f H, provided there
is a doubly stochastic matrix S for which AS = SB where A,B are the adjacency matrices of the
graphs G,H, respectively.

Proposition 6.1.1 The relation ∼=f is an equivalence relation.

Proof. Exercise 1 on page 108. �

1A permutation matrix P is a square 0,1-matrix with exactly one 1 in every row and column.

93
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Figure 6.1. Two fractionally isomorphic graphs.

For example, let G and H be the two graphs in Figure 6.1. To verify that G ∼=f H, write their
adjacency matrices as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

011100 100000
101010 010000
110001 001000
100011 000100
010101 000010
001110 000001
100000 011000
010000 101000
001000 110000
000100 000011
000010 000101
000001 000110

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

010101 100000
101010 010000
010101 001000
101010 000100
010101 000010
101010 000001
100000 010001
010000 101000
001000 010100
000100 001010
000010 000101
000001 100010

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(To check this, note that we have listed the six vertices of degree 4 (black in the figure) first and
the six vertices of degree 3 (white) last.) Let

S =
(

1
6

) [
J 0
0 J

]

where each J is a 6 × 6 matrix of all ones and each 0 is a 6 × 6 matrix of all zeros. It is obvious
that S is doubly stochastic, and (with a little work) one checks that AS = SB. Thus the graphs
G and H are fractionally isomorphic. They are not, however, isomorphic. Notice that G is planar,
but H is not (its black vertices induce a K3,3).

Although they are not isomorphic, these graphs have much in common. Let us note some of
these common features, all of which hold in general for fractionally isomorphic graphs.



6.1 Relaxing isomorphism 95

• G and H have the same number of vertices (12).

• G and H have the same number of edges (21).

• Both have the same degree sequence (4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3)

• Both have the same maximum eigenvalue (5+
√

5
2 ≈ 3.61803).

These are not merely coincidences. Fractionally isomorphic graphs always share these common
attributes.

Proposition 6.1.2 Fractionally isomorphic graphs have the same number of vertices.

Proof. Check that doubly stochastic matrices must be square and the result follows easily. �

Proposition 6.1.3 Fractionally isomorphic graphs have the same number of edges.

Proof. Let A and B be the adjacency matrices of fractionally isomorphic graphs G and H, and
let S be doubly stochastic with AS = SB.

Notice that 1t ·A · 1 = 2ε(G) (we are summing the degrees of the vertices). Thus we compute

2ε(G) = 1t · A · 1
= 1t · A(S · 1) because S is doubly stochastic

= 1t · (AS) · 1
= 1t · (SB) · 1
= (1t · S)B · 1
= 1t · B · 1
= 2ε(H). �

We prove below that fractionally isomorphic graphs share the same degree sequence (Proposi-
tion 6.2.6 on page 98) and the same maximum eigenvalue (Proposition 6.5.2 on page 105).

In general, these conditions (same degree sequence, maximum eigenvalue, etc.) are not sufficient
for fractional isomorphism (see exercise 5 on page 108). However, we do have the following.

Proposition 6.1.4 Let G and H be r-regular graphs on n vertices. Then G ∼=f H.

Proof. Let A and B be the adjacency matrices of G and H. Let S = 1
nJ where J is an n × n

matrix of all ones. Note that AS = r
nJ = SB, hence G ∼=f H. �

Another view

There is another way to view isomorphism and fractional isomorphism. Let G and H be isomorphic
graphs on disjoint sets of vertices. Let us label the vertices of these graphs V (G) = {v1, . . . , vn}
and V (H) = {w1, . . . , wn} so that vi �→ wi is an isomorphism.

We can think of this isomorphism as a perfect matching between V (G) and V (H), i.e., the
isomorphism is represented by a 1-regular graph L on V (G) ∪ V (H). To distinguish the edge of G
and H from the edges of L, we call the edges in the bipartite graph L links. Let us now translate
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the condition vivj ∈ E(G) ⇐⇒ wiwj ∈ E(H) into a statement about edges (of G and H) and
links.

Let v ∈ V (G) and w ∈ V (H). We can find two sorts of 2-step paths from v to w. We might first
take an edge of G followed by a link of L, or first take a link and then an edge (of H). These two
kinds of paths are called edge-link or link-edge. The statement that L represents an isomorphism
between G and H can be re-expressed as follows: For all v ∈ V (G) and all w ∈ V (H), there is a
link-edge path from v to w if and only if there is an edge-link path from v to w.

We can describe fractional isomorphism in a similar way. LetG and H be graphs on n vertices as
before, with adjacency matrices A and B respectively. Let S be doubly stochastic with AS = SB.
The matrix S can be represented as a weighted bipartite graph L linking V (G) and V (H); there is
a link from vi to wj just when Sij is positive. The weight of that link is, of course, Sij.

For the graphs in Figure 6.1 on page 94, the linking graph consists of two disjoint copies of K6,6

(one copy joining the black vertices and one copy joining the white vertices) in which every link
has weight 1

6 . The condition AS = SB can be re-expressed as follows: For all vertices v ∈ V (G)
and w ∈ V (H), the total weight of all links along edge-link paths from v to w equals the total weight
of all links along link-edge paths from v to w.

6.2 Linear algebra tools

Our forthcoming analysis of fractional isomorphism relies on certain special properties of doubly
stochastic matrices. First, they are positive matrices and therefore their eigenvalues and eigenvec-
tors have special properties (see Theorem 6.2.2 on the facing page). Second, they can be written
as convex combinations of permutation matrices (see Theorem 6.2.3 on the facing page).

In this section we collect matrix results that are not part of most undergraduate linear algebra
curricula. Experts who are tempted to skip this section should read Theorem 6.2.4 on page 98
before proceeding.

Direct sum and reducibility

Let A and B be square matrices. The direct sum of A and B, denoted A⊕B, is the matrix

A⊕B =

[
A 0
0 B

]

where each “0” represents a rectangular block of 0’s of the appropriate size. If M = A⊕B then we
say M is decomposable. More generally, we say M is decomposable if there exist matrices A, B, P ,
and Q such that P and Q are permutation matrices and M = P (A⊕ B)Q. Otherwise (if no such
decomposition exists) we say that M is indecomposable.

Let M be an n×n matrix. Let D(M) denote a digraph on n vertices v1, . . . , vn with an arc from
vi to vj just when Mij �= 0. We say that M is irreducible provided D(M) is strongly connected.
Otherwise, we say that M is reducible. Notice that M is reducible just when there is a permutation

matrix P so that PMP t =

[
A B
0 C

]
where A and C are square matrices and 0 is a rectangular

block of zeros.
Furthermore, we say that a matrix M is strongly irreducible provided PM is irreducible for any

permutation matrix P . If M is not strongly irreducible, then we can find permutation matrices P

and Q so that PMQ =

[
A B
0 C

]
where A and C are square matrices and 0 is a block of zeros.
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For example, the matrix

[
0 1
1 0

]
is irreducible, but neither strongly irreducible nor indecom-

posable.

Proposition 6.2.1 Let S be a doubly stochastic, indecomposable matrix. Then S is also strongly
irreducible.

Proof. Let S be a doubly stochastic matrix. We prove the contrapositive of the Proposition.
Suppose S is not strongly irreducible, This means we can permute the rows and columns of S

so that S =

[
S11 S12

0 S22

]
where S11 and S22 are square matrices and 0 represents a rectangular

block of 0’s. We claim that S12 is 0. To see why, suppose S11 has shape a × a. Since S is doubly
stochastic, the sum of each column of S11 is 1, so the sum of all the entries in S11 is a. Now the
sum of the entries in each row of [S11 S12] is also 1, so if any entry in S12 were nonzero, there would
be a row of S11 whose sum would be less than 1, implying that the sum of all the entries in S11

would be less than a, a contradiction. Thus S12 = 0 and it follows that S = S11 ⊕ S22, i.e., S is
decomposable. �

Positive matrices: the Perron-Frobenius theorem

Let M be a matrix. We write M ≥ 0 to mean that every entry in M is nonnegative and we say
that M is nonnegative. We write M > 0 if all of M ’s entries are positive, and we call M positive.
Likewise, we may refer to vectors as being nonnegative or positive.

A dominant eigenvalue of a square matrix M is an eigenvalue λ of M whose absolute value is
at least that of any other eigenvalue, i.e., if λ′ is also an eigenvalue of M , then |λ′| ≤ |λ|.

The principal theorem about nonnegative matrices is the celebrated Perron-Frobenius theorem.

Theorem 6.2.2 Let M be an irreducible, nonnegative matrix. Then M has a unique dominant
eigenvalue λ which is positive and has an associated eigenvector that is positive. Further, eigenvec-
tors associated with other eigenvalues are not nonnegative. �

Doubly stochastic matrices: Birkhoff decomposition

Permutation matrices are doubly stochastic. Furthermore, doubly stochastic matrices can be de-
composed into permutation matrices as follows.

Theorem 6.2.3 Let S be a doubly stochastic matrix. There exist positive numbers α1, . . . , αs and
permutation matrices P1, . . . , Ps so that

S =
s∑

i=1

αiPi and 1 =
s∑

i=1

αi. �

This result can be expressed in words by saying every doubly stochastic matrix is a convex
combination of permutation matrices. The key step in the proof is graph-theoretic (see exercise 2
on page 108). The decomposition S =

∑
αiPi is known as a Birkhoff decomposition of the doubly

stochastic matrix S.
The set of doubly stochastic matrices forms a compact, convex subset of the set of all real

matrices; the extreme points of this convex set are exactly the permutation matrices.
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Let S be a doubly stochastic matrix and let x be a vector. The vector Sx is a list of weighted
averages of the entries in x. If R is another doubly stochastic matrix and R(Sx) = x, then, in
effect, no “loss of information” has taken place. Intuitively, this is only possible if Sx and x have
the same entries, i.e, Sx is just a permutation of x. Indeed, one can say more.

Theorem 6.2.4 Let S and R be n × n doubly stochastic matrices with Birkhoff decompositions
S =

∑
αiPi and R =

∑
βjQj. Let x,y be n-vectors.

(1) If y = Sx and x = Ry, then y = Pix and x = Qjy for all i, j.

(2) Let x and y be as in (1). If, in addition, either S or R is indecomposable, then x = y = s · 1
for some scalar s.

(3) If x and y are 0,1-vectors and y = Sx, then y = Pix for all i.

The proof of this result makes use of the following convex set. Let v be a vector. Let Π(v) denote
the convex hull of all vectors formed by permuting the entries of v. Note that the extreme points
of Π(v) are all the permutations of v, i.e., the vectors of the form Pv where P is a permutation
matrix (exercise 3 on page 108).

Now consider the statement y = Sx where S is doubly stochastic. Since S =
∑
αiPi, we have

y = Sx =
∑
αiPix and therefore y is a convex combination of permutations of x, i.e., y ∈ Π(x).

Furthermore, if P ′ is any permutation matrix, then P ′y = P ′Sx =
∑
αi(P ′Pi)x, so P ′y ∈ Π(x).

In short, all the extreme points of Π(y) are in Π(x); hence we have proved the following.

Lemma 6.2.5 If S is doubly stochastic and y = Sx, then Π(y) ⊆ Π(x). �

Proof (of Theorem 6.2.4). For (1), note that y = Sx and x = Ry imply, by Lemma 6.2.5, that
Π(x) = Π(y). Thus x and y are extreme points of this polyhedron. As y =

∑
αiPix we must have

that y = Pix for each i, and likewise x = Qjy for all j.
For (2), first note that if either x or y is 0, then both are 0 and the conclusion follows. So

suppose that x,y are nonzero and that S is indecomposable. We know that y = Sx and that
x = Qy for some permutation matrix Q, thus x = QSx, i.e., x is an eigenvector of QS with
eigenvalue 1. Note that the vector 1 also is an eigenvector with eigenvalue 1. Now S is nonnegative
and indecomposable, and hence strongly irreducible (by Proposition 6.2.1 on the preceding page),
so QS is irreducible. Thus, by Theorem 6.2.2 on the preceding page, QS has a unique dominant
eigenvalue which is positive and has an associated eigenvector that is positive. Thus it follows that
x is a scalar multiple of 1 as required.

For (3), we have only that y = Sx, but we also know that x,y ∈ {0, 1}n. Now we know that
y ∈ Π(x). Furthermore, 1ty = 1tSx = 1tx, so x and y have the same number of 1’s, i.e., x is a
permutation of y. Thus y is an extreme point of Π(x) and therefore, since y =

∑
αiPix we have

y = Pix for all i. �

As an application of Theorem 6.2.4, we prove that fractionally isomorphic graphs have the same
degree sequence. (In fact much more is true; see Theorem 6.5.1 on page 102.)

Proposition 6.2.6 If G ∼=f H, then G and H have the same degree sequence.

Proof. Let A,B be the adjacency matrices of G,H and let S be doubly stochastic with AS = SB.
Let dG = A · 1 and dH = B · 1; these vectors record the degree sequences of G and H respectively.
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Now
dG = A · 1 = AS · 1 = SB · 1 = SdH

and
dH = B · 1 = BSt · 1 = StA · 1 = StdG

because BSt = StA follows from AS = SB by transposition. Thus by Theorem 6.2.4 on the facing
page we have that dH and dG are permutations of one another, i.e., G and H have the same degree
sequence. �

Kronecker product

Let A and B be n×n matrices. The Kronecker product of A and B, denoted A⊗B, is the n2×n2

matrix ⎡
⎢⎢⎢⎢⎣
A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

An1B An2B · · · AnnB

⎤
⎥⎥⎥⎥⎦

where AijB denotes an n× n block formed by multiplying each entry of B by the scalar Aij.
Matrices are convenient ways to represent linear transformations, so it is natural to seek a linear

transformation that A⊗B represents.
For n× n matrices A, B, and X, let

FA,B(X) = AXBt.

Then FA,B is a linear transformation defined on the space Rn×n of all n× n real matrices.
A natural basis for Rn×n is the set {E(i, j) : 1 ≤ i, j ≤ n} where E(i, j) is a matrix all of whose

entries are 0 except for a 1 in position ij. Note that FA,B(E(i, j)) = AE(i, j)Bt is a matrix whose
p, q entry is given by

[AE(i, j)Bt]pq =
∑
a,b

ApaE(i, j)abB
t
bq = ApiBqj.

As p and q range over the numbers between 1 and n, we get the n2 entries in the jth column in the
ith block of columns in A⊗B.

Further, for an n× n matrix M , let c(M) denote the n2-column vector formed by stacking the
columns of M one atop the next. We have

c (FA,B(X)) = (A⊗B)(c(X)).

Thus A⊗B is the matrix for the linear transformation FA,B with respect to the basis E(i, j).
When A and B are doubly stochastic, we see that A⊗B is as well. Furthermore, we have the

following.

Lemma 6.2.7 Let A and B be doubly stochastic n × n matrices with Birkhoff decompositions
A =

∑
i αiPi and B =

∑
j βjQj . Then A ⊗ B is doubly stochastic with Birkhoff decomposition

A⊗B =
∑

i,j αiβj(Pi ⊗Qj).

Proof. Check that if P and Q are permutation matrices, then so is P ⊗ Q. The lemma follows
easily from there. �
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6.3 Equitable partitions

The existence of a fractional isomorphism between two graphs is closely tied to the concept of an
equitable partition of the vertices of a graph. To understand this concept, consider the black/white
coloring of the graphs in Figure 6.1 on page 94. We mentioned earlier that the black vertices all
have degree 4 and the white vertices all have degree 3. Actually, much more is true. Observe that
every black vertex has exactly 3 black neighbors and exactly 1 white neighbor. Note further that
every white vertex has 1 black and 2 white neighbors.

Let S be a subset of the vertex set of a graph G. Let d(v, S) denote the degree of v in S, i.e.,
the number of neighbors of v in S, i.e., d(v, S) = |N(v) ∩ S|.

We say that a partition V1∪· · ·∪Vs of V (G) is equitable provided that for all i, j and all x, y ∈ Vi

we have d(x, Vj) = d(y, Vj). In other words, each of the induced subgraphs G[Vi] must be regular
and each of the bipartite graphs2 G[Vi, Vj ] must be biregular.3

Every graph has an equitable partition: form the partition in which every part is a single vertex.
If G is a regular graph, then the partition with just one part containing all the vertices is equitable.

Now partitions of a set (including the equitable partitions of a graph) can be partially ordered
by refinement.4 Given two partitions of a set P and Q, we can form their join, which is the finest
partition that is coarser than both P and Q. The join of P and Q is denoted P ∨Q.

Here is another way to describe the join of partitions P and Q. Let x
P≡y mean that x and y

are in the same part of the partition P. It is easy to check that
P≡ is an equivalence relation. Let

R = P ∨Q. Then x
R≡y if and only if we can find z1, z2, . . . , zs with

x ≡ z1 ≡ z2 ≡ · · · ≡ zs ≡ y

where each ≡ is either
P≡ or

Q≡ (exercise 6 on page 109). The relation
R≡ is the transitive closure of

the union of the relations
P≡ and

Q≡.

Lemma 6.3.1 Let P and Q be equitable partitions of a graph G. Then P ∨Q is also an equitable
partition.

Proof. Let R = {R1, . . . , Rr}. Note that each Ri can be partitioned into sets from P or into sets
from Q (because P and Q are refinements of R).

Let x, y ∈ Ri. We must show that d(x,Rj) = d(y,Rj) for all j. To do this, note that it is

enough to consider the cases that x
P≡y and x

Q≡y. Without loss of generality, suppose x
P≡y.

Now Rj can be partitioned into sets from P, say Rj = P1 ∪ P2 ∪ · · · ∪ Pp where each Pa ∈ P.
Thus

d(x,Rj) = d(x, P1) + · · · + d(x, Pp)

d(y,Rj) = d(y, P1) + · · · + d(y, Pp)

However, since x and y are in a common part of P it follows that d(x, Pa) = d(y, Pa) for all a, and
thus d(x,Rj) = d(y,Rj) as required. �

2For disjoint A, B ⊆ V (G), we write G[A, B] to stand for the bipartite graph with vertex set A∪B in which there
is an edge from an A vertex to a B vertex iff that edge exists in G.

3A bipartite graph G = (X ∪ Y, E) is biregular if any two vertices in X have the same degree and if any two
vertices in Y have the same degree (not necessarily the same as the degree of an X vertex).

4If P and Q are partitions of a common set S, we say that P is a refinement of Q provided every part of P is a
subset of some part in Q. When P is a refinement of Q we also say that P is finer than Q and the Q is coarser than
P .
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Theorem 6.3.2 Let G be a graph. Then G has a unique coarsest equitable partition.

Proof. Let P1, . . . ,Pk be a list of all of G’s equitable partitions; note that this list is nonempty
since the “all singletons” partition of V (G) is equitable. Let Q = P1 ∨ · · · ∨ Pk. By Lemma 6.3.1,
Q is the unique coarsest equitable partition of G. �

The set of equitable partitions of a graph is a join semilattice. Since this semilattice has a
minimum element (the all singletons equitable partition), it is a lattice; see exercise 7 on page 109.

Consider again the graphs in Figure 6.1 on page 94. We would like to say that they have
a common equitable partition. Let us define what we mean by this. Let G be a graph and let
P = {P1, . . . , Pp} be an equitable partition of V (G). The parameters of P are a pair (n,D) where
n is a p-vector whose ith entry is the size of Pi and D is a p × p matrix whose ij-entry is d(x, Pj)
for any x ∈ Pi. For the graphs in Figure 6.1, the partitions into black and white vertices both have
parameters

n =

[
6
6

]
and D =

[
3 1
1 2

]
.

We say that equitable partitions P and Q of graphs G and H have the same parameters if we can
index the sets in P and Q so that their parameters (n,D) are identical. In such a case we say
that G and H have a common equitable partition. If, in addition, P and Q are coarsest equitable
partitions of G and H, then we say that G and H have common coarsest equitable partitions.

The parameters (n,D) of an equitable partition P = {P1, . . . , Pp} of V (G) obey a few simple
relationships. First, since P is a partition of V (G), we have n1 + · · · + np = ν(G). Second, since
the number of edges from part Pi to part Pj equals the number edges from part Pj to part Pi, we
must have niDij = njDji.

Furthermore, suppose we order the vertices of G so that vertices in P1 are listed first, the
vertices in P2 second, etc. Then we can write the adjacency matrix A(G) as

A(G) =

⎡
⎢⎢⎢⎢⎣
A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
. . .

...
Ap1 Ap2 · · · App

⎤
⎥⎥⎥⎥⎦

where block Aij is size ni × nj and the sum of each row of Aij is Dij .

6.4 Iterated degree sequences

Another concept central to an understanding of fractional isomorphism is that of the iterated degree
sequence of a graph. Recall that the degree of a vertex v in G is the cardinality of its neighbor set:
d(v) = |N(v)|. The degree sequence of a graph G is the multiset5 of the degrees of the vertices,

d1(G) = {d(v) : v ∈ V (G)}.

(The reason for the subscript ‘1’ will become apparent shortly.)

5Usually, the degree sequence of a graph is a list of the degrees, often in descending numerical order. For our
purposes here, however, the multiset formulation is more useful.
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We can also define the degree sequence of a vertex to be the multiset of the degrees of its
neighbors:

d1(v) = {d(w) : w ∈ N(v)}.
For the graphs in Figure 6.1 on page 94, the white vertices have degree sequence {3, 3, 4} and the
black vertices have degree sequence {3, 4, 4, 4}.

The degree sequence sequence of G is simply the multiset of degree sequences of the vertices of
G:

d2(G) = {d1(v) : v ∈ V (G)}.
Likewise, the degree sequence sequence of a vertex is the multiset of degree sequences of its neighbors:

d2(v) = {d1(w) : w ∈ N(v)}.
For the graphs in Figure 6.1 the white vertices w and the black vertices b have

d2(w) =
{
{3, 3, 4}, {3, 3, 4}, {3, 4, 4, 4}

}
, and

d2(b) =
{
{3, 3, 4}, {3, 4, 4, 4}, {3, 4, 4, 4}, {3, 4, 4, 4}

}
.

There is, of course, no reason to stop here. In general, define:

d1(G) = {d(v) : v ∈ V (G)},
d1(v) = {d(w) : w ∈ N(v)},

dk+1(G) = {dk(v) : v ∈ V (G)}, and

dk+1(v) = {dk(w) : w ∈ N(v)}.
Finally, we may define the ultimate degree sequence of a vertex v or a graph G to be the infinite

lists:

D(v) = [d1(v), d2(v), . . .] , and

D(G) = [d1(G), d2(G), . . .] .

Notice that for the example graphs of Figure 6.1 on page 94 we have D(H) = D(G). Indeed,
the equivalence between having a fractional isomorphism, having a common coarsest equitable
partition, and having the same ultimate degree sequence is the main theorem about fractional
isomorphism.

6.5 The main theorem

Theorem 6.5.1 Let G and H be graphs. The following are equivalent.

(1) G ∼=f H.

(2) G and H have a common coarsest equitable partition.

(3) G and H have some common equitable partition.

(4) D(G) = D(H).
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Proof. Let G and H be graphs on n vertices with disjoint vertex sets V (G) = {v1, . . . , vn} and
V (H) = {w1, . . . , wn}. Let A and B denote their respective adjacency matrices.

We first show (1)⇒ (3). We use that to prove (1)⇒ (2), while (2)⇒ (3) is trivial. From there,
we go on to show (3)⇒ (1), (3)⇒ (4), and (4)⇒ (3).

(1)⇒ (3): Suppose G ∼=f H and let S be doubly stochastic with AS = SB. By suitably renaming
the vertices ofG and/orH, we may assume that S has block structure S = S1⊕· · ·⊕Ss where each Si

is indecomposable (and therefore, by Proposition 6.2.1 on page 97, each Sk is strongly irreducible).
The matrix S induces partitions on the vertices of G and H as follows. Let PG = {V1, . . . , Vs} be
the partition of G in which vi and vj are in the same part just when indices i and j both fall inside
the scope of the same Sk. Let PH = {W1, . . . ,Ws} be the partition of H defined in the same way.

We show that PG and PH are equitable partitions with the same parameters.
We may partition the adjacency matrices A and B into blocks Aij and Bij following the parti-

tions PG and PH . The condition AS = SB can be expanded to read⎡
⎢⎢⎢⎢⎣
A11 A12 · · · A1s

A21 A22 · · · A2s
...

...
. . .

...
As1 As2 · · · Ass

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · Ss

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · Ss

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
B11 B12 · · · B1s

B21 B22 · · · B2s
...

...
. . .

...
Bs1 Bs2 · · · Bss

⎤
⎥⎥⎥⎥⎦ .

This can be rewritten more compactly as

AijSj = SiBij. (∗)

Transposing AS = SB yields StA = BSt, which can be expressed

St
iAij = BijS

t
j . (∗∗)

The vector dij(G) = Aij · 1 gives the number of edges from each vertex in Vi to all vertices in
Vj and the vector dij(H) = Bij · 1 gives the number of edges from each vertex in Wi to all vertices
in Wj. We are done once we show that dij(G) = dij(H) = c · 1 for some integer c.

To do this, multiply equations (∗) and (∗∗) on the right by the vector 1 to get

AijSj · 1 = SiBij · 1⇒ dij(G) = Sidij(H), and

St
iAij · 1 = BijS

t
j · 1⇒ St

idij(G) = dij(H).

We may now apply part (2) of Theorem 6.2.4 on page 98 to vectors dij(G) and dij(H) to conclude
that dij(G) = dij(H) = c · 1 as required.

(1) ⇒ (2): We have shown that (1) ⇒ (3). Further, we have shown that the blocks of S induce a
common equitable partition in the graphs G and H. We use this to show that (1)⇒ (2).

Suppose G ∼=f H and S is doubly stochastic with AS = SB. Let PG be the coarsest equitable
partition of G with parameters (n,D). It is enough to show that H has an equitable partition with
the same parameters.



104 Chapter 6. Fractional Isomorphism

Let PG = {V1, . . . , Vr} and assume that we have labeled the vertices of G so that the first n1

vertices of G are in V1, the next n2 vertices of G are in V2, etc.
Let Ri = (1/ni)Jni where ni = |Vi| and Jni is an ni × ni block of all ones. Put R = R1 ⊕R2 ⊕

· · · ⊕Rr. Note that R is doubly stochastic. Furthermore, because PG is an equitable partition, we
have that niDij = njDji, which we rearrange to read AR = RA.

Since AS = SB, we compute that ARS = RAS = RSB.
Next we claim that RS = R. We know that the indecomposable blocks of S correspond to a

(perhaps finer) equitable partition of G; thus we may write S = S1⊕S2⊕ · · ·⊕Sr where each Sk is
doubly stochastic (but not necessarily indecomposable) and has the same dimensions as Rk. Thus
RS = (R1S1)⊕ · · · ⊕ (RrSr) and RkSk = Rk because Rk is a scalar multiple of a matrix of all ones
and Sk is doubly stochastic.

Since we know that ARS = RSB, we now have AR = RB. We therefore know that R induces
an equitable partition in H with the same parameters as PG, and we are done.

(2)⇒ (3): Trivial.

(3) ⇒ (1): Suppose G and H have equitable partitions PG and PH with the same parameters
(n,D). Let PG = {V1, . . . , Vs}, PH = {W1, . . . ,Ws} labeled so that |Vi| = |Wi| = ni and so that
the number of edges from any vertex in Vi to Vj or from any vertex in Wi to Wj is Dij . Furthermore,
we may assume that the vertices of G are labeled so that the first n1 vertices are in V1, the next
n2 vertices are in V2, etc., and the same for H and W1,W2, . . ..

Let Si = (1/ni)Jni and let S = S1⊕ · · · ⊕Ss. Now just check that the doubly stochastic matrix
S satisfies AS = SB, hence G ∼=f H.

(3) ⇒ (4): Let PG = {V1, . . . , Vs} and PH = {W1, . . . ,Ws} be equitable partitions of G and H
with the same parameters. We want to show that D(G) = D(H). It is enough to show that for all
v,w ∈ Vi ∪Wi we have D(v) = D(w), i.e., dk(v) = dk(w) for all k. We do this by induction on k.

The basis case k = 1 follows from the fact that PG and PH are equitable partitions with the
same parameters. Suppose we know that for all v,w ∈ Vi ∪Wi we have dk−1(v) = dk−1(w). Now
dk(v) = {dk−1(x) : x ∈ N(v)} and dk(w) = {dk−1(y) : y ∈ N(w)}. But we know that the number
of neighbors of v and w in each part of the appropriate partition is the same, so by induction we
have dk(v) = dk(w).

(4) ⇒ (3): Suppose D(G) = D(H). Partition both G and H putting two vertices in the same
part if they have the same iterated degree sequence; call these partitions PG and PH . From the
vector D(v) we can read off how many neighbors of each type v has. It follows that PG and PH

are equitable with the same parameters. �

Some consequences

Theorem 6.5.1 on page 102 has some interesting consequences. We list them briefly here.

Let G and H be graphs. They are fractionally isomorphic just when their coarsest equitable
partitions have the same parameters. Thus we can test if G and H are fractionally isomorphic by
finding their coarsest equitable partitions (see exercise 12 on page 109) and then comparing the
parameters of the two partitions.
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Let P = {V1, . . . , Vp} and Q = {W1, . . . ,Wp} be coarsest equitable partitions of fractionally
isomorphic graphs G and H. We see from the proof of Theorem 6.5.1 that we may assume that the
doubly stochastic matrix S has the form S = (1/n1)Jn1 ⊕ · · · ⊕ (1/np)Jnp . Thus we may assume
that the linking graph is a disjoint union of complete bipartite graphs with uniform edge weights.

Further, if we partition the adjacency matrix A of G according to the coarsest equitable parti-
tion, i.e.,

A =

⎡
⎢⎣
A11 · · · A1p
...

. . .
...

Ap1 · · · App

⎤
⎥⎦

then we know that Aij is a 0,1-matrix with constant row sum dij (and constant column sum dji).
We can form all graphs fractionally isomorphic to G by the following operation: For every pair of
indices i, j with 1 ≤ i ≤ j ≤ p, replace Aij by any 0,1-matrix Cijof the same shape with the same
row and column sums (and replace Aji = At

ij with Ct
ij). This gives a complete description of the

fractional isomorphism class of a graph.

Let P = {V1, . . . , Vp} be the coarsest equitable partition of G. For any two vertices x, y in the
same part of P the number of walks of length k starting at x must equal the number of walks of
length k starting at y. Further, if G is fractionally isomorphic to H, then for any vertex z linked
to x, the number of walks starting at z of length k (in H) must equal the the number of length k
walks (in G) starting at x.

Let w(k) denote the vector of the number of walks of length k starting anywhere in G. Note
that w(k) = Ak · 1. If G is connected, Ak · 1 tends to the eigendirection corresponding to the
largest eigenvalue λ of A. Thus for any vertex x, the number of walks of length k starting at x is
asymptotic to cλk for some positive constant c. (If the graph is not connected, the number of walks
of length k out of a vertex grows like λk where λ is the maximum eigenvalue of the component of
the graph containing the vertex.)

We have thus proved the following.

Proposition 6.5.2 If G ∼=f H then the maximum eigenvalues of G and H are the same. �

Note that fractionally isomorphic graphs need not be cospectral; see exercise 10 on page 109.

6.6 Other relaxations of isomorphism

The relation G ∼= H is equivalently expressed in matrix notation as AP = PB or A = PBP t where
P is a permutation matrix; the equivalence follows from the fact that P t = P−1, i.e., permutation
matrices are real orthogonal matrices. However, it is not necessarily the case that St = S−1 for a
doubly stochastic matrix. Thus the condition that A = SBSt for some S is not equivalent to the
condition that AS = SB for some S.

Define a relation → on square matrices by A → B provided A = SBSt for some doubly
stochastic matrix S. Furthermore, let us write A ↔ B provided A = SBSt and B = StAS for
some doubly stochastic matrix S.

Surprisingly, the relations → and ↔ on adjacency matrices are the same and are equivalent to
isomorphism!

Theorem 6.6.1 Let G and H be graphs with adjacency matrices A and B. The following are
equivalent.
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(1) G ∼= H.

(2) A↔ B.

(3) A→ B and B → A.

(4) A→ B.

Note that the relations → and ↔ are not the same for general square matrices and, in general,
→ is not an equivalence relation. For example, let I be a 2×2 identity matrix and let B = 1

2J2, the
2× 2 matrix all of whose entries are 1/2. Then A→ B but B �→ A and A↔� B. In Theorem 6.6.1
the equivalences hold because the entries of the matrices are in {0, 1}.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) are all trivial. We show (4)⇒ (1).
Recall the material on Kronecker product (see page 99). The relation A → B can be restated

as A = FS,S(B) for some doubly stochastic matrix S. Let S =
∑

i αiPi be a Birkhoff decomposition
of S. Apply part (3) of Theorem 6.2.4 on page 98 and we have that A = FPi,Pj(B) for all i, j. In
particular, if we take i = j we have A = PiBP

t
i and therefore G ∼= H. �

Theorem 6.6.1 gives an interesting approach to checking if two graphs are isomorphic. One can
check if the following system of quadratic equations, linear equations, and linear inequalities hold:

A = SBSt,

S · 1 = 1,

St · 1 = 1, and

S ≥ 0.

Of course, checking the feasibility of a general system of quadratic equations is a difficult problem.

Semi-isomorphism

We relaxed the equation A = PBP t by allowing P to stand for a doubly stochastic matrix instead
of a permutation matrix. A further relaxation is to allow the two instances of P to stand for
different doubly stochastic matrices. Let us say that graphs G and H (with adjacency matrices A
and B) are semi-isomorphic, G ∼=′ H, provided there are doubly stochastic matrices R and S so
that A = SBR.

It is not obvious that ∼=′ is an equivalence relation. However, this fact is a consequence of the
following.

Lemma 6.6.2 Let G and H be graphs with adjacency matrices A and B. Then G ∼=′ H if and
only if there are permutation matrices P and Q so that A = PBQ.

Proof. The (⇐) implication is trivial. For the (⇒) implication let G and H be semi-isomorphic
with A = SBR. We can write this as A = FS,Rt(B). Applying part (3) of Theorem 6.2.4 on page 98
we have A = FP,Qt(B) where P and Q are permutation matrices in Birkhoff representations of S
and R respectively. Thus A = PBQ as claimed. �
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If A = PBQ for permutation matrices P and Q, then we have

QAQt = Q(PBQ)Qt = (QP )B.

In other words, after suitably renaming the vertices of G, we see that the adjacency matrix of G
has the identical rows as the adjacency matrix of H, but perhaps in a different order. In other
words, the neighborhoods of G and H are the same. Let’s make this more precise.

Let G be a graph. For v ∈ V (G) its neighborhood is, of course, N(v) = {w ∈ V (G) : vw ∈
E(G)}. Define the neighborhood multiset of G to be the multiset N(G) = {N(v) : v ∈ V (G)}.

Thus graphs G and H are semi-isomorphic if and only if we can relabel their vertices so that
N(G) = N(H).

Semi-isomorphism lives somewhere between isomorphism and fractional isomorphism.

Theorem 6.6.3 Let G and H be graphs. Then

G ∼= H ⇒ G ∼=′ H ⇒ G ∼=f H.

Furthermore, neither implication may be reversed.

Proof. The first implication is trivial. For the second, let A and B be the adjacency matrices of
graphs G and H, and (using Lemma 6.6.2) let P and Q be permutation matrices with A = PBQ.
Taking transposes we have A = QtBP t. These equations can be rewritten

AQt = PB

AP = QtB.

Adding these equations and dividing by two gives AS = SB, where S = 1
2(P + Qt) is doubly

stochastic. Hence G ∼=f H. The fact that neither implication can be reversed is left to the reader
(exercise 11 on page 109). �

The semi-isomorphism of graphs can be related to the isomorphism of bipartite graphs as follows.
Let G be a graph with V (G) = {v1, . . . , vn}. Associate with G a bipartite graph B(G). The

vertices of B(G) are {x1, . . . , xn, y1, . . . , yn}. We have an edge xiyj in B(G) just when vivj ∈ E(G).

If A is the adjacency matrix of G, then the adjacency matrix of B(G) is

[
0 A
A 0

]
. Notice that for a

bipartite graph G, we have B(G) ∼= 2G (2 disjoint copies of G). See also the proof of Theorem 2.1.6
on page 16.

Theorem 6.6.4 Let G and H be graphs. Then G ∼=′ H if and only if B(G) ∼= B(H).

Proof. Let G and H be graphs with adjacency matrices A and B.
If G ∼=′ H then we can find permutation matrices P and Q so that A = PBQ. Check that

[
0 A
A 0

]
=

[
P 0
0 Qt

]
·
[

0 B
B 0

]
·
[
P t 0
0 Q

]

and therefore B(G) ∼= B(H).
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Now suppose B(G) ∼= B(H). Consider first the case that B(G) and B(H) are connected. Since

B(G) and B(H) are isomorphic there is a permutation matrix

[
P Q
R S

]
so that

[
0 A
A 0

]
=

[
P Q
R S

]
·
[

0 B
B 0

]
·
[
P t Rt

Qt St

]
.

Now an isomorphism between connected bipartite graphs preserves (or reverses) the bipartition
of the graph. Thus either P = S = 0 (and Q and R are permutation matrices) or Q = R = 0
(and P and S are permutation matrices). We know from the above matrix equation that A =
PBSt +QBRt. In case P = S = 0 we have A = QBRt and in case Q = R = 0 we have A = PBSt.
In either case, we conclude that G ∼=′ H.

If B(G) and B(H) are not connected, we simply repeat the above analysis for their pairs of
isomorphic components. �

The semi-isomorphism of graphs reduces to isomorphism of bipartite graphs. For bipartite
graphs, isomorphism and semi-isomorphism are the same.

Corollary 6.6.5 If G and H are bipartite, then G ∼= H ⇐⇒ G ∼=′ H.

Proof. G ∼=′ H ⇐⇒ B(G) ∼= B(H) ⇐⇒ 2G ∼= 2H ⇐⇒ G ∼= H. �

6.7 Exercises

1. Prove that ∼=f is an equivalence relation. (Hint: First prove that if S and T are n×n doubly
stochastic matrices, then so is ST .)

2. Let S be a doubly stochastic matrix. Let B(S) be the bipartite graph whose vertices corre-
spond to the rows and columns of S, in other words, V (B(S)) = {r1, r2, . . . , rn, c1, c2, . . . cn}.
Put an edge from ri to cj just when Sij �= 0.

Prove that B(S) has a perfect matching.

Use this to prove that S can be written as a convex combination of permutation matrices
(Theorem 6.2.3 on page 97).

3. Let v be a vector and let

X = {Pv : P is a permutation matrix}.

Thus Π(v) = 〈X〉, i.e., the convex hull of the points in X. Prove that X is the set of extreme
points of Π(v).

Restated, prove that if v =
∑
αiPiv where the αi’s are positive and sum to one, then Piv = v

for all i.

4. Prove that if G is a graph and T is a tree and if G ∼=f T , then G ∼= T .

5. Show that the eigenvalues and the degree sequences of the two graphs in Figure 6.2 on the
facing page are the same, but the graphs are not fractionally isomorphic.
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Figure 6.2. Two graphs with the same degree sequence and eigenvalues but that are not fractionally isomor-
phic.

6. Let P, Q, and R be partitions of a set S. Suppose R = P ∨Q. Choose x, y ∈ S. Prove that

x
R≡y if and only if there exist z1, . . . , zs ∈ S so that

x ≡ z1 ≡ z2 ≡ · · · ≡ zs ≡ y

where each ≡ is either
P≡ or

Q≡. Indeed, show that we may assume that the ≡ alternate
between

P≡ and
Q≡.

7. Let P = (X,≤) be a finite partially ordered set in which the join of any two elements is
defined. Suppose also that P has a minimum element (an element that is below all other
elements). Prove that the meet of any two elements of P is also defined and therefore P is a
lattice.

(The meet of x and y, denoted x ∧ y, is the greatest element that is below both x and y. A
lattice is a partially ordered set in which the meet and join of any two elements are defined.)

8. Let G be a graph and let P and Q be equitable partitions of G. Is it necessarily the case that
the coarsest common refinement of P and Q is equitable?

9. What is the relationship between the tensor product of vectors v ⊗ w and the Kronecker
product of matrices A⊗B?

10. In Proposition 6.5.2 on page 105 we learn that maximum eigenvalue is a fractional isomor-
phism invariant. Find a pair of fractionally isomorphic graphs that are not cospectral (have
the same eigenvalues).

11. Show that neither implication in Theorem 6.6.3 on page 107 can be reversed. That is (1) find
a pair of graphs that are semi-isomorphic, but not isomorphic, and (2) find a pair of graphs
that are fractionally isomorphic, but not semi-isomorphic.

12. Let G be a graph and let P = {V1, . . . , Vp} be a partition of V (G). Form a new partition P ′

as follows: two vertices x, y ∈ Vi will be in a common part of P ′ just when d(x, Vj) = d(y, Vj)
for all j.
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Consider the sequence P → P ′ → P ′′ → · · · beginning with the partition P = {V (G)}, i.e.,
the one-part partition of V (G).

Prove that the sequence leads to the coarsest equitable partition of G at which point all
further partitions are the same.

13. Is the problem of deciding whether two given graphs are fractionally isomorphic solvable in
polynomial time, or is this decision problem NP-complete?

14. Let G be a graph. Let G′ denote the bipartite graph formed from G by replacing each edge
of G by a path length 2. (In other words, we form G′ from G by subdividing each edge of G.)

Prove that G ∼= H ⇐⇒ G′ ∼= H ′.

Conclude that the problem of recognizing a pair of isomorphic graphs is polynomially equiv-
alent to the problem of recognizing a pair of semi-isomorphic graphs.

15. Let G be a graph with adjacency matrix A. A fractional automorphism of G is a doubly
stochastic matrix S so that AS = SA.

Prove that the set of fractional automorphisms of G forms a semigroup under matrix multi-
plication.

6.8 Notes

This chapter is based largely on the paper [151] by Ramana, Scheinerman, and Ullman. The notions
of fractional isomorphism and equitable partitions can be traced back to the work of Brualdi [32],
Leighton [116], McKay [130], Mowshowitz [135], and Tinhofer [177].

For background on Theorem 6.2.2 on page 97, commonly known as the Perron-Frobenius The-
orem, see [95] and [96]. Theorem 6.2.4 on page 98 is due to Hardy, Littlewood, and Pólya [84]. See
also Rado [150] as well as the book by Marshall and Olkin [128].

The graphs in Figure 6.2 on the preceding page are courtesy of Allen Schwenk.
Armed with the notion of fractional isomorphism, one can seek to prove a fractional version

of the reconstruction problem; see the survey articles by Bondy [24] or Nash-Williams [139] for an
overview. The fractional reconstruction problem is tantamount to the reconstruction of iterated
degree sequences. This was considered by Manvel [127] and remains an open problem.

The computational complexity of graph isomorphism is unknown; clearly the problem is in NP,
but it is not known if it is NP-hard or polynomial-time solvable. Booth and Colbourn [27] show
that checking if bipartite graphs are isomorphic is just as hard as checking if general graphs are
isomorphic. Thus the semi-isomorphism problem is again as hard as graph isomorphism. However,
determining if two graphs are fractionally isomorphic is polynomial-time solvable.
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Fractional Odds and Ends

7.1 Fractional topological graph theory

Topological graph theory deals with finding “best” drawings of graphs on various surfaces. One
may wish to minimize the genus of the surface, or the number of crossings. Or one may seek to
decompose the graph into a minimum number of planar subgraphs. These ideas correspond to the
graph invariants known as genus, crossing number, and thickness. We consider fractional analogues
of each.

Fractional genus

The genus g(G) of a graph G is the smallest genus of an oriented surface on which G can be
embedded. Planar graphs have genus 0, nonplanar graphs that are embeddable on the torus have
genus 1, and so forth. In searching for an interesting fractional analogue of this notion, one is led
naturally to the following: Write tG for the graph composed of t disjoint copies of G, and then
define the fractional genus gf (G) of a graph G by limt→∞ g(tG)/t. Unfortunately, this definition
collapses completely, yielding gf = g for all graphs, owing to the following.

Theorem 7.1.1 The genus of a graph is the sum of the genera of its components. �

Thus
gf (G) = lim

t→∞
g(tG)
t

= lim
t→∞

tg(G)
t

= g(G).

The situation for nonorientable genus is more complicated. The nonorientable genus of a nonori-
entable surface is the number of crosscaps one must add to a sphere to achieve that surface. The
surface with nonorientable genus 1 is called the projective plane. The nonorientable genus of a
graph G, denoted g̃(G), is the least nonorientable genus of a nonorientable surface upon which G
embeds. The fractional nonorientable genus of G is, of course,

g̃f (G) = lim
t→∞

g̃(tG)
t

.

The nonorientable analogue of Theorem 7.1.1 fails. For example, g̃(K7) = 3, but g̃(2K7) = 5 �=
3 + 3.

It is known that g̃(G) ≤ 2g(G) + 1 for any graph G, but no lower bound can be given on g̃(G)
in terms of g(G) as there are graphs of arbitrarily high genus that embed on the projective plane
(so g(G) is large with g̃(G) = 1). Of course, g(G) = 0 if and only if g̃(G) = 0 if and only if G is
planar.

Graphs G for which g̃(G) = 2g(G) + 1 are called orientably simple. The relationship between
g̃(tG) and g̃(G) depends on whether G is orientably simple.

111
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Theorem 7.1.2 Let G be a graph and let t be a positive integer. Then g̃(tG) = t(g̃(G)− 1) + 1 in
case G is orientably simple, and g̃(tG) = tg̃(G) otherwise. �

This gives the following corollary.

Corollary 7.1.3 Let G be a graph. Then g̃f (G) = g̃(G) − 1 in case G is orientably simple, and
g̃f (G) = g̃(G) otherwise. �

Fractional crossing number

Let G be a graph. If G is planar, then it can be drawn in the plane without edge crossings.
Otherwise any drawing of G must have crossings. The crossing number of G, denoted x(G), is the
minimum number of crossings in any drawing of G.

There is a natural way to fractionalize the crossing number.
Let t ·G denote the multigraph formed from G by replacing each edge by t parallel copies.
Let xt(G) = x(t ·G). Note that x1(G) = x(G) and that xt(G) ≤ t2x(G) by simply drawing t ·G

with each edge replaced by t nearly identical curves. Each crossing in the old drawing becomes t2

crossings in the new.
Let xf (G) = limt→∞ xt(G)/t2. The existence of this limit is guaranteed by the following result,

from which it follows also that xf (G) is nothing more than x(G).

Theorem 7.1.4 For any graph G and any positive integer t, xt(G) = t2x(G).

Proof. Prepare a drawing of t ·G with the fewest possible crossings, say k = xt(G) = x(t ·G). We
know that k ≤ t2x(G).

Define a selection S of t · G to be a copy of G formed by taking one edge from each family of
parallel edges. Clearly there are tm possible selections where m = |E(G)|. A crossing X is a pair
of edges of t · G that cross. A crossing X is said to belong to a selection S provided both edges
in X are in S. Finally, let Σ denote the set of all ordered pairs (X,S) where X is a crossing that
belongs to a selection S. We ask, What is the cardinality of Σ? We count in two different ways:

• |Σ| ≥ tmx(G): For each selection S there are at least x(G) crossings belonging to that
selection.

• |Σ| = ktm−2. For each of the k = x(t ·G) crossings X in the drawing of t ·G there are tm−2

selections that include the edges in X (since we have chosen the two edges in X but the other
m− 2 edges may be chosen freely).

Therefore
tmx(G) ≤ ktm−2

and so k ≥ t2x(G) as required. �

Fractional thickness

The thickness of a graph G, denoted θ(G), is the minimum number of planar graphs whose (edge)
union is G. In other words, if G = (V,E) we seek to decompose E = E1∪E2∪· · · ∪Ek so that each
(V,Ei) is a planar graph. The least k for which such a decomposition is possible is the thickness.

In hypergraph language, given a graph G = (V,E), form a hypergraph H whose vertices are
the edges of G. A collection F of edges of G (vertices of H) form a hyperedge just when (V, F ) is
planar. Then the thickness of G is just the covering number of H, i.e., θ(G) = k(H).
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We therefore define the fractional thickness of G to be θf (G) = kf (H).
Note that (fractional) thickness is much like (fractional) arboricity (see Chapter 5), but the

hypergraph H defined above does not necessarily have a matroid structure; see exercise 1 on
page 128. However, the following is clear.

Lemma 7.1.5 For any graph G we have θ(G) ≤ Υ(G) and θf (G) ≤ Υf (G).

Proof. Decomposing G into forests certainly decomposes G into planar subgraphs. �

For complete graphs Kn the following result is known.

Theorem 7.1.6 For n �= 9, 10 we have θ(Kn) = �(n + 7)/6�, but θ(K9) = θ(K10) = 3. �

For fractional thickness we know the following.

Theorem 7.1.7 For all n ≥ 3 we have θf (Kn) =
(n
2

)
/(3n − 6).

Proof. Note thatKn is edge-transitive, hence its associated hypergraph is vertex-transitive. There-
fore we may apply Proposition 1.3.4 on page 5. Since a maximum planar subgraph of Kn has 3n−6
edges, the result follows. �

The reader is invited to verify (exercise 2 on page 128) that for all n ≥ 3 we have θ(Kn) =
�θf (Kn)� except for n = 9, 10.

7.2 Fractional cycle double covers

Let G be a graph. A cycle double cover (CDC, for short) for G is a family (i.e., a multiset) of cycles
in G with the property that every edge of G is in exactly two members of the family. Clearly, if G
has a cut edge then no CDC of G is possible. However, it is believed that all other graphs admit a
CDC.

Conjecture 7.2.1 (CDC) Every 2-edge-connected graph has a cycle double cover. �

If every block of a graph has a cycle double cover, then these covers, taken together, give a CDC
for the entire graph. Thus, to prove the CDC conjecture, it is enough to show that all 2-connected
graphs admit CDCs.

It is easy to check (exercise 3 on page 128) that if a graph is Eulerian, then it has a CDC.
The CDC conjecture is related to graph embedding. Let G be a 2-connected planar graph.

Then every face of (an embedding of) G is a simple cycle and every edge of G is in exactly two
faces. Thus the facial cycles of G form a cycle double cover, and hence the CDC conjecture is true
for planar graphs. For a general 2-connected graph G, if G embeds on a surface S so that every
face is bounded by a simple cycle of G, then the same argument works.

Because the cycle double cover problem is a covering problem, it admits a natural fractional-
ization. Let G be a graph and let M be a matrix whose rows are indexed by the edges of G and
whose columns are indexed by the cycles of G. Let the i,j-entry of M be a 1 in case the ith edge
lies in the jth cycle of G, and 0 otherwise. Then a CDC corresponds to a nonnegative, integer
vector x so that Mx = 2 (where 2 stands for a vector of all 2s). To fractionalize, we simply drop
the integrality condition.

Stated another way, a fractional cycle double cover of G assigns a (nonnegative, real) weight to
every cycle of G so that the sum of the weights of the cycles containing any given edge is exactly
two. The natural fractional version of the CDC conjecture is true.
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Theorem 7.2.2 Every 2-edge-connected graph has a fractional cycle double cover.

Proof. By results of Fan [57] and Jaeger [101], every 2-edge-connected graph has a cycle k-fold
cover for all even numbers k ≥ 4. In particular, consider a cycle quadruple cover and assign each
cycle to have weight exactly one-half its multiplicity in the quadruple cover. This gives a fractional
cycle double cover of the graph. �

Indeed, this proof shows that every 2-edge-connected graph has a fractional cycle double cover
using weights that are either integers or half integers. Because we can divide the cycle weights by
(another) factor of 2, the fact that we are creating a double cover becomes somewhat irrelevant.
We might just as well consider fractional cycle covers (no “double”): weightings of cycles so that
the sum of the weights of the cycles containing any given edge must be exactly 1. Thus, every
2-edge-connected graph has a fractional cycle cover. (Fractional cycle covers are an appropriate
generalization of fractional Euler tours; see exercise 13 on page 28.)

Bondy [25] poses a conjecture that is stronger than the cycle double cover conjecture.

Conjecture 7.2.3 (Strong CDC) Every 2-edge-connected graph on n vertices has a cycle double
cover using at most n− 1 cycles. �

The appropriate fractionalization of this conjecture would be that every 2-edge-connected graph
on n vertices has a fractional cycle double cover in which the total weight of the cycles is at most
n− 1. This fractionalized version is an open problem.

7.3 Fractional Ramsey theory

The Ramsey number r(k, l) is the smallest integer n such that every graph G on n vertices has
either α(G) ≥ k or ω(G) ≥ l. Few exact values for r(k, l) are known, although the values are known
to grow exponentially with respect to k+ l. See [78] for a thorough introduction to Ramsey theory.

We define the fractional Ramsey number rf (x, y) to be the smallest integer n such that every
graph G on n vertices has either αf (G) ≥ x or ωf (G) ≥ y. (Remember that ωf (G) = χf (G) for all
graphs G.) We allow x and y to take on any real values with x, y ≥ 2.

Note that, in contrast to other fractional functions we have studied, fractional Ramsey numbers
are integers.

Observe that rf (x, y) is symmetric in its two arguments, since αf (G) = ωf (G) and ωf (G) =
αf (G).

It may come as a surprise that the fractional Ramsey number can be exactly computed for all
x and y, and moreover that it grows only polynomially with respect to x and y.

Theorem 7.3.1 For all x, y ≥ 2, we have

rf (x, y) = min
{⌈

(�x� − 1)y
⌉
,
⌈
(�y� − 1)x

⌉}
.

Proof. The case when either x or y equals 2 is left to the reader (see exercise 5 on page 128). We
proceed assuming that x, y > 2. Let

n = min
{⌈

(�x� − 1)y
⌉
,
⌈
(�y� − 1)x

⌉}
.
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We begin with the upper bound (rf (x, y) ≤ n). Let n1 = �(�x� − 1)y� and let G be any
graph on n1 (or more) vertices. If α(G) ≥ �x� then clearly αf (G) ≥ α(G) ≥ �x� ≥ x. Thus we
may suppose that α(G) ≤ �x� − 1. But then it follows (by Proposition 3.1.1 on page 30) that
ωf (G) = χf (G) ≥ n1/α(G) ≥ y as required. Likewise, if n2 = �(�y�− 1)x� then any graph G on n2

or more vertices has either αf (G) ≥ x or ωf(G) ≥ y. Thus rf (x, y) ≤ min{n1, n2} = n as required.

We now exhibit a graph with n − 1 vertices for which αf < x and χf < y. The graph we
use is of the form Ga,b as defined in Proposition 3.2.2 on page 32. Recall that α(Ga,b) = b and
ω(Ga,b) = �a/b� (exercise 5 on page 54).

Let a = n− 1, let b = �x� − 1, and let G = Ga,b. By Proposition 3.2.2 we have

ωf (G) = χf (G) = a/b

=
n− 1
�x� − 1

≤
⌈
(�x� − 1)y

⌉
− 1

�x� − 1

<
(�x� − 1)y
�x� − 1

= y

so ωf (G) < y as required.
We now consider αf (G) = ωf (G). SinceG is vertex-transitive, it follows (from Proposition 3.1.1)

that αf (G) = (n− 1)/ω(G). We claim that ω(G) = �y� − 1. To show this, we first observe that

ω(G) =
⌊
n− 1
�x� − 1

⌋
≤ n− 1
�x� − 1

=
a

b
< y,

and so ω(G) ≤ �y� − 1. To prove the opposite inequality, we first recall that

n− 1
�x� − 1

=
�min {(�x� − 1)y, (�y� − 1)x} − 1�

�x� − 1
.

We check that⌈
(�x� − 1)y − 1

⌉
�x� − 1

=

⌈
(�x� − 1) (�y� − 1 + (y − �y�+ 1)) − 1

⌉
�x� − 1

=
(�x� − 1)(�y� − 1) +

⌈
(�x� − 1)(y − �y�+ 1)

⌉
− 1

�x� − 1

≥ (�x� − 1)(�y� − 1)
�x� − 1

= �y� − 1.

Similarly, we also check that⌈
(�y� − 1)x− 1

⌉
�x� − 1

=

⌈
(�y� − 1) (�x� − 1 + (x− �x�+ 1)) − 1

⌉
�x� − 1
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=
(�y� − 1)(�x� − 1) +

⌈
(�y� − 1)(x − �x�+ 1)

⌉
− 1

�x� − 1

≥ (�y� − 1)(�x� − 1)
�x� − 1

= �y� − 1.

It follows that
n− 1
�x� − 1

≥ �y� − 1,

and so
ω(G) =

⌊
n− 1
�x� − 1

⌋
≥ �y� − 1

as claimed.

We conclude that

αf (G) =
n− 1
ω(G)

=
n− 1
�y� − 1

<
(�y� − 1)x
�y� − 1

= x.

Thus αf (G) < x and ωf (G) < y, so rf (x, y) > n− 1. Above we showed rf (x, y) ≤ n and the result
follows. �

It is known that the usual Ramsey number r(k, k) grows exponentially with k and lies between
(roughly)

√
2

k
and 4k. By contrast, the fractional Ramsey number rf (k, k) grows at a merely

polynomial rate with k.

7.4 Fractional domination

A dominating set in a graph G is a set of vertices S such that every vertex in V (G) is either in
or adjacent to a vertex in S. The domination number γ(G) of a graph G is the size of a smallest
dominating set. (The problem of placing fire stations in an optimum way is a domination problem.)
A total dominating set in a graph G is a set of vertices S such that every vertex in V (G) is adjacent
to a vertex in S. The total domination number Γ(G) of a graph G is the size of a smallest total
dominating set.

These invariants can be viewed as the covering numbers of associated hypergraphs. Given a
graph G, let H be the hypergraph whose vertex set is V (G) and with, for each vertex v ∈ V (G),
a hyperedge consisting of the open neighborhood N(v) = {u ∈ V (G)|uv ∈ E(G)}. Then it is easy
to see that Γ(G) = k(H). Alternatively, if one creates a hyperedge for each closed neighborhood
N [v] = N(v) ∪ {v}, then γ(G) = k(H).

Dual to the notion of domination number is the closed neighborhood packing number π(G) of a
graph. This is the maximum number of disjoint closed neighborhoods in the graph. Similarly, the
dual to the total domination number is the maximum number Π(G) of disjoint open neighborhoods
in the graph.

The fractional analogues of these invariants may be obtained as the linear relaxation of the
associated integer programs, or as the fractional covering number of the associated hypergraphs,
or combinatorially as follows. Define a dominating function f to be any f : V (G) → [0, 1] with∑

u∈N(v) f(u) ≥ 1 for every v ∈ V (G). The fractional domination number γf (G) is the minimum
value of

∑
v∈V (G) f(v) (the weight of f), where the minimum is taken over all dominating functions
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f . Similarly one can define a total dominating function and the fractional total (!) domination
number Γf (G) by replacing closed neighborhoods with open ones.

Dual to the notion of a dominating function is the notion of a closed neighborhood packing
function, defined to be a function g that assigns a number to every vertex of G (or, more for-
mally, to every closed neighborhood of G, but this amounts to the same thing) in such a way that∑

u∈N(v) g(u) ≤ 1 for every v ∈ V (G). By the duality theorem, the fractional domination number
γf (G) is the maximum of

∑
v∈V (G) g(v) where the maximum is taken over all closed neighborhood

packing functions on G.
It follows directly from these definitions that γf (G) ≤ γ(G) ≤ Γ(G) and γf (G) ≤ Γf (G) ≤ Γ(G)

for any graph G. Considering the dual problem yields π(G) ≤ γf (G) and Π(G) ≤ Γf (G).
As a simple illustration of these ideas, we compute the various invariants on the complete graph

Kn. Any set consisting of a single vertex is a dominating set in Kn, so γ(Kn) = 1. A singleton
set is not a total dominating set, however. Any set consisting of two vertices is a total dominating
set, so Γ(Kn) = 2. It is clear that π(Kn) = Π(Kn) = 1. No dominating function f can have∑

v∈V (Kn) f(v) < 1, so γf (Kn) ≥ 1. But γf (G) ≤ γ(G) for any graph G, so γf (Kn) = 1. (An
alternate proof that γf (Kn) = 1 is to use duality to see that 1 = π(Kn) ≤ γf (Kn) ≤ γ(Kn) = 1.)
Finally, we obtain the minimizing total dominating function f by setting f(v) = 1/(n−1) for every
v ∈ V (Kn). Clearly,

∑
v∈V (Kn) f(v) = n/(n− 1), so Γf (Kn) ≤ n/(n− 1). One way to see that this

f is optimal is to consider any total dominating function g and to observe that

n =
∑

v∈V (G)

1 ≤
∑

v∈V (G)

∑
u∈N(v)

g(u) = (n− 1)
∑

v∈V (G)

g(v).

Dividing by n − 1 shows that no total dominating function can have smaller total weight than f .
Another way to see that f is optimal is to use the following theorem.

Theorem 7.4.1 If G has n vertices and is k-regular, then γf (G) = n/(k + 1) and Γf (G) = n/k.

Proof. The function f that assigns 1/(k+1) to every vertex of G is both a dominating function and
a closed neighborhood packing function and has weight n/(k+1). Thus this function is the minimum
weight dominating function and simultaneously the maximum weight closed neighborhood packing
function, and its weight n/(k + 1) is γf (G).

An identical argument works for the fractional total dominating function, with f assigning 1/k
to every vertex of G. �

As an application of Theorem 7.4.1 with k = 2, we consider the cycles Cn. Note that γf (Cn) =
n/3 and Γf (Cn) = n/2, while γ(Cn) = �n/3� and

Γ(Cn) =
{ �n/2� if n is odd, and

2�n/4� if n is even.

There are k-regular graphs on n vertices for every pair of numbers (k, n) with k ≥ 1, n ≥ k+ 1,
except when k and n are both odd. This gives an immediate way of constructing a graph G that
has fractional domination number a/b for arbitrary integers a ≥ b. If a is even, construct a (b− 1)-
regular graph on a vertices. If a is odd, construct a (2b − 1)-regular graph on 2a vertices instead.
Similarly, the function Γ takes on all rational numbers greater than 1.

The duality gap

Suppose the vertices of a graph G can be partitioned into blocks V1, V2, . . . , Vr in such a way that
one vertex in each Vi is adjacent to all the other vertices in Vi. Put another way, suppose G[Vi]
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contains as a spanning subgraph a star (i.e., K1,n for some n ≥ 0) for every i with 1 ≤ i ≤ r. In
this case the indicator function of the centers of those stars is both a dominating function and a
closed neighborhood packing function for G, and we are in the situation where the integer program
and its dual have the same optimum value. In this case, there is no duality gap, and we have
π(G) = γf (G) = γ(G). An example of this phenomenon is when G = C3k, where choosing every
third vertex around the cycle gives an optimal dominating set and an optimum closed neighborhood
packing simultaneously. Another example is when one vertex of G is adjacent to all the others, in
which case the partition of V (G) into one block meets the condition.

Even when such a partition of V (G) is not available, it may be that the duality gap vanishes.
Such is the case for trees.

Theorem 7.4.2 If T is a tree, then π(T ) = γ(T ).

Proof. Our proof is by induction on the number of vertices in T . If T has only one vertex, in fact
if T has no path of length 3, then π(T ) = 1 = γ(T ).

For the induction step, let T be any tree and let P be a longest path in T , with the vertices
of P in order v1, v2, v3, . . . , vr. Note that T − v2 can have only one component with more than
one vertex, since otherwise we violate the maximality of P . We consider two cases, depending on
whether v3 has degree 2 (with neighbors v2 and v4) or degree greater than 2.

Suppose that v3 has degree 2. Let T ′ be the component of T − {v2, v3} containing v4. Apply
the induction hypothesis to T ′ to obtain a dominating set S′ and a collection N ′ of disjoint closed
neighborhoods with |N ′| = π(T ′) = γ(T ′) = |S′|. Let S = S′ ∪ {v2} and N = N ′ ∪ {N [v2]}.
It is clear that S is a dominating set for T , that N is a neighborhood packing of T , and that
|S| = |S′|+ 1 = |N ′|+ 1 = |N |.

Now consider the alternative case, when v3 has degree greater than 2 in T . Let T ′ be the
component of T − v2 containing v3. Applying the induction hypothesis to T ′ yields as before a
dominating set S′ and a collection N ′ of disjoint closed neighborhoods with |N ′| = π(T ′) = γ(T ′) =
|S′|. The set S = S′ ∪ {v2} is clearly a dominating set for T . We now produce a neighborhood
packing of T of the same size. If N [v3] �∈ N ′, then put N = N ′∪{N [v1]}. If N [v3] ∈ N ′, let u be a
vertex adjacent to v3 but not equal to v2 or v4. The maximality of P implies that the neighborhood
of u contains, other than v3, only leaves of T . Since N [v3] ∈ N ′, neither N [u] nor N [v] for any of
the leaves v adjacent to u are in N ′. Set N = N ′ ∪ {N [v1], N [u]} − {N [v3]}. In either case, we
have |N | = |S|, and hence π(T ) = γ(T ). �

It is possible to generalize this result in several directions. The class of graphs for which π = γ
includes not only the class of all trees but also the class of all strongly chordal graphs. A graph
is chordal if it contains no induced cycle on more than 3 vertices. A graph is strongly chordal if it
is chordal and in addition contains no induced “trampoline”. A trampoline is the graph obtained
from an even cycle by coloring the vertices alternately black and white and adding an edge between
any two white vertices. (See Figure 7.1.)

Not every chordal graph has π = γ, and the trampoline G on 6 vertices (see Figure 7.5 on
page 124) is an example where π(G) = 1 but γ(G) = 2. Strongly chordal graphs, however, do
have π = γ. This fact follows easily from the following theorem, discovered independently by
Farber [58] and Iijima and Shibata [99]. The closed neighborhood matrix C(G) of a graph G is
the matrix whose ij entry is equal to 1 if i = j or vivj ∈ E(G) and 0 otherwise. In other words,
C(G) = I +A(G).

Theorem 7.4.3 A graph is strongly chordal if and only if its neighborhood matrix C(G) is totally
balanced. �
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Figure 7.1. The trampoline on 10 vertices.

Theorem 7.4.4 If G is strongly chordal, then π(G) = γ(G).

Proof. The integer program that computes γ(G) is minx · 1 subject to C(G)x ≥ 1. By Theorem
7.4.3, C(G) is totally balanced. An appeal to Theorem A.3.4 on page 136 then gives the result. �

A tree is certainly strongly chordal, so Theorem 7.4.2 follows from Theorem 7.4.4.
The situation for the total domination number is similar. In this case we replace the notion of

a strongly chordal graph by the notion of a chordal bipartite graph. A graph is chordal bipartite
if it is bipartite and every cycle of length greater than 4 has a chord. Note that chordal bipartite
graphs are not in general chordal.

The total domination number is computed by the integer program minx·1 subject to A(G)x ≥ 1,
where A(G) is the usual adjacency matrix of G. The following theorem is due to Hoffman, Kolen,
and Sakarovitch [93].

Theorem 7.4.5 A graph is chordal bipartite if and only if A(G) is totally balanced. �

The next theorem follows in the same way as Theorem 7.4.4 above.

Theorem 7.4.6 If G is chordal bipartite, then Π(G) = Γ(G). �

Trees are chordal bipartite, so we obtain the following analogue to Theorem 7.4.2.

Corollary 7.4.7 If T is a tree, then Π(T ) = Γ(T ). �

The example of the cycles shows that the converses of most of the results in this section fail.
Although C6 is not strongly chordal, π(C6) = 2 = γ(C6). Although C8 is not chordal bipartite,
Π(C8) = 4 = Γ(C8). It seems to be a difficult problem to characterize those graphs for which π = γ
or Π = Γ.

Even when the duality gap does not vanish, i.e., when π < γ, it is possible for γf to equal either
γ or π. The simplest example known where π < γf = γ is the graph G pictured in Figure 7.2, due
to Fisher [64].

A simple example where π = γf < γ is the graph pictured in Figure 7.3.
We leave it as an exercise to compute the closed neighborhood packing number, the domination

number, and the fractional domination number of these examples to demonstrate that they are
indeed examples illustrating what we claim. (See exercises 7–9 on page 128.)
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Figure 7.2. A graph with π < γf = γ.

Figure 7.3. A graph with π = γf < γ.

Fractional Vizing conjecture

In 1963, Vizing [182] made the following conjecture concerning the domination number of Cartesian
products.

Conjecture 7.4.8 For all graphs G and H, γ(G ×H) = γ(G)γ(H).

Here we show the fractional analogue holds. To this end, we need to introduce yet another
graph product called the strong direct product, denoted G · H. The graph G · H has vertex set
V (G) × V (H) with an edge between (v1, w1) and (v2, w2) if any of the following hold:

(1) v1 = v2 and w1w2 ∈ E(H),

(2) v1v2 ∈ E(G) and w1 = w2, or

(3) v1v2 ∈ E(G) and w1w2 ∈ E(H).
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The Cartesian product G×H is the spanning subgraph of the strong direct product G·H consisting
of edges of type (1) and (2).

The strong direct product is a natural one in the study of domination, because dominating sets
lift naturally to this product. To be precise, if S ⊆ V (G) is a dominating set for G and T ⊆ V (H)
is a dominating set for H, then S × T is a dominating set for G ·H. (Note that the same assertion
cannot be made about the Cartesian product G×H.) It follows that

γ(G ·H) ≤ γ(G)γ(H) (7.1)

Also
γ(G ·H) ≤ γ(G×H), (7.2)

since removing edges from a graph cannot make it easier to dominate. Vizing’s conjecture asserts
that inequality (7.1) is stronger than inequality (7.2).

The fractional analogue of Vizing’s conjecture follows from LP-duality.

Theorem 7.4.9 For all graphs G and H, γf (G×H) ≥ γf (G)γf (H).

Proof. If f is a dominating function for G and g is a dominating function for H, then the “product
lifting” defined by h(v,w) = f(v)g(w) is easily seen to be a dominating function for G · H. If f
and g are further assumed to be optimal, then the total weight of h is∑

(v,w)∈V (G·H)

h(v,w) =
∑

v∈V (G)

∑
w∈V (H)

f(v)g(w) = γf (G)γf (H).

We therefore obtain γf (G ·H) ≤ γf (G)γf (H), the fractional analogue of inequality (7.1).
The opposite inequality comes from duality. If f is now taken to be a closed neighborhood

packing function for G and g is taken to be a closed neighborhood packing function for H, then
h(v,w) = f(v)g(w) is a closed neighborhood packing function for G ·H. This allows us to obtain
an inequality for the fractional closed neighborhood packing number of G · H exactly as in the
previous paragraph, but (critically) with the inequality reversed, since the closed neighborhood
packing number is a maximization parameter. By LP-duality, this gives γf (G ·H) ≥ γf (G)γf (H).

Hence γf (G ·H) = γf (G)γf (H). Since the fractional analogue of inequality (7.2), namely that
γf (G ·H) ≤ γf (G×H), follows again from the simple fact that G×H is a subgraph of G ·H, we
obtain our result. �

7.5 Fractional intersection number

An intersection representation of a graph G = (V,E) is an assignment of a set Sv to each vertex
v ∈ V so that uv ∈ E if and only if Su ∩ Sv �= ∅. It is not hard to see that every graph has an
intersection representation: Let Sv be the set of edges incident at v.

We have made no assumption on the structure of the sets Sv. If, however, we require that the
sets Sv be intervals on the real line, then not all graphs admit such interval representations. For
example, C4 cannot be represented as the intersection graph of real intervals. The intersection
graphs of real intervals are known as interval graphs.

In this section, we consider intersection representations by finite sets. In this case, we define the
size of an intersection representation v �→ Sv to be the cardinality of the union of the sets assigned
to vertices, i.e., ∣∣∣∣∣

⋃
v∈V

Sv

∣∣∣∣∣ .
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The intersection number of G, denoted I(G), is the smallest size of an intersection representation
of G. Clearly, I(G) ≤ ε(G).

Alternatively, we can express I(G) as a covering number. Define a hypergraph H whose vertices
are the edges of G and whose hyperedges correspond to the cliques of G, that is, given a clique of G,
the edges induced by that clique form a hyperedge of H. One checks that k(H) = I(G) (exercise 16
on page 129).

Proposition 7.5.1 The intersection number of a graph is the size of a smallest covering of the
edges of the graph by cliques. �

Thus, it is natural to define the fractional intersection number If (G) to be kf (H).
The fractional intersection number completes a “triangle” with the fractional chromatic and

matching numbers. The fractional matching number can be cast as a covering problem involving
vertices and edges. The fractional chromatic number can be cast as a covering problem involving
vertices and cliques.1 Thus we have studied vertex-edge and vertex-clique covering problems and
the “triangle” is completed by considering edge-clique covering problems, i.e., intersection number.

In this section we explore the gap between I(G) and If (G) considering first instances where
these invariants are the same, and then, instances where they are wildly different.

In case G is a bipartite or, more generally, a triangle-free graph, the only cliques in G are the
edges of G. Thus I(G) = If (G) = ε(G). We show that equality also holds for interval graphs and,
more generally, chordal graphs. Recall that a graph is called chordal provided it does not contain
Ck with k ≥ 4 as an induced subgraph. In a sense, chordal graphs are generalizations of trees:
trees have no cycles, whereas chordal graphs have no chordless cycles. Analogous to leaves in trees,
chordal graphs have simplicial vertices: vertices whose neighborhoods are cliques.

Theorem 7.5.2 Every chordal graph has a simplicial vertex. �

We use the above result to prove the following.

Theorem 7.5.3 Let G be a chordal graph. Then I(G) = If (G).

Proof. The packing problem dual to intersection number is to find the maximum number of edges
in G no two of which are in the same clique. Here we present an algorithm that simultaneously
constructs a cover of E(G) by cliques and a packing of edges into cliques, and the covering and
packing have the same size. In other words, we show that p(H) = k(H) where H is the edge-clique
incidence hypergraph of G.

Consider the following algorithm that takes as input a chordal graph G. During the course of
this computation, we keep track of the “weight” of edges (either 0 or 1), the “weight” of various
cliques (again, 0 or 1), and a label on each edge (either “covered” or “uncovered”).

1. Initialize by setting all edge and clique weights to 0, and marking all edges “uncovered”. Let
G1 = G.

2. FOR i = 1 to |V (G)| − 1 DO:

(a) Let vi be a simplicial vertex of Gi, and let Si be the clique consisting of vi and all its
neighbors in Gi.

1More properly, fractional chromatic number is a covering problem involving vertices and independent sets (not
cliques), but the chromatic number of the complement of a graph deals with vertex-clique covering.
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(b) IF some edge of Gi incident with vi is marked “uncovered” THEN:

• Let clique Si have weight 1.
• Select an edge incident with vi that is marked “uncovered” and assign it weight 1.
• Mark all edges induced by Si “covered”.

(c) Let Gi+1 = Gi − vi.

3. Output the sum of the weights of the edges of G.

To complete the proof, one notices that at every step of the FOR loop the total weight on the
edges equals the total weight on the cliques. Further, by the end of the algorithm every edge is
marked “covered” and is, indeed, covered by some clique Si that was given weight 1. Thus the
set of cliques with weight 1 gives a covering of E(G). Finally, one checks that no clique of G can
contain two edges of weight 1 (since covered edges are never selected) and therefore edges of weight
1 form a packing of edges into the cliques of G. Thus the sum of the edge weights k(H) equals the
sum of the vertex weights p(H). �

Interval graphs form a subfamily of chordal graphs, so, naturally, it follows from Theorem 7.5.3
that I = If for interval graphs. However, a bit more can be said.

Theorem 7.5.4 If G is an interval graph, then If (G) = I(G). Moreover, if G has no isolated
vertices, then I(G) equals the number of maximal cliques in G.

To prove Theorem 7.5.4 we use the following result due to Helly [88].

Theorem 7.5.5 If a collection of real intervals has nonempty pairwise intersection, then the in-
tersection of all the intervals in the family is nonempty.

Proof. Exercise 18 on page 129. �

Proof (of Theorem 7.5.4). Let G be an interval graph with M maximal cliques. Since every edge
is in some maximal clique, we have If (G) ≤ I(G) ≤ M . Thus, it is enough to show M ≤ If (G).
To this end, fix an interval representation of G in which the endpoints of all intervals are distinct;
let Iv denote the interval assigned to v ∈ V (G).

Let S be a maximal clique of G. By the Helly property (Theorem 7.5.5), the intersection of all
intervals assigned to vertices in S is nonempty, and is therefore an interval, which we denote JS .
Note that JS is either (a) an interval assigned to a vertex x, i.e., JS = Ix, or (b) the intersection of
exactly two intervals assigned to vertices x and y, i.e., JS = Ix∩ Iy. See Figure 7.4 on the following
page. We choose an edge eS depending on which of these cases, (a) or (b), occurs. In case (a) let
eS be any edge incident with x, and in case (b) let eS = xy.

The map S �→ eS selects exactly one edge in each maximal clique. Further, the only maximal
clique that can contain eS is S because if eS were in some other clique T , then JS and JT would
intersect, implying that S ∪ T is also a clique, and thereby contradicting the maximality of S and
T . Thus the assignment S �→ eS is one-to-one and every clique of G contains at most one selected
edge. Thus the selected edges form a packing of edges into cliques, and therefore

M = p(H) ≥ pf (H) = If (G)

where H is the edge-clique hypergraph of G. �
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Figure 7.4. The intersection of pairwise intersecting intervals is either (a) one of the original intervals, or
(b) the intersection of exactly two of the intervals.

Figure 7.5. A chordal graph for which I = If = 3, but that has 4 maximal cliques.

Note that the stronger conclusion of Theorem 7.5.4 does not apply to chordal graphs: Figure 7.5
presents a chordal graph with I = If = 3 but that has 4 maximal cliques.

Theorems 7.5.3 and 7.5.4 describe situations in which intersection number and fractional inter-
section number are equal. One might ask: How different can these invariants be? The answer is:
Very.

Theorem 7.5.6 Let G = K(n1, n2, . . . , np) be a complete multipartite graph with part sizes n1 ≥
n2 ≥ · · · ≥ np. Then If (G) = n1n2.

Proof. Let the jth part of G be Aj with |Aj | = nj. The maximal cliques of G are formed by
selecting one vertex from each of the p parts. We form a fractional intersection representation of
G by assigning weight 1/(n3n4 · · · np) to every maximal clique. Note that an edge between parts i
and j is in exactly (

∏
nk)/(ninj) maximal cliques and receives total weight

n1n2

ninj
≥ 1.

Thus this weighting is a feasible fractional edge cover by cliques. Furthermore, the sum of the
weights on all cliques is precisely n1n2 and therefore If (G) ≤ n1n2.

On the other hand, if we weight the edges between parts A1 and A2 with weight exactly 1 and all
other edges with weight 0, then every clique contains total weight at most 1. This edge weighting is
therefore feasible for the dual problem and uses total weight equal to n1n2. Thus If (G) ≥ n1n2. �
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Theorem 7.5.6 on the facing page implies that the fractional intersection number of the gener-
alized octahedron graph K(2, 2, 2, . . . , 2) is exactly 4. However, we show next that the intersection
number of this graph goes to infinity as the number of parts increases.

Theorem 7.5.7 Let n be a positive integer and let G = K(2, 2, . . . , 2) be the complete multipartite
graph with n parts of size 2. Then I(G) ∼ lg n.

Proof. Label the vertices of G as x1, y1, x2, y2, . . . , xn, yn with xi �∼ yi.
Let U = {1, 2, . . . , 2t} and construct an intersection representation of G in which each vertex

of G is assigned a t-element subset of U . Note that there are
(2t

t

)
possible sets, so we take t just

large enough that
(2t

t

) ≥ 2n. This gives 2t = (1 + o(1)) lg n. The assignment is now quite simple.
Having chosen sets for x1, y1, . . . , xi, yi, we assign to xi+1 any as yet unassigned t-set of U and we
assign to yi+1 its complement. With this assignment, any two sets intersect unless they correspond
to a pair xi, yi. Thus we have I(G) ≤ 2t = (1 + o(1)) lg n.

For the lower bound, fix an intersection representation of G of smallest size and let I(G) = k.
We may assume that the representation chooses its subsets from [k] = {1, . . . , k}. Note that no
two vertices are assigned the same set (otherwise we would have a pair of adjacent vertices with
identical neighbor sets). Thus 2k ≥ 2n because all 2n vertices must receive distinct subsets of [k].
Thus I(G) = k ≥ lg n. �

7.6 Fractional dimension of a poset

In this section, we leave graph theory to illustrate how the fractional paradigm can be applied in
another part of combinatorics.

A partially ordered set (or poset for short) is a pair P = (X,≤) where X is a finite set, called
the ground set of P , and ≤ is a relation on X that satisfies

• (reflexivity) ∀x ∈ X, x ≤ x;
• (antisymmetry) ∀x, y ∈ X, (x ≤ y and y ≤ x)⇒ x = y; and

• (transitivity) ∀x, y, z ∈ X, (x ≤ y and y ≤ z)⇒ x ≤ z.
We write x < y if x ≤ y and x �= y. Further, we write x ≥ y or x > y provided y ≤ x or y < x
respectively. If either x ≤ y or y ≤ x we say x and y are comparable; otherwise, x and y are
incomparable. A subset C of X is called a chain provided any two elements in C are comparable.
A subset A of X is called an antichain provided any two distinct elements in A are incomparable.

A partially ordered set P = (X,≤) is called a linear or total order if any two elements in the
ground set X are comparable, in other words, if the entire ground set X is a chain.

Let P = (X,≤) be a partially ordered set and let L = (X,≤′) be a partially ordered set on the
same ground set. We say that L is a linear extension of P provided (1) L is a linear order, and
(2) if x ≤ y (in P ) then x ≤′ y (in L).

A realizer for a poset P is a family R = {L1, L2, . . . , Lt} of linear extensions of P with the
property that, for all x, y ∈ X, we have x ≤ y in P if and only if x ≤ y in every Li.

The dimension of a poset P , denoted dimP , is the smallest size of a realizer.
The dimension of a partially ordered set can be arbitrarily large. The following poset, denoted

Sn, is a standard example. Let n ≥ 2 be an integer. The ground set of Sn is {a1, a2, . . . , an, b1, b2, . . . , bn}.
The order relation of Sn can be described as follows. The a’s are pairwise incomparable, as are
the b’s. The only strict relations are those of the form ai < bj with i �= j. See Figure 7.6. The
dimension of Sn is n; see exercise 14 on page 129.



126 Chapter 7. Fractional Odds and Ends

Figure 7.6. The poset S4 has dimension 4 and fractional dimension 4.

The dimension of a poset can be described as the covering number of a hypergraph H. Let
P = (X,≤) be a poset, and let L be the set of all linear extensions of P . The vertices of H are all
the ordered pairs (x, y) with x and y incomparable. The hyperedges of H correspond to the linear
extensions of P . For L ∈ L, let EL consist of those ordered pairs (x, y) for which x < y in L. One
checks that dimP = k(H).

The fractional dimension of P , denoted dimfP , can therefore be defined as kf (H). We can
also define the fractional dimension as follows. Let t be a positive integer. A t-fold realizer of
P = (X,≤) is a multiset Rt = {L1, . . . , Lm} of linear extensions of P with the property that, for
all x, y ∈ X with x and y incomparable, there are at least t linear orders in Rt for which x < y and
at least t for which x > y. We also call t-fold realizers multirealizers.

Let dimt(P ) denote the smallest size of a t-fold realizer. Then dimfP = limt→∞(dimt P )/t.
For example, the fractional dimension of the standard example Sn is n; see exercise 14.

Let P = (X,≤) and let x ∈ X. The degree of x is the number of other elements in X to which
x is comparable. We can bound the dimension of a poset in terms of its maximum degree.

Theorem 7.6.1 Let P be a poset with maximum degree d. Then dimP ≤ 50d log2 d. �

For fractional dimension, the following holds.

Theorem 7.6.2 Let P be a poset with maximum degree d. If P is not an antichain, then dimf P ≤
d+ 1. �

Moreover, the standard example Sn has maximum degree n − 1 and fractional dimension n,
showing that the bound in Theorem 7.6.2 is the best possible.

Can dimension and fractional dimension be very different? The answer is yes. An interval
order is a partially ordered set arising from the left-to-right order of intervals on the real line. More
precisely, we say P = (X,≤) is an interval order provided we can assign to each x ∈ X a real
interval Ix so that x < y in P if and only if Ix is completely to the left of Iy. Interval orders can
have arbitrarily high dimension.

Theorem 7.6.3 Let k be a positive integer. Then there exists an interval order P with dimP =
k. �

By contrast, however, every interval order has small fractional dimension.

Theorem 7.6.4 Let P be an interval order. Then dimfP < 4.

To prove this, we need the following fact about interval orders.
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Theorem 7.6.5 Let P = (X,≤) be an interval order. Then for every partition X = A ∪ B there
exists a linear extension L = (X,≤′) of P with the property that for all a ∈ A and b ∈ B with a �> b
we have a <′ b. �

Informally stated, Theorem 7.6.5 asserts that for any partition A ∪ B of the ground set of an
interval order P we can make a linear extension in which all the elements in A are below all the
elements in B, except when an element of A is above an element of B in P .

Proof (of Theorem 7.6.4). Let P = (X,≤) be an interval order and let |X| = 2n. (We may
suppose |X| is even. If not, we may add another element to P that is below all the others. This
augmented poset is also an interval order and its fractional dimension is at least that of P .) We
build a multirealizer for P as follows. Let A ∪ B be a partition of X with |A| = |B| = n. Let
LA be a linear extension of P as described in Theorem 7.6.5. Let R be the multiset of all linear
extensions LA, as A varies over the subsets of X with n elements. For every incomparable pair of
elements (x, y), there are at least

(2n−2
n−1

)
members of R in which x < y. Also, |R| = (2n

n

)
, hence

dimfP ≤
(2n

n

)
(2n−2

n−1

) =
2n(2n− 1)

n2
< 4. �

Recently, Trotter and Winkler [179] have shown that the upper bound of 4 in Theorem 7.6.4 is
tight.

7.7 Sperner’s theorem: a fractional perspective

Let P = (X,≤) be a poset. A chain in P is a subset C ⊆ X in which any two elements are
comparable. Similarly, an antichain is a subset A ⊆ X in which any two distinct elements are
incomparable. The height of P is the maximum size of a chain in P and the width of P is the
maximum size of an antichain.

Another way to express these ideas is to consider the comparability graph of P : Let G(P ) be
the graph whose vertex set is X with an edge joining x and y just when x < y or y < x. Then a
chain in P is simply a clique in G(P ) and an antichain in P is an independent set. The height and
width of P are just the clique and independence number of G(P ).

We may define the fractional height and width of a poset to be the fractional clique and inde-
pendence numbers of the comparability graph of the poset. However, because comparability graphs
are perfect, fractional height and width reduce to their integer counterparts. Indeed, the equality
α(G(P )) = χ(G(P )) is a restatement of the following result of Dilworth [43].

Theorem 7.7.1 (Dilworth) The width of a poset equals the minimum size of a partition of the
poset into chains. �

Although the notions of fractional height and width yield nothing new, the fractional approach
is helpful in considering the following classical problem.

Let [n] = {1, 2, . . . , n} and let 2[n] denote the poset of all subsets of [n] ordered by containment.
The height of this poset is clearly n+1, but what of its width? Note that for each k with 0 ≤ k ≤ n,
the subsets of [n] of cardinality k form an antichain of size

(n
k

)
. The largest antichain of this sort

has size
( n
�n/2�

)
. Can a larger antichain be found? The answer is no [170].

Theorem 7.7.2 (Sperner) The width of 2[n] is
( n
�n/2�

)
.
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Proof. Form a hypergraph H whose vertices are the 2n subsets of [n] and whose hyperedges are
the maximal chains in 2[n], i.e., the chains of size n + 1. The width of 2[n] is exactly the covering
number k(H), which by Dilworth’s theorem equals kf (H). Note that H is edge-transitive (all
maximal chains in 2[n] look the same) so in a fractional covering of H we may assign all n! of them
the same weight w without loss of optimality. (See Proposition 1.3.4 on page 5 and exercise 4 on
page 12.) Choose A ∈ 2[n] with |A| = a. The total weight of all chains containing A is wa!(n− a)!.
The least w that gives a feasible fractional cover satisfies

w

⌊
n

2

⌋
!
⌈
n

2

⌉
! = 1,

which gives

kf (H) = n!w =
n!⌊

n
2

⌋
!
⌈

n
2

⌉
!

=

(
n

�n/2�

)
. �

7.8 Exercises

1. Let H be the hypergraph whose vertices are the edges of a graph G and whose hyperedges
correspond to the graph’s planar subgraphs. Thus θ(G) = k(H). Show by example that H
need not be a matroid.

2. Prove that for all n ≥ 3 we have θ(Kn) = �θf (Kn)� except for n = 9, 10.

3. Prove that if a graph has an Eulerian tour then it must have a cycle double cover.

4. Let k be a positive integer and let G be a graph. Call a family of cycles of a graph G a cycle
k-fold cover if every edge of G is in exactly k of the given cycles.

Prove that if k is odd, then G has a cycle k-fold cover iff G is Eulerian.

5. Show that for x ≥ 2 we have rf (x, 2) = x.

6. The fractional Ramsey number rf (x, y) as we have defined it is obviously integer-valued. Here
is another way to fractionalize the Ramsey number.

The notation n −→ (a, b) means that for any partition E(Kn) = A ∪B there must be either
a Ka on the A-edges or a Kb on the B-edges. Now r(a, b) is the least n for which n −→ (a, b)
is true.

Fractionalize this by defining z
∗−→ (x, y) to mean that if G = (V,E) is any graph with

ωf (G) ≥ z, then for any partition E = A ∪ B we have either ωf (V,A) ≥ x or ωf (V,B) ≥ y.
Let r∗(x, y) be the infimum of all z for which z ∗−→ (x, y) is true.

Prove that if x, y > 2 then r∗(x, y) = xy.

7. Compute π, γf , and γ for the icosahedron and the dodecahedron.

8. Compute π, γf , and γ for the graphs in Figures 7.2 and 7.3.

9. Show that no inequality holds between γ(G) and Γf (G) by finding two graphs G and H with
γ(G) < Γf (G) and with γ(H) > Γf (H).

10. Show that Γf (G) = 1 if and only if Δ(G) = n− 1.
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11. Generalize Theorem 7.4.1 on page 117 by showing that, for any graph G, n/(1 + Δ(G)) ≤
γf (G) ≤ n/(1 + δ(G)) and n/Δ(G) ≤ Γf (G) ≤ n/δ(G).

12. Find the domination number and the fractional domination number of the path Pn, the 2×n
grid Pn × P2, and the 3× n grid Pn × P3.

13. A block in a graph is a maximal 2-connected subgraph. A block graph is a graph every one of
whose blocks is complete. Show that π(G) = γ(G) for every block graph G.

14. For n ≥ 2 show that dimSn = dimfSn = n, where Sn is the standard example defined on
page 125.

15. Prove Theorem 7.6.2 on page 126 in the special case that P has height 2. (The height of a
poset is the maximum cardinality of a chain.)

Hint: Suppose there are n minimal elements. Build a multirealizer by taking all n! linear
orders on the minimal elements and place the maximal elements into these linear orders as
low as possible.

16. Prove that the intersection number of a graph equals the covering number of the edge-clique
incidence hypergraph of the graph.

17. A graph G is called cobipartite provided its complement, G, is bipartite. It is called locally
cobipartite if for every vertex v the subgraph of G induced by the neighbors of v, i.e., G[N(v)],
is cobipartite.

It is conjectured that if a graph is locally cobipartite then I(G) ≤ ν(G). Prove the fractional
version of this conjecture, i.e., if G is locally cobipartite, then If (G) ≤ ν(G).

18. Prove Theorem 7.5.5 on page 123.

7.9 Notes

For an introduction to topological graph theory see Gross and Tucker [80], Mohar and Thomassen
[133], Thomassen [176], or White and Beineke [188]. Theorem 7.1.1 on page 111 is a consequence
of a result of Battle, Harary, Kodama, and Youngs [11]. Theorem 7.1.2 is from [173] by Stahl and
Beineke. The history of Theorem 7.1.6 on page 113 is recounted in Thomassen [176], and in White
and Beineke [188]. The result is based largely on the work of Beineke and Harary [21].

The Cycle Double Cover Conjecture 7.2.1 on page 113 was first posed by Szekeres in 1973 and
independently by Seymour in 1979. Genghua Fan [57] has shown that every 2-edge-connected graph
admits a cycle sextuple cover, i.e., a family of cycles that includes each edge of G exactly 6 times.
Together with Jaeger’s [101] result, this means that every 2-edge-connected graph admits a cycle
k-fold cover for all even k ≥ 4. In case k is odd, a graph has a cycle k-fold cover if and only if it is
Eulerian. (See exercise 4.) Thus only the case k = 2 is open.

Paul Seymour [163] has proved a theorem on fractional directed cycle packing that is the frac-
tional analogue of a conjecture of Younger. Recently, Reed, Robertson, Seymour, and Thomas [153]
have proved this conjecture.

Theorem 7.3.1 and exercise 6 are from Jacobson, Levin, and Scheinerman [120], which also gives
partial results on the more-than-two-color case. In particular, if k ≥ 2 is an integer, one has

rf (k, k, . . . , k) =
kp+1 − 2kp + k

k − 1



130 Chapter 7. Fractional Odds and Ends

where p is the number of k’s.
The fractional domination number was first encountered in a paper by Farber [58]. There is by

now an extensive body of literature on domination, its relatives, and their fractional counterparts;
see the paper [111] by Domke, Fricke, Laskar, and Majumdar for an overview of these results.
Surveyed there are results not only on the domination number and the total domination number, but
also on an assortment of other parameters known as the upper domination number, the independent
domination number, the irredundance number, and the upper irredundance number, all of which
can be fractionalized. Theorem 7.4.1 on page 117 was first noticed by Domke [44]. Theorem 7.4.2
on page 118 is due to Meir and Moon [131]. Theorem 7.4.9 on page 121 is due to Fisher, Ryan,
Domke, and Majumdar [67].

It is an open problem to characterize those graphs G every one of whose maximal indepen-
dent sets contains α(G) elements. A fractional analogue is addressed in a paper by Currie and
Nowakowski [41], where there appears a characterization of those graphs every one of whose mini-
mal dominating functions attains the fractional domination number. For such graphs, the fractional
domination number can be computed in a greedy way: Begin by assigning weight 1 to every vertex
and then simply decrease the weights on vertices (taking the vertices in any order at all) making
certain to maintain a weight of at least one on every closed neighborhood. When the last vertex is
reached, the sum of all the weights will be γf (G).

The material on fractional intersection number is due to Scheinerman and Trenk [159]. Exer-
cise 17 on the preceding page, due to Chi Wang, is a weakened version of a conjecture of Opsut [140].

For an all-encompassing introduction to dimension theory for partially ordered sets, see Trotter’s
book [178]. Theorem 7.6.1 is due to Füredi and Kahn [72]. The log-squared term in this bound might
not be best possible, but can’t be replaced by anything less than a log term; see Erdős, Kierstead,
and Trotter [54]. The results on fractional dimension are from Brightwell and Scheinerman [30],
and Felsner and Trotter [61]. Theorem 7.6.2 can be improved by defining the up-degree and down-
degree of x to be the number of elements strictly greater than x and less than x, respectively. Let
ΔU and ΔD be the maximum up and down degrees of a poset. Then Felsner and Trotter [61] show
that dimfP ≤ 1 + min {ΔU(P ),ΔD(P )}.

For more information about interval orders and graphs, see Fishburn’s book [62]. Theorem 7.6.3
on page 126 is due to Bogart, Rabinovitch, and Trotter [22]; see also Füredi, Hajnal, Rödl and
Trotter [71]. Theorem 7.6.5 is from a paper by Rabinovitch [149].

The proof we present of Sperner’s theorem 7.7.2 on page 127 is a fractionalized version of
Lubell’s proof in [125]. See also the monograph [7] by Anderson.



Appendix A

Background

This appendix has two purposes: to record basic notation (especially in graph theory) and to give
a brief introduction to mathematical programming and subadditivity.

We assume our reader has a basic grounding in discrete mathematics, especially in graph theory.
Because graph theory is a relatively young discipline, its notations are not 100% standardized. Here
we simply list basic notation used in this book. Fundamental graph theory definitions are not always
given; the reader should consult a text such as Berge [15], Bondy and Murty [26], Chartrand and
Lesniak [35], Harary [83], or West [187].

We also give a brief introduction to linear (and integer) programming. Readers not familiar
with basic LP theory (especially duality) should read this section before beginning to read the text.
For a more thorough introduction, see a text such as Chvátal [38] or Schrijver [160].

The subadditivity lemma from analysis is developed in §A.4. Again, readers not conversant
with this tool should read this section carefully before beginning the main portion of this book.

A.1 Basic graph theory and notation

A graph is a pair G = (V,E) where V is a finite set and E is a set of 2-element subsets of V . Thus,
for us, a graph is what is commonly called a simple graph, i.e., a graph without loops or parallel
edges. A multigraph may have loops and parallel edges.

We abbreviate {v,w} ∈ E(G) to vw ∈ E(G) or sometimes v ∼ w. In this case we say that v
and w are adjacent. When e = vw, we may write v ∈ e and say that v and e are incident. We use
ν(G) and ε(G) to denote |V (G)| and |E(G)| respectively.

The following is a list of most of the notation used in this book. When a set of numbers
follows an item, these numbers refer to the pages on which the relevant concepts are introduced or
discussed.

If a symbol in this book appears with the subscript f , it is the fractional analogue of the
unsubscripted symbol.

• α(G): independence number of G.

• A(G): adjacency matrix of G.

• B(G): bipartite split of G. {17, 107}
• Cn: cycle on n vertices.

• c(G): number of components of G. {22}
• χ(G): chromatic number of G. {30}
• χ′(G): edge chromatic number of G. {57}
• χ′′(G): total chromatic number of G. {63}
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• d(v): degree of a vertex v.

• dk(v): iterated degree sequence of v. {102}
• d(v, S): number of edges from v to S. {100}
• d̄(G): average degree in G. {73}
• δ(G): minimum degree of a vertex in G.

• Δ(G): maximum degree of a vertex in graph G.

• D(v), D(G): ultimate degree sequence of a vertex v, of a graph G. {102}
• ∂v, ∂S, ∂H: set of edges with exactly one end at v, in S, in V (H). {59}
• dimP : dimension of poset P . {125}
• E(G): edge set of G.

• ε(G): number of edges in G, i.e., |E(G)|.
• η: orthonormal representation invariant. {41}
• g(G), g̃(G): genus, nonorientable genus of G. {111}
• γ(G), Γ(G): domination number, total domination number of G. {116}
• i(G): number of isolated vertices in G. {18}
• I(G): intersection number of G. {121}
• J : matrix of all ones. {94}
• Kn: complete graph on n vertices.

• Kn,m: complete bipartite graph.

• K(n1, n2, . . . , np): complete multipartite graph.

• k(H): covering number of hypergraph H. {1}
• κ′(G): edge connectivity of G. {25}
• L(G): line graph of G.

• Λ(G): lower bound for edge chromatic number. {58}
• M(G), M(H): vertex-edge incidence matrix of graph G, hypergraph H. {1, 15}
• M(G): matching polytope of G. {59}
• M(G): cycle matroid of G. {74}
• M1(G): near acyclic matroid of G. {84}
• μ(G), μ(H): matching number of graph G, of hypergraph H. {7, 14}
• mad(G): maximum average degree of G. {73}
• N(v), N [v]: open, closed neighborhood of vertex v. {116}
• ν(G): number of vertices in G, i.e., |V (G)|.
• o(G): number of odd components in G. {18}
• ω(G): clique number of G.
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• Pn: path on n vertices.

• p(H): packing number. {2}
• π(G): closed neighborhood packing number of G. {116}
• Π(G): open neighborhood packing number of G. {116}
• Π(v): permutation polytope of vector v. {98}
• r(n,m): Ramsey number. {114}
• ρ(M), ρ(S): rank of a matroid M, of a set S in a matroid. {75}
• σ(G), σ′(G): toughness, edge toughness of G. {23, 89}
• τ(H): transversal number.

• T (G): total graph of G. {63}
• θ(G): thickness of G. {112}
• Θ(G): Shannon capacity of G. {41}
• Υ(G): arboricity of G. {72}
• V (G), V (H): vertex set of graph G, of hypergraph H.

• x(G): crossing number of G. {112}
• Y (G): Mycielski’s construction on graph G. {35}
• G: complement of G.

• H∗: hypergraph dual of H. {6}
• G̃, M̃: dual of a planar graph G, of matroid M. {86, 87}
• G[A]: induced subgraph of G on vertex set A.

• [A,B]: set of edges with one end in A and the other end in B.

• G×H: Cartesian product of G and H. {120}
• G ∗H: disjunctive product of G and H. {38}
• G[H]: lexicographic product of G with H. {35}
• G ·H: strong direct product of G and H. {120}
• v ⊗w, A⊗B: tensor product of vectors v and w, Kronecker product of matrices A and B.
{42, 99}

• G+H: disjoint union of G and H.

• G ∨H, P ∨Q: join of graphs G and H, of partitions P and Q. {54, 20}
• A⊕B: direct sum of matrices A and B. {96}
• G ∼= H: G is isomorphic to H.

• G ∼=′ H: G is semi-isomorphic to H. {106}
• G ≤ H: G is an induced subgraph of H.

• G ⊆ H: G is a subgraph of H.

• 〈S〉: convex hull of a set S.

• P≡: equivalence relation derived from partition P. {100}
• [n]: the set {1, 2, . . . , n}.
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A.2 Hypergraphs, multigraphs, multisets, fuzzy sets

A hypergraph H is a pair (S,X ) where S is a finite set and X ⊆ 2S . The sets in the family X are
called the hyperedges of H. A hypergraph is also known simply as a set system. The rank of a
hypergraph is the size of a largest hyperedge. If all members of X are of the same cardinality r,
then H is called an r-uniform hypergraph. Graphs are 2-uniform hypergraphs.

A hypergraph H = (S,X ) is called a simplicial complex in case Y ∈ X whenever Y ⊆ X and
X ∈ X . If H = (S,X ) is a simplicial complex with at least one edge, then we call H a matroid if
it also satisfies the following condition: for all X,Y ∈ X with |X| > |Y |, there is an x ∈ X − Y so
that Y ∪ {x} ∈ X . (See §5.2.)

A multiset is a pair M = (S,m) where S is a set, called the ground set of M , and m : S → Z+.
For an element s in the ground set S the value m(s) is called the multiplicity of s. We think of
m(s) as representing the number of times that s is in M . If x /∈ S we may write m(x) = 0. The
cardinality of M is, naturally, |M | = ∑

s∈S m(s).
If M and M ′ are multisets on ground sets S and S′ respectively, their multiset union is M⊕M ′,

the multiset on S ∪ S′ in which the multiplicity of an element s is m(s) +m′(s).
When t is a positive integer let t ·M denote the t-fold multiset union M ⊕M ⊕ · · · ⊕M , i.e.,

the multiset in which the multiplicity of an element s is tm(s) where m(s) is its multiplicity in M .
We also write t · S where S is a set to denote the multiset whose ground set is S and all of whose
elements have multiplicity equal to t.

A multigraph is a pair G = (V,E) where V is a finite set and E is a multiset of 2-element
multisets whose ground set is a subset of V . This definition allows for parallel edges (an edge uv
with multiplicity greater than 1) and loops (an edge of the form vv). Although some authors use
the term “graph” to denote what we here call a “multigraph”; we use the term only in the more
restrictive sense.

A fuzzy set is a pair F = (S,w) where S is a set and w : S → (0, 1]. For an element s ∈ S,
the value w(s) is called the weight of s. When x �∈ S we may write w(x) = 0. The weight of F is
w(F ) =

∑
s∈S w(s). It is sometimes convenient to think of w(s) as the “degree of membership” of

the element s in F .
Many of the fractional invariants in this book can be defined by taking a definition of a standard

graph invariant verbatim and inserting the word “fuzzy” in an appropriate place. Thus it is often
appropriate to understand the subscript “f”, which we use throughout to denote a fractional
analogue, to also stand for the word “fuzzy”.

One can speculate what might be meant by a fuzzy or fractional graph. This could mean a pair
(V,E) in which V is a finite set and E is a fuzzy set of 2-element subsets of V . Alternatively, one
might allow V to be a fuzzy set as well. These objects are not considered in this book; we study
graphs and, to the extent that they help us understand graphs, hypergraphs.

A.3 Linear programming

We identify vectors in Rn (n-vectors) with n-by-1 matrices. We write At for the transpose of the
matrix A. If A and B are both m-by-n, we write A ≤ B to mean that each entry of A is less than
or equal to the corresponding entry of B. Further, when v is a vector and s is a scalar, we write
v ≤ s to mean that every component of v is at most s.

A linear program (LP) is an optimization problem that can be expressed in the form “maximize
ctx subject to Ax ≤ b”, where b is an m-vector, c is an n-vector, A is an m-by-n matrix, and x
varies over all n-vectors with nonnegative entries. The problem “minimize ctx subject to Ax ≥ b”
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is also a linear program; again, we assume that x ≥ 0. It is easy to see that problems with equality
constraints or with unconstrained variables can be put into the above form, so these variations may
be considered. For our purposes, LPs always take the standard forms introduced here.

An integer program (IP) is an optimization problem of the same form as a linear program except
that the vector x is subject to the additional constraint that all its entries must be integers.

In an LP or an IP, the expression ctx is called the objective function, a vector x satisfying the
constraints Ax ≤ b, x ≥ 0 is called a feasible solution, and the optimum of the objective function
over all feasible solutions is called the value of the program. It is natural to assign the value −∞
to a maximization program with no feasible solutions and the value +∞ if the objective function
is unbounded on feasible solutions. The linear program obtained from an integer program P by
dropping the constraint that the entries of x be integers is called the linear relaxation of P . A
main theme in this book is the connection between integer programs that compute graph-theoretic
invariants and their linear relaxations, which compute the fractional analogues of those invariants.

If P is the (linear or integer) program “maximize ctx subject to Ax ≤ b, x ≥ 0”, then the
program “minimize bty subject to Aty ≥ c, y ≥ 0” is called the dual of P . If x is a feasible solution
for P and y is a feasible solution for the dual of P , then, because x,y ≥ 0, we have the weak duality
inequality:

ctx = xtc ≤ xtAty = (Ax)t y ≤ bty. (A.1)

This implies that the value of P is less than or equal to the value of the dual of P . In fact, if P is
a linear program, more is true.

Theorem A.3.1 A linear program and its dual have the same value. �

This is a central result in the theory of linear programming and is called the (strong) duality
theorem. One way to prove it is to analyze an algorithm (the simplex algorithm) that gives a
feasible solution x∗ for P and simultaneously a feasible solution y∗ for the dual of P such that
ctx∗ = bty∗. This yields the opposite inequality from the one implied by (A.1) and the theorem
follows. For details see any of the many standard books on linear programming.

Not only are the values of an LP and its dual equal, but the vectors achieving this value obey
the complementary slackness condition described in the following result.

Theorem A.3.2 Let x∗ be any optimal solution to the bounded, feasible linear program max ctx
subject to Ax ≤ b, x ≥ 0, and let y∗ be any optimal solution to the dual minbty subject to
Aty ≥ c, y ≥ 0. Then

x∗ · (Aty∗ − c) = y∗ · (Ax∗ − b) = 0.

Proof. Equality holds in the weak duality condition (A.1) because ctx∗ = bty∗, i.e.,

ctx∗ = (y∗)tAx∗ = (y∗)tb,

from which it follows that
(
ct − (y∗)tA

)
x∗ = 0 and so x∗ ·(Aty∗−c) = 0. We have y∗ ·(Ax∗−b) = 0

by the same reasoning. �

Note that since x∗ and Aty∗−c are nonnegative, Theorem A.3.2 implies that if some coordinate
of either x∗ or Aty∗ − c is nonzero, then the corresponding coordinate of the other must be zero.
In other words, complementary slackness holds in a term-by-term fashion. The same is true, of
course, for y∗ and Ax∗ − b.
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The situation for integer programs is more complicated; the value of an integer program need
not equal the value of its dual. The interval between these two values is called the duality gap. Any
number in the interior of the duality gap is not achievable as a value of the objective function of
either the primal program or the dual.

In some situations, the value of an integer program and its linear relaxation are equal. A {0, 1}-
matrix M is totally unimodular if detS ∈ {−1, 0, 1} for all square submatrices S (not necessarily
formed from contiguous rows or columns). A {0, 1}-matrix M is (totally) balanced provided no
odd-by-odd square submatrix has exactly two ones in every row and column. Note that total
unimodularity implies total balance (exercise 3 on page 138).

The following theorem follows easily from the basic theory of linear programming and from
Cramer’s rule for solving linear systems.

Theorem A.3.3 If A,b, c all have integer entries and A is totally unimodular, then the value of
the integer program “maximize ctx subject to Ax ≤ b,x ≥ 0”, and its linear relaxation are the
same. �

The same conclusion can be drawn from slightly different hypotheses.

Theorem A.3.4 If A,b, c all have integer entries, at least one of b or c is a constant vector, and A
is totally balanced, then the value of the integer program “maximize ctx subject to Ax ≤ b,x ≥ 0”,
and its linear relaxation are the same. �

Under the hypotheses of these theorems, the duality gap associated with the IP reduces to a
single point.

Computational complexity

The classic method for finding an optimal solution to a linear program is the simplex algorithm.
While this method works reasonably for most problems, it can, in the worst case, take an unrea-
sonable amount of time to solve an LP. On the other hand, the ellipsoid algorithm always runs
in at most polynomial time, but is not a practical method; on typical problems it is slower than
the simplex method. Interior point algorithms appear to give us the best of both worlds: good
performance on typical problems and a polynomial run time in the worst case.

More precisely, we measure the size of an LP as follows. Suppose the LP is

max ctx s.t. Ax ≤ b, x ≥ 0 (A.2)

where A is an m×n matrix. We suppose that the entries in A, b, and c are rational numbers and we
let K be the maximum absolute value of the various numerators and denominators of these rational
numbers when expressed in reduced form. Then the size of the LP is defined to be mn logK. Were
we to input an LP into a computer, the size of the LP is a good measure of how large (how many
characters long) the input would be. Then when we assert that, say, the ellipsoid algorithm runs
in polynomial time, we mean that it runs in time bounded by a polynomial in the size of the LP.

Sometimes the size of an LP is not a fair measure of the size of the problem it is formulated to
solve. For example, consider the LP (Chapter 3) for the fractional chromatic number of a graph. A
reasonable measure of the size of an instance of the fractional chromatic number problem of a graph
G = (V,E) is |V | + |E|. However, this LP formulation of fractional chromatic number features a
matrix whose rows are indexed by V but whose columns are indexed by the independent subsets
of V , and there may be exponentially many (in |V |) independent subsets of V . Indeed, despite



A.4 The subadditivity lemma 137

the fact that linear programs can be solved in polynomial time, the fractional chromatic number
problem is NP-hard.

Nevertheless, despite the combinatorial explosion inherent in formulating some fractional graph
theory problems as linear programs, a polynomial-time solution (in the size of the graph) may still be
possible. Consider again the LP in equation (A.2) in which the matrix A has m rows and n columns
and the entries in A, b, and c are rational numbers. As before, let K be the maximum absolute
value of the various numerators and denominators of these rational numbers when expressed in
reduced form. Suppose the number of constraints m is exceedingly large compared to the number
of variables n. It would be useful if we could still solve this LP efficiently, i.e., in time polynomial
in mn logK. Indeed, this is possible provided there is an efficient (polynomial-time) algorithm for
solving the separation problem:
Separation Problem: Given a vector x ≥ 0, decide if x is feasible for the LP, and if not, find a
constraint that is violated.

If we can solve the separation problem efficiently (in time polynomial in n logK) then the
ellipsoid algorithm can be used to solve the LP in polynomial time.

A.4 The subadditivity lemma

A function g : Z+ → R is called subadditive provided, for all a, b, we have

g(a+ b) ≤ g(a) + g(b).

Lemma A.4.1 (Subadditivity) Suppose g is subadditive and g(n) ≥ 0 for all n. Then the limit

lim
n→∞

g(n)
n

exists and is equal to the infimum of g(n)/n (n ∈ Z+).

Proof. Let x = lim sup g(k)/k and let n be a fixed positive integer. Let m be any (large) integer.
Divide m by n and write m = qn + r with 0 ≤ r < n. Note that by subadditivity, g(m) ≤
qg(n) + g(r). Dividing by m we have

g(m)
m
≤ qg(n) + g(r)

qn+ r

≤ qg(n) + g(r)
qn

≤ g(n)
n

+
g(r)
qn

.

Choose a sequence of m’s going to infinity so that g(m)/m → x. Note that g(r)
qn → 0 since

g(r) is bounded and n is fixed but q → ∞. Thus we have x ≤ g(n)/n for any n. This implies
lim inf g(n)/n ≥ x = lim sup g(n)/n, so lim g(n)/n = x and lim g(n)/n = inf g(n)/n. �

We often have use for a multiplicative version of this lemma. A function h : Z+ → R+ is called
submultiplicative provided, for all a, b, we have

h(a+ b) ≤ h(a)h(b).
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Lemma A.4.2 Suppose that h is a submultiplicative function with h(n) ≥ 1 for all n. Then the
limit

lim
n→∞

n

√
h(n)

exists and is equal to the infimum of n
√
h(n).

Proof. Let g(n) = log h(n). Then g(a + b) = log h(a + b) ≤ log h(a)h(b) = log h(a) + log h(b) =
g(a) + g(b), so g is subadditive. Lemma A.4.1 then implies that lim g(n)/n = lim log n

√
h(n) exists

and equals its infimum. Thus the same is true for lim n
√
h(n). �

A.5 Exercises

1. Formulate and prove a “superadditivity” lemma.

2. Let g : Z+ → R. Show that if g(a + b + c) + g(c) ≤ g(a + c) + g(b + c) for all a, b, c ∈ Z+,
then g(n)/n is a decreasing function of n (hence approaches its limit monotonically).

3. Let M be a 0,1-matrix. Prove that if M is totally unimodular, then M must be totally
balanced.

4. Given a graph G, let A be its adjacency matrix and let b and c be vectors of the appropriate
size all of whose entries are 1. What graph theoretic parameter is given by the value of the
LP “maximize ctx subject to Ax ≤ b”?

A.6 Notes

Graph theory is a relatively young discipline, and as such there is not always a single standard
for terminology and notation. We follow mostly the style of Bondy and Murty [26]. Other widely
used introductions to graph theory include Chartrand and Lesniak [35] and Harary [83]. A more
substantial introduction with a long, excellent list of exercises is West [187].

The theory of hypergraphs is explored in Berge [15] and [19].
Linear programming as a discipline goes back to 1947 when George Dantzig invented the simplex

algorithm for solving certain military optimization problems. The proof of the duality theorem is
due to Gale, Kuhn, and Tucker [73], appearing in 1951. A good mathematical treatment of linear
programming theory is Schrijver [160]. In particular, our Theorem A.3.3 appears there on page 266
with proof, and a version of our Theorem A.3.4 appears there on page 305. A gentler introduction
to the theory of linear programming is Chvátal [38]. See also Grötschel, Lovász, and Schrijver [82]
or Papadimitriou and Steiglitz [142].

Lemmas A.4.1 and A.4.2 are widely known as folk theorems. They go back to the work of
Fekete [60] in 1922.
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[72] Füredi, Z., and J. Kahn, On the dimension of ordered sets of bounded degree, Order 3 (1986)
15-20.

[73] Gale, D., H. W. Kuhn, and A. W. Tucker, Linear programming and the theory of games, in
Activity Analysis of Production and Allocation, Wiley (1951) 317-329.
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Nešeťril, J., 53
Nowakowski, R., 130

O’Donnell, P., 56
Olkin, I., 110
Opsut, R., 130
Orlitsky, A., 56

Palmer, E., 73, 92
Papadimitriou, C., 138
Payan, C., 92
Pemantle, R., 13
Perron, O., 97, 110
Petersen, J., vii, 21, 23, 27, 28, 31
Plummer, M., 28, 71
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matroid, 73, 134
cocycle, 87
cycle, 74
duality, 86
graphic, 74, 75
partitioning, 77

algorithm, 77, 78, 80



Subject Index 155

uniform, 91
maximum average degree, 73
meet

lattice, 109
middle levels problem, 24
minimal overfull subgraph, 65

small, 66
multicommodity flow, 26, 28
multigraph, 134
multirealizer, 126
multiset, 134
Mycielski construction, 36

nearly acyclic, 84
neighborhood

closed, 116
open, 116

neighborhood multiset, 107
nonnegative matrix, 97
nonorientable genus, 111

fractional, 112
NP-complete, 53, 57, 63, 110, 137

objective function, 135
octahedron

generalized, 125
orbit, 12
orientably simple graph, 111
orthonormal representation, 41
overfull subgraph, 65

minimal, 65
small, 66

packing, 1
t-fold, 3

packing number, 2
asymptotic, 8
closed neighborhood, 116
fractional, 2
t-fold, 3

palette, 52
parallel elements (matroid), 76
parameters, equitable partition, 101
partially order set

interval, 126
partially ordered set, 125
partition

equitable, 100
coarsest, 101

partitioning number, 13
perfect graph, 31, 54

edge coloring, 70
matching, 27

perfect matching, 17
fractional, 17, 22

permutation matrix, 93
Perron-Frobenius theorem, 97
Petersen graph, 28, 31
Petersen’s theorem, 27
poset, 125

interval, 126
positive matrix, 97
product

Cartesian, 120
disjunctive, 38, 41
hypergraph, 7
Kronecker, 99, 106, 109
lexicographic, 35, 39
strong direct, 120
tensor, 42, 109

program
integer, 135
linear, 134

projective plane, 111
finite, 12

r-graph, 62
Ramsey number, 114

fractional, 114, 128
rank

hypergraph, 134
matroid, 75

dual, 87
term, 27

realizer, 125
t-fold, 126

reducible (matrix), 96
refinement, 100
representation

intersection, 121
orthonormal, 41

semi-bipartite, 27
semi-isomorphism, 106
separation problem, 27, 137
set

fuzzy, 134
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multi-, 134
set system, 1, 134
Shannon capacity, 12, 41
simplex algorithm, 136
simplicial complex, 13, 134
simplicial vertex, 122
Sperner’s theorem, 127
spherical law of cosines, 42
spindle graph, 43, 44, 47
standard example (poset), 125, 126, 129
star chromatic number, 54
story

communication complexity, 40
strength, 89
strong direct product, 120
strongly chordal, 118, 119
strongly irreducible (matrix), 96
subadditivity lemma, ix, 1, 137
submodular inequality, 75
submultiplicative, 137

tensor product, 42, 109
term rank, 27
thickness, 111, 112

fractional, 113
total chromatic number, 63
total dominating function, 117
total dominating set, 116
total domination number, 116

fractional, 117
total fractional chromatic number, 63
total graph, 63
total order, 125
totally balanced, 119, 136
totally independent, 64
totally unimodular, 15, 136
toughness, 22, 23

edge, 85, 89
trampoline graph, 118
transversal, 6, 14
transversal number, 6

fractional, 7, 16
Tutte’s theorem, 17, 27

ultimate degree sequence, 102
uniform

hypergraph, 12, 134
matroid, 91

unimodular, 15, 136
unit graph, 43

value
game, 5
linear program, 135

vertex-transitive, 5, 32
Vizing’s conjecture, 120
Vizing’s theorem, 55, 57, 65

fractional, 62

width, 127


