
Discrete Vt Assignment and Gate Sizing Using a Self-Snapping Continuous 
Formulation 

 
Saumil Shah1    Ashish Srivastava1    Dushyant Sharma2    Dennis Sylvester1    David Blaauw1   

Vladimir Zolotov3 
1 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA 

2Department of Industrial Operations and Engineering, University of Michigan, Ann Arbor, USA 
3IBM T.J. Watson Research Center, Yorktown Heights, USA 

 
 Abstract-This paper presents a novel approach 
towards the simultaneous Vt-assignment and gate-
sizing problem. This inherently discrete problem is 
formulated as a continuous problem, allowing it to be 
solved using any of several widely available and highly 
efficient non-linear optimizers. We prove that, under 
our formulation, the optimal solution has discrete Vts 
assigned to almost every gate, thus eliminating the 
need for a sophisticated snapping heuristic. We show 
that this technique performs dual-Vt assignment and 
gate sizing in a very efficient manner. Compared to a 
sensitivity based method, we achieve average leakage 
savings of 31% and average total power savings of 
7.4% with very efficient runtimes. 

1. Introduction 
Due to the increased need for high-performance circuits, 
low-threshold voltage devices are aggressively used in 
deep submicron technologies. Subthreshold leakage, 
being an exponential function of threshold voltage, is 
becoming an increasingly significant issue. Leakage 
power is projected to consume approximately half the 
total power by the 90nm node [1]. These contrasting 
requirements have made the use of dual-Vt processes 
inevitable. Critical paths on a circuit are assigned to high-
performance, low-threshold voltage devices and non-
critical paths are assigned to low-performance, low-
leakage, high-threshold voltage devices.  

There has been a large amount of work in power 
optimization using dual-Vt and sizing [2-9]. References 
[2-4] use sensitivity-based algorithms while [5] employs a 
Lagrangian relaxation based circuit optimizer. Reference 
[7] approaches the problem at the transistor level and 
employs an enumeration based approach along with 
pruning methods. References [8,9] treat the problem as a 
continuous optimization problem and heuristically cluster 
the obtained solution to the discrete domain. A recent 
method proposed by Chen [10] uses a continuous Vt 
formulation, where the optimization is performed 
assuming the availability of a continuous range of 
threshold voltages. Finally the solution is snapped to one 
of the physical threshold voltages, requiring a snapping 
heuristic.  

The difficulty of the Dual Vt and sizing problem is that 
the problem is inherently a Mixed-Integer Non-Linear 

Program (MINLP) which has a very high complexity 
level. Sensitivity-based methods are very limited in the 
design space that they can examine and consequently are 
inherently heuristic with uncertain quality of solution. On 
the other hand, the continuous formulations as in [8-10] 
effectively shift the discrete optimization problem to the 
snapping phase, where again heuristics are employed and 
significant discretization error can be incurred. 

In this paper, we propose a novel continuous formulation, 
for which we show that, in the absence of gate width 
constraints, all gates in the optimal solution automatically 
snap to one of the discrete Vt values. This eliminates the 
need for a sophisticated heuristic for Vt discretization and 
allows the use of a wide range of powerful industrial non-
linear optimizers to improve the solution quality and 
achieve runtime efficiency. In our formulation, each gate 
is modeled as a parallel combination of high and low Vt 
gates. The effective Vt of this mixed gate lies between the 
two extreme threshold voltages [11-12] and depends on 
the fraction of total width assigned to each Vt portion. 
The problem is thus formulated in a continuous manner 
where the two widths are separate optimization variables. 
We then provide a rigorous proof showing that the 
optimal solution to this problem formulation, in the 
absence of gate width constraints, has only one non-zero 
width value for every gate. Clearly, this approach allows 
us to perform simultaneous dual-Vt assignment and 
transistor sizing using a seamless non-linear optimization 
process and avoids the difficulty present in previous 
MINLP approaches.  

We then show that, in the presence of constraints on the 
gate widths, a limited number of gates in the optimal 
solution can have non-snapped Vt values where both the 
high-Vt and low-Vt portion of the gate have non-zero 
width. We derive rigorous bounds on the number of 
occurrences of such non-snapped gates and show that this 
number is extremely small. In practice, we found that the 
number of non-snapped gates was less than 2% of the 
total number of gates. Due to its small number, this small 
remnant of non-snapped gates can be trivially snapped 
with a simple heuristic. We show that the impact of this 
snapping on optimality of the results was much less than 
one percent. 

We also show that the properties of our formulation hold 
even in the general case of multiple threshold voltages. 
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However, it is in the common case of a dual Vt process, 
where the discretization error for the previous approaches 
is large, that our method would prove to have the greatest 
advantage. We implement the proposed approach and 
show that the proposed method achieves average leakage 
savings of up to 31% and average total power savings of 
7.35% over a sensitivity-based approach.  

The rest of the paper is organized as follows. Section 2 
introduces the traditional single-Vt convex sizing problem 
and the formulation of the dual-Vt assignment problem in 
continuous form. Section 3 provides a rigorous proof of 
the snapping phenomenon explained above. In this section 
we also extend the analysis to include the practical 
constraint of fixed-width input drivers. In Section 4 we 
describe the details of the implementation and our 
experimental setup. Section 5 gives a detailed discussion 
of the results and Section 6 concludes the paper. 

2. Problem Formulation 
 

The single-Vt, gate sizing problem is traditionally 
formulated as given below: 
Minimize: WPi ii G

∑
∈

 

Subject to: 0D Aii p
≤∑

∈
  p P∀ ∈     (1) 

      L W Ui i i≤ ≤                 1, ..., .i n=  
P is the set of all paths from the primary inputs to the 
outputs, G is the set of all gates, Pi is the power per unit 
width (static + dynamic) of gate i, Wi and Di are the width 
and delay of gate i, respectively. A0 is the constraint on 
total circuit delay and the Li’s and Ui’s are the bounds on 
gate size. Clearly, the number of possible paths is 
exponential in the number of gates n, making this 
formulation impractical for efficient optimization 
algorithms. We use the standard technique of partitioning 
path delay constraints into nodal constraints [13]. We 
assign a variable ai to each node i in the circuit, 
representing the arrival time at node i. Now, the primal 
problem can be formulated as given below: 
Minimize: WPi ii G

∑
∈

 

Subject to:  

0a Aj ≤         { }j outputs∈  

a D aj i i+ ≤                ({1,..., } { })i n inputs∈ −             (2) 

D ai i≤          { }i inputs∈                     

L W Uii i≤ ≤               1, ..., .i n=  
This is the standard convex sizing problem, where a 
circuit is sized for minimum power while meeting a fixed 
delay constraint. When this problem is combined with the 
dual-Vt assignment problem, it loses its convexity and is, 
in fact, a MINLP.  Mixed-Integer problems cannot be 
solved efficiently in polynomial time and require heuristic 
solutions. We avoid dealing with the intractability of 

   
Fig. 1. NAND Gate represented as a parallel 
combination of HVt and LVt gates 

MINLP’s by extending this problem in the continuous 
domain    to    the    simultaneous    sizing    and    dual-Vt 
assignment problem. 
 

2.1 Continuous Formulation of Dual Vt 
Problem 
 

To transform the discrete dual-Vt assignment problem 
into a continuous one, we propose the following 
formulation. Each gate is considered to be a parallel 
combination of a high Vt portion and a low Vt portion. 
Figure 1 shows the equivalent circuit representation of a 
mixed gate. The effective drive strength and power 
consumption of the mixed gate are intermediate between 
high and low Vt parameters. Effectively, this gate can be 
considered to have a threshold voltage somewhere 
between the two extremes [11,12]. 

The equivalent resistance of the mixed gate can be written 
as  

||lgR R Reff ate hgate=  

where lgate

RlR
Wl

= and gate

RlR
Wl

= are the total gate 

resistances of the Low Vt (LVt) fraction and High Vt 
(HVt) fraction respectively and Rl and Rh are the 
resistances per unit width. The effective resistance is, 
therefore, 

eff
R Rl hR

R W R Wl h h l
=

+
                   (3) 

For the purpose of this work, we use a delay model where 
the drive strength of a gate is linearly dependent on its 
size. The model also allows for capacitive self-loading, 
where the load capacitance of a gate is a function of its 
own width along with the widths of its fanouts. This is 
similar to the models that form the basis of logical effort 
theory, and have been successfully used in logic synthesis. 
Under this model, the delay of  a  gate  can  be  written  as 
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D RCl=                    (4) 

C C K Wl Load SL= +  
Here KSL is a constant that models the contribution of a 
gate’s intrinsic capacitance to its own load. 

The delay of the mixed gate is 
D R Ceff l=  

      Cl
R Rl h

R W R Wl h h l
=

+
                  (5) 

 ( )C C K W Wl Load SL l h= + +  
The total power of every gate can now be written as 
P PW P Wgate l l h h= +     (6) 

where Pl and Ph are the power per unit width of the LVt 
and HVt fraction of the gate respectively. These constants 
include both dynamic and static power, and are dependent 
on the load and switching activity of a gate.  

Now the problem can be rewritten as 
Minimize: , ,, ,W P Wh i h iPl i l ii G

+∑
∈

 

Subject to:  

0a Aj ≤           { }j outputs∈  

a D aj i i+ ≤                               ({1,..., } { })i n inputs∈ −  

                                                   { ( )}j input i∈  

D ai i≤            { }i inputs∈  

,0 Wl i≤            1, ..., .i n=                 (7) 

,0 Wh i≤             1, ..., .i n=  

, ,i UiW Wl i h iL + ≤≤            1, ..., .i n=  

The expression for the gate delay appearing in the 
constraints is 

,
, ,

, , , ,
Ci l i

R Rl i h iD
R W R Wl i h i h i l i

=
+

  

Also, for the primary outputs  
( ), , ,C C K W Wl i L SL l i h i= + +    (8) 

For all other gates 
 ( ( )) ( ), , ,, , ,( )
C C W W K W Winp j l j h jl i SL l i h ij fo i

∑= + + +
∈

(9) 

3. Proof of Discrete-Vt (Snapped) Optimal 
Solution 
 

In this section, we prove that, ignoring the constraints on 
device size, the optimal solution has every gate in either 
the fully high or fully low-Vt configuration.  

We prepare a background for the proof by conceptually 
separating the problem into two phases. In the first phase, 
which we call the D-phase, we obtain a vector of all gate 

delays. Carrying this fixed delay vector to the second 
phase or the W phase, we find the sizing solution for that 
particular delay vector which gives minimum total power. 
We now prove that the optimal sizing solution for any 
arbitrary delay vector has every gate snapped to either 
LVt or HVt. It is easy to see that this condition holds for 
the optimal solution of the complete problem too, since 
the optimal delay vector is simply a special case of an 
arbitrary combination of delay assignments. We clarify 
that, although the separation of the problem into two 
phases is conceptual and does not reflect the actual 
optimization procedure, the validity of the argument is 
independent of the formulation used by the optimizer. 

The W-phase of the problem (7) can be written as 
Minimize: , ,, ,W P Wh i h iPl i l ii G

+∑
∈

 

 
Subject to: 

( ( ( )) ( )), , , , ,( )

, , , ,

, , C W W K W Winp j l j h j SL l i h ij fanout i

i

R W R Wl i h i h i l i

R Rl i h i

D

=

∑ + + +
∈

+

                 1, ..., .i n=  
0,Wl i ≥                   1, ..., .i n=           (10) 

0,Wh i ≥                  1, ..., .i n=  

In this sub-problem, the Di’s are treated as constants 
carried over from the D-phase. It is interesting to note that 
the objective function and all constraints are linear; 
therefore this is a Linear Programming Problem (LPP). 
For clarity, we write the problem in the canonical LPP 
form as shown in (11). 

Minimize: ( , )TP W Wl h  
Subject to: 

( , )TA W W Bl h =                  (11) 

( , ) 0W Wl h >=  
Here PT is the vector of Pl and Ph values, (Wl,Wh) is the 
vector of LVt and HVt gate widths, A is the n×n matrix of 
the coefficients of the equality constraints, and B is the 
vector of the constants appearing in the equality 
constraints. With this background, we present a formal 
proof of the snapping phenomenon. 

Theorem 1: The optimal solution to the problem in (11) 
has the property that the width of every gate has exactly 
one non-zero component. 
i.e. i∀ , , 0l iW =   or , 0h iW =  
Proof: We note that, in the non-degenerate case, all 
equality constraints are linearly independent. Therefore A 
is a full-rank matrix with rank n.  
The problem stated in (11) is a LPP with 2n variables, n 
equality constraints, and 2n non-negativity constraints. 
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We know that the power cannot be negative, hence the 
solution is bounded and is always attained. Therefore, this 
LPP must have a finite solution. From the Theory of 
Linear Programming [15] we know that if this LPP has a 
solution, it is a basic feasible solution, which has (2n-n) 
basic variables and (2n-n) non-basic variables. The basic 
variables are free to have any value and the non-basic 
variables are constrained to be at their lower bound 
(which is zero).  

Thus, it is clear that in the optimal solution, n variables 
will have value zero and n variables will be non-zero. It is 
obvious that for any gate it is impossible for both Wl and 
Wh to have zero value, because the delay of that gate 
would be infinitely large. Hence, it is clear that each gate 
has one zero W component and one non-zero component. 
Therefore each gate is snapped to either high or low Vt. 
3.1 Extension to circuits with fixed-width 
input driver constraints 
 

Having proved the snapping phenomenon under the 
proposed model, we now add a practical constraint. In 
practice, combinational circuits are usually driven by 
sequential elements, the sizes of which are not included in 
the combinational optimization procedure. The delays of 
these sequential elements, however, must be considered 
while computing the total circuit delay since their delays 
are affected by the sizes of the gates driven by them. 
Ignoring this constraint allows the primary input gates to 
be sized up indefinitely without incurring any delay 
penalty, which could lead to an impractical solution. To 

model  this  constraint,  we  introduce   fixed-width   input 
 
Fig. 2. Circuit in absence of fixed-width input drivers 

 
Fig. 3. Circuit with fixed-width input drivers 

drivers feeding all the primary inputs. This concept is 
clearly explained in Figure 3, which illustrates a circuit 
with fixed-width input drivers. In comparison, the circuit 
shown in Figure 2 has no drivers and therefore upsizing 
gate 1 does not incur any delay penalty. All previous 
approaches referenced in Section 1 implicitly make the 
simplifying assumption of Figure 2 without providing 
further analysis. We remove this assumption and prove 
that the significance of our results is not diminished. 
Although, under  this  constraint  we   cannot conclusively 
prove that every gate will snap, a simple extension of the 
argument made above can prove that only a very small 
proportion of gates (if any) will be non-snapped.  

Let us consider a circuit with m primary inputs, and 
therefore, m input drivers. We proceed in exactly the 
same manner as before, separating the problem into the 
two phases. In the W phase, we consider the delays of all 
gates (including the input drivers) to be fixed. The 
problem formulation remains the same as (11), except for 
the addition of m constraints imposed by the delay 
equations of the input drivers. Clearly, this new problem 
is also an LPP. The rank of the matrix A now changes to 
n+m. We, therefore, have a canonical form LPP with 2n 
variables, n+m constraints and 2n non-negativity 
constraints. Once again, from the Theory of Linear 
Programming, there are 2n-(n+m) non-basic variables and 
n+m basic variables. Therefore, in a non-degenerate 
solution, n+m variables are positive and n-m variables 
have value zero. This implies that a total of m gates could 
possibly be non-snapped (have both their W’s non-zero), 
where m is the number of primary inputs. Hence, the total 
number of non-snapped gates is bounded by the number 
of primary inputs, which is usually a small proportion of 
the number of gates in the circuit. We also note that, 
although the number of primary inputs is an upper bound 
on the number of non-snapped gates, in practice the 
number is found to be much smaller. Over most circuits, 
this was found to be zero, and, as shown in Fig. 6, always 
proved to be a very small fraction of the total number of 
gates. In Section 4, we explain how this small proportion 
of gates can be handled heuristically without much 
difficulty. 

3.2 Non-snapped gates due to maximum and 
minimum sizing constraints 
 

When upper and lower bounds are placed on total device 
size, as in formulation (7), we have n additional 
constraints in the LPP. The snapping property does not 
explicitly hold under Theorem 1. However, the non-
snapped gates are only those that are at their extreme 
values in the optimal solution. Clearly, in optimized 
digital circuits, maximum size gates are very rare. It is 
often more profitable to assign a gate to the LVt 
configuration than to size it beyond a certain bound. On 
the other hand, minimum size gates rarely lie on critical 
paths. Since they are not critical, small changes to their 
delay do not affect total circuit delay. Also, their 
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contribution to power is relatively small. Therefore, 
snapping their Vt heuristically does not incur a significant 
delay or power penalty. 
 

3.3 Generalization of proof to a k-Vt (k>2) 
process 
 

The proof in Section 3 can easily be extended to a process 
where there are more than two allowable threshold 
voltages. Each gate can be considered a parallel 
combination of n gates of different threshold voltages.  
The  delay  of  gate  i  can  now be  written  as 

,
1

, ,
1 1

,
( )

k

j i
j
kk

j i m i
m j

j m

Ci l iD

R

R W

=

= =
≠

=
∏

∑ ∏
                                      (12) 

Where Rj,i is the resistance of the jth Vt fraction of the ith 
gate and Wk,i is the width of the kth Vt fraction of the ith 
gate. Multiplying on both sides of the equation by the 
denominator, once again we get a linear equation. 
Formulating this in exactly the same manner as the dual-
Vt problem, we obtain a LPP with k×n variables, n 
equality constraints and k×n non-negatvity constraints. As 
stated above, the optimal solution has (k-1)×n non-basic 
variables. Therefore, only n variables can be non-zero. As 
stated before, each non-zero variable has to be a width 
fraction from a different gate. If it were not so, we would 
have gates with zero total width. Clearly, if we use this 
formulation to perform multi-Vt optimization, we end up 
getting a solution where one particular Vt is assigned to 
each gate. We have thus shown that we can use our 
method to successfully perform multiple-Vt assignment. 

4. Implementation Details and Experimental 
Setup 
We use the method explained above to perform dual-Vt 
assignment on large-scale combinational circuits. We 
hypothetically represent every gate as a combination of 
high and low Vt gates and formulate the problem as 
shown above. We first modify the problem to improve 
convergence properties of the optimizer by applying the 
exponential transform to all variables. The final variables 
used in the optimization problem are the logarithmic 
values of the variables in the equations given above. This 
choice of variables and variable transformations was 
made by conducting experiments with different 
formulations. It is intuitive that the exponential 
transformation should give best convergence properties as 
it is the commonly used transformation for 
convexification of geometric programming problems. We 
express the model using the mathematical programming 
language AMPL [16]. The AMPL interface can be used to 
invoke a wide range of commercial non-linear solvers. 
For this work, our solver of choice is MINOS [17] due to 
its stability and efficiency.  

The solution returned by the solver has very few gates 
that are non-snapped due to the sizing constraints (usually 
the lower bound) and even fewer gates that are non-
snapped because of the fixed input drivers. We propose 
two heuristics to arrive at a solution with an entirely 
discrete Vt assignment.  

Heuristic 1 
In the first approach, we round the non-snapped gates to 
closer of the two threshold voltages. We thus fix the Vt of 
these gates by forcing one of the two W components to be 
zero and rerun the optimization. The new solution 
obtained in this way has certain previously-snapped gates 
in the non-snapped configuration. However, the number 
of non-snapped gates obtained in an iteration is always 
lower than in the previous iteration. We repeat this 
procedure iteratively until a fully snapped solution is 
reached. The pseudocode for this heuristic is given in Fig. 
4. An interesting property is observed in the solution  
obtained at the end of this iterative procedure. Even in 
large circuits, only 1 or 2 gates are found to have  
differing Vt values in the final solution compared to the 
first pass. This observation leads us to our second 
heuristic, which is far simpler and achieves better runtime 
negligible penalty in the quality of results.  

Heuristic 2 
After the initial optimization run, we fix the Vt of every 
gate, rounding non-snapped gates to the closest Vt value. 
Subsequently we perform a sizing run to meet timing. A 
comparison of the total power for the two heuristics  
showed the solutions to be within 0.1% of each other. We, 
therefore, use the second heuristic to compare our results 
with previously proposed approaches.  

1.     Algorithm : CONT_VT1 
2.     write_AMPL_input(); 
3.     iterate: 
4.     run_MINOS(); 
5.     parse_out_file(); 
6.      if non-snapped gates = 0 
7.         end; 
8.      else 
9.         fix_non_snapped_gates(); 
10.   goto iterate; 

Fig. 4. Pseudocode for continuous sizing and 
Vt assignment using Heuristic 1 

1.     Algorithm : CONT_VT2 
2 .     write_AMPL_input(); 
3.      run_MINOS(); 
4.      parse_out_file(); 
5.      fix_non_snapped_gates(); 
6.      run_MINOS(); 
7 .     end; 

Fig. 5. Pseudocode for continuous sizing and Vt 
assignment using Heuristic 2 
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At this point, we note that this problem is not convex; 
therefore it is not possible to arrive at a globally optimal 
solution in polynomial time. However, our approach 
returns a local minimum, and, with a suitable choice of 
initial solution, is guaranteed to perform better than a 
sensitivity-based algorithm. 

We use an industrial 0.13µm technology with primary 
input activity factors adjusted to maintain a 70/30 ratio of 
dynamic to static power across all circuits. The Vts are 
such that the ratio of the resistances is 1.15/1 and the 
leakage ratio is 10/1. To compare the proposed solution to 
the sensitivity-based algorithm (SBA) in [2], we take the 
solution returned by the optimizer and discretize the sizes 
by snapping them to the closest library cell. Although, 
this does alter the delay constraint to some extent, the 
timing penalty is fairly small (~2-3%). We use this new 
delay value as the constraint  for  SBA  and optimize  for  
total  power.  We compare the two algorithms in terms of 
achieved objective function value (total power) as well as 
in terms of runtime. 

5. Results 
 

This section gives detailed results of our experiments on 
circuits from the ISCAS [18] and MCNC [19] benchmark 
suites. Figure 2 shows the snapping properties of   two   
circuits – c5315 (1750 gates)  and c7552 (1994 gates) to 
illustrate the proportion of non-snapped gates as a 
function of the timing backoff. The backoff is defined 
with respect to the best possible delay achievable by the 
optimizer for a particular circuit.  It is clearly seen that the 
number of non-snapped gates is very small to start with 
and decreases as the delay constraint is relaxed. Also, a 
majority of the non-snapped gates are those that have 
reached the constraint on their total size, which are easy 
to handle as stated earlier. The number of non-snapped 
gates due to fixed-width input drivers is zero over most 
timing constraints and extremely small otherwise. Table 1 
shows a comparison of results obtained by the two 
heuristics and the power compared to the initial non-
snapped solution. The number of iterations required for 
the convergence of Heuristic 1 is also shown in the table. 
Heuristic 2, by definition, always requires exactly two 
iterations. For brevity we include only results for the 
larger circuits in Table 1. Table 2 compares the total 
power obtained by our algorithm to SBA-based 
optimization. To compare the results we heuristically snap 
the gate sizes to a fine- grained library, where each gate is 
1.2X larger than the previous gate of   its   type.   We   
observe   that   circuits optimized by our method have 
considerably lower leakage than those optimized by SBA. 
We also show gains in total power, achieved by a trade-
off between dynamic power and static power. Clearly, 
circuits that  have  a  higher  proportion of leakage power 
initially will exhibit more substantial total power 
improvements. The results show that the optimizer allows 
a small dynamic power penalty in order to reduce leakage 
and hence total power. This observation clearly illustrates 
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Fig. 7. Percentage of non-snapped gates at 5% timing 
backoff for large circuits 

Table 1. Comparisons of proposed heuristics for large 
circuits at 2% timing backoff. Total power is 
normalized to initial non-snapped solution 

Heuristic 1 Heuristic 2 
Circuit Iterations 

 
Total 
Power Iterations Total 

Power 
c3540 7 1.001 2 1.002 
c5315 3 1.002 2 1.002 
C6288 8 1.006 2 1.007 
C7552 4 1.004 2 1.004 

i8 3 1.002 2 1.002 
i9 2 1.002 2 1.002 

i10 2 1.003 2 1.003 

the  advantage  of  using  an  algorithm  that  handles  gate 
sizing and Vt-assignment as a unified problem rather than 
independently. The table also shows runtime comparisons. 
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For most circuits the runtime of one iteration of the 
optimizer is better than the runtime exhibited by SBA. 
However, the complete procedure involves two iterations 
and the proposed approach therefore suffers some runtime 
penalty. 

We also observe that our formulation allows us to meet 
much tighter timing constraints (up to 10%) than can be 
met by SBA. We attribute this to the fact that the sizing 
problem is convex and can be handled very efficiently by 
the non-linear optimizer, especially if the initial solution 
passed to the optimizer is an all-LVt design, The 
sensitivity-based heuristic, on the other hand, will not 
necessarily converge to the optimal solution, even if the 
problem is convex, and, therefore, suffers from sub-
optimality. 
 

6. Conclusions 
 

We present a novel technique to solve the dual-Vt 
assignment problem. We formulate the problem in a 
continuous manner and show that the optimal solution has 
a very large proportion of the total gates already assigned 
to one of the two threshold voltages. We snap the few 
remaining gates heuristically. The main contribution of 
this work is providing a formulation that can be solved 
efficiently by a general purpose non-linear optimizer to 
obtain a discrete dual-Vt solution without the added 
penalty of heuristic Vt discretization. The optimization 
procedure is thus more effective than sensitivity-based or 
separate sizing and Vt-assignment methods proposed 
previously. Circuits optimized by the proposed technique 
have 31% lower leakage and 7.4% lower total power on 
average than circuits optimized using a sensitivity-based 
algorithm.  
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Table 2. Comparison of total power consumption (normalized to total SBA power) between circuits optimized with 
continuous method and circuits optimized with SBA 

SBA Continuous Formulation 
% 

Improvement 
 

Runtime  
(s) Ckt Timing 

Backoff 
Static Dyn, Static Dyn. Total Static Total SBA Cont. 

c432 2% 0.34 0.66 0.13 0.63 0.75 62.35 24.69 4 3 
 5% 0.21 0.79 0.12 0.68 0.79 45.74 20.72 3 2 
 10% 0.16 0.84 0.10 0.77 0.87 39.74 13.01 3 2 

c1908 2% 0.19 0.81 0.10 0.84 0.93 48.57 6.76 21 11 
 5% 0.16 0.84 0.09 0.86 0.95 44.71 4.94 25 8 
 10% 0.15 0.85 0.08 0.87 0.95 44.74 5.01 24 8 

c2670 2% 0.26 0.74 0.19 0.74 0.93 29.13 7.28 58 37 
 5% 0.26 0.74 0.17 0.74 0.91 36.36 9.11 46 35 
 10% 0.25 0.75 0.16 0.77 0.93 34.29 6.56 47 26 

c3540 2% 0.26 0.74 0.16 0.78 0.94 38.14 6.46 28 51 
 5% 0.24 0.76 0.14 0.81 0.94 41.32 5.54 26 47 
 10% 0.23 0.77 0.13 0.80 0.93 42.76 6.97 23 40 

c5315 2% 0.22 0.78 0.15 0.80 0.95 30.53 5.11 52 133 
 5% 0.21 0.79 0.16 0.80 0.96 23.60 3.72 50 119 
 10% 0.20 0.80 0.14 0.82 0.96 28.40 3.62 62 125 

c6288 2% 0.35 0.65 0.26 0.65 0.91 24.69 9.04 136 443 
 5% 0.31 0.69 0.24 0.69 0.93 22.69 7.22 140 517 
 10% 0.24 0.76 0.19 0.76 0.96 18.66 4.34 130 471 

c7552 2% 0.31 0.69 0.24 0.68 0.91 23.93 8.87 94 171 
 5% 0.30 0.70 0.22 0.71 0.93 26.57 7.00 80 143 
 10% 0.28 0.72 0.24 0.72 0.96 16.57 4.08 81 131 

i2 2% 0.32 0.68 0.22 0.69 0.91 31.88 8.88 2 2 
 5% 0.29 0.71 0.20 0.71 0.91 29.82 8.59 2 2 
 10% 0.25 0.75 0.17 0.75 0.92 29.55 7.82 1 2 

i3 2% 0.21 0.79 0.11 0.79 0.89 50.00 10.55 2 3 
 5% 0.19 0.81 0.08 0.81 0.90 55.56 10.05 1 2 
 10% 0.16 0.84 0.07 0.83 0.91 53.57 9.20 1 2 

i4 2% 0.20 0.80 0.10 0.81 0.91 50.70 9.14 3 3 
 5% 0.17 0.83 0.07 0.83 0.90 61.02 9.97 3 2 
 10% 0.14 0.86 0.07 0.87 0.93 52.27 6.71 2 2 

i5 2% 0.23 0.77 0.21 0.74 0.95 6.78 4.69 5 7 
 5% 0.21 0.79 0.20 0.77 0.97 5.88 2.51 4 3 
 10% 0.20 0.80 0.17 0.80 0.97 13.33 3.04 4 4 

i6 2% 0.26 0.74 0.20 0.74 0.95 22.92 5.46 6 6 
 5% 0.22 0.78 0.20 0.75 0.95 10.26 5.08 6 5 
 10% 0.23 0.77 0.21 0.74 0.95 10.26 4.79 6 5 

i7 2% 0.22 0.78 0.12 0.79 0.90 46.02 9.73 12 21 
 5% 0.19 0.81 0.12 0.81 0.93 38.95 7.43 9 20 
 10% 0.18 0.82 0.12 0.81 0.93 33.71 7.22 10 17 

i8 2% 0.24 0.76 0.19 0.75 0.94 21.57 5.87 24 35 
 5% 0.24 0.76 0.18 0.75 0.94 24.00 6.28 19 33 
 10% 0.22 0.78 0.19 0.77 0.97 12.64 3.30 23 37 

i9 2% 0.20 0.80 0.16 0.77 0.94 17.65 6.47 9 21 
 5% 0.19 0.81 0.17 0.78 0.96 11.29 4.40 8 23 
 10% 0.20 0.80 0.17 0.79 0.96 13.11 3.55 8 19 

i10 2% 0.31 0.69 0.23 0.69 0.92 24.58 7.69 287 373 
 5% 0.32 0.68 0.24 0.68 0.93 22.51 7.04 276 389 
 10% 0.32 0.68 0.24 0.68 0.92 25.23 7.89 293 351 

Avg.Imp       31.22% 7.36%   
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