
Discrete Vt Assignment and Gate Sizing Using a Self-Snapping Continuous
Formulation

Saumil Shah1 Ashish Srivastava1 Dushyant Sharma2 Dennis Sylvester1 David Blaauw1

Vladimir Zolotov3
1 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA

2Department of Industrial Operations and Engineering, University of Michigan, Ann Arbor, USA
3IBM T.J. Watson Research Center, Yorktown Heights, USA

 Abstract-This paper presents a novel approach
towards the simultaneous Vt-assignment and gate-
sizing problem. This inherently discrete problem is
formulated as a continuous problem, allowing it to be
solved using any of several widely available and highly
efficient non-linear optimizers. We prove that, under
our formulation, the optimal solution has discrete Vts
assigned to almost every gate, thus eliminating the
need for a sophisticated snapping heuristic. We show
that this technique performs dual-Vt assignment and
gate sizing in a very efficient manner. Compared to a
sensitivity based method, we achieve average leakage
savings of 31% and average total power savings of
7.4% with very efficient runtimes.

1. Introduction
Due to the increased need for high-performance circuits,
low-threshold voltage devices are aggressively used in
deep submicron technologies. Subthreshold leakage,
being an exponential function of threshold voltage, is
becoming an increasingly significant issue. Leakage
power is projected to consume approximately half the
total power by the 90nm node [1]. These contrasting
requirements have made the use of dual-Vt processes
inevitable. Critical paths on a circuit are assigned to high-
performance, low-threshold voltage devices and non-
critical paths are assigned to low-performance, low-
leakage, high-threshold voltage devices.

There has been a large amount of work in power
optimization using dual-Vt and sizing [2-9]. References
[2-4] use sensitivity-based algorithms while [5] employs a
Lagrangian relaxation based circuit optimizer. Reference
[7] approaches the problem at the transistor level and
employs an enumeration based approach along with
pruning methods. References [8,9] treat the problem as a
continuous optimization problem and heuristically cluster
the obtained solution to the discrete domain. A recent
method proposed by Chen [10] uses a continuous Vt
formulation, where the optimization is performed
assuming the availability of a continuous range of
threshold voltages. Finally the solution is snapped to one
of the physical threshold voltages, requiring a snapping
heuristic.

The difficulty of the Dual Vt and sizing problem is that
the problem is inherently a Mixed-Integer Non-Linear

Program (MINLP) which has a very high complexity
level. Sensitivity-based methods are very limited in the
design space that they can examine and consequently are
inherently heuristic with uncertain quality of solution. On
the other hand, the continuous formulations as in [8-10]
effectively shift the discrete optimization problem to the
snapping phase, where again heuristics are employed and
significant discretization error can be incurred.

In this paper, we propose a novel continuous formulation,
for which we show that, in the absence of gate width
constraints, all gates in the optimal solution automatically
snap to one of the discrete Vt values. This eliminates the
need for a sophisticated heuristic for Vt discretization and
allows the use of a wide range of powerful industrial non-
linear optimizers to improve the solution quality and
achieve runtime efficiency. In our formulation, each gate
is modeled as a parallel combination of high and low Vt
gates. The effective Vt of this mixed gate lies between the
two extreme threshold voltages [11-12] and depends on
the fraction of total width assigned to each Vt portion.
The problem is thus formulated in a continuous manner
where the two widths are separate optimization variables.
We then provide a rigorous proof showing that the
optimal solution to this problem formulation, in the
absence of gate width constraints, has only one non-zero
width value for every gate. Clearly, this approach allows
us to perform simultaneous dual-Vt assignment and
transistor sizing using a seamless non-linear optimization
process and avoids the difficulty present in previous
MINLP approaches.

We then show that, in the presence of constraints on the
gate widths, a limited number of gates in the optimal
solution can have non-snapped Vt values where both the
high-Vt and low-Vt portion of the gate have non-zero
width. We derive rigorous bounds on the number of
occurrences of such non-snapped gates and show that this
number is extremely small. In practice, we found that the
number of non-snapped gates was less than 2% of the
total number of gates. Due to its small number, this small
remnant of non-snapped gates can be trivially snapped
with a simple heuristic. We show that the impact of this
snapping on optimality of the results was much less than
one percent.

We also show that the properties of our formulation hold
even in the general case of multiple threshold voltages.

0-7803-9254-X/05/$20.00 ©2005 IEEE. 704

However, it is in the common case of a dual Vt process,
where the discretization error for the previous approaches
is large, that our method would prove to have the greatest
advantage. We implement the proposed approach and
show that the proposed method achieves average leakage
savings of up to 31% and average total power savings of
7.35% over a sensitivity-based approach.

The rest of the paper is organized as follows. Section 2
introduces the traditional single-Vt convex sizing problem
and the formulation of the dual-Vt assignment problem in
continuous form. Section 3 provides a rigorous proof of
the snapping phenomenon explained above. In this section
we also extend the analysis to include the practical
constraint of fixed-width input drivers. In Section 4 we
describe the details of the implementation and our
experimental setup. Section 5 gives a detailed discussion
of the results and Section 6 concludes the paper.

2. Problem Formulation

The single-Vt, gate sizing problem is traditionally
formulated as given below:
Minimize: WPi ii G

∑
∈

Subject to: 0D Aii p
≤∑

∈
 p P∀ ∈ (1)

 L W Ui i i≤ ≤ 1, ..., .i n=
P is the set of all paths from the primary inputs to the
outputs, G is the set of all gates, Pi is the power per unit
width (static + dynamic) of gate i, Wi and Di are the width
and delay of gate i, respectively. A0 is the constraint on
total circuit delay and the Li’s and Ui’s are the bounds on
gate size. Clearly, the number of possible paths is
exponential in the number of gates n, making this
formulation impractical for efficient optimization
algorithms. We use the standard technique of partitioning
path delay constraints into nodal constraints [13]. We
assign a variable ai to each node i in the circuit,
representing the arrival time at node i. Now, the primal
problem can be formulated as given below:
Minimize: WPi ii G

∑
∈

Subject to:

0a Aj ≤ { }j outputs∈

a D aj i i+ ≤ ({1,..., } { })i n inputs∈ − (2)

D ai i≤ { }i inputs∈

L W Uii i≤ ≤ 1, ..., .i n=
This is the standard convex sizing problem, where a
circuit is sized for minimum power while meeting a fixed
delay constraint. When this problem is combined with the
dual-Vt assignment problem, it loses its convexity and is,
in fact, a MINLP. Mixed-Integer problems cannot be
solved efficiently in polynomial time and require heuristic
solutions. We avoid dealing with the intractability of

Fig. 1. NAND Gate represented as a parallel
combination of HVt and LVt gates

MINLP’s by extending this problem in the continuous
domain to the simultaneous sizing and dual-Vt
assignment problem.

2.1 Continuous Formulation of Dual Vt
Problem

To transform the discrete dual-Vt assignment problem
into a continuous one, we propose the following
formulation. Each gate is considered to be a parallel
combination of a high Vt portion and a low Vt portion.
Figure 1 shows the equivalent circuit representation of a
mixed gate. The effective drive strength and power
consumption of the mixed gate are intermediate between
high and low Vt parameters. Effectively, this gate can be
considered to have a threshold voltage somewhere
between the two extremes [11,12].

The equivalent resistance of the mixed gate can be written
as

||lgR R Reff ate hgate=

where lgate

RlR
Wl

= and gate

RlR
Wl

= are the total gate

resistances of the Low Vt (LVt) fraction and High Vt
(HVt) fraction respectively and Rl and Rh are the
resistances per unit width. The effective resistance is,
therefore,

eff
R Rl hR

R W R Wl h h l
=

+
 (3)

For the purpose of this work, we use a delay model where
the drive strength of a gate is linearly dependent on its
size. The model also allows for capacitive self-loading,
where the load capacitance of a gate is a function of its
own width along with the widths of its fanouts. This is
similar to the models that form the basis of logical effort
theory, and have been successfully used in logic synthesis.
Under this model, the delay of a gate can be written as

705

D RCl= (4)

C C K Wl Load SL= +
Here KSL is a constant that models the contribution of a
gate’s intrinsic capacitance to its own load.

The delay of the mixed gate is
D R Ceff l=

 Cl
R Rl h

R W R Wl h h l
=

+
 (5)

 ()C C K W Wl Load SL l h= + +
The total power of every gate can now be written as
P PW P Wgate l l h h= + (6)

where Pl and Ph are the power per unit width of the LVt
and HVt fraction of the gate respectively. These constants
include both dynamic and static power, and are dependent
on the load and switching activity of a gate.

Now the problem can be rewritten as
Minimize: , ,, ,W P Wh i h iPl i l ii G

+∑
∈

Subject to:

0a Aj ≤ { }j outputs∈

a D aj i i+ ≤ ({1,..., } { })i n inputs∈ −

 { ()}j input i∈

D ai i≤ { }i inputs∈

,0 Wl i≤ 1, ..., .i n= (7)

,0 Wh i≤ 1, ..., .i n=

, ,i UiW Wl i h iL + ≤≤ 1, ..., .i n=

The expression for the gate delay appearing in the
constraints is

,
, ,

, , , ,
Ci l i

R Rl i h iD
R W R Wl i h i h i l i

=
+

Also, for the primary outputs
(), , ,C C K W Wl i L SL l i h i= + + (8)

For all other gates
 (()) (), , ,, , ,()
C C W W K W Winp j l j h jl i SL l i h ij fo i

∑= + + +
∈

(9)

3. Proof of Discrete-Vt (Snapped) Optimal
Solution

In this section, we prove that, ignoring the constraints on
device size, the optimal solution has every gate in either
the fully high or fully low-Vt configuration.

We prepare a background for the proof by conceptually
separating the problem into two phases. In the first phase,
which we call the D-phase, we obtain a vector of all gate

delays. Carrying this fixed delay vector to the second
phase or the W phase, we find the sizing solution for that
particular delay vector which gives minimum total power.
We now prove that the optimal sizing solution for any
arbitrary delay vector has every gate snapped to either
LVt or HVt. It is easy to see that this condition holds for
the optimal solution of the complete problem too, since
the optimal delay vector is simply a special case of an
arbitrary combination of delay assignments. We clarify
that, although the separation of the problem into two
phases is conceptual and does not reflect the actual
optimization procedure, the validity of the argument is
independent of the formulation used by the optimizer.

The W-phase of the problem (7) can be written as
Minimize: , ,, ,W P Wh i h iPl i l ii G

+∑
∈

Subject to:

((()) ()), , , , ,()

, , , ,

, , C W W K W Winp j l j h j SL l i h ij fanout i

i

R W R Wl i h i h i l i

R Rl i h i

D

=

∑ + + +
∈

+

 1, ..., .i n=
0,Wl i ≥ 1, ..., .i n= (10)

0,Wh i ≥ 1, ..., .i n=

In this sub-problem, the Di’s are treated as constants
carried over from the D-phase. It is interesting to note that
the objective function and all constraints are linear;
therefore this is a Linear Programming Problem (LPP).
For clarity, we write the problem in the canonical LPP
form as shown in (11).

Minimize: (,)TP W Wl h
Subject to:

(,)TA W W Bl h = (11)

(,) 0W Wl h >=
Here PT is the vector of Pl and Ph values, (Wl,Wh) is the
vector of LVt and HVt gate widths, A is the n×n matrix of
the coefficients of the equality constraints, and B is the
vector of the constants appearing in the equality
constraints. With this background, we present a formal
proof of the snapping phenomenon.

Theorem 1: The optimal solution to the problem in (11)
has the property that the width of every gate has exactly
one non-zero component.
i.e. i∀ , , 0l iW = or , 0h iW =
Proof: We note that, in the non-degenerate case, all
equality constraints are linearly independent. Therefore A
is a full-rank matrix with rank n.
The problem stated in (11) is a LPP with 2n variables, n
equality constraints, and 2n non-negativity constraints.

706

We know that the power cannot be negative, hence the
solution is bounded and is always attained. Therefore, this
LPP must have a finite solution. From the Theory of
Linear Programming [15] we know that if this LPP has a
solution, it is a basic feasible solution, which has (2n-n)
basic variables and (2n-n) non-basic variables. The basic
variables are free to have any value and the non-basic
variables are constrained to be at their lower bound
(which is zero).

Thus, it is clear that in the optimal solution, n variables
will have value zero and n variables will be non-zero. It is
obvious that for any gate it is impossible for both Wl and
Wh to have zero value, because the delay of that gate
would be infinitely large. Hence, it is clear that each gate
has one zero W component and one non-zero component.
Therefore each gate is snapped to either high or low Vt.
3.1 Extension to circuits with fixed-width
input driver constraints

Having proved the snapping phenomenon under the
proposed model, we now add a practical constraint. In
practice, combinational circuits are usually driven by
sequential elements, the sizes of which are not included in
the combinational optimization procedure. The delays of
these sequential elements, however, must be considered
while computing the total circuit delay since their delays
are affected by the sizes of the gates driven by them.
Ignoring this constraint allows the primary input gates to
be sized up indefinitely without incurring any delay
penalty, which could lead to an impractical solution. To

model this constraint, we introduce fixed-width input

Fig. 2. Circuit in absence of fixed-width input drivers

Fig. 3. Circuit with fixed-width input drivers

drivers feeding all the primary inputs. This concept is
clearly explained in Figure 3, which illustrates a circuit
with fixed-width input drivers. In comparison, the circuit
shown in Figure 2 has no drivers and therefore upsizing
gate 1 does not incur any delay penalty. All previous
approaches referenced in Section 1 implicitly make the
simplifying assumption of Figure 2 without providing
further analysis. We remove this assumption and prove
that the significance of our results is not diminished.
Although, under this constraint we cannot conclusively
prove that every gate will snap, a simple extension of the
argument made above can prove that only a very small
proportion of gates (if any) will be non-snapped.

Let us consider a circuit with m primary inputs, and
therefore, m input drivers. We proceed in exactly the
same manner as before, separating the problem into the
two phases. In the W phase, we consider the delays of all
gates (including the input drivers) to be fixed. The
problem formulation remains the same as (11), except for
the addition of m constraints imposed by the delay
equations of the input drivers. Clearly, this new problem
is also an LPP. The rank of the matrix A now changes to
n+m. We, therefore, have a canonical form LPP with 2n
variables, n+m constraints and 2n non-negativity
constraints. Once again, from the Theory of Linear
Programming, there are 2n-(n+m) non-basic variables and
n+m basic variables. Therefore, in a non-degenerate
solution, n+m variables are positive and n-m variables
have value zero. This implies that a total of m gates could
possibly be non-snapped (have both their W’s non-zero),
where m is the number of primary inputs. Hence, the total
number of non-snapped gates is bounded by the number
of primary inputs, which is usually a small proportion of
the number of gates in the circuit. We also note that,
although the number of primary inputs is an upper bound
on the number of non-snapped gates, in practice the
number is found to be much smaller. Over most circuits,
this was found to be zero, and, as shown in Fig. 6, always
proved to be a very small fraction of the total number of
gates. In Section 4, we explain how this small proportion
of gates can be handled heuristically without much
difficulty.

3.2 Non-snapped gates due to maximum and
minimum sizing constraints

When upper and lower bounds are placed on total device
size, as in formulation (7), we have n additional
constraints in the LPP. The snapping property does not
explicitly hold under Theorem 1. However, the non-
snapped gates are only those that are at their extreme
values in the optimal solution. Clearly, in optimized
digital circuits, maximum size gates are very rare. It is
often more profitable to assign a gate to the LVt
configuration than to size it beyond a certain bound. On
the other hand, minimum size gates rarely lie on critical
paths. Since they are not critical, small changes to their
delay do not affect total circuit delay. Also, their

707

contribution to power is relatively small. Therefore,
snapping their Vt heuristically does not incur a significant
delay or power penalty.

3.3 Generalization of proof to a k-Vt (k>2)
process

The proof in Section 3 can easily be extended to a process
where there are more than two allowable threshold
voltages. Each gate can be considered a parallel
combination of n gates of different threshold voltages.
The delay of gate i can now be written as

,
1

, ,
1 1

,
()

k

j i
j
kk

j i m i
m j

j m

Ci l iD

R

R W

=

= =
≠

=
∏

∑ ∏
 (12)

Where Rj,i is the resistance of the jth Vt fraction of the ith
gate and Wk,i is the width of the kth Vt fraction of the ith
gate. Multiplying on both sides of the equation by the
denominator, once again we get a linear equation.
Formulating this in exactly the same manner as the dual-
Vt problem, we obtain a LPP with k×n variables, n
equality constraints and k×n non-negatvity constraints. As
stated above, the optimal solution has (k-1)×n non-basic
variables. Therefore, only n variables can be non-zero. As
stated before, each non-zero variable has to be a width
fraction from a different gate. If it were not so, we would
have gates with zero total width. Clearly, if we use this
formulation to perform multi-Vt optimization, we end up
getting a solution where one particular Vt is assigned to
each gate. We have thus shown that we can use our
method to successfully perform multiple-Vt assignment.

4. Implementation Details and Experimental
Setup
We use the method explained above to perform dual-Vt
assignment on large-scale combinational circuits. We
hypothetically represent every gate as a combination of
high and low Vt gates and formulate the problem as
shown above. We first modify the problem to improve
convergence properties of the optimizer by applying the
exponential transform to all variables. The final variables
used in the optimization problem are the logarithmic
values of the variables in the equations given above. This
choice of variables and variable transformations was
made by conducting experiments with different
formulations. It is intuitive that the exponential
transformation should give best convergence properties as
it is the commonly used transformation for
convexification of geometric programming problems. We
express the model using the mathematical programming
language AMPL [16]. The AMPL interface can be used to
invoke a wide range of commercial non-linear solvers.
For this work, our solver of choice is MINOS [17] due to
its stability and efficiency.

The solution returned by the solver has very few gates
that are non-snapped due to the sizing constraints (usually
the lower bound) and even fewer gates that are non-
snapped because of the fixed input drivers. We propose
two heuristics to arrive at a solution with an entirely
discrete Vt assignment.

Heuristic 1
In the first approach, we round the non-snapped gates to
closer of the two threshold voltages. We thus fix the Vt of
these gates by forcing one of the two W components to be
zero and rerun the optimization. The new solution
obtained in this way has certain previously-snapped gates
in the non-snapped configuration. However, the number
of non-snapped gates obtained in an iteration is always
lower than in the previous iteration. We repeat this
procedure iteratively until a fully snapped solution is
reached. The pseudocode for this heuristic is given in Fig.
4. An interesting property is observed in the solution
obtained at the end of this iterative procedure. Even in
large circuits, only 1 or 2 gates are found to have
differing Vt values in the final solution compared to the
first pass. This observation leads us to our second
heuristic, which is far simpler and achieves better runtime
negligible penalty in the quality of results.

Heuristic 2
After the initial optimization run, we fix the Vt of every
gate, rounding non-snapped gates to the closest Vt value.
Subsequently we perform a sizing run to meet timing. A
comparison of the total power for the two heuristics
showed the solutions to be within 0.1% of each other. We,
therefore, use the second heuristic to compare our results
with previously proposed approaches.

1. Algorithm : CONT_VT1
2. write_AMPL_input();
3. iterate:
4. run_MINOS();
5. parse_out_file();
6. if non-snapped gates = 0
7. end;
8. else
9. fix_non_snapped_gates();
10. goto iterate;

Fig. 4. Pseudocode for continuous sizing and
Vt assignment using Heuristic 1

1. Algorithm : CONT_VT2
2 . write_AMPL_input();
3. run_MINOS();
4. parse_out_file();
5. fix_non_snapped_gates();
6. run_MINOS();
7 . end;

Fig. 5. Pseudocode for continuous sizing and Vt
assignment using Heuristic 2

708

At this point, we note that this problem is not convex;
therefore it is not possible to arrive at a globally optimal
solution in polynomial time. However, our approach
returns a local minimum, and, with a suitable choice of
initial solution, is guaranteed to perform better than a
sensitivity-based algorithm.

We use an industrial 0.13µm technology with primary
input activity factors adjusted to maintain a 70/30 ratio of
dynamic to static power across all circuits. The Vts are
such that the ratio of the resistances is 1.15/1 and the
leakage ratio is 10/1. To compare the proposed solution to
the sensitivity-based algorithm (SBA) in [2], we take the
solution returned by the optimizer and discretize the sizes
by snapping them to the closest library cell. Although,
this does alter the delay constraint to some extent, the
timing penalty is fairly small (~2-3%). We use this new
delay value as the constraint for SBA and optimize for
total power. We compare the two algorithms in terms of
achieved objective function value (total power) as well as
in terms of runtime.

5. Results

This section gives detailed results of our experiments on
circuits from the ISCAS [18] and MCNC [19] benchmark
suites. Figure 2 shows the snapping properties of two
circuits – c5315 (1750 gates) and c7552 (1994 gates) to
illustrate the proportion of non-snapped gates as a
function of the timing backoff. The backoff is defined
with respect to the best possible delay achievable by the
optimizer for a particular circuit. It is clearly seen that the
number of non-snapped gates is very small to start with
and decreases as the delay constraint is relaxed. Also, a
majority of the non-snapped gates are those that have
reached the constraint on their total size, which are easy
to handle as stated earlier. The number of non-snapped
gates due to fixed-width input drivers is zero over most
timing constraints and extremely small otherwise. Table 1
shows a comparison of results obtained by the two
heuristics and the power compared to the initial non-
snapped solution. The number of iterations required for
the convergence of Heuristic 1 is also shown in the table.
Heuristic 2, by definition, always requires exactly two
iterations. For brevity we include only results for the
larger circuits in Table 1. Table 2 compares the total
power obtained by our algorithm to SBA-based
optimization. To compare the results we heuristically snap
the gate sizes to a fine- grained library, where each gate is
1.2X larger than the previous gate of its type. We
observe that circuits optimized by our method have
considerably lower leakage than those optimized by SBA.
We also show gains in total power, achieved by a trade-
off between dynamic power and static power. Clearly,
circuits that have a higher proportion of leakage power
initially will exhibit more substantial total power
improvements. The results show that the optimizer allows
a small dynamic power penalty in order to reduce leakage
and hence total power. This observation clearly illustrates

0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.00

0.01
0.02

0.03

0.04

0.05
0.06

0.07

0.08
0.09

0.10

0.11

0.12

 c7552
 c5315

%
 o

f N
on

-s
na

pp
ed

 g
at

es
du

e
to

 fi
xe

d-
w

id
th

 d
riv

er
s

%
 o

f n
on

-s
na

pp
ed

 g
at

es

Timing Backoff(%)

 c7552
 c5315

Fig. 6. Number of non-snapped gates as a function of
circuit delay for c5315. The lines shows the total
number of non-snapped gates while the histogram
shows only those which are not at a sizing bound.

c2670 c3540 c5315 c6288 c7552 i8 i9 i10 --
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

%
 o

f t
ot

al
 n

on
-s

na
pp

ed
 g

at
es

du

e
to

 in
pu

t d
riv

er
s

%
 o

f t
ot

al
 n

on
-s

na
pp

ed
 g

at
es

Circuit

Fig. 7. Percentage of non-snapped gates at 5% timing
backoff for large circuits

Table 1. Comparisons of proposed heuristics for large
circuits at 2% timing backoff. Total power is
normalized to initial non-snapped solution

Heuristic 1 Heuristic 2
Circuit Iterations

Total
Power Iterations Total

Power
c3540 7 1.001 2 1.002
c5315 3 1.002 2 1.002
C6288 8 1.006 2 1.007
C7552 4 1.004 2 1.004

i8 3 1.002 2 1.002
i9 2 1.002 2 1.002

i10 2 1.003 2 1.003

the advantage of using an algorithm that handles gate
sizing and Vt-assignment as a unified problem rather than
independently. The table also shows runtime comparisons.

709

For most circuits the runtime of one iteration of the
optimizer is better than the runtime exhibited by SBA.
However, the complete procedure involves two iterations
and the proposed approach therefore suffers some runtime
penalty.

We also observe that our formulation allows us to meet
much tighter timing constraints (up to 10%) than can be
met by SBA. We attribute this to the fact that the sizing
problem is convex and can be handled very efficiently by
the non-linear optimizer, especially if the initial solution
passed to the optimizer is an all-LVt design, The
sensitivity-based heuristic, on the other hand, will not
necessarily converge to the optimal solution, even if the
problem is convex, and, therefore, suffers from sub-
optimality.

6. Conclusions

We present a novel technique to solve the dual-Vt
assignment problem. We formulate the problem in a
continuous manner and show that the optimal solution has
a very large proportion of the total gates already assigned
to one of the two threshold voltages. We snap the few
remaining gates heuristically. The main contribution of
this work is providing a formulation that can be solved
efficiently by a general purpose non-linear optimizer to
obtain a discrete dual-Vt solution without the added
penalty of heuristic Vt discretization. The optimization
procedure is thus more effective than sensitivity-based or
separate sizing and Vt-assignment methods proposed
previously. Circuits optimized by the proposed technique
have 31% lower leakage and 7.4% lower total power on
average than circuits optimized using a sensitivity-based
algorithm.

Acknowledgements
This work was supported by funding from
MARCO/DARPA GSRC.

References
[1] S. Narendra et al., “Leakage Issues in IC Design:
Trends, Estimation and Avoidance”, Tutorial, ICCAD,
2003.
[2] S. Sirichotiyakul et al., “Duet: An Accurate Leakage
Estimation and Optimization Tool for Dual-Vt Circuits”,
IEEE Transactions on VLSI Systems, pp. 79-90, April
2002.
[3] P. Pant, R. Roy, and A. Chatterjee. “Dual-threshold
Voltage Assignment with Transistor Sizing for Low
Power CMOS Circuits,” IEEE Trans. on VLSI Systems,
pp.390-394, 2001.
[4] L. Wei et al., “Design and Optimization of Low
Voltage High Performance Dual Threshold CMOS

circuits,” Proc. Design Automation Conference, pp. 489-
494.1998.
[5] T. Karnik, et al., “Total Power Optimization by
Simultaneous Dual-Vt Allocation and Device Sizing in
High Performance Microprocessors,” Proc. Design
Automation Conference, pp.486-491, 2002.
[6] D. Nguyen, et al., “Minimization of Dynamic and
Static Power Through Joint Assignment of Threshold
Voltages and Sizing Optimization,” Proc. International
Symposium on Low-Power Electronics Design, pp. 158-
163, 2003.
[7] M. Ketkar, et al., Convex Delay Models for Transistor
Sizing,” Proc. Design Automation Conference, pp. 655-
660, 2000.
[8] A. Srivastava, et. al. “Simultaneous Vt Selection and
Assignment for Leakage Optimization,” Proc.
International Symposium on Low-Power Electronics
Design, pp. 146-151, 2003.
[9] V. Sundarajan and K. Parhi, “Low Power Synthesis of
Dual Threshold Voltage CMOS VLSI circuits,” Proc.
International Symposium on Low-Power Electronics
Design, pp. 139-144, 1999.
[10] C. Chen et. al. “Fast and Effective Gate-Sizing with
Multiple-Vt Assignment using Generalized Lagrangian
Relaxation”, Proc. Asia South Pacific - Design
Automation Conference, pp. 381-386. 2005.
[11] K. Agarwal, et. al. “Achieving Continuous Vt
performance in a dual-Vt process”, Proc. Asia South
Pacific – Design Automation Conference, pp. 393-398,
2005.
[12] S. Shah et. al. “A New Threshold Voltage
Assignment Scheme for Runtime Leakage Reduction in
On-Chip Repeaters”, Proc. Intl. Conf. on Computer
Design, pp. 138-143, 2004.
[13] C. Chen et. al., “Fast and Exact Simultaneous Gate
and Wire Sizing by Lagrangian Relaxation,” IEEE
Transactions on CAD, pp. 1014-1025, July 1999.
[14] H. B. Bakoglu, “Circuits, Interconnections, and
Packaging for VLSI,” Addison-Wesley, 1990.
[15] M.S. Bazaraa et. al. “Linear Programming and
Network Flows,” 3nd Edition, Wiley, 2005.
[16] R. Fourer, D. M. Gay and B. W. Kernighan, “A
Modeling Language for Mathematical
Programming,” Management Science, Vol. 36, pp. 519-
554, 1990.
[17] B. A. Murtagh and M. A. Saunders, “MINOS 5.4
User's Guide, Report SOL 83-20R,” Systems Optimization
Laboratory, Stanford University, December 1983 (revised
February 1995).
[18] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran,” Proc. ISCAS, pp. 695-698, May
1989.
[19] http://www.cbl.ncsu.edu

710

Table 2. Comparison of total power consumption (normalized to total SBA power) between circuits optimized with
continuous method and circuits optimized with SBA

SBA Continuous Formulation
%

Improvement

Runtime
(s) Ckt Timing

Backoff
Static Dyn, Static Dyn. Total Static Total SBA Cont.

c432 2% 0.34 0.66 0.13 0.63 0.75 62.35 24.69 4 3
 5% 0.21 0.79 0.12 0.68 0.79 45.74 20.72 3 2
 10% 0.16 0.84 0.10 0.77 0.87 39.74 13.01 3 2

c1908 2% 0.19 0.81 0.10 0.84 0.93 48.57 6.76 21 11
 5% 0.16 0.84 0.09 0.86 0.95 44.71 4.94 25 8
 10% 0.15 0.85 0.08 0.87 0.95 44.74 5.01 24 8

c2670 2% 0.26 0.74 0.19 0.74 0.93 29.13 7.28 58 37
 5% 0.26 0.74 0.17 0.74 0.91 36.36 9.11 46 35
 10% 0.25 0.75 0.16 0.77 0.93 34.29 6.56 47 26

c3540 2% 0.26 0.74 0.16 0.78 0.94 38.14 6.46 28 51
 5% 0.24 0.76 0.14 0.81 0.94 41.32 5.54 26 47
 10% 0.23 0.77 0.13 0.80 0.93 42.76 6.97 23 40

c5315 2% 0.22 0.78 0.15 0.80 0.95 30.53 5.11 52 133
 5% 0.21 0.79 0.16 0.80 0.96 23.60 3.72 50 119
 10% 0.20 0.80 0.14 0.82 0.96 28.40 3.62 62 125

c6288 2% 0.35 0.65 0.26 0.65 0.91 24.69 9.04 136 443
 5% 0.31 0.69 0.24 0.69 0.93 22.69 7.22 140 517
 10% 0.24 0.76 0.19 0.76 0.96 18.66 4.34 130 471

c7552 2% 0.31 0.69 0.24 0.68 0.91 23.93 8.87 94 171
 5% 0.30 0.70 0.22 0.71 0.93 26.57 7.00 80 143
 10% 0.28 0.72 0.24 0.72 0.96 16.57 4.08 81 131

i2 2% 0.32 0.68 0.22 0.69 0.91 31.88 8.88 2 2
 5% 0.29 0.71 0.20 0.71 0.91 29.82 8.59 2 2
 10% 0.25 0.75 0.17 0.75 0.92 29.55 7.82 1 2

i3 2% 0.21 0.79 0.11 0.79 0.89 50.00 10.55 2 3
 5% 0.19 0.81 0.08 0.81 0.90 55.56 10.05 1 2
 10% 0.16 0.84 0.07 0.83 0.91 53.57 9.20 1 2

i4 2% 0.20 0.80 0.10 0.81 0.91 50.70 9.14 3 3
 5% 0.17 0.83 0.07 0.83 0.90 61.02 9.97 3 2
 10% 0.14 0.86 0.07 0.87 0.93 52.27 6.71 2 2

i5 2% 0.23 0.77 0.21 0.74 0.95 6.78 4.69 5 7
 5% 0.21 0.79 0.20 0.77 0.97 5.88 2.51 4 3
 10% 0.20 0.80 0.17 0.80 0.97 13.33 3.04 4 4

i6 2% 0.26 0.74 0.20 0.74 0.95 22.92 5.46 6 6
 5% 0.22 0.78 0.20 0.75 0.95 10.26 5.08 6 5
 10% 0.23 0.77 0.21 0.74 0.95 10.26 4.79 6 5

i7 2% 0.22 0.78 0.12 0.79 0.90 46.02 9.73 12 21
 5% 0.19 0.81 0.12 0.81 0.93 38.95 7.43 9 20
 10% 0.18 0.82 0.12 0.81 0.93 33.71 7.22 10 17

i8 2% 0.24 0.76 0.19 0.75 0.94 21.57 5.87 24 35
 5% 0.24 0.76 0.18 0.75 0.94 24.00 6.28 19 33
 10% 0.22 0.78 0.19 0.77 0.97 12.64 3.30 23 37

i9 2% 0.20 0.80 0.16 0.77 0.94 17.65 6.47 9 21
 5% 0.19 0.81 0.17 0.78 0.96 11.29 4.40 8 23
 10% 0.20 0.80 0.17 0.79 0.96 13.11 3.55 8 19

i10 2% 0.31 0.69 0.23 0.69 0.92 24.58 7.69 287 373
 5% 0.32 0.68 0.24 0.68 0.93 22.51 7.04 276 389
 10% 0.32 0.68 0.24 0.68 0.92 25.23 7.89 293 351

Avg.Imp 31.22% 7.36%

711

