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Abstract. The classical methods for solving initial-boundary-value problems for linear partial differential equations with
constant coefficients rely on separation of variables, and specific integral transforms. As such, they are limited to specific
equations, with special boundary conditions. Here we review a method introduced by Fokas, which contains the classical
methods as special cases. However, this method allows also for the equally explicit solution of problems for which no classical
approach exists. In addition, it is easy to elucidate which boundary-value problems are well posed and which are not. We
provide examples of problems posed on the positive half-line and on the finite interval. Some of these examples have solutions
obtainable using classical methods, others do not. For the former examples, it is illustrated how the classical methods may be
recovered from the more general approach of Fokas.

1. Introduction. The canonical first course in partial differential equations (PDEs) focuses on explicit
solution methods for problems for which such a solution can be found. The solution techniques presented
include the method of separation of variables, Fourier series and transforms, Laplace and other integral
transforms, Green’s functions, etc. Standard textbooks for such courses include [4, 11, 12, 13, 17], each with
their own amount of rigor. These textbooks focus almost all of their attention on scalar equations that are
first- or second-order in any independent variable. In this context, an initial- or boundary-value problem
(IVP or BVP) is considered solved if an explicit1 expression is constructed for the dependent variable as a
function of the independent variables and of the given initial and boundary conditions. This expression is
typically given as an infinite series or an integral, or a combination of such.

In this paper, we advocate a different method from the ones taught in any course. The method is
relatively new. It was discovered by A. S. Fokas in his quest to generalize the method of inverse scattering,
which solves the IVP for x ∈ R for so-called soliton equations, to BVPs posed either on the half line x ≥ 0
or on the finite interval x ∈ [0, L] [6, 7, 9]. It was observed immediately [8, 10] that the method produces
interesting results for linear equations as well, which is our focus here. Just like the classical methods, the
method of Fokas produces an explicit solution for the dependent variable u(x, t). The solution formula is
in terms of one or more integrals along paths in the complex plane of an auxiliary variable k. All x and t
dependence in the solution formula is entirely explicit. Although the method is more general, we restrict
our attention to scalar problems with one spatial independent variable x and one temporal independent
variable t. We present the method of Fokas as a valuable addition to the standard methods taught, for
several reasons.

• It encompasses the standard methods. For those cases where a standard method produces an explicit
solution, Fokas’s method does so as well. In fact, as we show in several examples below, the resulting
solution formulas are equivalent, as they should be.

• It is more general than the standard methods: we are able to produce solution formulas for many
problems where the classical methods are unable to do so. This is particularly clear for problems
containing higher than second-order derivatives.

• Where the standard methods are a collection of situation-specific approaches, tailored to specific
equations and boundary conditions, the method of Fokas produces a solution using the same ideas
for all these different problems, with the differences appearing only in the calculational details.

• In addition to producing an explicit formula for the solution, the method allows one to determine
in a straight-forward way how many and which boundary conditions result in a well-posed problem.
Especially for BVPs for equations with more than second-order derivatives, this is a nontrivial issue.

1For our purposes, an explicit expression is one whose evaluation is the topic of a lower-level course. For instance, the
ordinary differential equation y′ + 2xy = 1 has an explicit solution since it is possible to express the solution in terms of
operations whose evaluation is the topic of calculus, even though not all anti-derivatives can be written in terms of elementary
functions. Similarly, Fourier series, integrals in the complex plane, etc, give rise to explicit solutions of partial differential
equations.
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• The background required for the method is limited to the knowledge of the Fourier and inverse
Fourier transform pair, the Residue Theorem and Jordan’s Lemma, see [1] or [3], for instance. In
other words, even if no course on complex analysis precedes the first course on partial differential
equations, the necessary material is easily introduced in three or four lectures.

Our introduction to the method of Fokas proceeds mostly by example. More details and general argu-
ments can be found in [9]. We start by revisiting the IVP on the whole line in the framework of the new
method, see Section 2. This results merely in the construction of the familiar Fourier transform expression
for the solution, but it does allow us to generalize the approach to the half-line and finite interval problems
more naturally. This is done in Sections 3 and 4, respectively. These sections comprise the bulk of the paper.
The reader will find examples of problems that can be solved using the standard methods, in which case
we demonstrate the equivalence of the classical results with those obtained using Fokas’s method. Other
examples illustrate the use of the method in situations where the standard methods fail or are unable to
proceed. Our emphasis is not on rigor and no comments are made about function spaces. Rather, in the vein
of a first course on PDEs (see, for instance, [4, 12]), we assume whatever conditions are necessary for the
calculations to proceed: for instance, functions are at least as differentiable as dictated by the equation and
boundary and initial conditions are compatible at (x, t) = (0, 0) and, for the finite interval, at (x, t) = (L, 0).

2. The initial-value problem on the whole line. In contrast to a traditional first course on PDEs
we begin by considering the IVP for linear constant coefficient equations on the entire real line. In order to
start with a concrete example, consider the IVP for the heat equation:

qt = qxx, x ∈ R, t ∈ (0, T ], (2.1a)

q(x, 0) = q0(x), x ∈ R, (2.1b)

where subscripts denote partial differentiation. Here T is a positive real number, and we impose the boundary
condition that q(x, t)→ 0 sufficiently fast as |x| → ∞, for all t ≥ 0. The solution to this problem is given by

q(x, t) =
1

2π

∫ ∞
−∞

q̂0(k)eikx−ω(k)tdk, (2.2)

where ω(k) = k2 is the dispersion relation2 for the heat equation, and q̂0(k) is the Fourier transform of the
initial condition:

q̂0(k) =

∫ ∞
−∞

q0(x)e−ikxdx. (2.3)

Further, letting T → ∞ does not affect the validity of the solution. In a traditional text, this result is
obtained by taking the Fourier transform of the original PDE (2.1a). This results in a one-parameter family
of ordinary differential equations (ODEs) with parameter k. Solving this ODE gives the Fourier transform
of the solution at any time t. Using the inverse transform, the above result is obtained.

In the new approach, we start by rewriting the heat equation as a one-parameter family of PDEs in
divergence form

∂tρ(x, t, k) + ∂xj(x, t, k) = 0, (2.4)

where

ρ(x, t, k) = e−ikx+ω(k)tq,

with k ∈ C. We refer to (2.4) as the local relation. The explicit form of j is easily obtained using the reverse

2For consistency with the literature on Fokas’s method [9], we adopt the convention that the dispersion relation ω(k) is
found by substitution of exp(ikx− ω(k)t) in the PDE.
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Fig. 2.1: The region of integration in the (x, t) plane for problems posed on the whole-line.

product rule:(
e−ikx+ω(k)tq

)
t

= ω(k)e−ikx+ω(k)tq + e−ikx+ω(k)tqt

= ω(k)e−ikx+ω(k)tq + e−ikx+ω(k)tqxx

= ω(k)e−ikx+ω(k)tq +
(
e−ikx+ω(k)tqx

)
x

+ ike−ikx+ω(k)tqx

= ω(k)e−ikx+ω(k)tq +
(
e−ikx+ω(k)tqx

)
x

+
(
ike−ikx+ω(k)tq

)
x
− k2e−ikx+ω(k)tq

=
(
e−ikx+ω(k)t(qx + ikq)

)
x
, (2.5)

so that j = −e−ikx+ω(k)t(qx + ikq). Note that this calculation also determines ω(k).
We are now in a position to apply Green’s Theorem in the (x, t) plane. Consider (2.5) on an infinite

horizontal strip D of height T (see Figure 2.1). In what follows s is a temporal dummy variable. Using the
decay properties of the solution where necessary, we have∫∫

D

([
e−ikx+ω(k)sq(x, s)

]
s
−
[
e−ikx+ω(k)s(qx(x, s) + ikq(x, s))

]
x

)
dsdx = 0

(Green’s Theorem)
⇒

∫
∂D

(
e−ikx+ω(k)sq(x, s)dx+ e−ikx+ω(k)s(qx(x, s) + ikq(x, s))ds

)
= 0

⇒
∫ ∞
−∞

e−ikxq0(x)dx−
∫ ∞
−∞

e−ikx+ω(k)T q(x, T )dx = 0

⇒
∫ ∞
−∞

e−ikxq(x, T )dx = e−ω(k)T
∫ ∞
−∞

e−ikxq0(x)dx. (2.6)

The contribution of the second integrand on the second line vanishes due to the decay properties of the
solution as |x| → ∞. In later sections, such terms bring in the contributions from the boundary data. The
last line relates the Fourier transform of the solution at time T to the Fourier transform of the initial value
q0(x), as expected. Inverting the transform we obtain the solution (2.2).

Let us take a step back to review our work. It appears we have obtained the traditional result in a
roundabout way. However, progress has been made. The procedure used here is suited for solving problems
other than those posed on the whole line. By working with different domains (as those used below) for the
application of Green’s Theorem to the local relation we obtain the integral expressions for solutions to the
corresponding BVP.

Remarks.
• The procedure above works equally well for equations other than the heat equation. In fact, the

solution formula (2.2) stands as is, as long as the appropriate dispersion relation is filled in. We do
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Fig. 3.1: The region of integration in the (x, t) plane for boundary-value problems posed on the positive
half-line.

not elaborate on this here, details are found, for instance, in the Appendix of [2]. For BVPs, more
detail is found below.

• The conversion of the PDE to the local relation (2.4) is always possible for linear constant coefficient
PDEs [9]. The explicit form of j(x, t, k) in terms of ω(k), avoiding the reverse product rule, is given
in (3.33). See Section 3.5 for more detail.

3. The problem on the half line.

3.1. The heat equation with Dirichlet boundary conditions. In section 2 the heat equation on
the whole real line was solved. The success of this method was due to the properties of the Fourier transform
which incorporates the “boundary condition” of decay at infinity. In this section we solve the heat equation
on the half line with Dirichlet boundary data:

qt = qxx, x > 0, t ∈ (0, T ], (3.1a)

q(x, 0) = q0(x), x ≥ 0, (3.1b)

q(0, t) = g0(t), t ∈ [0, T ]. (3.1c)

This is a standard textbook problem, easily solved using classical techniques. As mentioned, its inclusion
here serves the purpose of allowing the reader to see how problems solvable using the classical methods can
be solved using the method of Fokas. We begin by considering the local relation of the heat equation (2.5),
which holds independent of the solution domain and the boundary conditions, as it is a local statement.
Applying Green’s Theorem to this equation with the domain of integration R = {x ≥ 0, 0 < t ≤ T} (see
Figure 3.1) we obtain ∫

∂R

(
e−ikx+ω(k)sq(x, s)dx+ e−ikx+ω(k)s(qx(x, s) + ikq(x, s))ds

)
= 0

⇒
∫ ∞
0

e−ikxq0(x)dx−
∫ ∞
0

e−ikx+ω(k)T q(x, T )dx−
∫ T

0

eω(k)s(qx(0, s) + ikq(0, s))ds = 0

⇒
∫ ∞
0

e−ikxq0(x)dx−
∫ T

0

eω(k)s(qx(0, s) + ikq(0, s))ds = eω(k)T
∫ ∞
0

e−ikxq(x, T )dx

⇒ q̂0(k)− [g̃1(ω(k), T ) + ikg̃0(ω(k), T )] = eω(k)T q̂(k, T ), (3.2)

where ∂R denotes the boundary of the domain R, oriented so that the domain R is on the left when the
boundary is traversed. Further, q̂0, q̂ are the Fourier transforms of the initial condition and the solution at
time T respectively. Similarly, g̃0 and g̃1 are defined in terms of the boundary data as

g̃0(ω, T ) =

∫ T

0

eωsq(0, s)ds, g̃1(ω, T ) =

∫ T

0

eωsqx(0, s)ds.
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Fig. 3.2: The domain D for the heat equation is indicated in gray. The contour C, shown in bold, is used to
justify the deformation of the line-integral along the real line up to the boundary of D+.

We refer to (3.2) as the global relation for the heat equation on the half line. The time transforms g̃0, g̃1
arise because of the presence of the boundary at x = 0. For the problem under consideration, the Dirichlet
data are given, thus g̃0 is determined, whereas g̃1 is not.

The spectral parameter k associated with the Fourier transform is typically real. However, the terms
in the global relation (3.2) are analytic for Im(k) < 0. Indeed, the Fourier transforms may be analytically
continued into the lower-half of the complex k plane due to the exponential decay there, assuming sufficient
decay of q(x, t) for large x and all t. Further, the time transforms (g̃0, g̃1) are entire functions (analytic and
bounded for all finite k).

Remark. The continuation of the global relation into the lower half plane, for the equation on the half
line, should be contrasted with the “global relation” for the whole-line case (2.6) where such an extension to
complex k is not possible.

The global relation (3.2) is equally valid for any t ∈ (0, T ]. Replacing T by t in the global relation (3.2)
and inverting the Fourier transform we arrive at an integral expression for q(x, t):

q̂0(k)− [g̃1(ω(k), t) + ikg̃0(ω(k), t)] = eω(k)tq̂(k, t)

⇒ q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)t[g̃1(ω(k), t) + ikg̃0(ω(k), t)]dk. (3.3)

Let D = {k ∈ C : Re(ω(k)) < 0}. Further, let D+ = D ∩ C+ where C+ = {k ∈ C : Im(k) > 0}. The
integrand of the second integral in (3.3) is entire and decays as k →∞ for k ∈ C+\D+. Consider a contour
C = [−R,R]∪ CR2

∪ C∂D+ ∪ CR1
as shown in bold in Figure 3.2. Let C∂D+ be the part of C on the boundary

of D+ and CR1 , CR2 be circular arcs of radius R. Using the analyticity of the integrand∫
C
eikx−ω(k)tg̃(ω(k), t)dk =

(∫ R

−R
+

∫
CR2

+

∫
C∂D+

+

∫
CR1

)
eikx−ω(k)tg̃(ω(k), t)dk = 0, (3.4)

where g̃(ω(k), t) = g̃1(ω(k), t) + ikg̃0(ω(k), t). Taking the limit R →∞ of the above expression, we observe
that the contour C∂D+ becomes the contour −∂D+. The negative sign arises from the convention that the
positive orientation of a boundary is defined so that the region is to the left as the boundary is traversed.
Further, an application of Jordan’s Lemma in the wedge-like regions shows that for large R, the contribution
of the integrals along CR1

and CR2
vanishes. We obtain that the integral of exp(ikx− ω(k)t)g̃(ω(k), t) along
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Fig. 3.3: The contour L is shown in bold. Application of Cauchy’s Integral Theorem using this contour
allows one to eliminate the contribution of q̂(−k, t) from the integral expression (3.7).

the real line may be replaced by one along ∂D+. Thus

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [g̃1(ω(k), t) + ikg̃0(ω(k), t)] dk. (3.5)

Summarizing the argument, the contour C may be replaced by ∂(C+\D+) as R → ∞. The integral of
exp(ikx− ω(k)t)g̃(ω(k), t) along ∂(C+\D+) is zero due to the analyticity and decay properties of the inte-
grand. Adding this integral to the right-hand side of (3.3) we obtain (3.5).

Although (3.5) is an expression for q(x, t), it does not present a solution since it depends on boundary
data we have not prescribed through g̃1, the transform of the Neumann data. To resolve this problem, we
could solve the global relation (3.2) for g̃1. This results in an expression for g̃1 valid in C− = {k : Im(k) < 0},
whereas (3.5) requires an expression for g̃1 valid along ∂D+. To this end we seek a transform that maps the
contour ∂D+ to a contour in the lower-half plane C− but leaves g̃1(ω(k), t) invariant. Thus we turn to the
discrete symmetries of ω(k) = k2. The dispersion relation ω(k) is invariant under the transform k → −k.
Applying this transformation to the global relation (3.2) (and replacing T by t) we have

q̂(−k, t) = e−ω(k)tq̂0(−k)− e−ω(k)t[g̃1(ω(k), t)− ikg̃0(ω(k), t)], Im(k) ≥ 0. (3.6)

Solving this version of the global relation yields an expression for g̃1(ω(k), t) which is valid along ∂D+. The
integral expression for q(x, t) becomes

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [2ikg̃0(ω(k), t) + q̂0(−k)] dk

+
1

2π

∫
∂D+

eikxq̂(−k, t)dk. (3.7)

The above expression does not depend on the unknown boundary data. However, the function we wish to
solve for, q(x, t), also appears in the third integral on the right-hand side. Using analyticity, this problem
is resolved as follows. The function q̂(−k, t) is bounded and analytic in C+ with q̂(−k, t) → 0 uniformly as
k → ∞. This implies that the integral of exp(ikx)q(−k, t) along a closed, bounded curve in C+ vanishes.
In particular, we consider a closed curve L = L∂D+ ∪ LR where L∂D+ = ∂D+ ∩ {k : |k| < R} and
LR = {k ∈ D+ : |k| = R} (see Figure 3.3). We have∫

L
eikxq̂(−k, t)dk =

∫
L∂D+

eikxq̂(−k, t)dk +

∫
LR

eikxq̂(−k, t)dk = 0. (3.8)
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If it can be shown that the integral along LR vanishes for large R, then the third integral on the right-hand
side of (3.7) must also vanish since the contour L∂D+ becomes ∂D+ as R→∞. From Jordan’s Lemma, the
uniform decay of q̂(−k, t) for large k is precisely the condition required for the integral to vanish. Thus

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [q̂0(−k) + 2ikg̃0(ω(k), t)] dk (3.9)

is the solution to the Dirichlet problem for the heat equation on the half line. The contours in the complex
plane may be parameterized as desired.

Let us summarize the steps involved in this method.
1. Using the dispersion relation ω(k) we define the regions D = {k : Re(ω(k)) < 0}, D+ = D∩C+ and
D− = D ∩ C−.

2. The PDE is rewritten as a one-parameter family of equations in divergence form. Applying Green’s
Theorem in the (x, t) plane, we obtain the global relation. By considering complex values for the
spectral parameter k, we extend the domain of definition of the global relation. For problems posed
on the half line, the global relation is valid in Im(k) ≤ 0.

3. The global relation is solved for q̂(k, t). The integral expression for q(x, t) is constructed by inverting
the Fourier transform. The integral involving the boundary terms is deformed off the real line. For
problems on the half line, we deform up to ∂D+.

4. The discrete symmetries ν(k) of ω(k), ω(k) = ω(ν(k)), are used to obtain additional versions of
the global relation valid for k in certain regions of C+. These additional global relations are solved
simultaneously for the transforms of the unknown boundary data. The expressions thus obtained
are substituted into the integral expression for q(x, t).

5. The integral expression for q(x, t) now depends on q̂(ν(k), t). Analyticity considerations are used to
evaluate the contribution of q̂(ν(k), t). Typically this contribution vanishes. The functions q̂(ν(k), t)
and exp(ikx) are bounded and analytic in the upper-half plane. If the coefficient of exp(ikx)q̂(ν(k), t)
in the integral expression is also analytic in D+, then the contribution of this term is zero. For
instance, this happens for the Dirichlet problem for the heat equation posed on the half line where
this coefficient is a constant. Let us now consider the case when this coefficient has a simple pole
at some point k = k0 in D+. An application of the Residue Theorem shows that we need the value
of q̂(ν(k0), t). At this point, the global relation is used once more. The global relation connects the
transform of the solution at time t to the transforms of both the known initial-boundary conditions
and the unknown boundary conditions. Evaluating the global relation at k = ν(k0), we obtain an
expression for q̂(ν(k0), t). If this expression depends only on known initial-boundary conditions (i.e.
the coefficients of the unknown terms add up to zero) we have solved the problem. The presence
of unknown boundary conditions hints at an ill-posed problem. Note that we select only those
transformations ν(k) whose image lies in the lower-half plane. Consequently q̂(ν(k0), t) is defined.

Remarks.
• For the Neumann problem, when qx(0, t) is supplied as the boundary condition, we can just as easily

solve the global relation for g̃0. The integral involving q̂(−k, t) vanishes for the same reason as for
the Dirichlet problem [9].

• The classical solution in terms of the sine transform may be recovered from the solution to the
heat equation (3.9). Note that q̂0(−k) is analytic and bounded in the upper-half plane and
exp(−ω(k)t)kg̃0(ω(k), t) is bounded and analytic in the region between D+ and the real line. Thus
the contour ∂D+ may be deformed back to the real line:

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)t(q̂0(−k) + 2ikg̃0(ω(k), t))dk.

By splitting the integral along the real line into integrals from −∞ to 0 and from 0 to ∞, and using
the definition of sine in terms of exponentials, we obtain

q(x, t) =
2

π

∫ ∞
0

e−ω(k)t sin(kx)

[∫ ∞
0

sin(ky)q(y, 0)dy − kg̃0(ω(k), t)

]
dk.
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This deformation back to the real line is not possible for all PDEs. In particular the deformation
is possible only when a classical transform exists. Also note, that unlike the integral representation
(3.9), the sine transform solution is not uniformly convergent at x = 0. Further, using methods like
steepest descent or stationary phase, the contribution due to the boundary can be evaluated much
more efficiently in (3.9) than in the classical sine transform solution, see [5].

• An alternative to the new method is the use of Laplace transforms in t. This results in multivalued
integral kernels due to the presence of radicals. Consequently, the inversion of the Laplace trans-
form involves contour integrals along branch cuts, e.g see example on pg. 358 of [17]. For spatial
derivatives of order greater than two, this procedure quickly becomes far more involved. Further,
the Laplace transform involves an integration over all time t ≥ 0. This seems to contradict causality
for evolution problems. For evolution equations we do not expect the solution at time t = T to
depend on times greater than T .

3.2. A third-order PDE with Dirichlet boundary conditions. As a second example consider the
following problem, posed again on the half line:

qt + qxxx = 0, x ≥ 0, t ∈ (0, T ], (3.10a)

q(x, 0) = q0(x), x ≥ 0, (3.10b)

q(0, t) = g0(t), t ∈ (0, T ]. (3.10c)

As before, we assume that q(x, t) decays sufficiently fast as x→∞, for all t ≥ 0. We follow the steps outlined
in the previous section.

1. Dispersion relation. The dispersion relation for the PDE is ω(k) = −ik3. Using

ω(k) = −i|k|3[cos(3 arg k) + i sin(3 arg k)],

we define the region D (where Re(ω(k)) < 0) as

D =

{
k : arg k ∈

(
π

3
,

2π

3

)
∪
(
π,

4π

3

)
∪
(

5π

3
, 2π

)}
,

so that

D+ =

{
k : arg k ∈

(
π

3
,

2π

3

)}
,

and

D− = D−1 ∪D
−
2 ,

where

D−1 =

{
k : arg k ∈

(
π,

4π

3

)}
, D−2 =

{
k : arg k ∈

(
5π

3
, 2π

)}
.

See Figure 3.4 for a depiction of these regions.
2. Global relation. Using the same method as before, we find the local relation(

e−ikx+ω(k)tq
)
t

+
(
e−ikx+ω(k)t(qxx + ikqx + (ik)2q)

)
x

= 0,

which is easily verified. Integrating the above equation over the domainR = {0 ≤ x <∞, 0 < t ≤ T}
8



Fig. 3.4: Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (3.10a).

and applying Green’s Theorem, we obtain∫∫
R

([
e−ikx+ω(k)sq(x, s)

]
s
−
[
e−ikx+ω(k)t(−qxx − ikqx − (ik)2q)

]
x

)
dsdx = 0

⇒
∫
∂R

(
e−ikx+ω(k)sq(x, s)dx+ e−ikx+ω(k)s(−qxx(x, s)− ikqx(x, s)− (ik)2q(x, s))dt

)
= 0

⇒
∫ ∞
0

e−ikxq(x, 0)dx−
∫ T

0

eω(k)s(−qxx(0, s)− ikqx(0, s)− (ik)2q(0, s))ds

=

∫ ∞
0

e−ikx+ω(k)T q(x, T )dx

⇒ q̂0(k)− [k2g̃0(ω(k), T )− ikg̃1(ω(k), T )− g̃2(ω(k), T )] = eω(k)T q̂(k, T ), (3.11)

where, as before, q̂0(k) and q̂(k, T ) represent the Fourier transform of the solution at time t = 0 and
time t = T . The time transforms of the boundary data are given by

g̃i(ω, T ) =

∫ T

0

eωs∂ixq(0, s)ds, i = 0, 1, 2.

Equation (3.11) is the global relation for the third-order PDE (3.10a) posed on the positive half-line.
Note that it is valid for Im(k) ≤ 0.

3. Integral expression. Let

g̃(k, t) = k2g̃0(ω(k), t)− ikg̃1(ω(k), t)− g̃2(ω(k), t).

Replacing T by t in the global relation (3.11) and applying the inverse Fourier transform, we obtain

eω(k)tq̂(k, t) = q̂0(k)− g̃(k, t)

⇒ q̂(k, t) = e−ω(k)tq̂0(k)− e−ω(k)tg̃(k, t)

⇒ q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)tg̃(k, t)dk

⇒ q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)tg̃(k, t)dk,

where the second integral on the last line has been deformed into the upper-half complex plane up
to the boundary of D+.
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4. Solving for the unknown boundary data. As for the heat equation, the integral expression for q(x, t)
does not represent a solution due to presence of unknown boundary terms, here g̃1, g̃2. As before we
use the discrete symmetries of ω(k). In this case, these are ν1(k) = e

2πi
3 k and ν2(k) = e

4πi
3 k.

We observe that for k ∈ D+, ν1(k) ∈ D−1 and ν2(k) ∈ D−2 . Applying these transformations to the

global relation, for k ∈ D+ with α = e
2πi
3 we find

q̂0(αk)− α2k2g̃0(ω(k), t) + iαkg̃1(ω(k), t) + g̃2(ω(k), t) = eω(k)tq̂(αk, t),

q̂0(α2k)− αk2g̃0(ω(k), t) + iα2kg̃1(ω(k), t) + g̃2(ω(k), t) = eω(k)tq̂(α2k, t).

Given q(x, 0) and q(0, t) (or q̂0(k) and g̃0(ω, t)) we may solve the above two equations for the two
unknowns g̃1 and g̃2, for k in D+ to obtain

ikg̃1(ω(k), t) = −k2g̃0(ω(k), t)+
1

α(1− α)

[
q̂0(α2k)− q̂0(αk)

]
+

eω(k)t

α(1− α)

[
q̂(αk, t)− q̂(α2k, t)

]
,

g̃2(ω(k), t) = −k2g̃0(ω(k), t)+
1

α(1− α)

[
α2q̂0(αk)− αq̂0(α2k)

]
+

eω(k)t

α(1− α)

[
−α2q̂(αk, t) + αq̂(α2k, t)

]
.

These expressions are substituted into the integral expression for q(x, t), resulting in

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

H(k, x, t)dk, (3.12)

H(k, x, t) =eikx−ω(k)t
[
3k2g̃0(ω(k), t)− αq̂0(αk)− α2q̂0(α2k)

]
+ eikx

[
−αq̂(αk, t)− α2q̂(α2k, t)

]
.

We have used that α is the cube root of unity and thus α3 = 1 and 1 + α+ α2 = 0.
5. Contribution of q̂(ν(k), t). The functions q̂(αk, t) and q̂(α2k, t) are bounded and analytic in D+ and

decay to zero uniformly as k → ∞. Once again Jordan’s Lemma implies that these terms do not
contribute to the final solution, which is given by

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

3k2eikx−ω(k)tg̃0(ω(k), t)dk

+
1

2π

∫
∂D+

eikx−ω(k)t
[
αq̂0(αk) + α2q̂0(α2k)

]
dk. (3.13)

The classical method of images approach, by which one obtains the sine transform solution to the heat
equation, cannot be applied to this third-order PDE. Indeed it is not possible to obtain solutions via the
method of images for any PDE which involves odd order derivatives in x. For the third-order prolem
considered here, since q̂(αk) is not bounded in the region {arg(k) ∈ [0, π/3]}, Jordan’s Lemma may not be
applied in order to justify the deformation of the contour integral back to the real line. This apparently
implies an integral transform pair using integrals along the real line does not exist for this third-order PDE.

3.3. A (slightly) different third-order PDE. The two problems considered so far are well posed
when only q(0, t) is specified at the left boundary. Using a slight modification of the previous example we
illustrate what changes when more boundary conditions are required. Consider the following third-order
PDE on the positive half-line:

qt − qxxx = 0. (3.14)
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Fig. 3.5: Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (3.14).

We assume that an initial condition q(x, 0) has been given. The analysis of the global relation indicates the
number and type of the boundary conditions that need to be prescribed in order for the problem to be well
posed. The dispersion relation is

ω(k) = ik3, (3.15)

and

D =

{
k : arg k ∈

(
0,
π

3

)
∪
(

2π

3
, π

)
∪
(

4π

3
,

5π

3

)}
. (3.16)

Let D+ = D+
1 ∪D

+
2 , where

D+
1 =

{
k : arg k ∈

(
π,
π

3

)}
, D+

2 =

{
k : arg k ∈

(
2π

3
, π

)}
, (3.17)

and

D− =

{
k : arg k ∈

(
4π

3
,

5π

3

)}
,

see Figure 3.5.
The local relation is given by

(e−ikx+ω(k)tq)t −
(
e−ikx+ω(k)t(qxx + ikqx − k2q)

)
x

= 0, (3.18)

leading to the global relation (by integrating over the region R = {x ≥ 0, 0 < t ≤ T} and applying Green’s
theorem)

q̂0(k)− [−k2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t)] = eω(k)tq̂(k, t), Im(k) ≤ 0. (3.19)

The integral expression for the solution is

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

1

eikx−ω(k)tg̃(k, t)dk − 1

2π

∫
∂D+

2

eikx−ω(k)tg̃(k, t)dk, (3.20)

where

g̃(k, t) = −k2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t).
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The “deformation” from the real line to ∂D+ is obtained by adding to the path of integration the closed
contour that is the boundary of the wedge between D+

1 and D+
2 (see Figure 3.5) traversed in a clockwise sense.

The contribution of the integrands along this contour is zero (Cauchy’s Theorem), and the contribution from
the arc at infinity vanishes due to Jordan’s Lemma.

The symmetries of the global relation are as in the case of the previous example. Hence if k ∈ D+
1 , l ∈ D

+
2

then αk, α2l ∈ D−, where α = e
2πi
3 . We obtain the following versions of the global relation

q̂0(αk) + α2k2g̃0(ω(k), t)− iαkg̃1(ω(k), t)− g̃2(ω(k), t) =eω(k)tq̂(αk, t), k ∈ D+
1 , (3.21)

q̂0(α2k) + αk2g̃0(ω(k), t)− iα2kg̃1(ω(k), t)− g̃2(ω(k), t) =eω(k)tq̂(α2k, t), k ∈ D+
2 . (3.22)

Hence in each region, D+
1 and D+

2 , there is one relation between the three quantities g̃i(ω(k), t), i = 0, 1, 2.
Thus two boundary conditions are required at the left boundary in order to be able to solve the global relation
for the unspecified boundary condition. For instance, given q(0, t) and qx(0, t) we can calculate g̃0(ω(k)) and
g̃1(ω(k)). The above relations can be used to obtain two expressions for g̃2(ω(k)), one valid for k ∈ D+

1 and
the other for k ∈ D+

2 . Substituting the resulting expressions into the integral expression for q(x, t) we find
the solution to (3.14) posed on the positive half-line. The difference in the number of boundary conditions
required for the seemingly very similar boundary value problems with the equations (3.10a) and (3.14) is
understood as follows. For (3.10a), the phase velocity −iω/k = −k2 is negative and the left boundary acts
as a sink. Using (3.14), the phase velocity −iω/k = k2 is positive, and the left boundary is a source. The
same conclusion is reached using the group velocity which is 3× the phase velocity.

3.4. A multi-term third-order PDE. For the problems above, the symmetries of the dispersion
relation are easily found. With the present example we illustrate the use of Fokas’s method if the symmetries
are somewhat more complicated and the introduction of a branch cut is necessary. This method illustrates
how to proceed in general, even if the symmetries cannot be written out explicitly. Consider

qt = qx + qxxx = 0, x > 0, (3.23)

where an initial condition q(x, 0) is given. The previous example indicates that two boundary conditions are
required on the left boundary, which we will verify in the process of solving the equation. As in the previous
example, we skip some calculation details, which are similar to previous examples.

The dispersion relation is

ω(k) = −ik + ik3, (3.24)

and

D =
{
k : kI(1 + k2I − 3k2R) < 0

}
, (3.25)

where kR and kI denote the real and imaginary parts of k, respectively. The region D is shown on the left
in Figure 3.6. The boundaries of the region consist of a hyperbola with asymptotes kI = ±

√
3kR and the

real line. As above, we define D+ (D−) to be the intersection of D with the upper (lower) half plane, and
D+ = D+

1 ∪D
+
2 , where

D+
1 =

{
k : D+ ∩ second quadrant

}
, D+

2 =
{
k : D+ ∩ first quadrant

}
, (3.26)

as indicated in Figure 3.6.
The local relation is given by

(e−ikx+ω(k)tq)t −
(
e−ikx+ω(k)t(qxx + ikqx + (1− k2)q)

)
x

= 0, (3.27)

integrating over the region R = {x ≥ 0, 0 < t ≤ T} and using Green’s theorem gives the global relation

q̂0(k)− g̃(k, t) = eω(k)tq̂(k, t), Im(k) ≤ 0. (3.28)
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Fig. 3.6: Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (left), and its deformation D̃ (right), for
the third-order PDE (3.23). The branch cut [−2/

√
3, 2/
√

3] is indicated by the jagged line.

where we have defined g̃(k, t) = (1−k2)g̃0(ω(k), t)+ ikg̃1(ω(k), t)+ g̃2(ω(k), t). At this point, we might write
an integral expression for q(x, t) involving a contour integral over the boundary of D+. Before we proceed
this way, we examine the symmetries of the dispersion relation, as their functional form will influence what
follows.

The discrete symmetries of ω(k) are found by solving −ik+ ik3 = −iν(k) + iν3(k) for ν(k). Eliminating
the solution ν(k) = k, we find

ν = −k
2
±
√

1− 3k2

4
.

This is a two-sheeted expression with branch points at ±
√

3/2, leading to a choice of branch cut along
[−
√

3/2,
√

3/2]. Define ν1 to be the branch of ν which limits to (−1/2 + i
√

3/2)k = k exp(2πi/3), and let ν2
be the other branch, limiting to k exp(4πi/3). Our standard procedure would be to deform the integration
over the real k axis to one along ∂D+, leading to the solution expression

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

1

eikx−ω(k)tg̃(k, t)dk − 1

2π

∫
∂D+

2

eikx−ω(k)tg̃(k, t)dk,

where

g̃(k, t) = (1− k2)g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t).

This is problematic, since the integration paths ∂D+
1 and ∂D−2 contain the branch points and part of the

branch cut. Instead, we deform D to D̃ with its constituent parts D̃+
1 , D̃+

2 and D̃−, so that the boundary of
these domains is separated from the branch cut. Although the integrands are growing as k →∞ in D, they
are analytic in any bounded region, and this deformation has no overall effect, due to Cauchy’s Theorem.
The deformation from D to D̃ can be chosen in many ways, as long as D̃ has the same asymptotic form as
D. Specifically, we may deform D+

1 to D̃+
1 and induce deformations on D+

2 and D− using D̃+
2 = ν2(D̃+

1 ),
D− = ν1(D̃+

1 ), respectively. This leads to the solution formula

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D̃+

1

eikx−ω(k)tg̃(k, t)dk − 1

2π

∫
∂D̃+

2

eikx−ω(k)tg̃(k, t)dk.
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Next, we eliminate the dependence on unnecessary boundary conditions. In addition to (3.28), we have
the following versions of the global relation:

q̂0(ν1(k))− (1− ν1(k)2)g̃0(ω(k), t)− iν1(k)g̃1(ω(k), t)− g̃2(ω(k), t) =eω(k)tq̂(ν1(k), t), k ∈ D̃+
1 , (3.29)

q̂0(ν2(k))− (1− ν2(k)2)g̃0(ω(k), t)− iν2(k)g̃1(ω(k), t)− g̃2(ω(k), t) =eω(k)tq̂(ν2(k), t), k ∈ D̃+
2 . (3.30)

As for the previous example, in each region, D̃+
1 and D̃+

2 , there is one relation between the three
quantities g̃i(ω(k), t), i = 0, 1, 2. Thus two boundary conditions are required at the left boundary in order to
be able to solve the global relation for whichever boundary condition is unspecified.

3.5. A general evolution PDE. Fokas’s method is also applicable to the general constant coefficient
linear evolution PDE

qt + ω(−i∂x)q = 0, x ≥ 0, t ∈ (0, T ]. (3.31)

Here ω(k) is a polynomial of degree n. To ensure that solutions do not grow in time, we impose that
Re(ω(k)) ≥ 0, for real k. Let

ω(k) = αnk
n + αn−1k

n−1 + . . .+ α0. (3.32)

The large k limit of the condition Re(ω(k)) ≥ 0, k ∈ R implies that if n is odd then αn = ±i. For n even,
Re(αn) ≥ 0. Using the dispersion relation we define the following regions in the complex k plane

D = {k : Re(ω(k)) < 0},

and

D+ = D ∩ C+, D− = D ∩ C−.

The local relation is given by

∂t

(
e−ikx+ω(k)tq(x, t)

)
− ∂x

e−ikx+ω(k)t n−1∑
j=0

cj(k)∂jxq(x, t)

 = 0,

where

n−1∑
j=0

cj(k)∂jxq(x, t) = i

(
ω(k)− ω(l)

k − l

)∣∣∣∣
l=−i∂x

q(x, t). (3.33)

The proof is straightforward [9]. Equation (3.33) implies the global relation

eω(k)T q̂(k, T ) = q̂0(k)−
n−1∑
j=0

cj(k)g̃j(ω(k), T ), Im(k) ≤ 0,

where

g̃j(ω, T ) =

∫ T

0

eωs∂jxq(0, s)ds.

Applying the inverse Fourier transform to the global relation we obtain the integral expression for the solution

q(x, t) =
1

2π

∫ ∞
−∞

e−ikx+ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

e−ikx+ω(k)t n−1∑
j=0

cj(k)g̃j(ω(k), t)

 dk. (3.34)
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In order to obtain a solution, we require expressions for the time transforms of the unknown boundary
data valid for k ∈ ∂D+. As with the previous examples, we use the discrete symmetries of the equation

ω(k) = ω0.

This relation is a polynomial or order n and thus has n roots in the complex plane. The mappings from
one root to another are precisely the transformations k → ν(k) which leave ω(k) invariant. We employ
the induced versions of the global relation to solve for the transforms of the unknown boundary data. The
solution proceeds as before. Having eliminated the unknown boundary data, we obtain an expression that
depends on q̂(ν(k), t). The transformation ν is such that q̂(ν(k), t) is analytic and bounded in the region
D+. Hence we may use the Cauchy Integral Theorem to eliminate the contribution of the term involving
q̂(ν(k), t) to the integral along ∂D+.

It is possible to predict how many boundary conditions are required for a well-posed problem by con-
sidering the large k behavior of ω(k). For large values of k, ω(k) ∼ αnkn and the region D approaches

DR =

{
k : argαn + n arg k ∈

(
π

2
,

3π

2

)
+ 2mπ, m = 0, . . . , n− 1

}
.

Indeed for large k, Re(ω(k)) ∼ |k|n cos(argαn+n arg k) which is negative for k in DR. The region DR consists
of n unbounded equal-angled sectors in the complex-k plane. Let N represent the number of unbounded
sectors of DR in the upper-half plane. It is easily seen that

N =


n/2 n even;

(n+ 1)/2 n odd and αn = −i;
(n− 1)/2 n odd and αn = i.

(3.35)

The reader is encouraged to verify the formulas for DR and N for the examples presented above. Indeed
Figures 3.2, 3.4 and 3.5 are examples of the three possible cases for N . In these examples, the regions DR

and D coincide.
In the integral expression for q(x, t), the contour ∂D+ may be deformed to ∂D+

R = ∂DR ∩C+, since the
integrands are entire functions. Thus we require expressions for the time transform of the n boundary data,
valid in the unbounded sectors of DR in the upper-half plane.

Assume we are given p boundary conditions at the boundary at x = 0. This implies we require, for
each of the N sectors in C+, expressions for the transforms of the n − p unknown boundary data. For
each of the N sectors in C+, the discrete symmetries of ω(k) allow us to choose n − N transformations
νi(k), i = 0, 1 . . . n −N − 1 which map that sector to the n −N remaining sectors. Hence, by substituting
νi(k) for k, there are n − N versions of the global relation valid in each of the N sectors in C+. Thus we
have n− p unknowns with n−N equations in each sector. Thus we need N boundary conditions at x = 0
for a well-posed problem or in other words a well-posed problem on the positive half-line requires as many
boundary conditions as there are sectors of DR in the upper-half plane.

Remarks.
• A canonical problem is one for which q(0, t) and its first N − 1 derivatives are provided as boundary

conditions. An example of a non-canonical problem is the Neumann problem for the heat equation.
Providing N linear combinations with constant coefficients of a subset of the boundary values is
another example (Robin problem). In this case, versions of the global relation valid in D+

R and
the N linear combinations form a system of equations which can be solved for the boundary data,
provided a certain determinant is not identically zero. If the determinant has zeros in D+

R , then the
contribution of these zeros to the final solution is computed via the Residue Theorem.

• For the class of the PDEs discussed in this paper, the dispersion relation ω(k) is a polynomial of
degree n, see (3.32). Thus, by the fundamental theory of algebra, in addition to the identity, n− 1
additional symmetries ν(k) exist, even if typically they cannot be written out in closed form. In this
sense, the problem has been reduced to one of polynomial algebra.

4. The problem on the finite interval.
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4.1. The general method. Having studied the problem posed on the half line in some detail, we turn
to the problem on the finite interval. We use the same notation as before, extending it where necessary to
incorporate the boundary on the right-hand side.

qt + ω(−i∂x)q = 0, (x, t) ∈ [0, L]× [0, T ],

q(x, 0) = q0(x), x ∈ [0, L],

∂jxq(0, t) = gj(t), j = 0, . . . , n− 1,

∂jxq(L, t) = hj(t), j = 0. . . . , n− 1,

Here gj(t) and hj(t) denote the relevant boundary values at x = 0 and x = L, respectively. We assume that
n of the functions gj(t) and hj(t) are given. In what follows, we will see that for a well-posed problem N of
these specified boundary functions should be specified at x = 0 and the other n−N at x = L, where N is as
in (3.35). As for the half-line problem, the different incarnations of the global relation (see below) obtained
by using the symmetries of the dispersion relation are used to eliminate unspecified boundary conditions.

As above, we define

g̃j(k, t) =

∫ t

0

eksgj(s)ds, h̃j(k, t) =

∫ t

0

ekshj(s)ds, k ∈ C,

where we have introduced the time transforms of both the left and right boundary values.
Employing the divergence form (3.33), we use Green’s Theorem on the domain [0, L]× [0, t]. This is an

easier domain to work with since it is bounded. The convergence of integrals over the spatial domain is not
an issue, as it might be for problems posed on the half line. We obtain the following global relation:

q̂0(k)− g̃(k, t) + e−ikLh̃(k, t) = eω(k)t
∫ L

0

e−ikxq(x, t)dx = eω(k)tq̂(k, t), k ∈ C, (4.1)

with

h̃(k, t) =

n−1∑
j=0

cj(k)hj(k, t), g̃(k, t) =

n−1∑
j=0

cj(k)gj(k, t). (4.2)

As before, the global relation is also valid if we replace t by T . In contrast to the global relation for a
problem on the half line, the global relation (4.1) on the finite interval is valid for all k ∈ C. It is clear this
has important implications, as is discussed below.

To formally obtain a solution, we apply the inverse Fourier transform to (4.1) :

q(x, t) =
1

2π

∫ ∞
−∞

eikxq̂(k, t)dk

=
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)tg̃(k, t)dk

+
1

2π

∫ ∞
−∞

e−ik(L−x)−ω(k)th̃(k, t)dk. (4.3)

There are two major differences between the half line problem and the problem on the finite interval. The
most obvious is the addition of h̃(k, t) due to the presence of the boundary on the right side of the domain.
This provides extra algebraic complications for obtaining the solution. This complication is counteracted by
the validity of the global relation in all of C, which is the second major difference. This allows us to use D+

to eliminate the unknowns in h̃(k, t), in addition to using D− to eliminate the unknowns in g̃(k, t) as we did
earlier for the half line. Proceeding with this intuition, we deform the contour of integration for the integral
involving g̃(k, t) up to ∂D+ as in the half line case.

The third integral in (4.3) does not appear in the half line case. The exponential e−ik(L−x) is bounded in
the lower-half plane since x ∈ [0, L]. This observation allows us analytically extend the integrand of the third

16



term in (4.3) to the lower-half plane, at which point the path (−∞,∞) can be deformed to the boundary
of D−, using Jordan’s lemma in C− \ D−, in the same way the deformation to the boundary of D+ was
justified earlier in the half-line case. Taking our orientation convention into account we obtain

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)tg̃(k, t)dk

− 1

2π

∫
∂D−

e−ik(L−x)−ω(k)th̃(k, t)dk. (4.4)

At this point, we have obtained the solution in terms of 2n boundary values. We can prescribe only n
boundary conditions. The boundary values that are not given are eliminated by using the symmetries of
the dispersion relation as for the half-line case. As before, we have, n − 1 transformations that leave ω(k)
invariant, i.e., there exist functions {ν1, . . . νn−1}, such that ω(k) = ω(νj(k)). This provides n equations
with 2n unknowns. If these equations may be solved for n of the unknown boundary functions (or their
t-transforms), then these functions may be eliminated in terms of the given boundary conditions. In [9] the
conditions under which this system of equations can be solved in terms of a set of boundary functions to
be eliminated is discussed. For instance, the system cannot be solved for the boundary functions on one
boundary in terms of the boundary functions on the other boundary. Indeed, a well-posed problem on the
finite-interval requires boundary conditions at both boundaries. Of course, as for the half-line problem, using
these different incarnations of the global relation introduces the quantities q̂(νj(k), t), j = 1, . . . , n−1 on the
right-hand side of (4.4). This dependence is eliminated as before, using contour deformation and Jordan’s
Lemma. These different steps are illustrated on a variety of examples below.

4.2. The heat equation with homogeneous Dirichlet boundary conditions. Consider the prob-
lem

qt = qxx, x ∈ (0, L), t ∈ (0, T ], (4.5a)

q(x, 0) = q0(x), x ≥ 0, (4.5b)

q(0, t) = 0, t ∈ [0, T ], (4.5c)

q(L, t) = 0, t ∈ [0, T ]. (4.5d)

As we have already seen, ω(k) = k2. Also, g̃(k, t) = ikg̃0(k2, t) + g̃1(k2, t) = g̃1(k2, t) and h̃(k, t) =
ikh̃0(k2, t) + h̃1(k2, t) = h̃1(k2, t). The transformation that leaves ω(k) = k2 invariant is k → −k, thus the
two equations for the two unknowns g̃1(k2, T ) and h̃1(k2, T ) are

q̂0(k)− g̃1(k2, t) + eikLh̃1(k2, t) = ek
2tq̂(k, t),

and q̂0(−k)− g̃1(k2, t) + e−ikLh̃1(k2, t) = ek
2tq̂(−k, t).

These two equations are rewritten as[
−1 eikL

−1 e−ikL

] [
g̃1(k2, t)

h̃1(k2, t)

]
=

[
ek

2tq̂(k, t)− q̂0(k)

ek
2tq̂(−k, t)− q̂0(−k)

]
,

from which [
g̃1(k2, t)

h̃1(k2, t)

]
=

1

eikL − e−ikL

[
e−ikL −eikL

1 −1

][
ek

2tq̂(k, t)− q̂0(k)

ek
2tq̂(−k, t)− q̂0(−k)

]
.

Defining ∆(k) = eikL − e−ikL, we find

g̃1(k2, t) =
1

∆(k)
[q̂0(−k)e−ikL − q̂0(k)eikL]− 1

∆(k)
[ek

2tq̂(−k, t)e−ikL − ek
2tq̂(k, t)eikL],

h̃1(k2, t) =
1

∆(k)
[q̂0(−k)− q̂0(k)]− 1

∆(k)
[ek

2tq̂(−k, t)− ek
2tq̂(k, t)].
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(a) (b)

Fig. 4.1: (a) The domains D+, D−, and their respective boundaries. (b) The deformed domains D+
0 and

D−0 , used to avoid the root of ∆(k) at the origin.

The final step is to justify neglecting the terms involving q̂(±k, t). For g̃, this is analogous to the case of the
half line, and it is not repeated here. However, we do demonstrate this for h̃. Consider the integral∫

∂D−
e−ik(L−x)−k

2t 1

∆(k)
[ek

2tq̂(−k, t)−ek
2tq̂(k, t)]dk=

∫
∂D−
e−ik(L−x)

1

∆(k)
[q̂(−k, t)−q̂(k, t)]dk, (4.6)

where both (q̂(−k, t)− q̂(k, t))/∆(k) = exp(−ikL)(q̂(−k, t)− q̂(k, t))/(1− exp(−2ikL)) and exp(−ik(L−x))
decay to zero uniformly as k → ∞ in the lower-half plane. Another application of Jordan’s Lemma shows
that ∫

∂D−
e−ik(L−x)−k

2t 1

∆(k)
[ek

2tq̂(−k, t)− ek
2tq̂(k, t)]dk = 0,

which implies

q(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tq̂0(k)dk

− 1

2π

∫
∂D+

eikx−k
2t 1

∆(k)

[
eikLq̂0(k)− e−ikLq̂0(−k)

]
dk

− 1

2π

∫
∂D−

e−ik(L−x)−k
2t 1

∆(k)
[q̂0(k)− q̂0(−k)] dk. (4.7)

It should be noted that ∆(0) = 0 and 0 ∈ ∂D, thus it is convenient to deform the paths of integration, as
shown in Figure 4.1. Having obtained the solution of (4.5a-d) we demonstrate that it may be rewritten in
the more familiar form of an infinite sum over a set of fundamental modes. It should be noted that this is
not always possible. Indeed, for many problems a countable set of fundamental modes does not exist. The
third-order equation of Section 4.4 provides an example of this. Even in that case, the method of Fokas still
provides a solution.

To reduce the integral representation (4.7) of the solution to an infinite series, we start by noticing
that ∆(k) has simple zeros at a countable number of roots kn = 2πn/L. The idea is to deform the paths
of integration in (4.7) to a sequence of small loops around these roots, leading to a residue contribution
for all of these loops, from which a series representation of the solution is obtained. In order for this to
happen, all remaining integral contributions must vanish. For the heat equation, this is the case. In fact
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this occurs for all problems where a series solution exists. For other problems (again, see Section 4.4) the
integral contribution to the solution does not vanish and little is gained by separating out a series part.

To ease the notation, define

f+(x, t, k) =
1

∆(k)

[
eikLq̂0(−k)− e−ikLq̂0(k)

]
,

f−(x, t, k) =
1

∆(k)
[q̂0(−k)− q̂0(k)] ,

where f+(x, k) and f−(x, k)) appear in the integrands along ∂D+ and ∂D−, respectively. We compute the
residues at each kn for the integrand in the integral along ∂D+. All poles are simple, thus

cn(x, t) = Res{eikx−k
2tf+(x, t, k), k = kn}

=
1

∆′(kn)
eiknx−k

2
nt
[
eiknLq̂0(−kn)− e−iknLq̂0(kn)

]
.

Using eiknL = 1 and ∆′(kn) = 2iL so that

cn(x, t) =
1

2iL
eiknx−k

2
nt [q̂0(−kn)− q̂0(kn)] . (4.8)

This can be simplified using the explicit form of q̂0(k). We have

q̂0(kn)− q̂0(−kn) = −2i

∫ L

0

sin(knx)q0(x)dx, (4.9)

which allows us to obtain a simple expression for the residue:

cn(x, t) = − 1

2
eiknx−k

2
ntqn, qn =

2

L

∫ L

0

sin(knx)q0(x)dx. (4.10)

It remains to compute the residues of the integrand on ∂D−. This is similar to the calculation just
detailed, and we end up with the residues being equal to those already computed.

Res{eikx−w(k)tf−(x, t, k), k = kn} = eiknx−w(kn)t
1

∆′(kn)
[q̂0(−kn)− q̂0(kn)]

=
1

2iL
eiknx−w(kn)t

[
−2i

∫ L

0

sin(knx)q0(x)dx

]
= Res{eikx−w(k)tf+(x, t, k), k = kn}.

All the poles are on the real line. We deform the paths ∂D± back to the real line in order to collect
their contributions. Additionally, in order to obtain a series solution the first Fourier transform integral in
(4.4) needs to be addressed. Using Jordan’s Lemma, we may deform back to the real line, to end up with
contours in Figure 4.2. The solution can be written as

q(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tq̂0(k)dk

− 1

2π

∫
∂D+

ε

eikx−k
2tf+(x, t, k)dk − 1

2π

∫
∂D−

ε

e−ik(L−x)−k
2tf−(x, t, k)dk. (4.11)
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Fig. 4.2: Deformation to obtain Fourier series

Replacing the integrals with principal-value integrals and sums

q(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tq̂0(k)dk

−

(
1

2π
−
∫ ∞
−∞

eikx−k
2tf+(x, t, k)dk − πi

2π

∞∑
n=−∞

Res{f+(x, t, k), k = kn}

)

+

(
1

2π
−
∫ ∞
−∞

e−ik(L−x)−k
2tf−(x, t, k)dk +

πi

2π

∞∑
n=−∞

Res{f−(x, t, k), k = kn}

)
. (4.12)

The two principal-value integrals add to cancel the first integral, leaving us with

q(x, t) = i

∞∑
n=−∞

cn(x, t) = i

∞∑
n=−∞

1

2
eiknx−k

2
nt(−qn). (4.13)

Using qn = −q−n and q0 = 0 so that

q(x, t) =

∞∑
i=1

qne
−k2nt sin(knx),

which is the classical sine series solution.

4.3. The heat equation with Robin boundary conditions. Consider the somewhat more compli-
cated problem

qt = qxx, (x, t) ∈ [0, L]× [0, T ], (4.14a)

q(x, 0) = q0(x), x ∈ [0, L], (4.14b)

qx(0, t)− γq(0, t) = 0, t ∈ [0, T ] (4.14c)

qx(L, t)− γq(L, t) = 0, t ∈ [0, T ], (4.14d)

where γ is real. The heat equation problem with Dirichlet or Neumann boundary data is straightforward
using classical techniques and contains no surprises. The same is not true for the Robin problem, which
contains an exponentially growing mode. We demonstrate how easily the method of Fokas extends to
Robin boundary conditions, and how naturally the growing mode is captured . We work with homogeneous
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Robin conditions, to simplify the algebra involved. As before, w(k) = k2, g̃(k) = ikg̃0(k2) + g̃1(k2) and
h̃(k) = ikh̃0(k2) + h̃1(k2). From the boundary conditions,

h̃1(k2) = γh̃0(k2), g̃1(k2) = γg̃0(k2). (4.15)

Using k 7→ −k the two global relations are

q̂0(k)− [ikg̃0(k2) + g̃1(k2)] + eikL[ikh̃0(k2) + h̃1(k2)] = ek
2tq̂(k, t), (4.16)

q̂0(−k)− [−ikg̃0(k2) + g̃1(k2)] + e−ikL[−ikh̃0(k2) + h̃1(k2)] = ek
2tq̂(−k, t). (4.17)

The equations (4.15-4.17) form a system of four linear equations for the four unknowns g̃0(k2), g̃1(k2),
h̃0(k2), and h̃1(k2). These equations are valid in the whole complex k-plane, all integrals involved are
proper. Substitution of (4.15) in (4.16-4.17) gives

g̃0(k2)− eikLh̃0(k2) =
q̂0(k)− ek2tq̂(k, t)

γ + ik
,

g̃0(k2)− e−ikLh̃0(k2) =
q̂0(−k)− ek2tq̂(−k, t)

γ − ik
,

so that

g0(k2) =
1

∆(k)

[
eikL

q̂0(−k)− ek2tq̂(−k, t)
γ − ik

− e−ikL q̂0(k)− ek2tq̂(k, t)
γ + ik

]
,

h0(k2) =
1

∆(k)

[
q̂0(−k)− ek2tq̂(−k, t)

γ − ik
− q̂0(k)− ek2tq̂(k, t)

γ + ik

]
,

where, as before, ∆(k) = eikL − e−ikL. The solution formula (4.3) requires us to find g̃ and h̃:

g̃(k) =
1

∆(k)

[
eikLq̂0(−k)

γ + ik

γ − ik
− e−ikLq̂0(k)

]
− 1

∆(k)

[
eikLek

2tq̂(−k, t)γ + ik

γ − ik
− e−ikLek

2tq̂(k, t)

]
,

h̃(k) =
1

∆(k)

[
q̂0(−k)

γ + ik

γ − ik
− q̂0(k)

]
− 1

∆(k)

[
ek

2tq̂(−k, t)γ + ik

γ − ik
− ek

2tq̂(k, t)

]
.

There is an added complication. Since γ ∈ R the individual terms in the above expressions have a pole
in D at k = −iγ, while g̃(k) and h̃(k) are analytic. Depending on the sign of γ the pole at k = −iγ is
in D+ or in D−. Either way it affects the use of Jordan’s Lemma which is necessary to remove the terms
involving q̂(k, t) and q̂(−k, t). Using the above expressions, the second and third integrals in (4.4) are split
term-by-term. The resulting integrands are not analytic, and the contour deformation required to eliminate
the contribution of q̂(−k, t) necessarily accounts for the pole singularity. For concreteness, let us assume that
γ < 0, thus k = −iγ ∈ D+. We have two equivalent options. We can deform ∂D+ to pass above k = −iγ
or we can calculate a residue. If we pursue this second option we use the fact that eikx−k

2tg̃(k) is entire, so
that

Res{eikx−k
2tg̃(k), k = −iγ} = 0.

Therefore

Res

{
−1

∆(k)

[
eikLek

2tq̂(−k, t)γ + ik

γ − ik
− e−ikLek

2tq̂(k, t)

]
, k = −iγ

}
= Res

{
−1

∆(k)

[
eikLq̂0(−k)

γ + ik

γ − ik
− e−ikLq̂0(k)

]
, k = −iγ

}
=
−2iγ

∆(−iγ)
eγLq̂0(iγ).
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Fig. 4.3: D for qt = qxxx

The final expression for the solution q(x, t) is

q(x, t) =
2γ

1− e−2γL
q̂0(iγ)eγx+γ

2t +
1

2π

∫ ∞
−∞

eikx−k
2tq̂0(k)dk

− 1

2π

∫
∂D+

0

eikx−k
2t

∆(k)

[
eikLq̂0(−k)

γ + ik

γ − ik
− e−ikLq̂0(k)

]
dk

− 1

2π

∫
∂D−

0

e−ik(L−x)−k
2t

∆(k)

[
q̂0(−k)

γ + ik

γ − ik
− q̂0(k)

]
dk,

which displays the mode that is exponentially growing in time ,which is present in this problem (see [15]),
explicitly.

Remark. As in the case of the Dirichlet problem, we deform ∂D+ to ∂D+
0 to avoid the removable

singularity at the origin.

4.4. A third-order equation with mixed boundary data. To demonstrate the true power of the
Fokas method we consider a difficult problem whose explicit solution cannot be obtained using classical
methods. Consider the problem

qt = qxxx, (x, t) ∈ [0, L]× [0, T ], (4.18a)

q(x, 0) = q0(x), x ∈ [0, L], (4.18b)

q(0, t)− αqx(0, t) = 0, t ∈ [0, T ], (4.18c)

q(L, t)− αqx(L, t) = 0, t ∈ [0, T ], (4.18d)

qxx(L, t) = β, t ∈ [0, T ], (4.18e)

where α and β are real parameters. Classical methods [17] would proceed using separation of variables.
This approach fails since a complete basis of discrete fundamental modes does not exist for this problem, as
can be verified with some effort [9].

To find an explicit solution, we use the general solution (4.4), with D as in Figure (4.3), since ω(k) =
−ik3. Using the formulas (4.2) for g̃ and h̃,

g̃(w(k), t) = (ik)2g̃0(w(k), t) + ikg̃1(w(k), t) + g̃2(w(k), t), (4.19)

h̃(w(k), t) = (ik)2h̃0(w(k), t) + ikh̃1(w(k), t) + h̃2(w(k), t). (4.20)
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The relations that leave ω(k) invariant are k 7→ αk and k 7→ α2k where α = e2iπ/3. We have introduced six
boundary functions h̃j and g̃j , on which the solution q(x, t) depends, according to (4.4). The boundary-value

problem provides h2(k, t) = β
∫ t
0
eksds and relations between g0(k, t) and g1(k, t), and between h0(k, t) and

h1(k, t), respectively. It remains to find extra relations for the remaining boundary functions, using the
invariances of the dispersion relation. As stated, the boundary function h2(k, t) is known. To determine
the others we set up a system of five equations for five unknowns. Define M(k, t) = q̂0(k) − eω(k)tq̂(k, t) −
eikLh̃2(ω(k), t). Representing the system of equations in matrix form, we obtain

k2 −ik −1 −k2eikL ikeikL

γ2k2 −iγk −1 −γ2k2eiγkL iγkeiγkL

γk2 −iγ2k −1 −γk2eiγ2kL iγ2keiγ
2kL

1 −α 0 0 0
0 0 0 1 −α



g̃0(ω(k), t)
g̃1(ω(k), t)
g̃2(ω(k), t)

h̃0(ω(k), t)

h̃1(ω(k), t)

 =


−M(k, t)
−M(γk, t)
−M(γ2k, t)

0
0

 .
Once this system is solved, its solution is substituted into (4.4). At this point, the contributions from any
poles are collected and Jordan’s Lemma is used to remove terms involving q̂(k, t), yielding the desired explicit
solution. Although the algebra involved may be messy, the process is clear, and is easily completed.

5. Conclusion. We have presented the application of Fokas’s method to BVPs for linear evolution
PDEs with constant coefficients on both the half line and the finite interval. The main ideas behind the
method are the use (i) of the analyticity properties of various functions, inherited from the global relation,
and (ii) of the discrete symmetries of the dispersion relation. We have illustrated that the method is more
general than the standard methods used in the sense that it reproduces the results they do, while being
applicable to situations where the standard methods fail or are not applicable. We have illustrated that the
method is suitable to be taught in the classroom, at the undergraduate level.

Many other topics can be discussed at this point. Perhaps our biggest omission is not having mentioned
Lax pairs. Indeed, it is possible to write a linear PDE with constant coefficients as the compatibility
condition of two first-order ordinary differential equations for an auxiliary function ψ(x, t): one of these
equations dictates how ψ(x, t) changes as a function of x, with t as a parameter. The other equation has
the roles of x and t reversed. Both equations may depend on u(x, t) and its derivatives, thus they are not
autonomous. As shown in [9], this approach leads to the solution of the PDE via a scalar Riemann-Hilbert
problem, which may be solved explicitly using the Plemelj formula [1]. Using this route, it is not necessary
to introduce even the Fourier transform! Admittedly, the background in complex analysis required for this
approach is far more extensive.

The method is far more general than we have discussed. For instance, it can be extended to apply to
evolution equations with periodic boundary conditions [16], to evolution equations with more than one spatial
dimension, or to elliptic equations. It is applicable also to some linear PDEs with nonconstant coefficients,
and, as already stated, to so-called integrable nonlinear equations. These topics are beyond the scope of
this article, but the interested reader can find more details and additional references in [9]. The method
continues to be extended. For instance, it was recently applied to elliptic PDEs in polar coordinates [14].
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