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Abstract

This paper presentsthe architectureand learning procedur eunderlying ANFI S (Adaptive-Network-based Fuzzy
Inference System), afuzzy inference system implemented intheframework of adaptive networks. By usingahybrid
learning procedure, the proposed ANFIS can construct an input-output mapping based on both human knowledge
(intheform of fuzzy if-thenrules) and stipulated input-output data pairs. In our simulation, we employ the ANFIS
architectureto model nonlinear functions, identify nonlinear components on-linely in acontrol system, and predict
achaotic time series, al yielding remarkabl e results. Comparisonswith artificail neural networks and earlier work
on fuzzy modeling are listed and discussed. Other extensions of the proposed ANFIS and promising applications
to automatic control and signal processing are al so suggested.

|. Introduction

System modeling based on conventional mathematica tools (e.g., differential equations) is not well suited
for dealing with ill-defined and uncertain systems. By contrast, a fuzzy inference system employing fuzzy if-
then rules can model the qualitative aspects of human knowledge and reasoning processes without employing
precise quantitative analyses. This fuzzy modeling or fuzzy identification, first explored systematically by Takagi
and Sugeno [54], has found numerous practical applicationsin control [48, 38], prediction and inference [18, 19].
However, there are some basi ¢ aspects of thisapproach which areinneed of better understanding. Morespecifically:

1. No standard methods exist for transforming human knowledge or experience into the rule base and database
of afuzzy inference system.

2. Thereis a need for effective methods for tuning the membership functions (MF's) so as to minimize the
output error measure or maximize performance index.

In this perspective, theaim of thispaper isto suggest anovel architecture called Adaptive-Network-based Fuzzy
Inference System, or simply ANFIS, which can serve as a basis for constructing a set of fuzzy if-then rules with
appropriate membership functions to generate the stipulated input-output pairs. The next section introduces the
basics of fuzzy if-then rules and fuzzy inference systems. Section 3 describes the structures and learning rules of
adaptive networks. By embedding the fuzzy inference system into the framework of adaptive networks, we obtain
the ANFIS architecture which is the backbone of this paper and it is covered in section 4. Application examples
such as nonlinear function modeling and chaotic time series prediction are given in section 5. Section 6 concludes
this paper by giving important extensions and future directions of thiswork.

[1. Fuzzy 1f-Then Rules and Fuzzy Inference Systems

A. Fuzzy If-Then Rules
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Figure 1: Fuzzy inference system.

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF A THEN B, where A and B
are labels of fuzzy sets [66] characterized by appropriate membership functions. Due to their concise form, fuzzy
if-then rules are often employed to capture the imprecise modes of reasoning that play an essential role in the
human ability to make decisions in an environment of uncertainty and imprecision. An example that describes a
simplefactis

If pressure is high, then volumeis small.

where pressure and volume are linguistic variables [67], high and small are linguistic values or labels that are
characterized by membership functions.

Another form of fuzzy if-then rule, proposed by Takagi and Sugeno [53], has fuzzy setsinvolved only in the
premise part. By using Takagi and Sugeno’s fuzzy if-then rule, we can describe the resistant force on a moving
object as follows:

If velocity ishigh, then force = k * (velocity)?.

where, again, high in the premise part is a linguistic label characterized by an appropriate membership function.
However, the consequent part is described by a nonfuzzy equation of the input variable, velocity.

Both types of fuzzy if-then rules have been used extensively in both modeling and control. Through the use of
linguistic labels and membership functions, a fuzzy if-then rule can easily capture the spirit of a“rule of thumb”
used by humans. From another angle, due to the qualifiers on the premise parts, each fuzzy if-then rule can be
viewed as alocal description of the system under consideration. Fuzzy if-then rulesform a core part of the fuzzy
inference system to be introduced bel ow.

A. Fuzzy Inference Systems

Fuzzy inference systems are a so known as fuzzy-rule-based systems, fuzzy model's, fuzzy associative memories
(FAM), or fuzzy controllers when used as controllers. Basicaly a fuzzy inference system is composed of five
functional blocks (Figure 1):

o arulebase containing a number of fuzzy if-then rules;

¢ adatabase which defines the membership functions of the fuzzy setsused in the fuzzy rules;

¢ adecision-making unit which performs the inference operations on the rul es;

o afuzzification interface which transforms the crisp inputsinto degrees of match with linguistic values;
o adefuzzification interface which transform the fuzzy results of the inference into a cri sp output.

Usually, the rule base and the database are jointly referred to as the knowledge base.
The steps of fuzzy reasoning (inference operations upon fuzzy if-then rules) performed by fuzzy inference
systems are:
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Figure 2: Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms.

1. Compare the input variables with the membership functions on the premise part to obtain the membership
values (or compatibility measures) of each linguisticlabel. (This step is often called fuzzification).

2. Combine (through a specific T-norm operator, usually multiplication or min.) the membership values on the
premise part to get firing strength (weight) of each rule.

3. Generate the qudified consequent (either fuzzy or crisp) of each rule depending on the firing strength.
4. Aggregate the qualified consequentsto produce a crisp output. (Thisstep is called defuzzfication.)

Severd types of fuzzy reasoning [25, 26] have been proposed in the literature. Depending on the types of
fuzzy reasoning and fuzzy if-then rules employed, most fuzzy inference systems can be classified into three types
(Figure 2):

Type1l: Theoveral outputistheweighted average of each rule's crisp output induced by the rul€' sfiring strength
(the product or minimum of the degrees of match with the premise part) and output membership functions.
The output membership functions used in this scheme must be monotonically non-decreasing [55].

Type2: The overall fuzzy output is derived by applying “max” operation to the qualified fuzzy outputs (each of
which isegual to the minimum of firing strength and the output membership function of each rule). Various
schemes have been proposed to choose thefina crisp output based on the overall fuzzy output; some of them
are center of area, bisector of area, mean of maxima, maximum criterion, etc [25, 26].

Type3: Takagi and Sugeno’sfuzzy if-then rules are used [53]. The output of each ruleisalinear combination of
input variables plus a constant term, and the final output is the weighted average of each rule's output.

Figure 2 utilizes a two-rule two-input fuzzy inference system to show different types of fuzzy rules and fuzzy
reasoning mentioned above. Be aware that most of the differences lie in the specification of the consequent part
(monotonically non-decreasing or bell-shaped membership functions, or crisp function) and thusthe defuzzification
schemes (weighted average, centroid of area, etc) are also different.

[11. Adaptive Networks: Architectures and Learning Algorithms
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This section introduces the architecture and learning procedure of the adaptive network which is in fact a
superset of al kinds of feedforward neural networks with supervised learning capability. An adaptive network,
as its name implies, is a network structure consisting of nodes and directional links through which the nodes are
connected. Moreover, part or al of the nodes are adaptive, which means each output of these nodes depends on
the parameter(s) pertaining to thisnode, and the learning rule specifies how these parameters should be changed to
minimize a prescribed error measure.

The basic learning rule of adaptive networks is based on the gradient descent and the chain rule, which was
proposed by by Werbos [61] in the 1970’s. However, due to the state of artificial neural network research at that
time, Werbos' early work failed to receive the attention it deserved. 1n the following presentation, the derivationis
based on the author’swork [11, 10] which generalizes the formulasin [41].

Since the basic learning rule is based the gradient method which is notoriousfor its slowness and tendency to
become trapped in local minima, here we propose a hybrid learning rule which can speed up the learning process
substantially Both the batch learning and the pattern learning of the proposed hybrid learning rule is discussed
bel ow.

A. Architecture and Basic Learning Rule

An adaptive network (Figure 3) isamulti-layer feedforward network in which each node performs a particul ar
function (node function) on incoming signals as well as a set of parameters pertaining to thisnode. The nature
of the node functions may vary from node to node, and the choice of each node function depends on the overall
input-output function which the adaptive network isrequired to carry out. Notethat thelinksin an adaptive network
only indicate the flow direction of signals between nodes; no weights are associated with thelinks.

To reflect different adaptive capabilities, we use both circle and square nodesin an adaptive network. A sguare
node (adaptive node) has parameters while a circle node (fixed node) has none. The parameter set of an adaptive
network is the union of the parameter sets of each adaptive node. In order to achieve a desired input-output
mapping, these parameters are updated according to given training data and a gradient-based |earning procedure
described below.

Suppose that a given adaptive network has L layers and the k-th layer has #( k) nodes. We can denote the node
in the i-th position of the k-th layer by (k, 1), and its node function (or node output) by O¥. Since a node output
depends on itsincoming signals and its parameter set, we have

of = oFof1, .. .0,’;(761_1), a,byec,...), (1)
where a, b, ¢, etc. are the parameters pertaining to this node. (Note that we use O as both the node output and
node function.)

Assuming the given training data set has P entries, we can define the error measure (or energy function ) for
the p-th (1 < p < P) entry of training data entry as the sum of squared errors:

#L)
Ey = (Tmy -0k, ), )

m=1

where 15, ,, is the m-th component of p-th target output vector, and Oﬁw is the m-th component of actual output
vector produced by the presentation of the p-th input vector. Hence the overall error measure is £ = Zle E,.
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In order to devel op alearning procedure that implements gradient descent in £ over the parameter space, first
we have to calculate the error rate 222 for p-th training data and for each node output O. The error rate for the
output node at (., ¢) can be calculated readily from equation (2):

oL,
0L,

= -2(T;, — OF). 3)
For theinternal node at (&, i), the error rate can be derived by the chain rule:

#k+1)
0Ly _ T oE, 0Okt
a0f dokH 00k’

m=1

(4)

wherel < k < L — 1. That is, the error rate of an internal hode can be expressed as a linear combination of the

error rates of the nodes in the next layer. Thereforeforal 1 < k£ < Land1 < ¢ < #(k), we can find ;Oi,f‘ by

equation (3) and (4).
Now if « isa parameter of the given adaptive network, we have

0B, _ oE, 00*
Ja s 90* O

(5)

where S isthe set of nodes whose outputs depend on «. Then the derivative of the overall error measure £ with
respect to « is

OB _ -~ 0E, 6)
da da
p:l
Accordingly, the update formulafor the generic parameter « is
Ao = —n2E (7)
O

in which n isalearning rate which can be further expressed as

= —— ©
> (58)2
where k isthe step size, the length of each gradient transition in the parameter space. Usually, we can change the
value of k to vary the speed of convergence. The heuristic rules for changing & are discussed in section 5 where
we report simulation results.

Actualy, thereare two learning paradigmsfor adaptive networks. With thebatch learning (or off-linelearning),
the update formulafor parameter « isbased on equation (6) and the update action takes place only after the whole
training data set has been presented, i.e, only after each epoch or sweep. On the other hand, if we want the
parameters to be updated immediately after each input-output pair has been presented, then the update formulais
based on eguation (5) and it is referred to as the pattern learning (or on-line learning). In the following we will
derive afaster hybrid learning rule and both of itslearning paradigms.

B. Hybrid Learning Rule: Batch (Off-Line) Learning

Though we can apply the gradient method to identify the parameters in an adaptive network, the method is
generaly slow and likely to become trapped in local minima. Here we propose a hybrid learning rule [10] which
combines the gradient method and the least squares estimate (L SE) to identify parameters.

For simplicity, assume that the adaptive network under consideration has only one output

output = F(f, S), (9



where T is the set of input variables and S is the set of parameters. If there exists a function H such that the
compositefunction H o F' islinear in some of the elements of .5, then these elements can be identified by the least
sguares method. Moreformally, if the parameter set S can be decomposed into two sets

S =513 5, (10)

(where & represents direct sum) such that / o F' islinear in the elements of .S, then upon applying H to equation
(9), we have .
Houtput) = H o F(I,5), (1)

whichislinear in theelementsof S,. Now givenvaluesof ements of 51, we can plug P training datainto equation
(11) and obtain a matrix equation:
AX =B (12)

where X is an unknown vector whose elements are parameters in S,. Let |.S2| = M, then the dimensions of
A, X and Bae P x M, M x 1and P x 1, respectively. Since P (number of training data pairs) is usualy
greater than M (number of linear parameters), thisis an overdetermined problem and generally there is no exact
solution to equation (12). Instead, aleast squares estimate (LSE) of X, X*, is sought to minimize the squared
error ||[AX — B||?. Thisisastandard problem that forms the grounds for linear regression, adaptive filtering and
signal processing. The most well-known formulafor X* uses the pseudo-inverse of X':

X* = (ATA)71AT B, (13)

where AT is the transpose of A, and (AT A)~1AT is the pseudo-inverse of A if A” A is non-singular. While
equation (13) is concise in notation, it is expensive in computation when dealing with the matrix inverse and,
moreover, it becomes ill-defined if A” A issingular. As aresult, we employ sequential formulas to compute the
LSE of X. Thissequential method of L SE ismore efficient (especialy when A/ issmall) and can be easily modified
to an on-line version (see below) for systems with changing characteristics. Specifically, let the ith row vector of
matrix A defined in equation (12) be ! and the ith element of B beb?, then X can be calculated iteratively using
the sequentia formulas widely adopted in theliterature[1, 7, 28, 47]:

Xizr = Xi+ Siyraipa(blyy — a1 X5) 14)
_ S,a,+1aT+lS, s
SH_]_ = Si—m, Z—O’l’...’P—l ’

where S; is often caled the covariance matrix and the least squares estimate X* is equal to Xp. The initial
conditions to bootstrap equation (14) are Xo = 0 and Sp = ~/, where v is a positive large number and [ isthe
identity matrix of dimension M x M. When dealing with multi-output adaptive networks (out put in equation (9)
is a column vector), equation (14) still applies except that b isthe i-th rows of matrix B.

This sequential least squares estimate of X can be interpreted as a Kaman filter [17] for the process

X(k+1) = X(k), (15)

Y (k) = A(k)X (k) + noise, (16)

where X (k) = X}, Y(k) = b and A(k) = a;,. For thisreason, equation (14) is sometimes loosely referred to as
the Kalman filter agorithm. (Notethat all our simulations described in later chapters are deterministic; thereisno
noise added in the simul ation settings.)

Now we can combine the gradient method and thel east squares estimate to update the parametersin an adaptive
network. Each epoch of this hybrid learning procedure is composed of a forward pass and a backward pass. In
the forward pass, we supply input data and functiona signals go forward to calculate each node output until the
matrices A and B in equation (12) are obtained, and the parameters in S, are identified by the sequential least
sgquares formulas in equation (14). After identifying parameters in S, the functional signals keep going forward
till the error measure is calculated. In the backward pass, the error rates (the derivative of the error measure w.r.t.
each node output, see equation(3) and (4)) propagate from the output end toward the input end, and the parameters
in S; are updated by the gradient method in equation (7).

For given fixed values of parameters in S, the parameters in .S, thus found are guaranteed to be the global
optimum point in the S, parameter space due to the choice of the squared error measure. Not only can this hybrid



learning rule decrease the dimension of the search space in the gradient method, but, in general, it will aso cut
down substantially the convergence time.

Take for example an one-hidden-layer back-propagation neural network with sigmoid activation functions. If
this neural network has p output units, then the output in equation (9) is a column vector. Let H (-) betheinverse
sigmoid function

xr

11—z )
then equation (11) becomes alinear (vector) function such that each element of H (output) isalinear combination
of the parameters (weights and threshol ds) pertaining to layer 2. In other words,

S1 = weights and thresholds of hidden layer,

S2 = weights and thresholds of output layer.
Therefore we can apply the back-propagation learning rule to tune the parameters in the hidden layer, and the
parameters in the output layer can be identified by the least squares method. However, it should be keep in mind
that by using the least squares method on the data transformed by 7 (-), the obtained parameters are optimal in
terms of the transformed sgquared error measure instead of the origina one. Usually thiswill not cause practica
problem aslong as H () ismonotonically increasing.

H(z) = In( (17)

C. Hybrid Learning Rule: Pattern (On-Line) Learning

If the parameters are updated after each data presentation, we have the pattern learning or on-line learning
paradigm. This learning paradigm is vital to the on-line parameter identification for systems with changing
characteristics. To modify the batch learning rule to its on-line version, it is obvious that the gradient descent
should be based on £, (see equation (5)) instead of £. Strictly spesking, thisis not a truly gradient search
procedureto minimize £, yet it will approximateto oneif thelearning rateis small.

For the sequential least squares formulas to account for the time-varying characteristics of the incoming data,
we need to decay the effects of old data pairs as new data pairs become available. Again, this problem is well
studied in the adaptive control and system identification literature and a number of solutionsare available[7]. One
simple method isto formulate the squared error measure as a weighted version that gives higher weighting factors
to more recent data pairs. Thisamounts to the addition of a forgetting factor A to the original sequentia formula:

Xiyr = Xi+ Sit1aia(biyy — al 1 X0)
S = 18- M] ; (18)
4l = X NgaT Siain

where the value of X is between 0 and 1. The smaller lambda is, the faster the effects of old data decay. But a
small lambda sometimes causes numerical unstability and should be avoided.

IV. ANFIS: Adaptive-Network-based Fuzzy Inference System

The architecture and learning rul es of adaptive networks have been described in the previous section. Function-
ally, there are almost no constrai nts on the node functions of an adaptive network except piecewise differentiability.
Structuraly, the only limitation of network configuration is that it should be of feedforward type. Due to these
minimal restrictions, the adaptive network’s applications are immediate and immense in various areas. In this
section, we propose aclass of adaptive networkswhich are functionally equivalent to fuzzy inference systems. The
proposed architecture is referred to as ANFIS, standing for Adaptive-Network-based Fuzzy Inference System. We
describe how to decompose the parameter set in order to apply the hybrid learning rule. Besides, we demonstrate
how to apply the Stone-Weierstrass theorem to ANFIS with simplified fuzzy if-then rules and how the radial basis
function network relate to thiskind of simplified ANFIS.

A. ANFIS architecture

For simplicity, we assume the fuzzy inference system under consideration has two inputs = and y and one
output z. Suppose that the rule base contains two fuzzy if-then rules of Takagi and Sugeno’stype [53]:

Rulel: If x isA; and y is By, then f; = p1x + quy + r1,
Rule2: If x is Ay and y is By, then f, = pox + oy + 7.
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Figure 4: (a) Type-3 fuzzy reasoning; (b) equivalent ANFIS (type-3 ANFIS).

then the type-3 fuzzy reasoning isillustrated in Figure 4(a), and the corresponding equivalent ANFIS architecture
(type-3 ANFIS) is shown in Figure 4(b). The node functionsin the same layer are of the same function family as
described below:

Layer 1 Every node: in thislayer isasquare node with a node function
Of = pa, (), (19)

where « isthe input to node ¢, and A; isthe linguistic label (small , large, etc.) associated with this node
function. In other words, O} isthe membership function of A; and it specifies the degree to which the given
z satisfies the quantifier 4;. Usually we choose yi4, () to be bell-shaped with maximum equal to 1 and
minimum equal to 0, such as the generalized bell function

pa,(2) = (20)

or the Gaussian function

r — C;
—)’, (21)
where {a;, b;, ¢;} (or {a;, ¢;} in the latter case) is the parameter set. As the vaues of these parameters
change, the bell-shaped functions vary accordingly, thus exhibiting various forms of membership functions
on linguigtic label A;. In fact, any continuous and piecewise differentiable functions, such as commonly
used trapezoidal or triangul ar-shaped membership functions, are also qualified candidates for node functions
inthislayer. Parameters in thislayer are referred to as premise parameters.

pa (o) = eapl—(*—

Layer 2 Every nodein thislayer isacircle node labeled M which multipliesthe incoming signals and sends the
product out. For instance,
wi = pa, (%) x pp,(y), 1 =12, (22)

Each node output represents the firing strength of a rule. (In fact, other T-norm operators that perform
generalized AND can be used as the node function in thislayer.)

Layer 3 Every node in thislayer is a circle node labeled N. The i-th node cal culates the ratio of the i-th rule's
firing strength to the sum of al rules’ firing strengths:
W= — =12 (23)
w1+ w2
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Figure5: (1) Type-1 fuzzy reasoning; (b) equivalent ANFIS (type-1 ANFIS).

For convenience, outputs of thislayer will be called called normalized firing strengths.

Layer 4 Every nodei in thislayer isasquare node with a node function
Of =W fi = Wi(piz + qiy +74), (24)

where w; isthe output of layer 3, and {p;, ¢;, ; } isthe parameter set. Parametersinthislayer will bereferred
to as consequent parameters.

Layer 5 Thesinglenodeinthislayer isacircle node labeled > that computes the overall output as the summation
of al incoming signals, i.e.,

Oi’ = overall output = Zw fi= Zw;{; (25)

Thus we have constructed an adaptive network which is functionally equivalent to a type-3 fuzzy inference
system. For type-1 fuzzy inference systems, the extension is quite straightforward and the type-1 ANFISis shown
in Figure 5 where the output of each rule is induced jointly by the output membership funcion and the firing
strength. For type-2 fuzzy inference systems, if we replace the centroid defuzzification operator with a discrete
version which cal cul ates the approximate centroid of area, then type-3 ANFIS can still be constructed accordingly.
However, it will be more complicated than its type-3 and type-1 versions and thus not worth the effortsto do so.

Figure 6 shows a 2-input, type-3 ANFIS with 9 rules. Three membership functions are associated with each
input, so the input space is partitioned into 9 fuzzy subspaces, each of which is governed by afuzzy if-then rules.
The premise part of arule defines afuzzy subspace, whilethe consequent part specifies the output within thisfuzzy
subspace.

B. Hybrid Learning Algorithm

From the proposed type-3 ANFIS architecture (Figure 4), it is observed that given the values of premise
parameters, the overall output can be expressed as a linear combinations of the consequent parameters. More
precisely, the output f in Figure 4 can be rewritten as

f= wfnhtafanl
Wif1 + Waf2 (26)
(Wre)p1 + (W1y)q1 + (W1)r1 + (Wax)p2 + (Way)q2 + (Wa)r2,
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Figure 6: (a) 2-input type-3 ANFISwith 9 rules; (b) corresponding fuzzy subspaces .

which islinear in the consequent parameters (p1, q1, r1, p2, ¢2 and r2). Asaresult, we have

S = et of total parameters,

S1 = set of premise parameters,

Sy = set of consequent parameters,
in equation (10); H(-) and F(-,-) are the identity function and the function of the fuzzy inference system,
respectively. Therefore the hybrid learning a gorithm developed in the previous chapter can be applied directly.
More specifically, in the forward pass of the hybrid learning agorithm, functiona signals go forward till layer 4
and the consequent parameters are identified by the least squares estimate. In the backward pass, the error rates
propagate backward and the premise parameters are updated by the gradient descent. Table 1 summarizes the
activitiesin each pass.

I - I forward pass | backward pass ||
premise parameters fixed gradient descent
consequent parameters || least squares estimate fixed
signas node outputs error rates

Table 1: Two passesin the hybrid learning procedure for ANFIS.

Asmentioned earlier, the consequent parameters thusidentified are optimal (inthe consequent parameter space)
under the condition that the premise parameters are fixed. Accordingly the hybrid approach is much faster than
the strict gradient descent and it is worthwhileto look for the possibility of decomposing the parameter set in the
manner of equation (10). For type-1 ANFIS, this can be achieved if the membership function on the consequent
part of each ruleis replaced by a piecewise linear approximation with two consequent parameters (Figure 7). In
this case, again, the consequent parameters constitute set S, and the hybrid learning rule can be employed directly.

However, it should be noted that the computation complexity of the least squares estimate is higher than that
of the gradient descent. In fact, there are four methods to update the parameters, aslisted below according to their
computation complexities:

1. Gradient descent only : all parameters are updated by the gradient descent.

2. Gradient descent and one pass of LSE : the LSE is applied only once at the very beginning to get theinitial
values of the consequent parameters and then the gradient descent takes over to update all parameters.

10
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Figure 7: Piecewise linear approximation of member ship functions on the consequent part of type-1 ANFIS.

3. Gradient descent and LSE : thisisthe proposed hybrid learning rule.

4. Sequential (approximate) LSE only : the ANFISislinearized w.r.t. the premise parameters and the extended
Kaman filter algorithmis employed to update all parameters. This has been proposed in the neura network
literature[45, 44, 43].

The choice of above methods should be based on the trade-off between computation complexity and resulting
performance. Our simulations presented in the next section are performed by the third method. Note that the
consequent parameters can aso be updated by the Widrow-Hoff LM S algorithm [63], as reported in [46]. The
Widrow-Hoff algorithm requires less computation and favors parallel hardware implementation, but it converges
relatively slowly when compared to the least square estimate.

As pointed out by one of the reviewers, the learning mechanisms should not be applied to the determination
of membership functions since they convey linguistic and subjective description of ill-defined concepts. We think
thisis a case-by-case situation and the decision should be left to the users. In principle, if the size of available
input-output data set is large enough, then the fine-tuning of the membership functions are applicable (or even
necessary) since the human-determined membership functions are subject to the differences from person to person
and from time to time; therefore they are rarely optimal in terms of reproducing desired outputs. However, if the
data set istoo small, then it probably does not contain enough information of the system under consideration. In
this situation, the the human-determined membership functions represent important knowledge obtained through
human experts experiences and it might not be reflected in the data set; therefore the membership functionsshould
be kept fixed throughout the learning process.

Interestingly enough, if the membership functionsare fixed and only the consequent part is adjusted, the ANFIS
can be viewed as a functional-link network [21, 36] where the "enhanced representation” of the input variablesare
achieved by themembership functions. This"enhanced representation” which takes advantage of human knowledge
are apparently moreinsight-revealing than thefunctional expansion and the tensor (outerproduct) models[36]. By
fine-tuning the membership functions, we actually make this"enhanced representation” also adaptive.

Because the update formulas of the premise and consequent parameters are decoupled in the hybrid learning
rule (see Table 1), further speedup of learning is possible by using other versions of the gradient method on the
premise parameters, such as conjugate gradient descent, second-order back-propagation [37], quick-propagation[5],
nonlinear optimization [58] and many others.

C. Fuzzy Inference Systems with Simplified Fuzzy If-Then Rules

Though the reasoning mechanisms (Figure 2) introduced earlier are commonly used in the literature, each of
them has inherent drawbacks. For type-1 reasoning (Figure 2 or 5), the membership functionson the consequence
part are restricted to monotonically non-decreasing functionswhich are not compatiblewith linguisticterms such as
"medium" whose membership function should be bell-shaped. For type-2 reasoning (Figure 2), the defuzzification
processistime-consuming and systematic fine-tuning of the parameters are not easy. For type-3 reasoning (Figure2
or 4), itisjust hard to assign any appropriate linguisticterms to the consequence part which isanonfuzzy function
of the input variables. To cope with these disadvantages, simplified fuzzy if-then rules of the following form are
introduced:

If z isbigand y issmall, then z isd.

where d is a crisp value. Due to the fact that the output = is described by a crisp value (or equivaently, a
singular membership function), this class of simplified fuzzy if-then rules can employ all three types of reasoning
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mechanisms. More specifically, the consequent part of this simplified fuzzy if-then rule is represented by a step
function (centered at 2 = d) intype 1, asingular membership function (at z = d) in type 2, and a constant output
function in type 3, respectively. The three reasoning mechanisms are unified under this simplified fuzzy if-then
rules.

Most of al, with this simplified fuzzy if-then rule, it is possible to prove that under certain circumstance, the
resulting fuzzy inference system has unlimited approximation power to match any nonlinear functions arbitrarily
well on acompact set. Wewill proceed thisin adescriptiveway by applying the Stone-Wel erstrass theorem [ 20, 40]
stated bel ow.

Theorem 0.1 Let domain 1> be a compact space of N dimensions, and let F be a set of continuous real-valued
functionson D, satisfying the following criteria:

1. Identity function: The constant f(z) = lisinF.
2. Separability: For any two pointszy # z2in D, thereisan f in F such that f(z1) # f(x2).

3. Algebraic closure: If f and ¢ are any two functionsin F, then fg and af + bg arein I’ for any two real
numbersa and b.

Then F isdense in C'(D), the set of continuous real-valued functionson D. In other words, for any ¢ > 0, and
any function g in C'(D), thereisafunction f in F such that |¢(z) — f(z)| < e forall z € D.

In application of fuzzy inference systems, the domain inwhich we operate isalmost always closed and bounded
and therefore it is compact. For thefirst and second criteria, it istrivial to find simplified fuzzy inference systems
that satisfy them. Now all we need to do is examine the algebraic closure under addition and multiplication.
Suppose we have two fuzzy inference systems S and .S; each has two rules and the output of each system can be
expressed as

w1 f1+ waf2

S z= ——=—= (27)
w1 + w2

§:zo Ml (29)
w1 + w2
where fi, fo, fl and fz are constant output of each rule. Then az + b2 and zZ can be calculated as follows:

awlfl + waf? n bUN}lfl + @af>
w1+ wp W1 + Wy
wiWi(afi + bf1) + wia(afi + bf2) + wor(afz + bf1) + waa(afz + bf2)

- bl

w11 + W12 + w1 + wollp

az+bZ =

w11 f1f1 + wipf1f2 + won f2f1 + wailba fof2

W1W1 + W12 4 w21 + w2tz ’
which are of the same form as equation (27) and (28). Apparently the ANFIS architectures that compute az + 5%
and =7 are of the same class of S and S if and only if the class of membership functions is invariant under
multiplication. Thisisloosely trueif the class of membership functionsisthe set of all bell-shaped functions, since
the multiplication of two bell-shaped function is amost aways still bell-shaped. Another more tightly defined
class of membership functions satisfying this criteria, as pointed out by Wang [56, 57], is the scaled Gaussian
membership function:

(29)

27 =

r — C;

pa,(x) = ajexp[—( i )2, (30)

Therefore by choosing an appropriate class of membership functions, we can conclude that the ANFIS with
simplified fuzzy if-thenrules satisfy thefour criteriaof the Stone-Weierstrasstheorem. Consequently, for any given
¢ > 0, and any real-valued function g, thereis afuzzy inference system S such that |¢(Z) — S(Z)| < eforall £ in
the underlying compact set. Moreover, since the simplified ANFIS is a proper subset of al three types of ANFIS
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Figure 8: Atypical initial membership function setting in our simulation. (The operating range is assumed to be
[0,12].)

in Figure 2, we can draw the conclusion that &l the three types of ANFIS have unlimited approximation power to
match any given data set. However, caution hasto be taken in accepting this claim since there is no mention about
how to construct the ANFIS according to the given data set. That iswhy learning plays arolein this context.

Another interesting aspect of the simplified ANFIS architectureisits functiona equivalence to theradial basis
function network (RBFN). This functional eguivalence is established when the Gaussian membership functionis
used in the simplified ANFIS. A detailed treatment can be found in [14]. This functiona eguivalence provides
us with a shortcut for better understanding of ANFIS and RBFN and advances in either literatures apply to both
directly. For instance, the hybrid learning rule of ANFIS can be apply to RBFN directly and, vice versa, the
approaches used to identify RBFN parameters, such as clustering preprocess [31, 32], orthogonal least squares
learning [3], generalization properties [2], sequential adaptation [16], among others [15, 33], are all applicable
techniquesfor ANFIS.

V. Application Examples

This section presents the simul ation results of the proposed type-3 ANFIS with both batch (off-line) and pattern
(on-line) learning. Inthe first two examples, ANFISis used to mode highly nonlinear functionsand the resultsare
compared with neural network approach and earlier work. In the third example, ANFIS is used as an identifier to
identify a nonlinear component on-linely in a discrete control system. Lastly, we use ANFIS to predict a chaotic
time series and compare the results with various statistical and connectionist approaches.

A. Practical Considerations

In a conventional fuzzy inference system, the number of rulesis decided by an expert who isfamiliar with the
system to be modeled. In our simulation, however, no expert is available and the number of membership functions
(MF's) assigned to each input variableis chosen empirically, i.e., by examining the desired i nput-output data and/or
by trial and error. Thissituationismuch the same as that of neural networks; there are no simple waysto determine
in advance the minimal number of hidden nodes necessary to achieve a desired performance level.

After the number of MF's associated with each inputsare fixed, theinitia values of premise parameters are set
in such away that the MF's are equally spaced along the operating range of each input variable. Moreover, they
satisfy e-completeness [25, 26] with ¢ = 0.5, which meansthat given avaue = of one of theinputsin the operating
range, we can always find a linguistic label A such that ji4(z) > €. Inthis manner, the fuzzy inference system
can provide smooth transition and sufficient overlapping from one linguistic label to another. Though we did not
attempt to keep the epsilon-completeness during the learning in our simulation, it can be easily achieved by using
the constrained gradient method [65]. Figure 8 shows atypical initial MF setting when the number of MF is 4 and
the operating range is [0, 12]. Note that throughout the simulation examples presented below, al the membership
functions used are the bell function defined in equation (20):

pale) = Wl—c)zy]’ (3D
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rule 1: increase step size after 4 downs (point A)
rule 2: decrease step size after 2 combinations
of 1 up and 1 down (point B)

epochs

Figure 10: Two heuristic rules for updating step size k.

which contains three fitting parameters «, b and ¢. Each of these parameters has a physical meaning: ¢ determines
the center of the corresponding membership function; « isthe half width; and b (together with «) controlsthe slopes
at the crossover points (where MF valueis 0.5). Figure 9 shows these concepts.

We mentioned that the step size k in equation (8) may influence the speed of convergence. It is observed that
if £ issmal, the gradient method will closely approximate the gradient path, but convergence will be slow since
the gradient must be calculated many times. On the other hand, if % is large, convergence will initialy be very
fast, but the algorithm will oscillate about the optimum. Based on these observations, we update k according to the
following two heuristic rules (see Figure 10):

1. If the error measure undergoes 4 consecutive reductions, increase k by 10%.
2. If theerror measure undergoes 2 consecutive combinationsof 1 increase and 1 reduction, decrease & by 10%.

Though the numbers 10%, 4 and 2 are chosen more or less arbitrarily, the results shown in our simulation appear
to be satisfactory. Furthermore, due to this dynamical update strategy, the initia value of % is usually not critical
aslong asit isnot too big.

B. Simulation Results
Example 1: Modeling a Two-Input Nonlinear Function
In this example, we consider using ANFIS to model anonlinear sinc equation

sin(x) " sin(y) (32)
T y

z = sine(z,y) =
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Figure 11: RMSE curves for the quick-propagation neural networks and the ANFIS,

From the grid points of therange [—10, 10] x [—10, 10] within the input space of the above equation, 121 training
data pairs were obtained first. The ANFIS used here contains 16 rules, with four membership functions being
assigned to each input variable and the total number of fitting parameters is 72 which are composed of 24 premise
parameters and 48 consequent parameters. (We also tried ANFIS with 4 rules and 9 rules, but obvioudly they are
too simple to describe the highly nonlinear sinc function.)

Figure 11 shows the RMSE (root mean squared error) curves for both the 2-18-1 neural network and the
ANFIS. Each curve is the average of ten runs. for the neura network, this ten runs were started from 10
different set of initial random weights; for the ANFIS, 10 different initial step size (= 0.01,0.02, . .., 0.10) were
used. The neural network, containing 73 fitting parameters (connection weights and thresholds), was trained with
quick propagation [5] which is considered one of the best learning agorithmsfor connectionist models. Figure 11
demonstrate how ANFI S can effectively model ahighly nonlinear surfaceas compared to neura networks. However,
this comparison cannot taken to be universal since we did not attempt an exhaustive search to find the optimal
settingsfor the quick-propagation learning rule of the neural networks.

Thetraining dataand other reconstructed surfaces at different epoch numbersare shownin Figure12. (Sincethe
error measure is always computed after theforward passisover, the epoch numbers shown in Figure 12 alwaysend
with“.5".) Notethat the reconstructed surface after 0.5 epoch is due to the identification of consequent parameters
only and it already looks similar to the training data surface.

Figure 13 liststhe initia and final membership functions. It isinteresting to observe that the sharp changes of
the training data surface around the origin is accounted for by the moving of the membership functionstoward the
origin. Theoretically, thefinal MF s on both « and y should be symmetric with respect to the origin. However, they
are not symmetric due to the computer truncation errors and the approximate initial conditions for bootstrapping
the calculation of the sequential least squares estimate 14.

Example 2: Modeling a Three-Input Nonlinear Function
The training datain this example are obtained from
output = (14 2954+ y=1 4 2719)2 (33)

which was al so used by Takagi et al. [52], Sugeno et al. [49] and Kondo [22] to verify their approaches. The ANFIS
(see Figure 14) used here contains 8 rules, with 2 membership functions being assigned to each input variable.
216 training data and 125 checking data were sampled uniformly from the input ranges [1, 6] x [1, 6] x [1, 6] and
[1.5,5.5] x [1.5,5.5] x [1.5,5.5], respectively. The training data was used for the training of ANFIS, while the
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Figure 12: Training data (upper left) and reconstructed surfaces at 0.5 (upper right), 99.5 (lower left) and 249.5
(lower right) epochs. (Example 1).

1 (g)inigid ‘MF’son‘x ] 1 (‘t;)ini'gial MF’sony
08 | 08" ‘ |
06 1 06" 1
04 1 04r 1
02" ] 02} 1
% s T % s T,
y
1 1
08 | 08" |
06 4 06" i
04 1 04r 1
02- — 02k 1
-10 10 % 10

Figure 13: Initial and final membership functions of example 1.
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Figure 14: The ANFISarchitecture for example 2. (The connections frominputsto layer 4 are not shown.)
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Figure 15: Example 2, (a) member ship functions before learning; (b)(c) (d) membership functions after learning.

checking datawas used for verifying theidentified ANFIS only. To alow comparison, we use the same performance
index adopted in [49, 22]:

P . .
1 T(1) —
APE = average percentage error = 2 E % + 100%. (34
i
i=1

where P isthe number of datapairs; 7'(¢) and O(¢) are ¢-th desired output and cal culated output, respectively.

Figure 15illustratesthe membership functionsbefore and after training. Thetraining error curveswith different
initial step sizes (from 0.01 to 0.09) are shown in Figure 16(a), which demonstrates that the initial step size is
not too critical on the final performance as long as it is not too big. Figure 16(b) is the training and checking
error curves with initial step size equa to 0.1. After 199.5 epochs, the fina results are AP Ey,.,, = 0.043% and
APF. i, = 1.066%, whichislisted in Table 2 along with other earlier work [49, 22]. Since each simulation cited
here was performed under different assumptionsand with different training and checking data sets, we cannot make
conclusive comments here.

Example 3: On-line Identification in Control Systems

17



(b)

g g 6
S S \
& 4 ©® ‘
<) <) —
g g
@ 1@
(&) (&)
o & |
o o
(&) N (&)
& &
) )
& & :
200 0 50 100 150 200
epochs epochs

Figure 16: Error curves of example 2: (a) 9 training error curves for 9 initial step size from 0.01 (solid line) to
0.09; (b) training (solid line) and checking (dashed line) error curves with initial step size equal to 0.1.

I Model | APEy., (%) | APE.p; (%) | Parameter no. | Training Set Size | Checking Set Size ||
ANFIS 0.043 1.066 50 216 125
GMDH modd [22] 4.7 57 - 20 20
Fuzzy model 1 [49] 15 21 22 20 20
Fuzzy moddl 2 [49] 0.59 34 32 20 20

Table 2: Example 2: comparisonswith earlier work. (The last three rows are from[49].)

Here we repeat the simulation example 1 of [34] where a 1-20-10-1 neura network is employed to identify a
nonlinear component in a control system, except that we use ANFISto replace the neural network. The plant under
consideration is governed by the foll owing difference equation:

y(k + 1) = 0.3y(k) + 0.6y(k — 1) + f(u(k)), (35)

where y(k) and u(k) are the output and input, respectively, at timeindex &, and the unknown function f(-) has the
form

f(u) = 0.6sin(wu) 4+ 0.3sin(37u) + 0.1sin(5ru). (36)
In order to identify the plant, a series-parallel model governed by the difference equation
g(k + 1) = 0.3g(k) + 0.65(k — 1) + F(u(k)) (37)

was used where F(-) is the function implemented by ANFIS and its parameters are updated at each time index.
Here the ANFIS has 7 membership functions on itsinput (thus 7 rules, and 35 fitting parameters) and the pattern
(on-line) learning paradigm was adopted with alearning rate » = 0.1 and a forgetting factor A = 0.99. The input
to the plant and the model was a sinusoid u(k) = sin(2wk/250) and the adaptation started at & = 1 and stopped
at k = 250. Asshown in Figure 17, the output of the model follows the output of the plant almost immediately
even after the adaptation stopped at & = 250 and the u(k) ischanged to 0.5sin(27k/250) + 0.5sin(27k /25) after
k = 500. Asa comparison, the neura network in [34] failsto follow the plant when the adaptation stopped at
k = 500 and the identification procedure had to continue for 50, 000 time steps using a random input. Table 3
summarizes the comparison.

In the above, the MF number is determined by trial and errors. 1f the MF number is below 7 then the model
output will not follow the plant output satisfactorily after 250 adaptations. But can we decrease the parameter
numbers by using batch learning which is supposed to be more effective? Figure 18, 19 and 20 show the results
after 49.5 epochs of batch learning when the MF numbers are 5, 4 and 3, respectively. As can be seen, the ANFIS
isagood mode even when the MF is as small as 3. However, asthe MF number is getting smaller, the correlation
between F'(«) and each rul€'s output is getting less obviousin the sense that it is harder to sketch F'(«) from each
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Figure17: Example 3: (a) u(k); (@) f(u(k)) and F'(u(k)); (b) plant output and model output.

| Method || Parameter Number | Time Steps of Adaptation ||

NN 261 50000 |
ANFIS 35 250 |

Table 3: Example 3: comparisonwith NN identifier [ 34].)
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Figure 18: Example 3: batch learning with 5 MF’s.

rule's consequent part. In other words, when the parameter number is reduced mildly, usually the ANFIS can till
do the job but at the cost of sacrificing its semanticsin terms of the local-description nature of fuzzy if-then rules;
itislessof astructured knowledge representation and more of a black-box model (like neural networks).

Example 4: Predicting Chaotic Dynamics

Example 1, 2 and 3 show that the ANFIS can be used to mode highly nonlinear functions effectively. In this
example, we will demonstrate how the proposed ANFIS can be employed to predict future values of a chaotic time
series. The performance obtained in thisexample will be compared with the results of a cascade-correlation neural
network approach reported in [39] and asimple conventional statistical approach, the auto-regressive (AR) model.

Thetime series used in our simulationis generated by the chaotic Mackey-Glass differential delay equation[29]
defined below:

) 0.2z(t— 1)

z(t) = T4 200 1) 0.1xz(1). (38)
The prediction of futureval uesof thistime seriesisabenchmark problem which has been considered by anumber of
connectionist researchers (Lapedes and Farber [24], Moody [32, 30], Joneset a. [15], Crower [39] and Sanger [42]).

The goal of thetask isto use known values of the time series up to the point » = ¢ to predict the value at some
point in the future » = ¢t + P. The standard method for this type of prediction isto create a mapping from D
pointsof thetime series spaced A apart, that is, (x(t — (D — 1)A), ..., z(t — A), 2(t)), to apredicted future vaue
z(t + P). To dlow comparison with earlier work (Lapedes and Farber [24], Moody [32, 30], Crower [39]), the
vaues D = 4and A = P = 6wereused. All other simulation settingsin this example were purposedly arranged
to be as close as possible to those reported in [39].

To obtain the time series value at each integer point, we applied the fourth-order Runge-Kutta method to find
the numerical solution to equation (38). The time step used in the method is 0.1, initial condition z(0) = 1.2,
7 = 17, and z(t) isthus derived for 0 < ¢ < 2000. (We assume z(¢) = Ofor ¢t < 0intheintegration.) From the
Mackey-Glass time series #(t), we extracted 1000 input-output data pairs of the following format:

[z(t — 18), z(t — 12), z(t — 6), x(1); z(t + 6)], (39)
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(b) Final MF sfor each input variable.
Figure 21: Membership functions of example 4, (a) before learning; (b) after learning.

wheret = 118t0 1117. Thefirst 500 pairs (training data set) was used for training the ANFI S whilethe remaining
500 pairs (checking data set) were used for validating the identified model. The number of membership functions
assigned to each input of the ANFIS was arbitrarily set to 2, so the rule number is 16. Figure 21 (a) is theinitia
membership functions for each input variable. The ANFIS used here contains atotal of 104 fitting parameters, of
which 24 are premise parameters and 80 are consequent parameters

After 499.5 epochs, we had RM SFEy,,, = 0.0016 and RM SE . = 0.0015, which are much better when
compared with other approaches explained below. The resulting 16 fuzzy if-then rules are listed in the Appendix.
The desired and predicted values for both training data and checking data are essentially the same in Figure 22(a);
their differences (Figure 22(b)) can only be seen on afiner scale. Figure 21 (b) isthefina membership functions;
Figure 23 shows the RMSE curves which indicate most of the learning was done in the first 100 epochs. It is
quite unusual to observe the phenomenon that RM S Ey,., < RM SE.p;, during the training process. Considering
both the RMSE's are vary smal, we conclude that: (1) the ANFIS has captured the essential components of
the underlying dynamics; (2) the training data contains the effects of the initial conditions (remember that we
set #(¢) = Ofort < 0intheintegration) which might not be easily accounted for by the essential components
identified by the ANFIS.

As a comparison, we performed the same prediction by using the auto-regressive (AR) model with the same
number of parameters:

z(t 4 6) = ap+ a12(t) + azx(t — 6) + ... + aigzx(t — 102 * 6), (40)
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Figure 22: Example 3, (8) Mackey-Glasstime seriesfrom ¢t = 124 to 1123 and six-step ahead prediction (whichis
indistinguishablefrom the time series here); (b) prediction error.

where there are 104 fitting parameters a;, k£ = 0to 103. From¢ = 712 to 1711, we extracted 1000 data pairs,
of which the first 500 were used to identify a; and the remaining were used for checking. The results obtained
through the standard least squares estimate are RM SF,,.,, = 0.005 and RM SE.,;, = 0.078 which is much
worse than those of ANFIS. Figure 24 shows the predicted values and the prediction errors. Obvioudly, the over-
parameterization of the AR model causes over-fitting in the training data and large errorsin the checking data. To
search for thebest AR model intermsof generalization capability, wetried out different AR modelswith parameter
number being varied from 2 to 104; Figure 25 shows the results where the AR model with the best generalization
capability isobtained when the parameter number is45. Based onthisbest AR model, we repest the generalization
test and Figure 26 shows the results where there is no over-fitting at the price of larger training errors.

It goes without saying that the nonlinear ANFIS outperformsthe linear AR model. However, it should be noted
that the identification of the AR model took only a few seconds, while the ANFIS simulation took about 1.5 hours
onaHP Apollo 700 Series workstation. (Wedid not pay special attention on the optimization of the codes, though.)

Table 4 lists other methods' generalization capabilities which are measured by using each method to predict
500 pointsimmediately followingthetraining set. Here the non-dimensional error index (NDEI) [24, 39] isdefined
as the root mean square error divided by the standard deviati on of the target series. (Note that the average relative
variance used in [59, 60] isequal to the square of NDEI.) The remarkabl e generalization capability of the ANFIS,
we believe, comes from the following facts:

1. The ANFIS can achieve a highly nonlinear mapping as shown in Example 1, 2 and 3, therefore it is superior
to common linear methods in reproducing nonlinear time series.

2. The ANFIS used here has 104 adjustable parameters, much less than those of the cascade-correlation NN
(693, the median size) and back-prop NN (about 540) listed in Table 4.

3. Though without a priori knowledge, theinitial parameter settings of ANFIS areintuitively reasonable and it
leads to fast learning that captures the underlying dynamics.

Table 5 lists the results of the more challenging generalization test when P = 84 (the first six rows) and
P = 85 (the last four rows). The results of the first six rows were obtained by iterating the prediction of P = 6
till P = 84. ANFIS still outperforms these statistical and connectionist approaches unless a substantialy large
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Figure 24: (a) Mackey-Glass time series (solid line) from¢ = 718to 1717 and six-step ahead prediction (dashed
line) by AR model with parameter = 104; (b) prediction errors.
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Figure26: Example 3, (a) Mackey-Glasstimeseries (solidline) from¢ = 364 to 1363 and six-step ahead prediction
(dashed line) by the best AR model (parameter number = 45); (b) prediction errors.

I Method || Training Cases | Non-Dimensional Error Index ||
ANFIS 500 0.007
AR Modd 500 0.19
Cascaded-Correlation NN 500 0.06
Back-Prop NN 500 0.02
6th-order Polynomial 500 0.04
Linear Predictive Method 2000 0.55

Table 4: Generalization result comparisonsfor P = 6. (Thelast four rows are from[39].)
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I Method || Training Cases | Non-Dimensional Error Index ||

ANFIS 500 0.036
AR Modéd 500 0.39
Cascaded-Correlation NN 500 0.32
Back-Prop NN 500 0.05
6th-order Polynomial 500 0.85
Linear Predictive Method 2000 0.60
LRF 500 0.10-0.25

LRF 10000 0.025-0.05
MRH 500 0.05
MRH 10000 0.02

Table 5: Generalization result comparisonsfor P = 84 (thefirst six rows) and 85 (the last four rows). Results for
the first six methods are generated by iterating the solution at P = 6. Results for localized receptive fields (LRF)
and multi-resolution hierarchies (MRH) are for networkstrained for P = 85. (Thelast eight rows are from[39].)

amount of training data (i.e., the last row of Table 5) were used instead. Figure 27 illustrates the generalization
test for the ANFIS where the first 500 pointswere used for the desired outputs while the last 500 are the predicted
outputsfor P = 84.

VI. Concluding Remarks
A. Summary and Extensions of Current work

We have described the architecture of adaptive-network-based fuzzy inference systems (ANFIS) with type-1
and type-3 reasoning mechanisms. By employing a hybrid learning procedure, the proposed architecture can
refine fuzzy if-then rules obtained from human experts to describe the input-output behavior of a complex system.
However, if human expertiseis not available, we can till set up intuitively reasonableinitial membership functions
and start the learning process to generate a set of fuzzy if-then rules to approximate a desired data set, as shown in
the simulation examples of nonlinear function modeling and chaotic time series prediction.

Due to the high flexibility of adaptive networks, the ANFIS can have a number of variants from what we have
proposed here. For instance, the membership functions can be changed to L-R representation [4] which could
be asymmetric. Furthermore, we can replace N nodes in layer 2 with the parameterized T-norm [4] and let the
learning rule to decide the best T-norm operator for a specific application. By employing the adaptive network as
a common framework, we have also proposed other adaptive fuzzy modelstailored for data classification [50] and
feature extraction [51] purposes.

Another important issue in thetraining of ANFIS ishow to preserve the human-plausible features such as bell-
shaped membership functions, ¢-completeness [25, 26] or sufficient overlapping between adjacent membership
functions, minimal uncertainty, etc. Though we did not pursue aong this direction in this paper, mostly it can be
achieved by maintaining certain constraints and/or modifying the origina error measure as explained bel ow.

o To keep bell-shaped membership functions, we need the membership functionsto be bell-shaped regardless
of the parameter values. In particular, equation (20) and becomes up-side-down bell-shaped if b; < 0; one
easy way to correct thisisto replace b; with b2 in both equations.

e The e-completeness can be maintained by the constrained gradient descent [65]. For instance, suppose
that ¢ = 0.5 and the adjacent membership functions are of the form of equation (20) with parameter sets
{ai, bi, Ci} and {aH_]_, bi-l-la Ci+l}- Then thee-completmeﬁsissatis‘ied if C+a; = i1 — aig1 and thiscan
be ensured throughout the training if the constrained gradi ent descent is employed.

e Minima uncertainty refers to the situation that within most region of the input space, there should be a
dominant fuzzy if-then rule to account for the final output, instead of multiple rules with similar firing
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(a) Desired (solid) and predicted (dashed) time series of ANFIS when P=84
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Figure 27: Generalization test of ANFISfor P = 84.

strengths. This minimizes the uncertainty and make the rule set more informative. One way to do thisisto
use amodified error measure

P
E'=E+3Y [~ x In(w@;)], (41)
i=1

where I/ isthe original squared error; 3 isaweighting constant; P isthe size of training data set; w; isthe
normalized firing strength of the i-th rule (see equation (23)) and Zle[—m x In(w;)] is the information
entropy. Since this modified error measure is not based on data fitting alone, the ANFIS thus trained can
also have a potentially better generalization capability. (However, dueto thisnew error measure, thetraining
should be based on thegradient descent done.) Theimprovement of generalization by usingan error measure
based both data fitting and weight elimination has been reported in the neural network literature[59, 60].

In this paper, we assume the structure of the ANFIS isfixed and the parameter identificationis solved through
the hybridlearning rule. However, to make the whol e approach more compl ete, the structureidentification[49, 13]
(which concerns with the selection of an appropriate input-space partition style and the number of membership
functions on each input, etc.) is equally important to the successful applications of ANFIS. Effective partition of
the input space can decrease the rule number and thus increase the speed in both learning and application phases.
Advances on neura networks' structureidentification [6, 27] can shed some lightson this aspect.

B. Applicationsto Automatic Control and Signal Processing

Fuzzy control is by far the most successful applications of the fuzzy set theory and fuzzy inference systems.
Due to the adaptive capability of ANFIS, its applicationsto adaptive control and learning control are immediate.
Most of al, it can replace almost any neura networksin control systems to serve the same purposes. For instance,
Narendra's pioneering work of using neural networks in adaptive control [34] can be all achieved similarly by
ANFIS. Moreover, four of the generic designs (i.e., supervised control, direct inverse control, neural adaptive
control and back-propagation of utility) of neural networks in control, as proposed by Werbos [62, 9], are aso
directly applicable schemes for ANFIS. Particularly we have employed a similar method of the back-propagation
through time[35] or unfoldingin time to achieve a self-learning fuzzy controller with four rules that can balance an
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inverted pendulum in an near-optimal manner [12]. It is expected that the advances of neura network techniques
in control can promotethose of ANFIS as well, and vice versa.

Theactiveroleof neural networksinsignal processing [64, 23] a so suggestssimilar applicationsof ANFIS. The
nonlinearity and structured knowledge representation of ANFIS are the primary advantages over classical linear
approaches in adaptive filtering [8] and adaptive signal processing [63], such as identification, inverse modeling,
predictive coding, adaptive channel equalization, adaptive interference (noise or echo) canceling, etc.
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Appendix

As suggested by one of the reviewers, to give the readers a concrete idea of the resulting fuzzy inference
systems, it would be better to list the fuzzy if-then rules explicitly. Here we list the fina 16 fuzzy if-then rulesin
example 4 which predicts the Mackey-Glass chaotic time series. Suppose that the i-th input variable is assigned
two linguisticvalues SM AL L; and L ARG E;, then the fuzzy if-then rules after training can be expressed as:

Ifx(t—18)1is SMALL1 and z(t — 12) ts SMALLy and ©(t — 6) is SMALL3 and x(t) is SMALLa4, then z(t+ 6) = &1 -
Ifx(t—18)1s SMALL1 and z(t — 12) ts SMALL5 and z(t — 6) is SMALL3 and ©(t) is LARGE}y, then z(t +6) =& -
Ifx(t—18)1s SMALL1 and z(t — 12) ts SMALL> and z(t — 6) is LARGE3 and z(t) is SMALLy, then z(t + 6) = C3 -
Ifx(t—18)1s SMALL1 and z(t — 12) s SMALL7 and z(t — 6) is LARGE3 and z(t) is LARGE,, then z(t+6) = ¢4 -
I1fx(t—18)1s SMALL1 and z(t — 12) is LARGE) and x(t — 6) is SMALL3 and z(t) is SMALLy, then z(t + 6) = Cs -
Ifx(t—18)1is SMALL1 and z(t — 12) is LARGE> and z(t — 6) is SM ALL3 and z(t) is LARGE4, then z(t + 6) = & -
Ifx(t—18)1is SMALL1 and z(t — 12) s LARGE> and z(t — 6) is LARGE3 and z(t) ts SMALLy, then z(t+6) = ¢7 -
Ifx(t—18)1is SMALL1 and z(t — 12) ts LARGE> and z(t — 6) is LARGE3 and z(t) is LARGEa, then z(t+6) = g -

I1f x(t—18)1s LARGE, and z(t — 12) is SMALLp and x(t — 6) is SMALL3 and z(t) is SMALLy, then z(t + 6) = Cy -
If x(t—18)1s LARGEy and z(t — 12) is SMALL and z(t — 6) is SM ALL3 and z(t) is LARGE4, then z(t + 6) = 1o
If x(t—18)1s LARGE, and z(t — 12) is SMALL and z(t — 6) is LARGE3 and z(t) is SMALLy, then z(t + 6) = ¢
If x(t—18)1is LARGEy and z(t — 12) is SMALL and z(t — 6) is LARGE3 and z(t) ts LARGE4, then z(t+ 6) = ¢12 -
If x(t—18)1s LARGE, and z(t — 12) is LARGE> and z(t — 6) 1s SMALL3 and z(t) is SMALL4, then z(t + 6) = 13
I1f x(t—18)1is LARGE: and z(t — 12) is LARGE> and z(t — 6) 1s SM ALL3 and z(t) is LARGE,, then z(t+ 6) = cia

If x(t—18)1is LARGE, and z(t — 12) is LARGE> and z(t — 6) ts LARGE3 and z(t) is SMALLa, then z(t+ 6) = &5 -
I1f x(t—18)1s LARGE, and z(t — 12) is LARGE> and z(t — 6) 1s LARGE3 and z(t) is LARGE}Y, then z(t 4+ 6) = 6 -

(42)
where X = [z(t — 18), 2(t — 12), z(t — 6), #(¢), 1] and & isthe i-th row of the following consequent parameter
matrix C':

[ 0.2167 0.7233 —-0.0365 0.5433 0.0276
0.2141 0.5704 —0.4826 1.2452 —-0.3778
—0.0683  0.0022 0.6495 27320 —2.2916
—0.2616 0.9190 —2.9931 1.9467 1.6555
—0.3293 -0.8943 14290 —1.6550 2.3735
25820 —2.3109 3.7925 —-5.8068 4.0478
0.8797  —0.9407  2.2487 0.7759 -2.0714
—0.8417 —-1.5394 —-1.5329 2.2834 2.4140
—0.6422 -0.4384 0.9792 —0.3993 1.5593
15534 —-0.0542 -—-4.7256 0.7244 2.7350
—0.6864 —2.2435 0.1585 0.5304 3.5411
—0.3190 -1.3160  0.9689 1.4887 0.7079
—0.3200 -0.4654 0.4880 —0.0559 0.9622
4.0220 —3.8886 1.0547 —0.7427 —-0.4464
0.3338 —-0.3306 —0.5961 1.1220 0.3529
—0.5572 09190 -—-0.8745 2.1899 —0.9497 |

43)

The linguistic labels SM ALL; and LARGE; (i=1 to 4) are defined by the bell membership function (with

different parameters a, b and ¢):
1
= 44
1= T “
These membership functions are shown in Figure 21. The following table lists the linguistic labels and the
corresponding conseguent parameters in equation (44):
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