
 

             International Journal on Electrical Engineering and Informatics ‐ Volume 3, Number 1, 2011 

 
26  

 

Solution of Economic Load Dispatch Problems by a Novel  
Seeker Optimization Algorithm 

 
B. Shaw 1, S. Ghoshal2, V. Mukherjee3, and S. P. Ghoshal4 

 
1 Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal, India 

2, 4 Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal, India 
3 Department of Electrical Engineering, Indian School of Mines, Dhanbad, Jharkhand, India 

vivek_agamani@yahoo.com 
  
 

Abstract: This article presents an efficient approach for solving economic load dispatch 
(ELD) problems in different test power systems using a novel seeker optimization 
algorithm (SOA) In the SOA, the act of human searching capability and understanding 
are exploited for the purpose of optimization. In this algorithm, the search direction is 
based on empirical gradient by evaluating the response to the position changes and the 
step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, 
four test systems of the ELD problems are solved by adopting the SOA. A comparison 
of obtained simulation results by adopting the SOA is carried out with those published 
in the recent literatures. It is revealed from comparison that the optimization efficacy of 
the SOA over the prevailing optimization techniques for the solution of the multimodal, 
non-differentiable, highly non-linear, and constrained ELD problems is promising. 
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1. Introduction 
 The prime objective of the ELD problem is to minimize the total generation cost in power 
system (with an aim to deliver power to the end user at minimal cost) for a given load demand 
with due regard to the system equality and inequality constraints [1]. To date, various 
investigations on ELD problems have been undertaken as better solutions would result in more 
saving in the operating cost. 
 Several classical methods, such as the lambda iteration (LI) method and gradient method 
have been applied to solve the ELD problems. But unfortunately, these methods are not 
feasible in practical power systems owing to the non-linear characteristics of the generators and 
non-smooth cost functions. Consequently, many powerful mathematical optimization 
techniques that are fast and reliable, such as non-linear programming and dynamic 
programming have been employed to solve the ELD problems. But due to the non-differential 
and non-convex characteristics of the cost functions, these methods are also unable to locate 
the global optima. Among the artificial intelligence methods, Hopfield neural networks [2] 
have been applied to solve the non-linear ELD problems, but these methods suffer from 
excessive numerical iterations, resulting in huge computations. Complex constrained ELD 
problems have been solved by many population-based optimization techniques in recent years. 
Some of the population-based optimization methods are genetic algorithm (GA) [3], simulated 
annealing (SA) [4], Tabu search [5], improved fast evolutionary programming (EP) (IFEP) [6],   
particle     swarm   optimization     (PSO)  [3],   ant   colony   optimization  (ACO) [7], 
differential evolution (DE) [8], bacteria foraging with Nelder-Mead (BF-NM) [9], Seeker 
optimization algorithm (SOA) [12] is essentially a novel population based heuristic 
Biogeography-based optimization (BBO) [10],  a hybrid technique combining DE with BBO 
(DE/BBO) [11]. 
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 Search algorithm. It is based on human understanding and searching capability for finding 
an optimum solution. In the SOA, optimum solution is regarded as one which is searched out 
by a seeker population. The underlying concept of the SOA is very easy to model and 
relatively easier than other optimization techniques prevailing in the literature. The 
highlighting characteristic features of this algorithm are the following: 
a. Search direction and step length are directly used in this algorithm to update the position, 
b. Proportional selection rule is applied for the calculation of the search direction, which can 

improve the population diversity so as to boost the global search ability and decrease the 
number of control parameters making it simpler to implement, and 

c. Fuzzy reasoning is used to generate the step length because the uncertain reasoning of 
human searching could be the best described by natural linguistic variables, and a simple if-
else control rule.  

 The algorithm is to model the cooperative manner of human being while performing the 
group dynamics. In view of the aforementioned underlying concepts of the SOA as an 
optimizer, can this algorithm be exploited for the solution of the ELD problems of different 
capacities and volumes? Are the results yielded by the SOA comparable to those reported in 
the recent literatures? Basically, the present work is an attempt to utilize the optimizing 
capability of the SOA for the solutions of highly constrained ELD problems. 
 The present work focuses on the performance of the SOA as an optimizing tool in solving 
different ELD problems. The main contribution of the paper can be summarized as follows: 
1. Four test cases of the ELD problems are solved with the help of the SOA and the best 

results obtained are presented in this paper. 
2. The best results obtained for the test cases considered by adopting the SOA are compared 

with those published in the recent papers.  
3. Based on the quality and the improved convergence speed of the solution as obtained and 

presented in this paper, the applicability of the SOA in solving the practical ELD problems 
of power systems is proposed. 

 The rest of the paper is organized as follows. In Section 2, mathematical modeling of the 
ELD problem is done. In Section 3, an objective function is formulated which requires to be 
optimized. The SOA is narrated in Section 4. Test cases and simulation results are presented in 
Section 5 to demonstrate the performance of the algorithm for the ELD problems. Section 6 
focuses on conclusions of the present work.  
 
2. Mathematical Modeling of the ELD Problem 
A. ELD with Quadratic Cost Function and Transmission Loss 
 The problem of the ELD is multimodal, non-differentiable and highly non-linear. 
Mathematically, the problem can be stated as in (1) [1, 6]. 
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(i)  Real Power Balance Constraint  
 The power balance operation can be modeled as in (2). 
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The transmission loss ( LP ) may be expressed as a quadratic function of generations (using B
coefficient matrix) as given in (3). 
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(ii) Generation Capacity Constraints 
 The generating capacity constraints are written as in (4). 

 
maxmin

iii PPP ≤≤ ; NGi .........,,1=               (4)                        
 
B. ELD Problem with Valve Point Loading 
 For a more practical and accurate model of the cost function, multiple valve steam turbines 
are considered. Total cost of the generating units with valve point loading is given in (5) [6]. 
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It is to be noted here that the fuel cost coefficients ie  and if  are introduced in (5) to model the 
valve point loadings.   
 
C. ELD Problem with Valve Point Loading and Multiple Fuel Options 
 Considering both valve point loading effect and multiple fuels, the cost function [13] is as 
in (6).   
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3. Formulation of The Objective Function 
 The objective function ( )(OF ) is designed as in (7) that requires to be minimized. 
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 The weighing factors are selected to make the corresponding terms competitive during the 
process of optimization. The unit of each weighing factor involved in (7) is $/MWh.  
 
4. Seeker Optimization Algoritm and Its Application to the ELD Problem  
A. Seeker Optimization Algorithm 
 The SOA [12] is a population-based heuristic search algorithm. It regards the optimization 
process as an optimal solution obtained by a seeker population. Each individual of this 
population is called a seeker. The total population is randomly categorized into three 
subpopulations. These subpopulations search over several different domains of the search 
space. All the seekers in the same subpopulation constitute a neighborhood. This neighborhood 
represents the social component for the social sharing of information. 
 
B. Steps of Seeker Optimization Algorithm 
 In the SOA, a search direction )(tdij and a step length )(tijα  are computed separately for 

each ith seeker on each jth variable at each time step t , where 0)( ≥tijα  and 
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}1,0,1{)( −∈tdij  . Here, i represents the population number and j represents the optimizing 
variable number. 
a)  Calculation of the search direction, )(tdij  : It is the natural tendency of the swarms to 

reciprocate in a cooperative manner while executing their needs and goals. Normally, there 
are two extreme types of cooperative behavior prevailing in swarm dynamics. One, 
egotistic, is entirely pro-self and another, altruistic, is entirely pro-group [14]. Every seeker, 
as a single sophisticated agent, is uniformly egotistic  
[14]. He believes that he should go toward his historical best position according to his own 
judgment. This attitude of ith seeker may be modeled by an empirical direction vector 

)(, td egoi  as shown in (8). 
 

))()(()( ,, txtpsigntd ibestiegoi −=        (8)                        

 
 In (8), )( ⋅sign is a signum function on each variable of the input vector. On the other 
hand, in altruistic behavior, seekers want to communicate with each other, cooperate 
explicitly, and adjust their behaviors in response to the other seeker in the same 
neighborhood region for achieving the desired goal. That means the seekers exhibit entirely 
pro-group behavior. The population then exhibits a self-organized aggregation behavior of 
which the positive feedback usually takes the form of attraction toward a given signal 
source. Two optional altruistic directions may be modeled as in (9)-(10). 

))()(()(1, txtgsigntd ibestalti −=   (9)
                             

))()(()(2, txtlsigntd ibestalti −=   (10)
                          
 In (9)-(10), )(tg best represents neighbors’ historical best position, )(tl best  means 
neighbors’ current best position. 
 Moreover, seekers enjoy the properties of pro-activeness; seekers do not simply act in 
response to their environment; they are able to exhibit goal-directed behavior. In addition, 
the future behavior can be predicted and guided by the past behavior. As a result, the seeker 
may be pro-active to change his search direction and exhibit goal-directed behavior 
according to his past behavior. Hence, each seeker is associated with an empirical direction 
called as pro-activeness direction as given in (11). 
 

))()(()( 21, txtxsigntd iiproi −=   (11)
                                
 In (11), }2,1,{, 21 −−∈ ttttt and it is assumed that )( 1txi is better than )( 2txi . 
Aforementioned four empirical directions as presented in (9)-(11) direct human being to 
take a rational decision in his search direction.  
If the jth variable of the ith seeker goes towards the positive direction of the coordinate 
axis, )(tdij  is taken as +1. If the jth variable of the ith seeker goes towards the negative 

direction of the coordinate axis, )(tdij  is assumed as -1. The value of )(tdij is assumed as 

0 if the ith seeker stays at the current position. Every variable j  of )(td i is selected by 
applying the following proportional selection rule (shown in Figure 1) as stated in (12). 
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Figure 1. The proportional selection rule of search directions 
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 In (12), jr  is a uniform random number in [0, 1], )( m

jp }11,0{( −+∈m is the percent 

of the numbers of “ m  ” from the set },,,{ ,2,1,, proijaltijaltijegoij dddd on each variable j 

of all the four empirical directions, i.e. )( m
jp = (the number of m ) / 4. 

 
b)  Calculation of the step length, )(tijα : From the view point of human searching behavior, it 

is understood that one may find the near-optimal solutions in a narrower neighborhood of 
the point with lower fitness value and on the other hand, in a wider neighborhood of the 
point with higher fitness value.  
 A fuzzy system may be an ideal choice to represent the understanding and linguistic 
behavioral pattern of human searching tendency.  
Different optimization problems often have different ranges of fitness values. To design a 
fuzzy system to be applicable to a wide range of optimization problems, the fitness values 
of all the seekers are sorted in descending manner (for minimization problem) / in 
ascending manner (for maximization problem) and turned into the sequence numbers from 
1 to S as the inputs of fuzzy reasoning. The linear membership function is used in the 
conditional part since the universe of discourse is a given set of numbers, i.e. S........,,2,1  . 
The expression is presented as in (13).   

  
)(

1 minmaxmax μμμμ −
−
−

−=
S

IS i
i                     (13)                         

 In (13), iI  is the sequence number of )( tx i after sorting the fitness values, maxμ is 
the maximum membership degree value which is equal to or a little less than 1.0. Here, the 
value of maxμ is taken as 0.95. 
 A fuzzy system works on the principle of the control rule as “If {the conditional part}, 

then {the action part}. Bell membership function 
22/2

)( δμ xex −= (shown in Figure 2) is 
well utilized in the literature to represent the action part. For the convenience, one variable 
is considered. Thus, the membership degree values of the input variables beyond 

]3,3[ δδ +− are less than 0.0111 )0111.0)3(( =± δμ , and the elements beyond 
]3,3[ δδ +− in the universe of discourse can be neglected for a linguistic atom [15]. Thus, 

the minimum value 0111.0min =μ  is set. Moreover, the parameter, δ  of the Bell 
membership function is determined by (14). 
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Figure 2. The action part of the fuzzy reasoning. 

  

)( randbest xxabs −×=ωδ   (14)
                                 
 In (14), the absolute value of the input vector as the corresponding output vector is 
represented by the symbol )( ⋅abs . The parameter ω is used to decrease the step length 
with increasing time step so as to gradually improve the search precision. In the present 
experiments, ω is linearly decreased from 0.9 to 0.1 during a run. The bestx  and randx  are 
the best seeker and a randomly selected seeker respectively from the same subpopulation to 
which the ith seeker belongs. It is to be noted here that randx  is different from bestx  and 

δ  is shared by all the seekers in the same subpopulation.  
 In order to introduce the randomness in each variable and to improve the local search 
capability, the following equation is introduced to convert iμ  into a vector iμ with 
elements as given by (15).   

)1,( iij RAND μμ =   (15)
                                  
 In (15), )1,( iRAND μ  returns a uniformly random real number within ]1,[ iμ . 
Equation (16) denotes the action part of the fuzzy reasoning and gives the step length          
( ijα ) for every variable j . 

)(ln ijjij μδα −=    (16)

                                 
c)  Updating of seekers’ position: In a population of size S , for each seeker i ( Si ≤≤1 ), the 

position update on each variable j  is given by the following equation.  
)()()()1( tdttxtx ijijijij ×+=+ α       (17)                         

 
where   

)1( +txij   the position of the jth variable of the ith seeker at time step 1+t ; 

)(txij   the position of the jth variable of the ith seeker at time step t ; 

)(tijα   the step length of the jth variable of the ith seeker at time step t ; 
and 

)(tdij   the search direction of the jth variable of the ith seeker at time step 
t .  

 
d) Subpopulations learn from each other: Each subpopulation is searching for the optimal 

solution using its own information. It hints that the subpopulation may trap into local 
optima yielding a premature  
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convergence. Subpopulations must learn from each other about the optimum information so far 
they have acquired in their respective domain. Thus, the position of the worst seeker of each 
subpopulation is combined with the best one in each of the other subpopulations using the 
following binomial crossover operator as expressed in (18). 
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 In (18), jrand is a uniformly random real number within [0, 1], worstjnkx , is denoted as the 

jth variable of the nth worst position in the kth subpopulation, bestljx is the jth variable of the 

Real coded initialization of S seekers 

Divide the population into K subpopulations randomly 

Calculate the OF () value for each seeker, the personal best 
position, neighborhood best position and population best position 

Compute step length for 
each seeker by using (16) 

Update the position of each seeker

Subpopulations learn from each other by using (18) 

Display the optimal fitness value and optimal solution 

Stop

Yes 

Compute search direction for 
each seeker by using (12) 

Calculate the objective function value for each seeker 

Update the personal best position, neighborhood best position and 
population best position 

Set t = 0

Increment t = t + 1

Start 

Meet stopping 
criterion?

     Figure 3. Flowchart of the seeker optimization
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best position in the lth subpopulation. Here, n , k , =l 1.......,,2,1 −K and lk ≠ . In order to 
increase the diversity in the population, good information acquired by each subpopulation is 
shared among the subpopulations. The flowchart of the algorithm is depicted in Figure 3. 
 

 
Figure 4. Implementation steps of the SOA algorithm for the ELD problems 

 
 
B. Implementation of SOA for ELD Problem 
 The steps of the SOA, as implemented for the solution of the ELD problem of this work, 
are shown in Figure 4. 
 
5. Test Cases and Solution Results 
 SOA has been applied to solve the ELD problems in four different test cases for 
investigating its optimization capability. The software has been written in MATLAB-7.3 
language and executed on a 3.0-GHz Pentium IV personal computer with 512-MB RAM. 
 
A. Description of the Test Cases 
 The following four test cases are considered in this work. In the different test cases, while 
comparing the costs obtained by the algorithms with that obtained by the SOA, the numbers 
within the {… } denote the minimum values of the total generation costs in $/h as reported in 
the referred literatures [ ...]. The values of the total generation cost are presented in the 
descending order.  
a) Test case 1: 20-generating units without valve point loading: A system with 20 generators 

is taken as the test case 1. The system input data are available in [3, 16]. The valve point 
loading effect is not considered for this case but transmission loss is considered. For this 
test case load demand is 2500 MW. The best generation costs reported for the algorithms in 
the literature like BBO {62456.77926} [10], Lambda iteration (LI) {62456.6391} [2], 
Hopfield model (HM) {62456.6341} [2], and chaotic and Gaussian PSO (PSO-CG) 
{59804.0500} [16] are compared with the SOA-based best generation cost {59421}. The 

 Step 1 
 
 
 
Step 2 
Step 3 
Step 4 
 
 
Step 5 
Step 6 
Step 7 
 
Step 8 
Step 9 
Step 10 
 
Step 11 
Step 12 
Step 13 
Step 14 

Initialization: Read input data, set number of run counter, read cost curves of 
machines and B coefficients, set maximum population number, set lower and 
upper limits of each generator output, read SOA parameters, set termination 
criteria (i.e. maximum iteration cycles).        
Initialize the positions of the seekers in the search space randomly and uniformly.  
Set the time step t = 0  
Compute the objective function of the initial positions. The initial historical best 
position among the population is achieved. Set the personal historical best 
position of each seeker to his current position. 
Let t = t + 1. 
Select the neighbor of each seeker. 
Determine the search direction and step length for each seeker, and update his 
position  
Update the position of each seeker. 
Compute the objective function for each seeker. 
Update the historical best position among the population and historical best 
position of each seeker. 
Subpopulations learn from each other. 
Repeat from Step 5 till the end of the maximum iteration cycles/stopping criterion. 
Determine the best string corresponding to optimum objective function value. 
Determine the optimal generation string corresponding to the grand optimum 
objective function value. 

B. Shaw, et al. 



34  
 

best solutions of the generation schedules, the generation costs etc as obtained from 50 trial 
runs of the SOA and other afore-mentioned algorithms are presented in Table 1. The 
convergence profile of the cost function is depicted in Figure 5. 
 

 
Figure 5. Convergence profile of the total generation cost for 20-generating units. 

 
 

Table 1. Best results for 20-generating units with PD = 2500 MW 
Unit BBO [10] LI [2] HM [2] PSO-CG [16] SOA 

P1 513.0892 512.7805 512.7804 563.3155 304.7058 
P2 173.3533 169.1033 169.1035 106.5639 90.1026 
P3 126.9231 126.8898 126.8897 98.7093 105.088 
P4 103.3292 102.8657 102.8656 117.3171 100.9737 
P5 113.7741 113.6386 113.6836 67.0781 111.9052 
P6 73.06694 73.5710 73.5709 51.4702 89.4554 
P7 114.9843 115.2878 115.2876 47.7261 97.5200 
P8 116.4238 116.3994 116.3994 82.4271 115.0051 
P9 100.6948 100.4062 100.4063 52.0884 166.0976 

P10 99.99979 106.0267 106.0267 106.5097 76.8435 
P11 148.9770 150.2394 150.2395 197.9428 246.2108 
P12 294.0207 292.7648 292.7647 488.3315 239.5819 
P13 119.5754 119.1154 119.1155 99.9464 111.9761 
P14 30.54786 30.8340 30.8342 79.8941 115.8576 
P15 116.4546 115.8057 115.8056 101.525 114.6967 
P16 36.22787 36.2545 36.2545 25.8380 72.4539 
P17 66.85943 66.8590 66.8590 70.0153 64.9063 
P18 88.54701 87.9720 87.9720 53.9530 107.2208 
P19 100.9802 100.8033 100.8033 65.4271 107.2200 
P20 54.2725 54.3050 54.3050 36.2552 88.4224 

Total generation (MW) 2592.1011 2591.9670 2591.9670 2512.3343 2526.2430 
Total transmission loss (MW) 92.1011 91.9670 91.9669 12.3343 26.2432 

Power mismatch (MW) 0 -0.000187 0.000021 NR* 0 
Total generation cost ($/h) 62456.77926 62456.6391 62456.6341 59804.0500 59421 

Time/iteration (s) 0.29282 0.033757 0.006355 0.44 0.0238 
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Table 2. Best results for 38-generating units with PD = 6000 MW 
Unit New-PSO [18] PSO-TVAC [18] BBO [10, 11] DE/BBO [11] SOA 

P1 550.000 443.659 422.230586 426.606060 318.4260 
P2 512.263 342.956 422.117933 426.606054 315.2351 
P3 485.733 433.117 435.779411 429.663164 277.6897 
P4 391.083 500.00 445.481950 429.663181 281.8220 
P5 443.846 410.539 428.475752 429.663193 262.0443 
P6 358.398 492.864 428.649254 429.663164 330.4357 
P7 415.729 409.483 428.115368 429.663185 305.7628 
P8 320.816 446.079 429.900663 429.663168 237.5684 
P9 115.347 119.566 115.904947 114.000000 346.8533 

P10 204.422 137.274 114.115368 114.000000 203.8684 
P11 114.000 138.933 115.418662 119.768032 250.0759 
P12 249.197 155.401 127.511404 127.072817 213.2689 
P13 118.886 121.719 110.000948 110.000000 338.2986 
P14 102.802 90.924 90.0217671 90.0000000 131.1207 
P15 89.039 97.941 82.0000000 82.0000000 148.7008 
P16 120.000 128.106 120.038496 120.000000 156.8968 
P17 156.562 189.108 160.303835 159.598036 214.0027  
P18 84.265 65.00 65.0001141 65.0000000 134.2227  
P19 65.041 65.00 65.0001370 65.0000000 136.6392 
P20 151.104 267.422 271.999591 272.000000 225.3016 
P21 226.344 221.383 271.872680 272.000000 192.5932 
P22 209.298 130.804 259.732054 260.000000 197.8333 
P23 85.719 124.269 125.993076 130.648618 153.4579 
P24 10.000 11.535 10.4134771 10.0000000 54.3421 
P25 60.000 77.103 109.417723 113.305034 87.6238 
P26 90.489 55.018 89.3772664 88.0669159 84.4932 
P27 39.670 75.000 36.4110655 37.5051018 52.2166 
P28 20.000 21.682 20.0098880 20.0000000 60.2310 
P29 20.995 29.829 20.0089554 20.0000000 56.9315 
P30 22.810 20.326 20.0000000 20.0000000 47.4167 
P31 20.000 20.000 20.0000000 20.0000000 35.3158 
P32 20.416 21.840 20.0033959 20.0000000 51.4590 
P33 25.000 25.620 25.0066586 25.0000000 53.4545 
P34 21.319 24.261 18.0222107 18.0000000 52.0196 
P35 9.122 9.667 8.00004260 8.00000000 16.7219 
P36 25.184 25.000 25.0060660 25.0000000 35.3188 
P37 20.000 31.642 22.0005641 21.7820891 27.0471 
P38 25.104 29.935 20.6076309 21.0621792 37.9999 

Total generation (MW) NR* NR* NR* NR* 61247.7098 
Total transmission loss (MW) NR* NR* NR* NR* 124.7098 

Power mismatch (MW) NR* NR* NR* NR* 0 
Total generation cost ($/h) 9516448.312 9500448.307 9417633.637644 9417235.78639 9.0012e+06 

Time/iteration (s) NR* NR* NR* NR* 0.17 
 
 
b)  Test case 2: 38-generating units without valve point loading:  A system with 38 generators 

is taken as the test case 2. Fuel cost characteristics are quadratic. Transmission loss is 
considered. The input data of the system are taken from [17]. The load demand is 6000 
MW. The best generation cost {9.0012e+06} obtained by using the SOA has been 
compared with those by using simple PSO (SPSO) {9543984.777} [18], PSO with Crazy 
(PSO-Crazy) {9520024.601} [18], New PSO {9516448.312} [18], PSO with time varying 
acceleration coefficient (PSO-TVAC) {9500448.307} [18], BBO {9417633.637644} [10], 
and DE/BBO {9417235.78639} [11]. The best solutions of the generation schedules and the 
generation costs etc as obtained from 100 trial runs of the different algorithms are shown in 
Table 2. The convergence profile of the cost function is depicted in Figure 6. 
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Figure 6. Convergence profile of the total generation cost for 38-generating units 

 
c)  Test case 3: 40-generating units with valve point loading: A system with 40 generators with 

valve point loadings and transmission loss is considered as the test case 3. The input data 
are given in [6]. The load demand is 10500 MW. The best generation 
cost{113120}obtained by the SOA is compared to those obtained by using IFEP 
{122624.3500} [6], hybrid EP and sequential quadratic programming (SQP) (EP-SQP) 
{122324} [19], PSO with local random search (LRS) (PSO-LRS) {122035.7946} [20], DE 
combination with SQP (DEC-SQP) {121741.9793} [8], new PSO (NPSO) {121704.7391} 
[20], new PSO with LRS (NPSO-LRS) {121664.4308} [20], combined PSO with real-
valued mutation (CBPSO-RVM) {121555.32} [21],   

 
 ACO {121532.41} [7], self-organizing hierarchical PSO (SOH-PSO) {121501.14} [22], 
hybrid GA-pattern search-SQP (GA-PS-SQP) {121458.14} [19], quantum PSO (QPSO) 
{121448.21} [23], BBO {121426.953} [10], BF-NM {121423.63792} [9], DE/BBO 
{121420.8948} [11], real-coded GA (RCGA) {121418.5425} [24], improved coordinated 
aggregation-based PSO (ICA-PSO) {121413.20} [25], and PSO with both chaotic- 
sequence and crossover (CCPSO) {121403.5362} [26]. The best solutions of the generation 
schedules and the generation costs etc as obtained from 50 trial runs of the different algorithms 
are presented in Table 3. The convergence profile of the cost function is depicted in Figure 7. 
 

 
Figure 7. Convergence profile of the total generation cost for 40-generating units 
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Table 3. Best results for 40-generating units with PD=10500 MW 
Unit NPSO-LRS [20] SOH-PSO[22] QPSO[23] BBO [10] DE/BBO[11] ICA-PSO [25] CCPSO [26] SOA 

P1 113.9761 110.80 111.20 111.0465 110.7998 110.80 110.7998 98.4760 
P2 113.9986 110.80 111.70 111.5915 110.7998 110.80 110.7999 106.2378 
P3 97.4241 97.40 97.40 97.60077 97.3999 97.41 97.3999 110.7931 
P4 179.7327 179.73 179.73 179.7095 179.7331 179.74 179.7331 158.2180 
P5 89.6511 87.80 90.14 88.30605 87.9576 88.52 87.7999 91.8640 
P6 105.0444 140.00 140.00 139.9992 140.00 140.00 140.0000 127.2495 
P7 259.7502 259.60 259.60 259.6313 259.5997 259.60 259.5997 236.0978 
P8 288.4534 284.60 284.80 284.7366 284.5997 284.60 284.5997 286.5869 
P9 284.6460 284.60 284.84 284.7801 284.5997 284.60 284.5997 236.7750 

P10 204.8120 130.00 130.00 130.2484 130.00 130.00 130.0000 260.7015 
P11 168.8311 94.00 168.80 168.8461 168.7998 168.80 94.0000 304.0025 
P12 94.0000 94.00 168.8 168.8239 94.00 94.00 94.0000 292.9607 
P13 214.7663 304.52 214.76 214,7038 214.7598 214.76 214.7598 413.3226 
P14 394.2852 304.52 304.53 304.5894 394.2794 394.28 394.2794 391.8817 
P15 304.5187 394.28 394.28 394.2461 394.2794 394.28 394.2794 400.7214 
P16 394.2811 398.28 394.28 394.2409 304.5196 304.52 394.2794 401.5576 
P17 489.2807 489.28 489.28 489.2919 489.2794 498.28 489.2794 409.0213 
P18 489.2832 489.28 489.28 489.4188 489.2794 489.28 489.2794 468.3763 
P19 511.2845 511.28 511.28 511.2997 511.2794 511.28 511.2794 509.7511 
P20 511.3049 511.27 511.28 511.3073 511.2794 511.28 511.2794 509.1169 
P21 523.2916 523.28 523.28 523.417 523.2794 523.28 523.2794 438.7379 
P22 523.2853 523.28 523.28 523.2795 523.2794 523.28 523.2794 436.0573 
P23 523.2797 523.28 523.29 523.3793 523.2794 523.28 523.2794 441.0579 
P24 523.2994 523.28 523.28 523.3225 523.2794 523.28 523.2794 425.0123 
P25 523.2865 523.28 523.29 523.3661 523.2794 523.28 523.2794 427.9365 
P26 523.2936 523.28 523.28 523.4262 523.2794 523.28 523.2794 452.8892 
P27 10.0000 10.00 10.01 10.05316 10.00 10.00 10.0000 110.2229 
P28 10.0001 10.00 10.01 10.01135 10.00 10.00 10.0000 140.5338 
P29 10.0000 10.00 10.00 10.00302 10.00 10.00 10.0000 122.5079 
P30 89.0139 97.00 88.47 88.47754 97.00 96.39 87.8000 87.2678 
P31 190.0000 190.00 190.00 189.9983 190.00 190.00 190.0000 172.0005 
P32 190.0000 190.00 190.00 189.9881 190.00 190.00 190.0000 178.5031 
P33 190.0000 190.00 190.00 189.9663 190.00 190.00 190.0000 168.2835 
P34 199.9998 185.20 164.91 164.8054 164.7998 164.82 164.7998 187.7960 
P35 165.1397 164.80 165.36 165.1267 200.00 200.00 194.3976 171.5563 
P36 172.0275 200.00 167.19 165.7695 200.00 200.00 200.0000 178.2705 
P37 110.0000 110.00 110.00 109.9059 110.00 110.00 110.0000 97.2393 
P38 110.0000 110.00 107.01 109.9971 110.00 110.00 110.0000 87.7159 
P39 93.0962 110.00 110.00 109.9695 110.00 110.00 110.0000 93.5632 
P40 511.2996 511.28 511.36 511.2794 511.2794 511.28 511.2794 498.2079 

TG* NR* NR* NR* NR* NR* NR* NR* 10729.07 
TTL* NR* NR* NR* NR* NR* NR* NR* 229.06 
PM* NR* NR* NR* NR* NR* NR* NR* 0.01 

TGC* 121664.4308 121501.14 121448.21 121426.95 121420.89 121413.2 121403.5362 113120 
TI* NR* NR* NR* 0.11 0.06 0.22 NR* 0.05 

TG*means total generation (MW), TTL* means total transmission loss (MW), PM* means power mismatch (MW), 
TGC*means total generation cost ($/h),  TI*means Time/ iteration (s), NR* means not reported in the referred literature 
 
 
d) Test case 4: 10-generating units with valve point loading and multiple fuel options : A 

system comprising of 10 thermal units with valve point loading and multiple fuels option is 
considered as the test case 4. The input data are taken from [13]. The load demand is 2700 
MW. Transmission loss is not considered in this case. The best generation cost {564.7591} 
obtained by the SOA is compared to those obtained by the combined improved GA with 
multiplier updating (MU) (IGA-MU) {627.5178} [13], conventional GA with MU (CGA-
MU {624.7193} [13], PSO-LRS {624.2297} [20], NPSO {624.1624} [20], NPSO-LRS 
{624.1273} [20], RCGA {623.8281} [24], ACO {623.7000} [7], BBO {605.6387} [10] 
and DE-BBO {605.6230} [11]. The best solutions of the generation schedules and the 
generation costs etc as obtained from 100 trial runs of the algorithms are shown in Table 4. 
The convergence profile of the cost function is depicted in Figure 8.  The results of interest 
are bold faced in the respective tables. 
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Figure 8. Convergence profile of the total generation cost for 10-generating units 

 
 

Table 4. Best Results for 10-Generating Units with PD=2700 MW 
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P1 219.126 2 223.335 2 212.9 2 213.4589 2 203.9230 1 
P2 211.164 1 212.195 1 209.4 1 209.4836 1 215.5536 2 
P3 280.657 1 276.216 1 332.0 3 332.0000 3 488.2478 1 
P4 238.477 3 239.418 3 238.3 3 238.0269 3 206.4783 1 
P5 276.417 1 274.647 1 269.2 1 269.1423 1 281.1896 1 
P6 240.467 3 239.797 3 237.6 3 238.0269 3 241.6517 2 
P7 287.739 1 285.538 1 280.6 1 280.6144 1 344.2351 1 
P8 240.761 3 240.632 3 238.4 3 238.1613 3 250.1840 1 
P9 429.337 3 429.263 3 414.8 3 414.7001 3 166.7617 3 

P10 275.851 1 278.954 1 266.3 1 266.3850 1 388.9654 1 
TG* 2700 2700 2700 2700 2700 

TTL* 0 0 0 0 0 
PM* 0 0 0 0 0 

TGC* 624.517 624.127 605.6387 605.6230127 564.7591 
TI* 7.25 0.52 0.80 0.48 0.14 

TG*means total generation (MW), TTL* means total transmission loss (MW), PM* means 
power mismatch (MW), TGC*means total generation cost ($/h), TI*means time/iteration (S), 
NR* means not reported in the referred literature 

 
 

B. Discussions on the Results of the Test Cases 
 Solution quality: It is noticed from Tables 1-4 that the minimum cost achieved by applying 
the SOA is the least one as compared to those achieved by the earlier reported algorithms. It is 
to be recalled here that the highlighting characteristic features of the SOA are (i) the direct 
usage of search direction and step length to update the position, (ii) the application of 
proportional selection rule for the calculation of the search direction which can improve the 
population diversity so as to boost the global search ability and decrease the number of control 
parameters making it simpler to implement, and (iii) adaptation of fuzzy reasoning to generate 
the step length because the uncertain reasoning of human searching could be the best described 
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by natural linguistic variables. These features in the SOA help the algorithm to yield better 
solutions.  It emphasizes on the fact that the SOA offers the best near-optimal solution for the 
ELD problems considered. 
 Comparison of the best generation costs: Comparing the minimum costs achieved by the 
reported algorithms as may be observed from Tables 1-4,  the minimum costs achieved by the 
SOA are the least values given by 59421 $/h, 9.0012e+06 $/h, 113120 $/h, and 564.7591$/h 
for the test cases 1-4 respectively. Power mismatches are also the least ones in the SOA as 
compared to those in others. Hence, it can be concluded that for all the four test cases the 
optimization performance of the SOA is found to be the best one. 
 Testing of robustness: The performance of any heuristic search based optimization 
algorithm is best judged through repetitive trial runs so as to compare the 
robustness/consistency of the algorithm. For this specific goal, the frequency of convergence to 
the minimum cost at different ranges of generation cost with fixed load demand is to be 
recorded. While experimenting the same for the four test cases, it is observed that the 
frequency of convergence to the minimum generating cost of less than 120 310× $/h is 50 out 
of 50 independent trial runs for the test case 2, and the same of less than 605.5

 
$/h is 100 out of 

100 independent trial runs for the test case 4. These frequency figures of attaining the 
minimum costs with minimum variations are the maximum ones as compared to the other 
algorithms of the referred literatures for these two test cases. The same for the test cases 1 and 
2 are not included in the referred literatures. But, the authors of the present have tested the 
same with the SOA for the test cases 1 and 2 also and it is noticed that the convergence to the 
minimum value of the cost function with a minimum variation is achieved with high frequency 
values. The frequency of converging to the better solution is always higher in the SOA as 
compared to the other methods. Thus, it may be inferred that the SOA is the most consistent 
and robust in achieving the lowest cost in all the runs 
 Computational efficiency: Apart from yielding the minimum cost by the SOA, it may also 
be noted that the SOA yields the minimum cost at comparatively lesser time of execution of the 
program. Thus, this approach is also efficient as far as the computational time is concerned. 
 
6. Conclusion 
 In this article a novel seeker optimization algorithm, based on the act of human searching 
capability and understanding while performing any task, is applied to the solution of the 
constrained, multimodal, non-differentiable, and highly non-linear economic load dispatch 
problem of small, as well as, large size test power systems. It is revealed that the SOA has the 
ability to converge to a better quality near-optimal solution and possesses better convergence 
characteristics and robustness than other prevailing techniques reported in the recent literatures. 
It is also clear from the results obtained by different trials that the SOA is free from the 
shortcoming of premature convergence exhibited by the other optimization algorithms. The 
simulation results clearly reveal that the SOA may be used as an excellent optimizer for the 
solution of practical economic load dispatch problems of power systems. 
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