

Solution of Economic Load Dispatch Problems by a Novel Seeker Optimization Algorithm

B. Shaw 1, S. Ghoshal 2, V. Mukherjee 3, and S. P. Ghoshal 4

¹ Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal, India
^{2,4} Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal, India
³ Department of Electrical Engineering, Indian School of Mines, Dhanbad, Jharkhand, India
vivek_agamani@yahoo.com

Abstract: This article presents an efficient approach for solving economic load dispatch (ELD) problems in different test power systems using a novel seeker optimization algorithm (SOA) In the SOA, the act of human searching capability and understanding are exploited for the purpose of optimization. In this algorithm, the search direction is based on empirical gradient by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, four test systems of the ELD problems are solved by adopting the SOA. A comparison of obtained simulation results by adopting the SOA is carried out with those published in the recent literatures. It is revealed from comparison that the optimization efficacy of the SOA over the prevailing optimization techniques for the solution of the multimodal, non-differentiable, highly non-linear, and constrained ELD problems is promising.

Keywords: Economic load dispatch; multiple fuel options; seeker optimization algorithm; transmission loss; valve point loading

1. Introduction

The prime objective of the ELD problem is to minimize the total generation cost in power system (with an aim to deliver power to the end user at minimal cost) for a given load demand with due regard to the system equality and inequality constraints [1]. To date, various investigations on ELD problems have been undertaken as better solutions would result in more saving in the operating cost.

Several classical methods, such as the lambda iteration (LI) method and gradient method have been applied to solve the ELD problems. But unfortunately, these methods are not feasible in practical power systems owing to the non-linear characteristics of the generators and non-smooth cost functions. Consequently, many powerful mathematical optimization techniques that are fast and reliable, such as non-linear programming and dynamic programming have been employed to solve the ELD problems. But due to the non-differential and non-convex characteristics of the cost functions, these methods are also unable to locate the global optima. Among the artificial intelligence methods, Hopfield neural networks [2] have been applied to solve the non-linear ELD problems, but these methods suffer from excessive numerical iterations, resulting in huge computations. Complex constrained ELD problems have been solved by many population-based optimization techniques in recent years. Some of the population-based optimization methods are genetic algorithm (GA) [3], simulated annealing (SA) [4], Tabu search [5], improved fast evolutionary programming (EP) (IFEP) [6], (PSO) [3], ant colony optimization (ACO) [7], particle swarm optimization differential evolution (DE) [8], bacteria foraging with Nelder-Mead (BF-NM) [9], Seeker optimization algorithm (SOA) [12] is essentially a novel population based heuristic Biogeography-based optimization (BBO) [10], a hybrid technique combining DE with BBO (DE/BBO) [11].

Received: August 19th, 2010. Accepted: February 28th, 2011

Search algorithm. It is based on human understanding and searching capability for finding an optimum solution. In the SOA, optimum solution is regarded as one which is searched out by a seeker population. The underlying concept of the SOA is very easy to model and relatively easier than other optimization techniques prevailing in the literature. The highlighting characteristic features of this algorithm are the following:

- a. Search direction and step length are directly used in this algorithm to update the position,
- b. Proportional selection rule is applied for the calculation of the search direction, which can improve the population diversity so as to boost the global search ability and decrease the number of control parameters making it simpler to implement, and
- c. Fuzzy reasoning is used to generate the step length because the uncertain reasoning of human searching could be the best described by natural linguistic variables, and a simple ifelse control rule.

The algorithm is to model the cooperative manner of human being while performing the group dynamics. In view of the aforementioned underlying concepts of the SOA as an optimizer, can this algorithm be exploited for the solution of the ELD problems of different capacities and volumes? Are the results yielded by the SOA comparable to those reported in the recent literatures? Basically, the present work is an attempt to utilize the optimizing capability of the SOA for the solutions of highly constrained ELD problems.

The present work focuses on the performance of the SOA as an optimizing tool in solving different ELD problems. The main contribution of the paper can be summarized as follows:

- Four test cases of the ELD problems are solved with the help of the SOA and the best results obtained are presented in this paper.
- 2. The best results obtained for the test cases considered by adopting the SOA are compared with those published in the recent papers.
- Based on the quality and the improved convergence speed of the solution as obtained and presented in this paper, the applicability of the SOA in solving the practical ELD problems of power systems is proposed.

The rest of the paper is organized as follows. In Section 2, mathematical modeling of the ELD problem is done. In Section 3, an objective function is formulated which requires to be optimized. The SOA is narrated in Section 4. Test cases and simulation results are presented in Section 5 to demonstrate the performance of the algorithm for the ELD problems. Section 6 focuses on conclusions of the present work.

2. Mathematical Modeling of the ELD Problem

A. ELD with Quadratic Cost Function and Transmission Loss

The problem of the ELD is multimodal, non-differentiable and highly non-linear. Mathematically, the problem can be stated as in (1) [1, 6].

$$Min \ F_T(P) = \sum_{i=1}^{NG} F_i(P_i) \quad \$/h; i = 1, \dots, NG$$
 (1)

Subject to.

(i) Real Power Balance Constraint

The power balance operation can be modeled as in (2).

$$\sum_{i=1}^{NG} P_i - P_D - P_L = 0; i = 1, \dots, NG$$
 (2)

The transmission loss (P_L) may be expressed as a quadratic function of generations (using B coefficient matrix) as given in (3).

$$P_L = \sum_{i=1}^{NG} \sum_{j=1}^{NG} P_i B_{ij} P_j + \sum_{i=1}^{NG} B_{0i} P_i + B_{00}; i = 1, \dots, NG, \text{ and } j = 1, \dots, NG$$
(3)

(ii) Generation Capacity Constraints

The generating capacity constraints are written as in (4).

$$P_i^{\min} \le P_i \le P_i^{\max}; i = 1, \dots, NG \tag{4}$$

B. ELD Problem with Valve Point Loading

For a more practical and accurate model of the cost function, multiple valve steam turbines are considered. Total cost of the generating units with valve point loading is given in (5) [6].

$$F_i(P_i) = a_i + b_i P_i + c_i P_i^2 + \left| e_i \times \sin(f_i \times (P_i^{\min} - P_i)) \right| \ \$/h \ ; i = 1, \dots, NG$$
 (5)

It is to be noted here that the fuel cost coefficients e_i and f_i are introduced in (5) to model the valve point loadings.

C. ELD Problem with Valve Point Loading and Multiple Fuel Options

Considering both valve point loading effect and multiple fuels, the cost function [13] is as in (6).

$$F_{i}(P_{i}) = \begin{cases} a_{i1} + b_{i1}P_{i} + c_{i1}P_{i}^{2} + e_{i1} \times \sin(f_{i1} \times (P_{i_{1}}^{\min} - P_{i1})), & for fuel1, P_{i}^{\min} \leq P_{i} \leq P_{i1} \\ a_{i2} + b_{i2}P_{i} + c_{i2}P_{i}^{2} + e_{i2} \times \sin(f_{i2} \times (P_{i_{2}}^{\min} - P_{i2})), & for fuel2, P_{i1} < P_{i} \leq P_{i2} \\ \vdots & \vdots & \vdots \\ a_{ik} + b_{ik}P_{i} + c_{ik}P_{i}^{2} + e_{ik} \times \sin(f_{ik} \times (P_{i_{k}}^{\min} - P_{ik})), & for fuel k, P_{i_{k-1}} < P_{i} \leq P_{i_{1}}^{\max} \end{cases}$$

$$(6)$$

3. Formulation of The Objective Function

The objective function (OF()) is designed as in (7) that requires to be minimized.

$$OF() = \sum_{i=1}^{NG} F_i(P_i) + 100 \times P_L + 1000 \times abs \left(\sum_{i=1}^{NG} P_i - P_D - P_L \right)$$
 (7)

The weighing factors are selected to make the corresponding terms competitive during the process of optimization. The unit of each weighing factor involved in (7) is \$/MWh.

4. Seeker Optimization Algoritm and Its Application to the ELD Problem

A. Seeker Optimization Algorithm

The SOA [12] is a population-based heuristic search algorithm. It regards the optimization process as an optimal solution obtained by a seeker population. Each individual of this population is called a seeker. The total population is randomly categorized into three subpopulations. These subpopulations search over several different domains of the search space. All the seekers in the same subpopulation constitute a neighborhood. This neighborhood represents the social component for the social sharing of information.

B. Steps of Seeker Optimization Algorithm

In the SOA, a search direction $d_{ij}(t)$ and a step length $\alpha_{ij}(t)$ are computed separately for each ith seeker on each jth variable at each time step t, where $\alpha_{ij}(t) \ge 0$ and

 $d_{ij}(t) \in \{-1, 0, 1\}$. Here, i represents the population number and j represents the optimizing variable number.

a) Calculation of the search direction, $d_{ij}(t)$: It is the natural tendency of the swarms to reciprocate in a cooperative manner while executing their needs and goals. Normally, there are two extreme types of cooperative behavior prevailing in swarm dynamics. One, egotistic, is entirely pro-self and another, altruistic, is entirely pro-group [14]. Every seeker, as a single sophisticated agent, is uniformly egotistic

[14]. He believes that he should go toward his historical best position according to his own judgment. This attitude of ith seeker may be modeled by an empirical direction vector $\vec{d}_{i, ego}$ (t) as shown in (8).

$$\vec{d}_{i, ego}(t) = sign(\vec{p}_{i, hest}(t) - \vec{x}_{i}(t))$$
(8)

In (8), sign (\cdot) is a signum function on each variable of the input vector. On the other hand, in altruistic behavior, seekers want to communicate with each other, cooperate explicitly, and adjust their behaviors in response to the other seeker in the same neighborhood region for achieving the desired goal. That means the seekers exhibit entirely pro-group behavior. The population then exhibits a self-organized aggregation behavior of which the positive feedback usually takes the form of attraction toward a given signal source. Two optional altruistic directions may be modeled as in (9)-(10).

$$\vec{d}_{i, alt 1}(t) = sign(\vec{g}_{hest}(t) - \vec{x}_i(t))$$
(9)

$$\vec{d}_{i, alt 2}(t) = sign(\vec{l}_{best}(t) - \vec{x}_i(t))$$

$$\tag{10}$$

In (9)-(10), $\vec{g}_{best}(t)$ represents neighbors' historical best position, $\vec{l}_{best}(t)$ means neighbors' current best position.

Moreover, seekers enjoy the properties of pro-activeness; seekers do not simply act in response to their environment; they are able to exhibit goal-directed behavior. In addition, the future behavior can be predicted and guided by the past behavior. As a result, the seeker may be pro-active to change his search direction and exhibit goal-directed behavior according to his past behavior. Hence, each seeker is associated with an empirical direction called as pro-activeness direction as given in (11).

$$\overrightarrow{d}_{i, pro}(t) = sign(\overrightarrow{x_i}(t_1) - \overrightarrow{x_i}(t_2))$$
(11)

In (11), $t_1, t_2 \in \{t, t-1, t-2\}$ and it is assumed that $\overrightarrow{x_i}(t_1)$ is better than $\overrightarrow{x_i}(t_2)$. Aforementioned four empirical directions as presented in (9)-(11) direct human being to take a rational decision in his search direction.

If the jth variable of the ith seeker goes towards the positive direction of the coordinate axis, $d_{ij}(t)$ is taken as +1. If the jth variable of the ith seeker goes towards the negative direction of the coordinate axis, $d_{ij}(t)$ is assumed as -1. The value of $d_{ij}(t)$ is assumed as

0 if the ith seeker stays at the current position. Every variable j of $\vec{d}_i(t)$ is selected by applying the following proportional selection rule (shown in Figure 1) as stated in (12).

Figure 1. The proportional selection rule of search directions

$$d_{ij} = \begin{cases} 0, & \text{if } r_j \le p_j^{(0)} \\ +1, & \text{if } p_j^{(0)} \le r_j \le p_j^{(0)} + p_j^{(+1)} \\ -1, & \text{if } p_j^{(0)} + p_j^{(+1)} < r_j \le 1 \end{cases}$$
(12)

In (12), r_j is a uniform random number in [0, 1], $p_j^{(m)}$ $(m \in \{0, +1 -1\})$ is the percent of the numbers of "m" from the set $\{d_{ij,ego}, d_{ij,alt1}, d_{ij,alt2}, d_{ij,pro}\}$ on each variable j of all the four empirical directions, i.e. $p_j^{(m)} = (\text{the number of } m) / 4$.

b) Calculation of the step length, $\alpha_{ij}(t)$: From the view point of human searching behavior, it is understood that one may find the near-optimal solutions in a narrower neighborhood of the point with lower fitness value and on the other hand, in a wider neighborhood of the point with higher fitness value.

A fuzzy system may be an ideal choice to represent the understanding and linguistic behavioral pattern of human searching tendency.

Different optimization problems often have different ranges of fitness values. To design a fuzzy system to be applicable to a wide range of optimization problems, the fitness values of all the seekers are sorted in descending manner (for minimization problem) / in ascending manner (for maximization problem) and turned into the sequence numbers from 1 to S as the inputs of fuzzy reasoning. The linear membership function is used in the conditional part since the universe of discourse is a given set of numbers, i.e. 1, 2,, S. The expression is presented as in (13).

$$\mu_i = \mu_{\text{max}} - \frac{S - I_i}{S - 1} (\mu_{\text{max}} - \mu_{\text{min}})$$
 (13)

In (13), I_i is the sequence number of $\vec{x}_i(t)$ after sorting the fitness values, μ_{max} is the maximum membership degree value which is equal to or a little less than 1.0. Here, the value of μ_{max} is taken as 0.95.

A fuzzy system works on the principle of the control rule as "If {the conditional part}, then {the action part}. Bell membership function $\mu(x) = e^{-x^2/2\delta^2}$ (shown in Figure 2) is well utilized in the literature to represent the action part. For the convenience, one variable is considered. Thus, the membership degree values of the input variables beyond $[-3\delta, +3\delta]$ are less than $0.0111(\mu(\pm 3\delta) = 0.0111)$, and the elements beyond $[-3\delta, +3\delta]$ in the universe of discourse can be neglected for a linguistic atom [15]. Thus, the minimum value $\mu_{\min} = 0.0111$ is set. Moreover, the parameter, $\vec{\delta}$ of the Bell membership function is determined by (14).

Figure 2. The action part of the fuzzy reasoning.

$$\vec{\delta} = \omega \times abs(\vec{x}_{best} - \vec{x}_{rand}) \tag{14}$$

In (14), the absolute value of the input vector as the corresponding output vector is represented by the symbol $abs(\cdot)$. The parameter ω is used to decrease the step length with increasing time step so as to gradually improve the search precision. In the present experiments, ω is linearly decreased from 0.9 to 0.1 during a run. The \vec{x}_{best} and \vec{x}_{rand} are the best seeker and a randomly selected seeker respectively from the same subpopulation to which the ith seeker belongs. It is to be noted here that \vec{x}_{rand} is different from \vec{x}_{best} and $\vec{\delta}$ is shared by all the seekers in the same subpopulation.

In order to introduce the randomness in each variable and to improve the local search capability, the following equation is introduced to convert μ_i into a vector $\vec{\mu}_i$ with elements as given by (15).

$$\mu_{ij} = RAND \left(\mu_i, 1 \right) \tag{15}$$

In (15), $RAND(\mu_i, 1)$ returns a uniformly random real number within $[\mu_i, 1]$. Equation (16) denotes the action part of the fuzzy reasoning and gives the step length (α_{ij}) for every variable j.

$$\alpha_{ij} = \delta_j \sqrt{-\ln \left(\mu_{ij}\right)} \tag{16}$$

c) Updating of seekers' position: In a population of size S, for each seeker i ($1 \le i \le S$), the position update on each variable j is given by the following equation.

$$x_{ij}(t+1) = x_{ij}(t) + \alpha_{ij}(t) \times d_{ij}(t)$$

$$\tag{17}$$

where $x_{ij}(t+1)$ the position of the jth variable of the ith seeker at time step t+1; $x_{ij}(t)$ the position of the jth variable of the ith seeker at time step t; $\alpha_{ij}(t)$ the step length of the jth variable of the ith seeker at time step t; and the search direction of the jth variable of the ith seeker at time step t.

d) Subpopulations learn from each other: Each subpopulation is searching for the optimal solution using its own information. It hints that the subpopulation may trap into local optima yielding a premature

Figure 3. Flowchart of the seeker optimization

convergence. Subpopulations must learn from each other about the optimum information so far they have acquired in their respective domain. Thus, the position of the worst seeker of each subpopulation is combined with the best one in each of the other subpopulations using the following binomial crossover operator as expressed in (18).

$$x_{k_{n}j,worst} = \begin{cases} x_{lj,best}, & \text{if } rand_{j} \leq 0.5 \\ x_{k_{n}j,worst}, & \text{else} \end{cases}$$

$$(18)$$

In (18), $rand_j$ is a uniformly random real number within [0, 1], $x_{k_n j, worst}$ is denoted as the jth variable of the nth worst position in the kth subpopulation, $x_{li \ best}$ is the jth variable of the

best position in the lth subpopulation. Here, n, k, l = 1, 2,, K-1 and $k \ne l$. In order to increase the diversity in the population, good information acquired by each subpopulation is shared among the subpopulations. The flowchart of the algorithm is depicted in Figure 3.

Step 1	Initialization: Read input data, set number of run counter, read cost curves of
	machines and B coefficients, set maximum population number, set lower and
	upper limits of each generator output, read SOA parameters, set termination
	criteria (i.e. maximum iteration cycles).
Step 2	Initialize the positions of the seekers in the search space randomly and uniformly.
Step 3	Set the time step $t = 0$
Step 4	Compute the objective function of the initial positions. The initial historical best
	position among the population is achieved. Set the personal historical best
	position of each seeker to his current position.
Step 5	Let $t = t + 1$.
Step 6	Select the neighbor of each seeker.
Step 7	Determine the search direction and step length for each seeker, and update his
	position
Step 8	Update the position of each seeker.
Step 9	Compute the objective function for each seeker.
Step 10	Update the historical best position among the population and historical best
	position of each seeker.
Step 11	Subpopulations learn from each other.
Step 12	Repeat from Step 5 till the end of the maximum iteration cycles/stopping criterion.
Step 13	Determine the best string corresponding to optimum objective function value.
Step 14	Determine the optimal generation string corresponding to the grand optimum
	objective function value.

Figure 4. Implementation steps of the SOA algorithm for the ELD problems

B. Implementation of SOA for ELD Problem

The steps of the SOA, as implemented for the solution of the ELD problem of this work, are shown in Figure 4.

5. Test Cases and Solution Results

SOA has been applied to solve the ELD problems in four different test cases for investigating its optimization capability. The software has been written in MATLAB-7.3 language and executed on a 3.0-GHz Pentium IV personal computer with 512-MB RAM.

A. Description of the Test Cases

The following four test cases are considered in this work. In the different test cases, while comparing the costs obtained by the algorithms with that obtained by the SOA, the numbers within the {...} denote the minimum values of the total generation costs in \$/h as reported in the referred literatures [...]. The values of the total generation cost are presented in the descending order.

a) Test case 1: 20-generating units without valve point loading: A system with 20 generators is taken as the test case 1. The system input data are available in [3, 16]. The valve point loading effect is not considered for this case but transmission loss is considered. For this test case load demand is 2500 MW. The best generation costs reported for the algorithms in the literature like BBO {62456.77926} [10], Lambda iteration (LI) {62456.6391} [2], Hopfield model (HM) {62456.6341} [2], and chaotic and Gaussian PSO (PSO-CG) {59804.0500} [16] are compared with the SOA-based best generation cost {59421}. The

best solutions of the generation schedules, the generation costs etc as obtained from 50 trial runs of the SOA and other afore-mentioned algorithms are presented in Table 1. The convergence profile of the cost function is depicted in Figure 5.

Figure 5. Convergence profile of the total generation cost for 20-generating units.

Table 1. Best results for 20-generating units with $P_D = 2500 \text{ MW}$

Table 1. Best results for 20-generating units with $P_D = 2500 \text{ MW}$									
Unit	BBO [10]	LI [2]	HM [2]	PSO-CG [16]	SOA				
$\overline{P_1}$	513.0892	512.7805	512.7804	563.3155	304.7058				
P_2	173.3533	169.1033	169.1035	106.5639	90.1026				
\mathbf{P}_3	126.9231	126.8898	126.8897	98.7093	105.088				
P_4	103.3292	102.8657	102.8656	117.3171	100.9737				
P_5	113.7741	113.6386	113.6836	67.0781	111.9052				
P_6	73.06694	73.5710	73.5709	51.4702	89.4554				
\mathbf{P}_7	114.9843	115.2878	115.2876	47.7261	97.5200				
P_8	116.4238	116.3994	116.3994	82.4271	115.0051				
P_9	100.6948	100.4062	100.4063	52.0884	166.0976				
P_{10}	99.99979	106.0267	106.0267	106.5097	76.8435				
P_{11}	148.9770	150.2394	150.2395	197.9428	246.2108				
P_{12}	294.0207	292.7648	292.7647	488.3315	239.5819				
P_{13}	119.5754	119.1154	119.1155	99.9464	111.9761				
P_{14}	30.54786	30.8340	30.8342	79.8941	115.8576				
P_{15}	116.4546	115.8057	115.8056	101.525	114.6967				
P_{16}	36.22787	36.2545	36.2545	25.8380	72.4539				
P_{17}	66.85943	66.8590	66.8590	70.0153	64.9063				
P_{18}	88.54701	87.9720	87.9720	53.9530	107.2208				
P_{19}	100.9802	100.8033	100.8033	65.4271	107.2200				
P_{20}	54.2725	54.3050	54.3050	36.2552	88.4224				
Total generation (MW)	2592.1011	2591.9670	2591.9670	2512.3343	2526.2430				
Total transmission loss (MW)	92.1011	91.9670	91.9669	12.3343	26.2432				
Power mismatch (MW)	0	-0.000187	0.000021	NR^*	0				
Total generation cost (\$/h)	62456.77926	62456.6391	62456.6341	59804.0500	59421				
Time/iteration (s)	0.29282	0.033757	0.006355	0.44	0.0238				

Table 2. Best results for 38-generating units with $P_D = 6000 \text{ MW}$

Unit New-PSO [18] PSO-TVAC [18] BBO [10, 11] DE/BBO [11] P1 550.000 443.659 422.230586 426.606060	SOA 318.4260
P ₁ 550.000 443.659 422.230586 426.606060	318.4260
P ₂ 512.263 342.956 422.117933 426.606054	315.2351
P ₃ 485.733 433.117 435.779411 429.663164	277.6897
P ₄ 391.083 500.00 445.481950 429.663181	281.8220
P ₅ 443.846 410.539 428.475752 429.663193	262.0443
P ₆ 358.398 492.864 428.649254 429.663164	330.4357
P ₇ 415.729 409.483 428.115368 429.663185	305.7628
P ₈ 320.816 446.079 429.900663 429.663168	237.5684
P ₉ 115.347 119.566 115.904947 114.000000	346.8533
P ₁₀ 204.422 137.274 114.115368 114.000000	203.8684
P ₁₁ 114.000 138.933 115.418662 119.768032	250.0759
P ₁₂ 249.197 155.401 127.511404 127.072817	213.2689
P_{13} 118.886 121.719 110.000948 110.000000	338.2986
P_{14} 102.802 90.924 90.0217671 90.0000000	131.1207
P ₁₅ 89.039 97.941 82.0000000 82.0000000	148.7008
P_{16} 120.000 128.106 120.038496 120.000000	156.8968
P ₁₇ 156.562 189.108 160.303835 159.598036	214.0027
P ₁₈ 84.265 65.00 65.0001141 65.0000000	134.2227
P_{19} 65.041 65.00 65.0001370 65.0000000	136.6392
P_{20} 151.104 267.422 271.999591 272.000000	225.3016
P_{21} 226.344 221.383 271.872680 272.000000	192.5932
P ₂₂ 209.298 130.804 259.732054 260.000000	197.8333
P_{23} 85.719 124.269 125.993076 130.648618	153.4579
P ₂₄ 10.000 11.535 10.4134771 10.0000000	54.3421
P ₂₅ 60.000 77.103 109.417723 113.305034	87.6238
P ₂₆ 90.489 55.018 89.3772664 88.0669159	84.4932
P ₂₇ 39.670 75.000 36.4110655 37.5051018	52.2166
P_{28} 20.000 21.682 20.0098880 20.0000000	60.2310
P_{29} 20.995 29.829 20.0089554 20.0000000	56.9315
P_{30} 22.810 20.326 20.0000000 20.0000000	47.4167
P_{31} 20.000 20.000 20.0000000 20.0000000	35.3158
P_{32} 20.416 21.840 20.0033959 20.0000000	51.4590
P ₃₃ 25.000 25.620 25.0066586 25.0000000	53.4545
P ₃₄ 21.319 24.261 18.0222107 18.0000000	52.0196
P ₃₅ 9.122 9.667 8.00004260 8.00000000	16.7219
P ₃₆ 25.184 25.000 25.0060660 25.0000000	35.3188
P ₃₇ 20.000 31.642 22.0005641 21.7820891	27.0471
P_{38} 25.104 29.935 20.6076309 21.0621792	37.9999
Total generation (MW) NR* NR* NR* NR* NR*	61247.7098
Total transmission loss (MW) NR* NR* NR* NR* NR*	124.7098
Power mismatch (MW) NR* NR* NR* NR* NR*	0
Total generation cost (\$/h) 9516448.312 9500448.307 9417633.637644 9417235.78639	9.0012e+06
Time/iteration (s) NR* NR* NR* NR*	0.17

b) Test case 2: 38-generating units without valve point loading: A system with 38 generators is taken as the test case 2. Fuel cost characteristics are quadratic. Transmission loss is considered. The input data of the system are taken from [17]. The load demand is 6000 MW. The best generation cost {9.0012e+06} obtained by using the SOA has been compared with those by using simple PSO (SPSO) {9543984.777} [18], PSO with Crazy (PSO-Crazy) {9520024.601} [18], New PSO {9516448.312} [18], PSO with time varying acceleration coefficient (PSO-TVAC) {9500448.307} [18], BBO {9417633.637644} [10], and DE/BBO {9417235.78639} [11]. The best solutions of the generation schedules and the generation costs etc as obtained from 100 trial runs of the different algorithms are shown in Table 2. The convergence profile of the cost function is depicted in Figure 6.

Figure 6. Convergence profile of the total generation cost for 38-generating units

c) Test case 3: 40-generating units with valve point loading: A system with 40 generators with valve point loadings and transmission loss is considered as the test case 3. The input data are given in [6]. The load demand is 10500 MW. The best generation cost{113120}obtained by the SOA is compared to those obtained by using IFEP {122624.3500} [6], hybrid EP and sequential quadratic programming (SQP) (EP-SQP) {122324} [19], PSO with local random search (LRS) (PSO-LRS) {122035.7946} [20], DE combination with SQP (DEC-SQP) {121741.9793} [8], new PSO (NPSO) {121704.7391} [20], new PSO with LRS (NPSO-LRS) {121664.4308} [20], combined PSO with real-valued mutation (CBPSO-RVM) {121555.32} [21],

ACO {121532.41} [7], self-organizing hierarchical PSO (SOH-PSO) {121501.14} [22], hybrid GA-pattern search-SQP (GA-PS-SQP) {121458.14} [19], quantum PSO (QPSO) {121448.21} [23], BBO {121426.953} [10], BF-NM {121423.63792} [9], DE/BBO {121420.8948} [11], real-coded GA (RCGA) {121418.5425} [24], improved coordinated aggregation-based PSO (ICA-PSO) {121413.20} [25], and PSO with both chaotic-sequence and crossover (CCPSO) {121403.5362} [26]. The best solutions of the generation schedules and the generation costs etc as obtained from 50 trial runs of the different algorithms are presented in Table 3. The convergence profile of the cost function is depicted in Figure 7.

Figure 7. Convergence profile of the total generation cost for 40-generating units

Table 3. Best results for 40-generating units with P_D=10500 MW

P ₁	Unit	NPSO-LRS [20]	SOH-PSO[22]	QPSO[23]	BBO [10]	DE/BBO[11]	ICA-PSO [25]	CCPSO [26]	SOA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
P5 89.6511 87.80 90.14 88.30605 87.9576 88.52 87.7999 91.8640 P6 105.0444 140.00 140.00 139.992 140.00 140.00 140.00 127.2495 P7 259.7502 259.60 259.60 259.6313 259.5997 259.60 259.5977 284.60 284.5997 284.60 284.5997 284.60 284.5997 284.60 284.5997 286.5869 P10 204.8120 130.00 130.00 130.2484 130.00 130.00 130.000 130.0									
P ₆ 105.0444 140.00 140.00 139.992 140.00 140.00 140.000 127.2495 P ₇ 259.7502 259.60 259.60 259.60 259.5997 259.60 259.5997 236.0078 P ₈ 288.4534 284.60 284.80 284.7366 284.5997 284.60 284.597 284.60 284.597 286.5869 P ₉ 284.6460 284.60 284.84 284.7801 284.5997 284.60 284.5977 236.7750 P ₁₁ 168.8311 94.00 168.80 168.8461 168.7998 168.80 94.0000 304.0025 P ₁₂ 94.0000 94.00 168.8 168.8239 94.00 94.00 94.000 292.9607 P ₁₃ 214.7663 304.52 304.53 304.584 214.7598 214.76 214.7568 304.281 394.288 394.284 394.24794 394.28 394.2794 400.213 400.212 400.7214 P16 394.2811 394.28 394.2461 394.2794									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
P ₁₀ 204.8120 130.00 130.00 130.2484 130.00 130.000 260.7015 P ₁₁ 168.8311 94.00 168.80 168.8461 168.7998 168.80 94.000 34.000 304.0025 P ₁₃ 214.7663 304.52 214.76 214.7598 214.759 214.76 214.7598 414.76 214.7598 414.76 214.7598 414.76 214.7598 414.76 394.281 394.2794 394.28 394.2794 394.28 394.2794 394.28 394.2794 394.28 394.2794 394.28 394.2794 394.28 394.2794 400.7214 394.281 394.281 394.284 394.2461 394.2794 498.28 394.2794 409.213 394.281 489.284 489.2919 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794									
P11									
P12 94.0000 94.00 168.8 168.8239 94.00 94.00 94.000 292.9607 P13 214.7663 304.52 214.76 214.7038 214.7598 214.76 214.758 413.3226 P14 394.2882 304.52 304.53 304.5894 394.2794 394.28 394.2794 394.28 394.2794 394.28 394.2794 400.7214 400.7214 401.5776 P15 304.5187 394.28 394.28 394.2409 304.5187 394.281 398.28 394.284 394.2409 304.518 394.2794 400.7214 401.5576 P17 489.2807 489.28 489.28 489.219 489.2794 498.28 489.2794 409.0213 P18 489.2832 489.28 489.218 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 499.0213 499.2714 511.28 511.2979 511.285 511.2979 511.285 511.2979 511.285 512.294 592.214									
Pi3 214,7663 304.52 214,76 214,708 214,759 214,756 214,759 413,3226 P14 394.2852 304.52 304.53 304.5894 394.2794 394.28 394.2794 391.28 394.2794 400.7214 P15 304.5187 394.28 394.28 394.2409 304.5196 304.52 394.2794 401.5576 P16 394.2811 398.28 394.28 394.2409 304.5196 304.52 394.2794 401.5576 P16 394.281 489.28 489.28 489.2919 489.2794 498.28 489.2794 400.0213 P18 489.2852 489.28 489.2919 489.2794 489.28 489.2794 400.0213 P19 511.2845 511.28 511.2997 511.2794 511.28 511.2794 509.7511 P21 523.2916 523.28 523.28 523.417 523.2794 523.28 523.2794 438.7379 P22 523.2853 523.28 523.28									
P14 P15 394.2852 304.52 304.53 304.5894 394.2794 394.28 394.2794 394.28 394.2794 394.28 394.2794 400.7214 P15 304.5187 394.28 394.28 394.2794 304.5196 304.52 394.2794 400.7214 P17 489.2807 489.28 489.28 489.2919 489.2794 498.28 489.2794 498.28 489.2794 498.28 489.2794 489.28 489.2794 489.28 489.2794 468.3763 P18 489.2815 511.28 511.28 511.289 511.2794 511.28 511.2794 509.7511 P20 511.2845 511.28 511.28 511.3073 511.2794 511.28 511.2794 509.7511 P21 523.2816 523.28 523.28 523.417 523.2794 523.28 523.2794 436.0573 P22 523.2853 523.28 523.28 523.2795 523.28 523.2794 523.28 523.2794 436.0573 P23 523.2865 523.28 523.329 523.32794 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
P15 304.5187 394.28 394.28 394.2461 394.2794 394.281 394.281 394.281 394.281 394.281 394.281 394.281 394.2409 304.5196 304.52 394.2794 401.5576 P17 489.2807 489.28 489.284 489.2194 488.28 489.2794 498.28 489.2794 409.0213 P18 489.2832 489.28 489.28 489.284 489.2794 488.28 489.2794 468.3763 P19 511.2845 511.28 511.2997 511.2794 511.28 511.2794 509.7511 P20 511.3049 511.27 511.28 511.2097 511.2794 511.28 511.2794 509.1561 P21 523.2916 523.28 523.28 523.417 523.2794 523.28 523.2794 438.379 P22 523.2853 523.28 523.2795 523.2794 523.28 523.2794 436.0573 P23 523.2994 523.28 523.28 523.2794 523.28<									
P16 P17 394.2811 398.28 394.28 394.2409 304.5196 304.52 394.2794 401.5576 P17 489.2807 489.28 489.28 489.2919 489.2794 498.28 489.2794 409.0213 P18 489.2832 489.28 489.281 489.281 489.281 489.284 489.2794 498.28 489.2794 468.3763 P19 511.2845 511.28 511.289 511.2997 511.2794 511.28 511.2794 509.7511 P20 511.3049 511.27 511.28 511.3073 511.2794 511.28 511.2794 509.169 P21 523.2916 523.28 523.28 523.417 523.28 523.28 523.2794 523.28 523.2794 438.07379 P22 523.2853 523.28 523.28 523.2795 523.28 523.2794 523.28 523.2794 441.0579 P23 523.2856 523.28 523.28 523.2794 523.28 523.2794 425.288		394.2852							391.8817
P17 489.2807 489.28 489.28 489.219 489.2794 498.28 489.2794 409.0213 P18 489.2822 489.28 489.28 489.4188 489.2794 489.28 489.2794 409.0213 P19 511.2845 511.28 511.2997 511.2794 511.28 511.2794 509.7511 P20 511.3049 511.27 511.28 511.3073 511.2794 511.28 511.2794 509.71169 P21 523.2916 523.28 523.28 523.417 523.2794 523.28 523.2794 438.7379 P22 523.2853 523.28 523.2795 523.2794 523.28 523.2794 438.0573 P23 523.2797 523.28 523.28 523.3293 523.3794 523.28 523.2794 425.328 523.2794 425.328 523.2794 425.328 523.2794 425.328 523.2794 425.328 523.2794 425.328 523.2794 425.328 523.2794 425.328 523.2794 425.328									
P18 489.2832 489.28 489.28 489.4188 489.2794 489.28 489.2794 468.3763 P19 511.2845 511.28 511.289 511.29794 511.28 511.2794 509.7511 P20 511.3049 511.27 511.28 511.2794 591.128 511.2794 511.28 511.2794 590.1169 P21 523.2916 523.28 523.28 523.2417 523.2794 523.28 523.2794 438.7379 P22 523.2853 523.28 523.28 523.2795 523.2794 523.28 523.2794 441.0579 P24 523.294 523.28 523.28 523.2795 523.2794 523.28 523.2794 425.0123 P25 523.2865 523.28 523.28 523.2795 523.2794 523.28 523.2794 425.0123 P25 523.2865 523.28 523.28 523.2794 523.28 523.2794 425.0123 P27 10.0000 10.00 10.01 10.05316									
Pi9 511.2845 511.28 511.28 511.2997 511.2794 511.28 511.2794 509.7511 P20 511.3049 511.27 511.28 511.2794 511.28 511.2794 509.169 P21 523.2916 523.28 523.28 523.2794 523.28 523.2794 509.169 P22 523.2853 523.28 523.28 523.2795 523.2794 523.28 523.2794 436.0573 P23 523.2797 523.28 523.28 523.2795 523.2794 523.28 523.2794 423.28 523.2794 425.0573 P24 523.2994 523.28 523.28 523.285 523.294 523.28 523.2794 425.0123 P25 523.2865 523.28 523.28 523.285 523.2794 523.28 523.2794 425.0123 P27 10.0000 10.00 10.01 10.0135 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00									
P20 511.3049 511.27 511.28 511.3073 511.2794 511.28 511.2794 509.1169 P21 523.2916 523.28 523.28 523.417 523.2794 523.28 523.2794 438.7379 P23 523.2853 523.28 523.29 523.3793 523.2794 523.28 523.2794 436.0573 P23 523.2797 523.28 523.29 523.3793 523.2794 523.28 523.2794 441.0579 P24 523.294 523.28 523.28 523.28 523.28 523.2794 523.28 523.2794 425.0123 P25 523.2865 523.28 523.28 523.28 523.29 523.2794 523.28 523.2794 427.9365 P25 523.2936 523.28 523.28 523.29 523.2794 523.28 523.2794 427.9365 P26 10.0000 10.00 10.01 10.015316 10.00 10.00 10.00 110.00 110.00 110.00 110.00 110.0	P_{18}								
P21 523.2916 523.28 523.28 523.417 523.2794 523.28 523.2794 438.7379 P22 523.2853 523.28 523.28 523.2795 523.2794 523.28 523.2794 438.60573 P23 523.2894 523.28 523.29 523.3793 523.2794 523.28 523.2794 425.0123 P24 523.2994 523.28 523.29 523.3661 523.2794 523.28 523.2794 425.0123 P25 523.2936 523.28 523.28 523.28 523.288 523.2794 523.28 523.2794 425.0123 P26 523.2936 523.28 523.28 523.4262 523.2794 523.28 523.2794 425.8892 P27 10.0000 10.00 10.01 10.05316 10.00 10.00 10.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 122.5079 12.5079 12.5079 12.5079	P_{19}								
P22 523.2853 523.28 523.28 523.2795 523.2794 523.28 523.2794 436.0573 P23 523.2797 523.28 523.29 523.3793 523.2794 523.28 523.2794 441.0579 P24 523.2994 523.28 523.28 523.3225 523.2794 523.28 523.2794 425.0123 P25 523.2865 523.28 523.29 523.3661 523.2794 523.28 523.2794 427.9365 P26 523.2936 523.28 523.28 523.28 523.2794 523.28 523.2794 452.8892 P27 10.0000 10.00 10.01 10.05316 10.00 10.00 10.000 110.00 110	P_{20}								
P23 523.2797 523.28 523.29 523.3793 523.2794 523.28 523.2794 441.0579 P24 523.2994 523.28 523.28 523.325 523.2794 523.28 523.2794 425.0123 P25 523.2865 523.28 523.28 523.28 523.28 523.2794 523.28 523.2794 427.9365 P26 523.2936 523.28 523.28 523.2794 523.28 523.2794 452.8892 P27 10.0000 10.00 10.01 10.05316 10.00 10.00 10.0000 110.02229 P28 10.0001 10.00 10.01 10.013516 10.00 10.00 10.000 140.5338 P29 10.0000 10.00 10.00 10.00 10.00 10.00 10.000 122.5079 P30 89.0139 97.00 88.47 88.47754 97.00 96.39 87.8000 87.2678 P31 190.0000 190.00 189.9983 190.00 190.00<	P_{21}								438.7379
P24 523.2994 523.28 523.28 523.3225 523.2794 523.28 523.2794 425.0123 P25 523.2865 523.28 523.29 523.3661 523.2794 523.28 523.2794 427.9365 P26 523.2936 523.28 523.28 523.4262 523.2794 523.28 523.2794 452.8892 P27 10.0000 10.00 10.01 10.05316 10.00 10.00 10.0000 110.000 10.000 10.00 10.000 10.000 10.00 10.000 122.5079 89.31 190.000 190.000 189.983 190.00 190.00 190.000 190.000 189.9983 190.00 <	P_{22}								436.0573
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{23}	523.2797			523.3793	523.2794		523.2794	441.0579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{25}	523.2865	523.28		523.3661			523.2794	427.9365
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{26}					523.2794			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{27}							10.0000	110.2229
P30 89.0139 97.00 88.47 88.47754 97.00 96.39 87.8000 87.2678 P31 190.0000 190.00 190.00 189.9983 190.00 190.00 190.0000 172.0005 P32 190.0000 190.00 190.00 189.9881 190.00 190.00 190.0000 178.5031 P33 190.0000 190.00 189.9663 190.00 190.00 190.000 168.2835 P34 199.9998 185.20 164.80 164.8054 164.7998 164.82 164.7998 187.7960 P35 165.1397 164.80 165.36 165.1267 200.00 200.00 194.3976 171.5563 P36 172.0275 200.00 167.19 165.7695 200.00 200.00 200.00 178.2705 P37 110.0000 110.00 110.00 109.9059 110.00 110.00 110.0000 97.2393 P38 110.0000 110.00 107.01 109.9965 110.00	P_{28}	10.0001						10.0000	140.5338
P ₃₀ 89.0139 97.00 88.47 88.47754 97.00 96.39 87.8000 87.2678 P ₃₁ 190.0000 190.00 190.00 189.9983 190.00 190.00 190.0005 P ₃₂ 190.0000 190.00 190.00 189.9881 190.00 <td>P_{29}</td> <td>10.0000</td> <td>10.00</td> <td>10.00</td> <td>10.00302</td> <td>10.00</td> <td>10.00</td> <td>10.0000</td> <td>122.5079</td>	P_{29}	10.0000	10.00	10.00	10.00302	10.00	10.00	10.0000	122.5079
P32 190.0000 190.00 189.9881 190.00 190.00 190.000 178.5031 P33 190.0000 190.00 189.9663 190.00 190.00 190.000 190.000 168.2835 P34 199.9998 185.20 164.91 164.8054 164.7998 164.82 164.7998 187.7960 P35 165.1397 164.80 165.36 165.1267 200.00 200.00 194.3976 171.5563 P36 172.0275 200.00 167.19 165.7695 200.00 200.00 200.000 178.2705 P37 110.0000 110.00 110.00 109.9059 110.00 110.00 110.0000 97.2393 P38 110.0000 110.00 107.01 109.9971 110.00 110.00 110.0000 87.7159 P39 93.0962 110.00 110.00 109.9695 110.00 110.00 110.000 93.5632 P40 511.2996 511.28 511.36 511.2794 511.2794 <td></td> <td>89.0139</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>87.8000</td> <td>87.2678</td>		89.0139						87.8000	87.2678
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{31}	190.0000	190.00	190.00	189.9983	190.00	190.00	190.0000	172.0005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{32}	190.0000	190.00	190.00	189.9881	190.00	190.00	190.0000	178.5031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{33}	190.0000	190.00	190.00	189.9663	190.00	190.00	190.0000	168.2835
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{34}	199.9998	185.20	164.91	164.8054	164.7998	164.82	164.7998	187.7960
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_{35}	165.1397	164.80	165.36	165.1267	200.00	200.00	194.3976	171.5563
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		172.0275	200.00	167.19	165.7695	200.00	200.00	200.0000	178.2705
P39 93.0962 110.00 110.00 109.9695 110.00 110.00 110.000 93.5632 P40 511.2996 511.28 511.36 511.2794 511.2794 511.28 511.2794 498.2079 TG* NR* NR* NR* NR* NR* NR* NR* 10729.07 TTL* NR* NR* NR* NR* NR* NR* NR* NR* 0.01 PM* NR* NR* NR* NR* NR* NR* 0.01 TGC* 121664.4308 121501.14 121448.21 121420.89 121420.89 121413.2 121403.5362 113120		110.0000	110.00	110.00	109.9059	110.00	110.00	110.0000	97.2393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P_{38}	110.0000	110.00	107.01	109.9971	110.00	110.00	110.0000	87.7159
P ₄₀ 511.2996 511.28 511.36 511.2794 511.2794 511.28 511.2794 498.2079 TG* NR* NR* NR* NR* NR* NR* NR* 10729.07 TTL* NR* NR* NR* NR* NR* NR* 229.06 PM* NR* NR* NR* NR* NR* NR* 0.01 TGC* 121664.4308 121501.14 121448.21 121420.89 121420.89 121413.2 121403.5362 113120		93.0962		110.00	109.9695	110.00		110.0000	93.5632
TG* NR* NR* NR* NR* NR* NR* NR* 10729.07 TTL* NR* NR* NR* NR* NR* NR* NR* 229.06 PM* NR* NR* NR* NR* NR* NR* 0.01 TGC* 121664.4308 121501.14 121448.21 121420.95 121420.89 121413.2 121403.5362 113120	P_{40}	511.2996	511.28	511.36	511.2794			511.2794	498.2079
TTL* NR* NR* NR* NR* NR* NR* NR* 229.06 PM* NR* NR* NR* NR* NR* NR* NR* 0.01 TGC* 121664.4308 121501.14 121448.21 121426.95 121420.89 121413.2 121403.5362 113120		NR*	NR*	NR^*		NR^*	NR^*	NR*	10729.07
PM* NR* NR* NR* NR* NR* NR* NR* 0.01 TGC* 121664.4308 121501.14 121448.21 121426.95 121420.89 121413.2 121403.5362 113120							NR*		
	PM^*								0.01
	TGC^*	121664.4308	121501.14	121448.21	121426.95	121420.89	121413.2	121403.5362	113120
	TI^*	NR*	NR*	NR^*	0.11	0.06	0.22	NR*	0.05

TG*means total generation (MW), TTL* means total transmission loss (MW), PM* means power mismatch (MW), TGC*means total generation cost (\$/h), TI*means Time/ iteration (s), NR* means not reported in the referred literature

d) Test case 4: 10-generating units with valve point loading and multiple fuel options: A system comprising of 10 thermal units with valve point loading and multiple fuels option is considered as the test case 4. The input data are taken from [13]. The load demand is 2700 MW. Transmission loss is not considered in this case. The best generation cost {564.7591} obtained by the SOA is compared to those obtained by the combined improved GA with multiplier updating (MU) (IGA-MU) {627.5178} [13], conventional GA with MU (CGA-MU {624.7193} [13], PSO-LRS {624.2297} [20], NPSO {624.1624} [20], NPSO-LRS {624.1273} [20], RCGA {623.8281} [24], ACO {623.7000} [7], BBO {605.6387} [10] and DE-BBO {605.6230} [11]. The best solutions of the generation schedules and the generation costs etc as obtained from 100 trial runs of the algorithms are shown in Table 4. The convergence profile of the cost function is depicted in Figure 8. The results of interest are bold faced in the respective tables.

Figure 8. Convergence profile of the total generation cost for 10-generating units

Table 4. Best Results for 10-Generating Units with P_D=2700 MW

NPSO-LRS										
_	IGA-MU [13]		[<mark>20</mark>]		BBO[10]		DE/BBO [11]		SOA	
Unit	Generation (MW)	Fuel Type	Generation (MW)	Fuel Type	Generation (MW)	Fuel Type	Generation (MW)	Fuel Type	Generation (MW)	Fuel Type
$\overline{P_1}$	219.126	2	223.335	2	212.9	2	213.4589	2	203.9230	1
P_2	211.164	1	212.195	1	209.4	1	209.4836	1	215.5536	2
P_3	280.657	1	276.216	1	332.0	3	332.0000	3	488.2478	1
P_4	238.477	3	239.418	3	238.3	3	238.0269	3	206.4783	1
P_5	276.417	1	274.647	1	269.2	1	269.1423	1	281.1896	1
P_6	240.467	3	239.797	3	237.6	3	238.0269	3	241.6517	2
P_7	287.739	1	285.538	1	280.6	1	280.6144	1	344.2351	1
P_8	240.761	3	240.632	3	238.4	3	238.1613	3	250.1840	1
P_9	429.337	3	429.263	3	414.8	3	414.7001	3	166.7617	3
P_{10}	275.851	1	278.954	1	266.3	1	266.3850	1	388.9654	1
TG^*		2700	2700		2700 2		700		2700	
TTL^*		0		0		0		0		0
PM^*		0	0		0 0		0		0	
TGC^*	624	1.517	624.127		605.6387 605.6230127		127	564	1.7591	
${ m TI}^*$		7.25	0.52		0.80 0.48		0.48	0.14		

TG*means total generation (MW), TTL* means total transmission loss (MW), PM* means power mismatch (MW), TGC*means total generation cost (\$/h), TI*means time/iteration (S), NR* means not reported in the referred literature

B. Discussions on the Results of the Test Cases

Solution quality: It is noticed from Tables 1-4 that the minimum cost achieved by applying the SOA is the least one as compared to those achieved by the earlier reported algorithms. It is to be recalled here that the highlighting characteristic features of the SOA are (i) the direct usage of search direction and step length to update the position, (ii) the application of proportional selection rule for the calculation of the search direction which can improve the population diversity so as to boost the global search ability and decrease the number of control parameters making it simpler to implement, and (iii) adaptation of fuzzy reasoning to generate the step length because the uncertain reasoning of human searching could be the best described

by natural linguistic variables. These features in the SOA help the algorithm to yield better solutions. It emphasizes on the fact that the SOA offers the best near-optimal solution for the ELD problems considered.

Comparison of the best generation costs: Comparing the minimum costs achieved by the reported algorithms as may be observed from Tables 1-4, the minimum costs achieved by the SOA are the least values given by 59421 \$/h, 9.0012e+06 \$/h, 113120 \$/h, and 564.7591\$/h for the test cases 1-4 respectively. Power mismatches are also the least ones in the SOA as compared to those in others. Hence, it can be concluded that for all the four test cases the optimization performance of the SOA is found to be the best one.

Testing of robustness: The performance of any heuristic search based optimization algorithm is best judged through repetitive trial runs so as to compare the robustness/consistency of the algorithm. For this specific goal, the frequency of convergence to the minimum cost at different ranges of generation cost with fixed load demand is to be recorded. While experimenting the same for the four test cases, it is observed that the frequency of convergence to the minimum generating cost of less than 120×10^3 \$/h is 50 out of 50 independent trial runs for the test case 2, and the same of less than 605.5 \$/h is 100 out of 100 independent trial runs for the test case 4. These frequency figures of attaining the minimum costs with minimum variations are the maximum ones as compared to the other algorithms of the referred literatures for these two test cases. The same for the test cases 1 and 2 are not included in the referred literatures. But, the authors of the present have tested the same with the SOA for the test cases 1 and 2 also and it is noticed that the convergence to the minimum value of the cost function with a minimum variation is achieved with high frequency values. The frequency of converging to the better solution is always higher in the SOA as compared to the other methods. Thus, it may be inferred that the SOA is the most consistent and robust in achieving the lowest cost in all the runs

Computational efficiency: Apart from yielding the minimum cost by the SOA, it may also be noted that the SOA yields the minimum cost at comparatively lesser time of execution of the program. Thus, this approach is also efficient as far as the computational time is concerned.

6. Conclusion

In this article a novel seeker optimization algorithm, based on the act of human searching capability and understanding while performing any task, is applied to the solution of the constrained, multimodal, non-differentiable, and highly non-linear economic load dispatch problem of small, as well as, large size test power systems. It is revealed that the SOA has the ability to converge to a better quality near-optimal solution and possesses better convergence characteristics and robustness than other prevailing techniques reported in the recent literatures. It is also clear from the results obtained by different trials that the SOA is free from the shortcoming of premature convergence exhibited by the other optimization algorithms. The simulation results clearly reveal that the SOA may be used as an excellent optimizer for the solution of practical economic load dispatch problems of power systems.

References

- [1] J. Wood, B.F. Wollenberg, Power Generation, Operation, and Control, New York: Wiley, 1984.
- [2] Z.L. Gaing, "Particle swarm optimization to solving the economic dispatch considering the generator constraints," *IEEE Trans. on Power Systems*, Vol. 18, pp. 1187–1195, August 2003.
- [3] C.T. Su, C.T. Lin, "New approach with a Hopfield modeling framework to economic dispatch," *IEEE Trans. on Power Systems*, Vol. 15, pp. 541-545, May 2000.
- [4] K.P. Wong, C.C. Fung, "Simulated annealing based economic dispatch algorithm," *IET Proceedings of Generation Transmission and Distribution*, Vol. 140, pp. 509-515, November 1993.

- [5] W.-M. Lin, F.-S. Cheng, M.-T. Tsay, "An improved Tabu search for economic dispatch with multiple minima," *IEEE Trans. on Power Systems*, Vol. 17, pp. 108–112, February 2002.
- [6] N. Sinha, R. Chakrabarti, P.K. Chattopadhyay, "Evolutionary programming techniques for economic load dispatch," *IEEE Trans. on Evolutionary Computation*, Vol. 7, pp. 83– 94, February 2003.
- [7] S. Pothiya, I. Ngamroo, W. Kongprawechnon, "Ant colony optimization for economic dispatch problem with non-smooth cost functions," *International Journal of Electrical power and Energy System* Vol. 32, pp. 478–487, June 2010.
- [8] L.D.S. Coelho, V.C. Mariani, "Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve point effect," *IEEE Trans.* on *Power Systems*, Vol. 21, pp. 989–996, May 2006.
- [9] B.K. Panigrahi, Ravikumar, V. Pandi, "Bacterial foraging optimisation: Nelder–Mead hybrid algorithm for economic load dispatch," *IET Proceedings of Generation Transmission and Distribution*, Vol. 2, pp. 556–565, 2008.
- [10] Bhattacharya, P.K. Chattopadhyay, "Biogeography-based optimization for different economic load dispatch problems," *IEEE Trans. on Power Systems*, Vol. 25, pp. 1064-1077, May 2010.
- [11] Bhattacharya, P.K. Chattopadhyay, "Hybrid differential evolution with Biogeography-based optimization for solution of economic load dispatch," to be appeared in IEEE Trans. on Power System.
- [12] Dai, W. Chen, Y. Zhu, X. Zhang, "Seeker optimization algorithm for optimal reactive power dispatch," *IEEE Trans. on Power Systems*, Vol. 24, pp. 1218-1231, August 2009.
- [13] C.L. Chiang, "Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels," *IEEE Trans. on Power Systems*, Vol. 20, pp. 1690-1699, November 2005.
- [14] Eustace, D.P. Barnes, J.O. Gray, "Co-operant mobile robots for industrial applications," *Proc. International Conference on Industrial Electronics Control and Instrumentation*, Vol. 1, pp. 39–44, 1993.
- [15] Li, "Uncertainty reasoning based on cloud models in controllers," *Computers and Mathematics with Applications. New York: Elsevier Science*, Vol. 35, pp. 99–123, 1998.
- [16] L.D.S. Coelho, C.S. Lee, "Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches," *International Journal of Electrical power and Energy System* Vol. 30, pp. 297-307, June 2008.
- [17] Sydulu, "A very fast and effective non-iterative "Lamda Logic Based" algorithm for economic dispatch of thermal units," *Proc. IEEE Conference on TENCON*, pp. 1434–1437, 1999.
- [18] K.T. Chaturvedi, M. Pandit, L Srivastava, "Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch," *International Journal of Electrical power and Energy System*, Vol. 31, pp. 249–257, July 2009.
- [19] J.S. Alsumait, J.K. Sykulski, A.K. Al-Othman, "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," *Applied Energy*, Vol. 87, pp. 1773-1781, May 2010.
- [20] A.I. Selvakumar, K. Thanushkodi, "A new particle swarm optimization solution to nonconvex economic dispatch problems," *IEEE Trans. on Power Systems*, Vol. 22,pp. 42–51, February 2007.
- [21] H. Lu, P. Sriyanyong, Y.H. Song, T. Dillon, "Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function," to be appeared in *International Journal of Electrical power and Energy System*.
- [22] K.T. Chaturvedi, M. Pandit, L Srivastava, "Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch," *IEEE Trans. on Power Systems*, Vol. 23, pp. 1079-1087, August 2008.

- [23] K. Meng, Z.Y. Dong, H.G. Wang, K.P. Wong, "Quantum-inspired particle swarm optimization for valve-point economic load dispatch," *IEEE Trans. on Power Systems*, Vol. 25, pp. 215-222, February 2010.
- [24] N. Amjady, N.H. Rad, "Nonconvex economic dispatch with AC constraints by a new real coded genetic algorithm," *IEEE Trans. on Power Systems*, Vol. 24, pp. 1489–1502, Aug. 2009.
- [25] J.-B. Park, Y.-W. Jeong, J.-R. Shin, K.Y. Lee, "An improved particle swarm optimization for nonconvex economic dispatch problems," *IEEE Trans. on Power Systems*, Vol. 25, pp. 156-166, February 2010.
- [26] J.G. Vlachogiannis, K.Y. Lee, "Economic load dispatch—a comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO," *IEEE Trans. on Power Systems*, Vol. 24, pp. 991-1001, May 2009.

B. Shaw was born in 1981 at Asansol, Burdwan, West Bengal, India. He received his graduation in electrical engineering and post graduation in electrical power from National Institute of Technology, Bhopal, India and Calcutta University, Kolkata, India, respectively. His research interest is application of soft computing intelligence to various fields of power systems. He will be available at binodshaw2000@gmail.com.

Mr. Shaw is a graduate member of The Institution of Engineers (India).

S. Ghosal is an undergraduate student of electrical engineering of National Institute of Technology, Durgapur, West Bengal, India. His area of research is application of novel evolutionary optimization techniques to restructured power system operation and control along with FACTS and energy storage devices. During the study, he already published one IEEE and one NPSC conference paper in 2010 along with research groups.

V. Mukherjee was born in 1970 at Raina, Burdwan, West Bengal, India. He received his graduation in electrical engineering and post graduation in power system from B.E. College, Shibpur, Howrah, India and B.E. College (Deemed University), Shibpur, Howrah, India, respectively. He received his Ph.D. degree from NIT, Durgapur, India. Presently, he is an assistant professor in the department of electrical engineering, Indian School of Mines, Dhanbad, Jharkhand, India. His research interest is application of soft computing intelligence to various fields of power systems He will be

available at vivek agamani@yahoo.com.

Dr. Mukherjee is a member of The Institution of Engineers (India).

S. P. Ghoshal received B.Sc, B. Tech degrees in 1973 and 1977, respectively, from Calcutta University, India. He received M. Tech degree from IIT (Kharagpur) in 1979. He received Ph.D. degree from Jadavpur University in 1992. Presently, he is acting as professor of electrical engineering department of National Institute of Technology, Durgapur, West Bengal, India. His research interest is application of soft computing intelligence to various fields of power systems and antenna. He will be available at spghoshalnitdgp@gmail.com.

Prof. Ghoshal is member of IEEE and fellow of The Institution of Engineers (India).